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HEAT TRANSFER THROUGH TURBULENT FRICTION LAYERS™

By H. Reichardt

SUMMARY
: Aq
The "general Prandtl number" Pr! = — Pr, aside from
A

the Reynolds number determines the ratio of turbulent to
molecular heat transfer, and the temperature distribution
in turbulent friction layers. Ay = exchange coefficient
for heaty; A = exchange coefficient for momentum transfer,

A formula is derived from the equation defining the
general Prandtl number which .describes the temperature .as
a function of the velocity., PFor fully developed thermal
boundary layers all questions relating to heat. transfer to
and from incompressible fluids can be treated in a simple
manner if the ratio of the turbulent shear stress to the
total stress Tt/T in the layers near the wall is known,
and if the Aq/A can be regarded as independent of the

distance from the wall,

The velocity distribution across a flat smooth channel
and deep into the laminar sublayer was measured for isothermal
flow to establish the shear stress ratio Tt/T and to extend
the universal wall friction. law. The values of Tt/T which
resulted from these measurements..can be approximately repre-
sented by a linear function of the velocity in the laminar-
turbulent transition zone.

.The effect of the temperature reiationship of the mate-
rial values on the flow near the wall is briefly analyzed.
It was found that the velocity at the laminar boundary (in
contrast to the thickness of the laminar layer) is approxi-
mately independent of the temperature distribution.

The temperature gradient at the wall and the distribution
of temperature and heat flow in the turbulent friction layers
were calculated on the basis of the data under equations (2)
to (4), The derived formulas and the figures reveal the ef-
fects of the Prandtl number, the Reynolds number, the exchange
quantities and the temperature relationship of the materlal

values.,

*"Die Warmelbertragung in turbulenten Reibungsschichten."
Z.fea.M.M,, vol, 20, no. 6, Dec., 1940, pp. 297-328.
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That the form:of the wall and the pressure drop affect
the results is illustrated by the variatjon of the thermal
behavior of the *rlctlon layers in the plpe, channel, and
flat plate., s

After a discussion .of the different definitions of
the heat transfer coefficient a new formula for the rate
.of heat transfer is given based on the maximum temperature
difference. The new equation differs from that offered by
Prandtl by an additional term that allows for the conditions
in the laminar-turbulent transition zone.

INTRODUCTION

A survey of the-literature on heat transfer in tur-
bulent boundary layers discloses that the problem has been
treated in numerous-studies (reference 1). Because of its
technological importance, the number of experimental projects
in which empirical or  semi-empirical formulas established for
various conditions and for various applications preponderate.

The theoretical :principles are but rarely treated. The
literature.therefore contains only a few general formulae,
In Germany the formulas by Nusselt and Prandtl are most
generally utilized. In the English literature it is custom=-
ary to introduce the Reynolds analogy which upon general=-
ization by G. .I. Taylor leads to approx1m ately the same
results as the Prandtl theory.

The -theories to date are based on 'simplifying assump-
tions, such as do -not usually obtain in .reality. The derived
expressions therefore required extrapolation based on exper-
imental results, the extension extending beyond the original
range of validity. The practical point of view was maintained
in arranging the semi-empirical equations and questions of the

physical significance became secondary.

The research programs in heat transfer involving many
technically important special’cases in the turbulent region
fail to allow the deduction of a general theory without
limitations. The solutien of this problem is very closely
related to the research;of" tqe flow processes in dlrect
proximity of the wall, - 2

; Before proceedlnv ‘to an,analysis of these questions a
brief survey of. the available theoretical contrlbutions should
be of 1nterest
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REVIEW OF PREVIOUS CONTRIBUTIONS

The school of Nusselt has made great strides ‘in the
study of heat transfer problems by the use of the theory
of similarity, particularly in arranging the various sub=-
divisions in reasonable order, The great technical im-
portance of the model studies is that it does not require
the exact knowledge of the individual processes, and that
simple formulae are obtainable for practical use, even in
complicated cases. But since no details of the physical
mechanism are secured the results can be of a preliminary
nature only, i

Reynolds (reference =) attempted to define the rules
of heat transfer from the point-to-point vari-tion of the
flow pattern, He proceeds from the assumptioa that the
turbulent mechanism of heat transfer is the saue as the
mechanism of the momentum transfer., But his considerations
are still incomplete for practical application and only
through supplementary considerations by Taylor (reference 3)
and Stanton (reference 4) were the results of Prandtl
accomplished.

Prandtl (reference 5) also starts from the assumption
that heat and momentum are transferred by the same mechanism,
A complete analogy between these phenomena does not exist,
however, unless similar boundary conditions obtain, when
the nondimensional ucp/% (termed the.Prandtl number, Pr)
is equal to unity, and when the pressure drop is negligible
(as, for instance, in flow past a flat plate). In contrast
the momentum transfer with pressure drop (pipes and channels)
is described by equations which differ from those of heat
transfer and momentum.

In order to. treat the technically important case of flow
through a pipe Prandtl postulated fictitious heat sources in
the stream, by means of which a sufficient similarity of the
- equations of heat and momentum transfer is obtained., The
Reynolds "concept was taken, that is, that in a very thinlayer
near the wall practically all of the transfer is by molecular
action and that outside of this layer only the turbulent ex-
change mechanism is effective, while the molecular conduc=
tivity may be neglected. ‘

The heat source postulate then leads to a simple equation

between the heat transfer and the resistance to flow, which
may be written in the form:
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.

a, = == = 2 X =2 (1)
2 9 ug u
1 + —2(Pr-1) i
. Un
-where
S heat transfer coefficient referred to the mean
- temperature
Dgw cp specific heat
4, density of heat flow at the wall
TO shear stress at the wall
um mean flow velocity
u, velocity at the "boundary" of transition from

laminar to. turbulent flow

To use equation (1) the ratio wu,/u  must be known,

In the absence of experimental data of the extremely thin
wall layer, Prandtl (reference 6) used the following reason=
ing to evaluate u,. In the laminar layer a linear velocity
increase exists, the slope of which is fixed by the shear

at the boundary. In the turbulent core the 1/7th power

law holds for Reynolds numbers below 10°, The plane in
which the two velocities coincide is called the boundary
between the laminar layer and the turbulent zone. The

exact determination of the boundary velocity u is to

a
follow from the heat measurements.

The heat transfer data available to date indicate
that Prandtl's formula doss not hold for large Prandtl
numbers, In consequence there have been proposed various

corrections to this formula in order to meet the require-
ments of practice.

- Thee basis of the discrepancies lies in the idealiza~-
tion of the transition from laminar to turbulent flow,
This transition is naturally continuous, hence an inter-
mediate layer exists in which the viscous and turbulent
shear stresses are of the same order of magnitude. Since
the transition to turbulence occurs’ close to the wall, it
has not been possible so far to measure the velocity dls~
tribution in the intermediate layer with suff101ent accuracye.
Von Karman (reference 7) has estimated the exchange conditions
in the transitional region based on an extrapolation of
Nikuradse's velocity measurements in the direction of the
wall, 3Based on his postulates, von Xirmdn gives the formula
for the heat transfer coefficient as:
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| — =1+ a/a [(Pr-1) + b 1n (l+c (Pr-1))] (2)
\

where
i a1 heat transfer eoefflcient for  Pr = 1

a, b, ¢, constants (reference 8)

An improvement of the theory has been carried.out by
Taylor (reference 9), Starting from the postulates of
-Reynolds~-Taylor, the latter discusses the error of the
analogy -between heat transfer and momentum transfer for
flow aceompanied by pressure drop. Taylor calculates the
temperaturc profile which corresponds to a velocity profile
measured by Stanton at Pr = 1. The temperature profile
differs somewhat from the velocity profile, that is, the
temperature gradient at the wall (and hence also the heat
transfer coefficient) is lower by several pcrcent than the
wall velocity gradient.

0f gzreat practical interest is the variation of the
heat transfer coefficient for non-isothermal flow  in which
the material values vary with temperature. Apparently this
problem has not yet been solved analytically. The theorics
to date imply isothermal flow (material properties not a
function of temperature or space). .S8ince large temperature
l differences do occur in practice, the proper mean magnitudes
of the material properties are introduced into the isothermal
’ expressions (referencée 10),
:
|
\

in the press, two further
at transfer have appeared,
d the other by Hofmann

While the present report.was
articles dealing with turbulent he
one by Mattioli (reference 10a) an
(reference 10D).

Starting from special theoretical concepts with respect
to the turbulent mechanism, Mattioli extrapolates the tur-
bulent velocity distribution into the semi-laminar zone in
order to deduce from this velocity concept the presumption
of equal exchange quantities for heat transfer and momentum
transfer the magnitude of the turbulent heat transfer. A4
careful analysis of the difficult derivation shows that the

~ important phenomena .ngar the boundary are not adequately
| defined, In addition to the semi-laminar layer there is
i presumed to exist a wall layer (which is established from
‘ the heat transfer measurements of Biihne and from other fluid
flow measurements mentioned above) which is much greater in
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thickness than the laminar layer, Mattioli is therefore
forced to assume a substantial exchange in his wall layer,
Since the Mattioli theory connot describe accurately this
exchange near the wall, the temperature change im the wall
layer is put proportional to (Pr)®, where m 1is established
from heat transfer measurements,

It is worth noting, however, that Mattioli quantitatively
allows for effect of temperature on the viscosity. For this
purpose a generalized distance parameter is introduced in a
manner similar to that employed in the present report (see
equation 05 5 o8

Hofmann calculates the temperature distribution and
the heat transfer coefficient with special consideration
of the laminar layer whereby the usual simplifying postu=
lates are retained. The concept of a thermal boundary
between the turbulent cord and a boundary layer is also
adopted and the thickness of this layer is discussed, In
contrast with von Kirmdn, progress is made in that the lam-
inar layer thickness for high Prandtl numbers is introduced.
The arbitrarily chosen velocity distribution near. the wall
lies above the test points of the present report.

The position taken by Hofmann that the heat transfer
depends solely on the velocity distribution and on the

Prandtl mixing length requires a correction. Basic to
every theory is a hypothesis of the turbulent diffusion
of heat. If the ratio of the exchange quantities for heat
and momentum transfer is chosen (Hofmann tacitly presumes
the identity of these guantities), then the laws of heat
transfer follow at once direct from the velocity profile
without the aid ‘of any turbulence theory, hence without
the help of the Prandtl mixing length, which in consequence
drops out again in the course of the Hofmann calculation.

THE PROBLENS

In order to avoid subsequent corrections and to pre-
sent the hydrodynamic theory of the turbulent heat transfer
coherently the following assignments are to be solved:

l. To derive 2 general equation for heat transfer into
which the technologically important boundary con-
ditions and the flow phenomena, particularly ina
the transitional layer, can be introduced,
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2. To measure the flow processes near the wall for
technologically important cases, particularly
smooth surfaces; rough surfaces, almost isothermal
flow, non-=isothermal flow, and so forth.

3+ To introduce the obtained data on wall adjacent
flow into the general expression to build special
formulae which can be checked by heat transfer
measurements,

The following statements are made relative to these
problems?

The presentation of the general theory should be clear
from a physical point .of view and it should be simple in
order that it may be utilized in practice.,

The derivation of a generally applicable equation for
heat transfer is carried through in a simple manner., In
contrast the measurement of the flow distribution near the
wall presents considerable difficulties, In order to obtain
practical test data especially thick ‘boundary layers are
essentiagl, This requirement implies large flow sections
and low flow velocities, that is, low dynamic pressures
and low pressure drops must be measured.

The conditions become complicated if the flow is not
isothermal, Through the influence of the temperature field,

"not only the materisl properties but also the flow phenomena

are changed. :
The presence of roughness introduces further complica=

tions. It is true that flow on rough walls has been exten-

sively studied and the laws of the "nuclear flow" in pipes

are well known but there is no dependable khowledge of the flow

processes near the wall between the protuberances.

The experimental exploration of the flow distribution
near the wall is a broad field of research which can only be
accomplished piecemeal. The author first explored the data
available near the wall, While these studies are not com-

plete, they have progressed far enough to enable a theoretical

treatment of the heat transfer at a smooth wall.,

v A particularly important sub-task consists in checking
the applicability of the theoretical formulae by means of
heat transfer measurements as the theory containe postulates
relative to the mechanism of heat transfer which require
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confirmation by experience. If necessary the theoretical
assumptions must be modified to fit the experimental facts,
The heat transfer measurements can be employed with great
benefit to eclarify the questions of turbulence structure,

THE PRANDTL NUMBER

o

The hydrodynamic equation for the continuity of heat
flow (equation {47)) is not sufficient for predicting the
temperature distribution in the friction layers. It re-
guires another equation for the temperature which takes
into account the requirements of the system under consider-
ation, (This temperature equation, looked for, places the
continuity of heat flow equation (equation (47)) in the
posit%on of a special condition that must always be satis-
fied‘.. .

» e
The Prandtl number Pr = —7? governs the form of the

temperature profile, It is logical, therefore, to begin
‘with'the Prandtl number concept. To secure a‘differential
equation necessitates a determinating equation for Pr that
holds for each point in the fluid. Since the individual
factors in Pr have "point" significance, the derivation

of such an equation is possible,

Let q equal the density of the heat flow, and T
the shearing stress of the density 6f momentum transfer,
Assume that the Heat flow and momentum flow act in the same
direction (+y) at a given point, which is perpendicular
to the mean velocity wu (time average) at this ‘point. . In
the system under consideration y 1is measured perpendic-
~ular to0 the wall:-and wuw paralliel to it

The total momentum T consists of a portion Tp Dby
the molecular transfer and a portion Tt by the turbulent

exchange motion, The same holds true for the heat flow.
Hence 3

T =ATm + Ty , (3)

(4)

fle}
1
fle]
SE
o
Nol
ct+

With

v coefficient of viscosity
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A thermal conduqtiviﬁy

A éxchaﬁgé coéffiéiéﬁﬁ'fdr m5m§n§ﬁm
Aq corfesponding coeffici?nt for heat
Cp specific heaﬁ

u,y, T time averages of velocity and temperature, respectively

u!, v! velocity fluctuations.in the x, y, directions, respec=
tively :

et corresponding temperature fluctuation

du

e 3 : (5)
du —_——— ‘
T il et nk e : (6)
t dy ‘P .
Jnige gt
ay = A E; (7)
* 1 7 0 o v B
Ly T et oy s s g e

oy : 3

The coefficliente w, A, A, Aq; are defined by these équa-

tions, = There presentation of - T4 -and - @4 - in terms -of the

f;uctuatiﬁg'compqnénts is for the present irrelevant, but
will be clarified in Chapter 9.

Equations (5) to (8) then yield the following proportion:

q A 1 s ; ;

s e e B TS
m m - m

Accordingly the ratio of turbulent to molecular héat flow is

proportional to the ratio of--turbulent to molecular shear

stresss The proportionality factor is - Pr! = (Ay/A)Pr, a

quotient which is called "general Prandtl number."
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Equation (9) thus leads to an extension of the concept
of the Prandtl number for turbulent flow with P! = Aq/A B

instead of Pr. Only in the case where the exchange coeffi-
cients are the same for momentum transf er and for heat
transfer will Pr and Pr! be equal,

Since equation (9) refers to flow in which turbulent
and molecular shearing stresses act, it is particularly
‘'suitable for the representation of the physical phenomensa
in the transitional layer., The treatment of the heat
transfer in the present report therefore starts from the
transitional flow, the "fully turbulent™ core and the
laminar motion at the wall being treated as special cases,
(In the proximity :0of the wall the exchange mechanism per-
pendicular to the wall is not possible; therefore the
turbulent friction disappears and the momentum transfer is
accomplished by internal friction only. Because of the
turbulent pressure fluctuations, the stream velocity near
the wall also experiences fluctuations. The continuity
of this fluid flow is largely maintained by the lateral
transverse fluctuations, so that the wall flow glides
practically parallel to the surface, In this sense the
viscous wall flow is "laminar.")

A piéture of the physical significance of the Prandtl
number is best obtained by observation of the transitional
layer for extremely high values of Pr! (very viscous fluids).
In this case practically only turbulent heat transfer exists
(qt>> qm) at those places in the transition region where only

small turbulence exists (Tt << Tm), In this extreme case the

molecular heat transfer is so small, that even a slight con-
vection signifies a form of "short circuit" for the heat flow.
Therefore the temperature profiles for high Prandtl Humbers
are "smoothed,"

Even for the special case of Prt = 1 and q/T = constant,
the temperature profile can be fixed readily, It is
qt Tt_ q m ;
— = — or 2 =2 x4l « In this case the profiles of the
q il g i du .
m m m

temperature and velocity agree with each other. (The con-
dition’ that gq = T is well satisfied in the friction layer
of a flat plate.) ' et 2 e ool '

THE GENERAL TEMPERATURE EQUATIOV

The temperature distribution follows from the equation

of the molecular heat stream qm = A %E; Q4 musty btherefore,
5
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be replaced by (q = qm) in equation (9). Introducing the

ratio gq/T equations (5) and (7) then gives:

(10)

e boundary condition at the wall is to be introduced in
his general equation. Phat sais

/dT\ Bo do

(11)
\du 0 >\0 TO

and when augmented by (11), equation (10) is integrated to:

u P'>\o QTOv
am\ g A Qo7
T-T =/ 12
o \du/o A //ﬁg 3 f\Tt d u (L2
10) +\A T —;r—

The factor <§E> is determined by extension of the integral
du

over the total velocity field of the friction layer.

The temperature-velocity quatleqt /__ <
x au/o dy 0
is a measure for the amount of heat tranbfprred to the wall,
The heat transfer at the wall is obtained from the temperature
distributions

Equation (12),although designed to calculate the temper-
aturc distribution, has general application. The considera-
tions so far are based solely on known definitions properly
rearranged and combincd and no special assumptions relative
to the flow have entered the computations except the bound-
ary condition of a laminar wall layer.

The above derivation indicates that a general result can
be secured without employing the hydrodynamic equations
(46) and (47)). This is due to the fact that the basis of
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each theory, entirely independent of the method of calcu~-
lation, is a postulate related to the exchange mechanism,
(For instance T' 1is set proportional to wu', or more

generally Aq = A, or as in the case in point, Aq/A is

to be determined later,) This simple hypothetical content
of -the theory is seen also from the presentation of the
simple Prandtl analogy for the present subject is treated
in such a manner as to make this step possible.

! To complete the temperature equation (12) the magni-
tudes Aq/A, qTO/qOT and T¢/T must be known. (These

quotients are introduced later in order that the effect of
each postulate may be observed independently. Also the
various deviations between the theory and experiment reveal
at a glance the direction in which the assumptions must be
modified.)

In order to carry through a calculation 4g/4 1is
assummed to be constant. The value of Ag/& 1is to be
determined from experimental data,

The quotient .g7,/q,7T cannot be fixed arbitrarily.

The heat stream q -is-related to the temperature T

through the differential continuity equation (see equation
(47) generalized Fourier-Poisson) of heat flow. But a first
approximation of the temperature distribution can be obtained
by assuming that the layer for heat transfer is of about the
same thickness as the friction layer.

In this case the heat flow disappears where the shear
stress is zero, while on the wall gq/q, = 1 and T/To A

Thus- the total rangé of the friction layer can be expressed
with : i

&g (13)

where .k .is small compared to 1 at least in proximity of
the wall, : : ‘ o

i In the turbulent friction layers the velocity gradient
is steep near the wall. The largest part of the velocity
region u lies in a zone whera k 1is small, So for the
integration T over u of equation (12), (qTo/qu) =en i
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may be .put in first approximhtion. (In the entrance ZOnes
where the wall temperature changes suddenly this approxi-
. mation ‘is not possible.: For such cases the heat boundary
_layer is much thinner than the friction layer and. it there-
fore plays an-important role in the variation in heat flow,
"Thermal entrance lerngths in existing friction layers are
quite short however (see Latzko, Z.a.M.M,, Bd. 1 (1921)

p. 268), so that when assuming (p?\o/pok Y. # A0 and,

T./T is known, the integration can be completed.

This procedure yields a first approximation of the
temperature distribution by means of which the heat flow
can be evaluated, The heat flow distribution then affords a
second approximation for the temperature distribution which
is practically adequate for the case of constant material
properties.

Several quantitative conclusions can be drawn from
equation (12) relative to the temperature profile of various
friction layers which coincide approximately with the stress
quotient (7T,/T) (such as, for example, the flow through a
pipe, channei or flat plate) at equal Reynolds numbers,
where the velocity distribution obeys the "universal law"),

At the flat plate (éi\ = 0 and likewise E;) =0,

. dy/o dy/o
The assumption k ~ O 1is therefore well satisfied over the
greater part of the velocity field of the flat plate, No
appreciable differences obtained here between the first and

second approximation. and-the final solution of . T, Even
though T and q are very similar at the plate, they are
not coincident, for ..q .depends-on Pr! while T does not,

Therefore there will exist for the plate, a small difference

between the actual temperature profile and the first approxi-
mation of T,)

For flow with 'pressure drop a far from.negligible
difference exists between the second and first approximations
(thzt is, between the actual profile and that of the "plate
profile" of the temperature,) By pressure drop (dT/dy)o‘:O,

but at the flat channel wall (dq/dy), = O and in the pipe
(dq/dy),> 0. Hence it follows for the tempzrature disbtri=-

butions that the pipe profile differs more from the plate
profile than the channesl profile, that is, according to equa-
tion (12), the temperature rise at the pipe wall is flatter
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than at the channel wall and even more so than at the flat.
plate {see fig. 4). TFor a quantitative treatment of model
problems it 'is advisable to integrate the temperature
aquations . by sections, that is, the laminar section, the
transitional region -and the real turbulent layer. The bound- w
ary at the end .of ‘the. laminar zone is designated by the :sub-
seript  a, .and the bcglnnlng of the turbulent. layer by b

lefd

whence, after 1ntrodU01ng the substltutlon uquation (13)
equation (12) gives : . T

EE\ = J[ B, i (o= B .3 (d3a)

T T .

BAg
1+ :
du / f (14 k) ; j ¥
T = u i 2b)
dm/o l+(Pr'—-l) Tt : # Ll

0

(A Cpo\ (u up, +-f kdu)

\ » C i % <
=y f f o i ; (1. <m<®) (12¢)
bo
e T/t 45 o

——-——-——

'Pr‘

. (® = max. temp. difference between the wall -and the flow-
ing fluid.)  In addition it should be observed that k may
be disregarded for the laminar region. A general disregard
cof k in the main fluid stream is not tenable.,. The sub-
script <+t indicates a mean va lue for the turbulent region
(formed ‘over wu), -

“In the actual turbulent region it is to be noted that
for small values of Reynolds numbers T./T 1is considerably
smaller than unit (see fig. 2), correspondingly Tm/T s

not negligible. EHowever to an approximation (T T} =
(T4/T)y = constant. The point where T./T = (T4/T)y is

the turbulent boundary designated with bye
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~ To utilize the temperature equations the variation

of (74/T) and the boundary velocities u,, up .(and corre-
spondingly ubo) must be known, ~ This-involves the flow
distribution near the walls, with limitation to the processes
at the smooth wall and to flows obeying the mniversal velocity
distribution equation.

VELOCITY DISTRIBUTION AT A SMOOTH WALL

The measurements by -Nikuradse (reference 11) have shown
that the turbulent velocity distribution can be approximately
represented by the following equation:

£ - 5,75 1n y* + B (14)

u*
where the dimensionless shearing stress velocity is defined

by
u*.=d/£; (15)
P _ dot

and the dimensionléss wall distance by

y* = -~ (16)

The constant B depends on conditions at the wall,
For smooth walls B is .approximately- 5.5. --Equation. (14)
is a2 straight line on semi-~logarithmic’ paper as shown in
figure 1.

The velocity distridbution for the laminar wall layer
can also be represented by means of u/u* and y*. Re-
arrangement of the Poiseuille equation results in

g ¥ (1 B (17)
u* \- o .
where n = y/r and r is the radius of the pipe or channel

for the equation in the sub-layer. In general the laminar
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layer is so thin that n/2 may be neglected compared to
unity and therefore practically

e i (17a)

Equation (17a) is therefore the universal equation
for the velocity distribution in the laminar zone., It is
shown in figure 1 as the curve which passes through the
point dog ¥* = 1, ufu® = 30,

The flow conditions in the transitional layer are not
very well established experimentally. This sublayer
adjacent to the wall is usually so thin that accurate measure-
ments of the velocity can hardly be made. The closest wall
proximity was probably reached by Stanton with his surface
tube (reference 12). But even these test data are insuffi-
~cient for the present arguments,

Since the application of our theory is predicted on
the knowledge of the shear stress ratio (T¢/T) in wall

proximity, a wall layer of such thickness was required
as to render a measurement of the wall flow possible.

The thickness of the laminar layer. y, and the bound~
ary velocity wua are fixed by definite values of u/u*
ande e ¥ increases with decreasing u* according to

equation (16). The reduction-of w* is limited by the fact
that at too low shear forces the critical Reynolds number
is undercut and so the entire flow becomes laminar. Tkl ideg
therefore appropriate to introduce the Reynolds number

“ Re = uyd/v in the place of wu¥*,. Then the thickness of

the wall layer is
v

et *d
* me fife et

where the so-called resistance coefficient { isdefined in

oo u=;
the usual manner as: — =¢ 220
Al 2 d
T 4
i Wi (19)
p. Um 8

(ﬁ decreases slightly with Re).
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The thickness of thg wall layer grows with the
diameter d of the pipe or chsnnel and decreases with

.the Reynolds. number., For a given Reynolds number ya/d

is independent of the choice of flowing msdium.

The impoftant'number ¥5*, the exact value of which

ﬂ,is.not,yet known, lies below 10 according to available

measurements. The critical Reynolds number is 3000, and
the corresponding § ~ 0.04, Herewith

% 3
¥ = 55 el (20)

This equation reveals that even for the lowest possible
Reynolds number the stream diameter must. be fairly great
in order that a probe can be introduced into the laminar
wall layer. (With considerations to the influence pf the
wall in the probe, the wall layer should be as thick as
possible.) , .

But the achievement of a sufficient boundary layer
thickness by increasing the stream diameter introduces
fundamental difficulties. If the increase in diameter is
to achieve the purpose desired, the Reynolds number may
not be increased (see equation 18). This means that the
velocity must be decreased in the same proportion as the
diameter is increased. As a result the dynamic pressure
and . the pressure drop are reduced quadratically with the
stream diameter, that is, with the boundary layer thickness.

This is exemplified at the dynamic pressure of the

i

"mean velocity wup, for which introducing Re = dup/ v, we
get ¥
o L2 ReZ
TR S wuew S (21)
2l 2 o d

To:fix the order of magnitude of this dynamic pressure

ag
several numerical walues are inserted. Let Re ~ 3000,
d = 25 centimeter .(utilized in measurements reported

later in this Qaper). For air as the flowing medium
b sl LeBaZa BT 0 g 2R 1SN XS 00 4 4

e ® v Zx 1078 mm HaO0

w o
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The pressure drop to be measured is of the same order of
magnitudes and is equal to p up® at Re = 3000 for

Al = 100 4, For flowing water these.pressures- are about
four times larger and only when utilizing a -viscous oil
does the magnitude become equal to 1 millimeter of water,
If these pressures are to_ be measured to within 1 percent
then the sensitivity of the manometer must be in tHe range
10-® to 107° millimeters of water. :

The problem of precise measurement of the flow phenomena
close to the wall for non-isothermal flow involves the tech-
nical difficulty of measuring extremely small pressure differ-
ences., (The velocities can be determined without the use of
pressure measurements. In the boundary layer itself a hot
wire .anemometer or a thread anemometer can be used in place
of a pitot tube. These devices .must be calibrated and the
calibration at best depends on pressure measuring devices.

In addition pressure drop measurements are desired to check
the effective shear.stress,) Such measurements can be made
with the micromanometer designed by the author which has an
upper limit of sensitivity of 107 millimeters of water
(reference 13),

The turbulent flow medsurements reported here were made
in .2 rectangular channel 25 centimeters high, 1 millimeter
wide and 16 millimeters .long and with a maximum velocity of
80 centimeters per second, Fime pitot Hubes and hot wires
were utilized. The hot wire anemometer was calibrated in
the parabolic distribution of a 3 centimeter high X 30 centi-
meter wide laminar channel in which at similar distances from
the wall, the same T, obtained as in the turbulent channel.

T, was evaluated from the maximum velocity as well as from

the pressure drop.

The measurements were made very difficult because the
low velocities were easily disturbed by external causes,
For instance, small temperature differences between the
air stream and the wall (induced by unavoidable fluctuations
in room temperature) caused obsarvable changes in the veloc-
ity distribution. Therefore the turbulent velocity profile
was almost always slightly unsymmetrical and thus u¥* was
different on the uppér and lower wall,

On the top of that. the .recorded pressuré drops yielded
an average u* which was too great as compared with the
results of other authors, The channel flow obviously was
not completely developed (in a.tube the length of 64 diam-
eters would have been sufficient.) But since the pressure
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drop was held constant for all test points, it was
possible to determine the mean wu* by comparison with
indisputable measurements of other authors at higher
values of y*. For this purpose measurements of Nike
uradse were utilized omitting those for which the wall
correction was questionable,. (Similarly the measurements
of the Stockholm report which do not lie in the range of
others of Nikuradse's measurements and are obviously too
high, have been omitted.)

The results of these measurements near the boundary
are shown in figure 1. The u/u* points approach the
laminar curve very gradually. It is reached at approxi-
mately wu/u* = 1.5, a value which is substantially lower

than that usually assessed.

The value ug/u* = 1,5 1is however still uncertain
and it must finally be based on much more accurate measure-
mentse.

It is also true, that an accurate determination of
the limit where du/dy ~ (du/dy)o is not possible from

velocity measurements. For this purpose heat transfer
measurements at high Prandtl numbers will serve better
to determine the laminar boundary. From heat transfer
measurements by Bihne it would appear that ua/u* is

somewhat larger than 2.

The recorded velocity distribution in the transitional
region can be approximated at:

. N \

ot a ey

/ 4 T oo M ,-—y*( ik | e

ik ol A e A |

ln\ = ~ (22)
b-a : b-a b-a

where

u
3 a Ut
S iR b =i amid)
u” il

U, is the velocity at the laminar boundary and uy a

suitably selected velocity at the turbulence boundary.
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As bofore n/2 can be neglected compared to 1 and
equation (22) then becomes a universal law., In figure 1
equation (22) is presented for a = 2, b = 15, The curve
is. dashed above wu/u* 15, where it loses its physical
significance, The measurements are satisfactorily rep-
resented by this equation.

It remains to be explained why the velocity distri-
bution in the transitional zone was approximated by
equation (22) although some other similar function had
been possible.

The ratio T4/T is required. To fix the ratio,
differentiate equation (22):

(v\)
s O (3
N be=u/u*
L / (23)
(1 = n) dy* b - a
where
u . p
d o " T
T (24)
dg® “gut dy 9y

D

veloped flow with pressure

(

The total shear stress for dc
drop is Rk
T, zemg (1 - n) (25)

(near the wall one may set T ~ To)- Then, solving,

one obtains:

T u
m By
ok : (26)
Ty g
T N ey

Since equation (22) is confirmed quite well by the measure-
ments for u, < u< uy the true variation of Ty should
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not differ much from equation (27). An uncertaintly
exists, of course, at the limits -a and .D,

-There follows from egquation (27) by introducing the
often used ratio ® = u/U

: ®
T S :
2 i : T (272)
b - a g

Lt
il

where U is the maximum velocity at the edge of the friction
layer., U/u* 1is, in accordance with equation (14) a function
of r* (that is, the value of y* at the border of the
friction layer based on the distance r - from the walk).

The relation between Re and r* 1is given by the identigpy.

U U e e
Ry = “ T (28)
298y u u* Vv
where
Up mean velocity
u
e KD a function of Re
U m

Figure 2 shows T;/7T for different values'of ©

with Reynolds numbers as the parameter as calculated from
equation (27a) for the transitional layer and by equation
(14) for the turbulent region. The constants a and Db

were chosen at 2 and 15.5,respectively.

The actual T4/T distribution no doubt differs from
that shown in.figure 2 for small values of P, But the
difference between the velocity distribution as expressed
by equation (32) and the laminar curve is less than the
scatter of the experimental points (see fig. 1) so that
nothing certain may be said relative to the actual Tt/T

variation near the laminar boundary nor of the laminar
boundary itself.
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Details of the variation of T¢/T play at first no
parbe In contrast with earlier work in which the friction
layer was divided into two regions in which T4/T varied
faom ~<0L . Bo. L, it should for the first suffice to approxi=-
mately describe the processes in the transitional Zzone.

The earlier division of the friction layer into a
laminar and a turbulent region-is indicated by two vertical
lines in figure 2, The dotted line represents Re = 4 x 10

and a = 2 and the dot dashed line represents Re = 4 x 10%
but a = 8.8, which is the value chosen by Prandtl in 1928,
T4/ T was defined as zero up to a = 2 (or 8.8) and unity

for greater values of y*.) At high Prandtl numbers where
the transitional layer can be regarded as part of the tur-
bulent zone core with respect to heat transfer (see equation
(9)) a = 2 is in good agreement while a = 8.8 results in
a heat transfer rate which is too small,

THE EFFECT OF TEMPERATURE RELATIONSHIP OF THE
MATERIAL VALUES ON THE FLOW PHENOMENA

If the material values are functions of the temperature
then the flow distribution across a section will be changed
as mentioned above and also reduction in temperatures in the
direction of flow causes hydrodynamic changes for all fluids
which are compressible. In this instance,. in principle at
least, there exist no velocity profiles which are similar,
the same statement holds for the temperature profiles both
considered as a function of length.

‘Since the magnitudes of the temperature differences and

 the differences in the temperature coefficients of each prop=-

erty enter into the evaluation of the profiles, a general
solution of the problem is hardly possible and the study re=
stricted to the simple case of similar temperature profiles

‘'which are practically achiéved at relatively low differencess

If the viscosity of an isothermal friction layer is
changed from V3 to' Vz and if the remainder of the varpi-
ables, particularly u* ' do not change, then equation (14)
reveals a parallel displacement of the turbulent velocity
profile (see fig, 3a) with a velocity difference of

Vg
_v.__
< 8

Au = 5,75 u* 1n (29)
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Prom this it follows that the viscosity has practically
no 'influence in the fully turdbulent region, but affects
solely the boundary velocity near the wall.,, (The tur-
bulent flow slides at’'the wall at a higher or. lower
velocity equal in magnitude to A Ty ) '

If the viscosity in the turbulent core of the iso-
thermal flow. .plays no part its influence for non-isothermal
flow is limited to the effect due to its variation. Vis-
cosity variations in the turbulent core are not great, for
the temperature variations are not great. We may, there-
fore, generalize the laws established for isothermal flow
by omitting the effect of viscosity in the turbulent core
"and by replacing the isothermal viscosity V. in equation
(14) by a suitably defined laminar layer viscosity = Vi

Recently the resistance measurements of Rohoncgzi
(reference 14) for non-isothermal flow of hot water
being cooled in a tube were published. The measurements
could not be adequately correlated if the friction factors
were plotted against Reynolds numbers in which the viscosity
is evaluated at the mean fluid temperature. In contrast
the correlation is satisfactory if the viscosity v ig
evaluated at the wall temperature,

(o]

The rest of the discrepancies can be eliminated if
a viscosity slightly less than that corresponding to the
wall is employed in the Reynolds numbers, As far as the
author could determine the results of Rohonczi can be
satisfaetorily correlated and are in agreement with those
of Blasius-Nikuradse if the Reynolds number is referred
to the mean laminar layer viscosity VvV, and "a’ "is put

équal to 2, (Rohonczi chose vV, as the correct viscosity

due to an error in conclusion from similarity reasoning

in which the differential equation for isothermal flow

was applied to non-isothermal flow. In additiom the Vv,
values of Rohonczi do not achieve coincidence of the iso~
thermal and non-isothermal results. Up to this time the
thickness of the laminar sub-layer was chosen too thick,
resulting in a sublayer temperature which was too high

and a value of V! ‘which is too low. Only for one set of
data at high Reynolds number will the results yield to
adequate correlation,)

Consider next the influence of a uniform viscosity
variation on the flow conditions near the wall, If the
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friction velocity u¥* 1is not changed, then the boundary
velocities wuy, = a.u* uy = b u* .are maintained since

a-.and b are univé&rsal constantsy Fhat. is, onlyx the
layer thicknesses change to | wR

2 ¥ ; RS 0 5
Ny o= e 3 Rndoe 1

™ n*

In figure 3a the -velocity profiles for uniform changes
of viscosity are shown in which, for-the sake of simplicity,
the transiticnal layer is. included with the turbulent core.
Curve 1 is the original profile. 'Reducing the viscosity
vyields profile 2 with one~half the laminar layer thicknesss.
Increasing the viscosity by 50 percent yields profile 3
with a corresponding-laminar-layer thickness of 1.5 of
the original layer. -

The case of a :locally variable:viscosity such as obtains
in non-~isothermal flow stipulates a generalization of the
dimensionless distance: y* = yu*/v FYor the viscous wall
layer the following simple possibility presents itself:

dy T EL
ponf & e
b ; O :

(o}

‘The applicability of this concept must be established by
. experiment. But it may be stated that this concept (equa=-

tion (30)) is more satisfactory than thé original and ‘that

‘one c¢an predict well those cases in which the property-

temperature quotient is not tco great by,.employing equa-
tion (30).

The ratio uf/u*’ can be generalized by re-arrangement
of equation (3) for the leminar wall layer.

The followihg ‘indentity hqldgAfdr.the laminér layer:
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e [pdu=u*f A (1)

)
0o 0

)
8o yu*/v 1is replaced by u" /‘ %Z = g%, then wu/na®
J,
/Gy 0

must be replaced by ]£* p du in" order to preserve
o ‘po . O

the universal representation of the Poiseuille law.

Under the postulate that there exists a certain
critical number in this representation, the laminar:
boundary of thenon~isothermal flow must be at the same
value as for the isothermal flow y * = a,. For the'ratio
u,/u* equation (31) then gives

Ug, 28 -
Sft e e dBlL L e ¥ (32)

AL TP gy

if in the first approximation p(T) and T(u) are linear.
At constant density wu,/u* = a as was the case for iso-
thermal flow.-

In incompreésible fluids the laminar boundary velbcity
therefore always approximates to the same value au* no

matter what the viscosity variation in the laminar layer
may be., The integration limit w, in equations (1l2a) to
(12¢) can therefore be retained for non-isothermal flow
also, : - : :

The e¢ffect of the viscosity expresses itself in the
thickness of the laminar layer, according to equations
(30) end (31)3 |

a 3
ij v,a /u\
ya L vV ody * = ol f .—“‘—. a. e
L u* " u¥ Mo \ua/ e
(o] (o]

These ratios are expressed qualitatively in figure
3b, that is, for specified values of wu* and Mo at the
wall, The viscosity in the sub-layer is smaller in Profile
2, greater in Profile 3, than the viscosity By for iso-
thermal flow illustrated in velocity Profile 1,
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It is seen that the parallel shift of the turbulent
profile in the non- isothermal case is" much less than by
the uniform variation of ue The veloclty change may be
expressed approximately from equation (14) as:

Au = 5,75 u* 1n (f > (34)

Because of the neglect of the transitional 1ayer this
shift is less than the true Au. A4n improvement is

possibly obtaingble with the integral JF ﬁ~?2 d (%L)
o

THE TEMPERATURE DISTRIBUTION AND THE TEMPERATURE

GRADIENT AT A SMOOTH WALL

To further evaluate equatlons (12a) and (12c)
p%o/uo is substituted for cpo Pr/eg and the

dimensionless ratios ® = u/U, * = T/@ introduced.

To simplify the calculation .a constant Prandtl
number: Pr(ﬁ) and a constant specific heat Cp— is
u

introduced for the transitional layer. For the turbulent
region itself cp is equal to Cptr @ constant. Further

the ratio of the exchange quant ties is assumed identical,
(For completely laminar flow the ratio -Aq/A loses - af

course its significance.)

Defining a mean Prandtl number for the laminar layer as:

Py,
c
Pr3 =tk f——E-Q Pr do o (25)
D g e | :
o ke 2
and putting , g ) ;
i T R Toviasl ]
F2 Prik
& =f i (36)

et
5 1+ (Prf-1) _TL
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t follows from equations (12a) to (l2c¢c) upon the intro-
duction of equation (27a) and the application of Pr', =
/& Pr, and Pr¥, = Aq/A Pry; that: ~

O s

e

a/
: /dd\ i
Pro\:l-;/oi’=Pr'7,cDa+e"Pr7,coa (0% = % (37a)

¥ ®, - ® 00
Prt | dm\us = Pr'. ®©_+ ¢ + 9 - 1n<1+ (PI"Tl""l) -

\ =5 a e 1=1/P7" e
O\d_.g/f) 7-. Cpe 1 1/Pr T CD.b G’Ja
(@a A T abo)(37b)
/AN Cpo Py =P Cpo
Pr’o(———}-‘nzPr'l‘TD + e + == D & ,a__ ln Pr':a+-c£)"‘ (@—@b)
| \d*® 0 a Crg 1-1/Pr = pt
(8,, < & <1) (37¢)
From equation (37c) the temperature gradient at the wall
is:
/ N 3351 Pr'y
! C-I.'f-'{«\ + \ CT}u—' R i 5 u
% v (}_ = 1+ ey +0 (B Prisal 4 (@ —0) 2 = (z8)
Al & - . i L A N o 1
Cpo % d—ﬁ,}O “Noo i) { i 1/Pr £
where e7 1s the value of e for ®= 1 multiplied by
-~ N ( 2
Cpt/cpo‘ (See equation (36).)

The quentities ©, = a u®/U and ®y = bu¥U. are
known functions of r¥* and Re (see equations (14) and
(28)) if 2 and b are fixed. On the other hand, the

material values Pry =nd Pry mnust be defined more
u

explicitly. (To be discussed later.)

In equations (B7c¢) and (38) ,, was replaced by ©

because a slight variation while defining the turbulence
boundary hes practically no effect on the calculation of
the total temperature. (At the boundary position

the temp, difference over the turbulent region is greater by
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bo than at @ , whl;e the temp.»dlfference
Prl b

in the tran31t10nal zone is reduced by approx. the same
amount. ) .

In addition to the very small error terms, the
expression

(P - w;0> (1—i/Pr!°) <%#>t

is also emmitted, since it is smaller than 0,02 (see fig., 2)
even for the largest (T,/T), at small Reynolds numbers,

The number e1 accounts for the effect of the variation
of q/T on the temperature gradient at the wall, Since
this term is less than unity (see fig. 10) it plays no
important part except at low Prandtl numbers as is seen

from equation (38). The integration of equation (36)
between b and unity usually suffices to calculate ezx
and by this operation Pr!' and Cp disappear:
1
e1 ~Jf k d ® (392)
b :

While the errors due to the inaccuracy of the speci-
fication of T4/T by means of equation (27) tend to dis-

appear for high Pr, for Pr! = 1 +the only term which
ig in error is e (for Tt/T is eliminatgd) to the.
extent that the errors due_to the material values can
be discounted.

For Pr! =1

T ‘
ey ~ Jﬁ -:R—k_d ) ~ (39Dp)
o r

Here the integration from .0 to b for pipe flow is’
appropriate, if the Reynolds. number is small (in this
event k in the transitioral zone cannot be npglected )
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For cbnstant material values and for Dy =(Pa,
T qo/"ro (e ~0) equations (38a) to (37c) and (38),

give the Prandtl approximations:

a9
= (0 8% 4) (40a)
= O + 3 (p=,) (B = Ve B (40Db)
dﬁ ) s Fp = ok :
a0\ "
(Prandtl employéd Pr instead of Pr', He also used
uy and T, as reference values rather than U and 8.)

The fourth term of equation (36) which accounts for
the conditions in the transitional layer is particularly
important for average values of the Prandtl number. 3But
at high values of JEh the. fourth term is small come~
pared with the third and for constant material values
Prandtl's equation (41) is approximately obtained again,

At (Bl =l o emd B0 astant material values equation
(38) simplifies to:

: o, +C0b
( > L4 ey + =22 (prio1) (42)
(¢]

In flow with pressure drop, consideration of the heat
flow distribution which enters into the e1 term yields

)

smaller temperature increase at the wall than by the
ssumption gq/f7T = qo/To. For instance (d&/dw)o is not

]

equal to umaty ‘at " Prlit=71" Bnd " Re = 4,10° but in a
channel is only adbout 0.94 and in the pipe approximately
0,90 (see £ig, 1O, o

In figure 4 (d@/dw)o is presented;as a function of

Pr! for constant material values with Re as the param-
eitiemat v ali =8 D Eand Bl =B B The solid curves refer to




30 NACA Technical Memorandum No, 1047

the flow through a pipes For Re = 4 X 10° the dot-dashed

curve is that of ‘a channel while the dashed curves “refer to
a fiat plate, : ;

The asymptotic limit value of (a#/d®) for extremely
high Prandtl numbers is l/CD o hie tempprgture gradient at
the wall (d#/dy), is therefore at the most -1/, times
greater than the correspondlng velocity gradient.

For Pr = 0,72 (air and other gases at room temp. 5

(d&/dm) ~ 0.8 at the plate, if Ay = A (see equation (42)
and Flg. 4).

Elias (reference 15) has established, for the flow
along a2 hcated plate, that the temperature and velocity
profiles are similar, that is, that (dﬂ/dw)o

This value for (ds/d®), holds, however, for
(A, /A) Pr ~ 1. From this it follows that Aq/a ™ 1/0, 72 ~ 1.4,

A similar result was obtained by Loreaz and Frledrlchs
(reference 16) in their experiments with air flowing through
heated pipe, Re ~ 10°, (d¢/d®)_ ~ 0.97, This value lies

,at Pr! ~ 1,08 as may be secen from figure 4 (equation (12)),
From this it follows that: Aq/A # Laby

The question regarding the ratio of the exchange
quantities, however, cannot be considered solved, hence
no specified value Aq/A will be aséertained,

Figure 5 illustrates the temperature distridbution
3(®) for various Pr! at BRe = 4,10%, The solid curves
indicate the -second approximation for pipe flow, the
‘dashed curves represent the first approximations which
approximately correspond to the temperature distribution
along the plate, The division into three flow regions
is indicated by the lineés @4 = constant, %, = constant
(that is, for a = 2,0 and b = 15, 5).

In figure 6 the temperature distributions of figure 5
are plotted against the dimensionless wall distance n.
For purposes of clarity only the case of Pr! = 1 for the
first approximation (also a near approx. for the plate)
is presented, This curve also represents the velocity
profile for Re = 4,10%. for the universal velocity dis-
tribution curve approx1matclJ holds for the pipe as well
a8 fox the plate. ' ;

As to the non-isothermal problem the least trouble
ig¢ in the choice of the value of ¢ since the specific
heat varies but slightly with the temperature. In many
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cases onme may write = t in which event
equation (38) is wreaufy s1mp T eg

For a more accurate analysis the approximate range
of the pertinent temperatures must be known. Employing
the subscriptsutilized to describe the material values
and arranging the temperatures in the order of increasing
temperature results in

Fras VR Nasi Tl Tl Rl 2

Here, in addition to the material value temperatures,

the boundary temperatures T and Ty as well as the
mean temperature of the flowing fluid T, are introduced.
(The definitions of T, and Tt depend on the variations
of the material values and are very complicated, (sece
derivation of equation (38) But it is not necessary to

consider this matter further here.)

Since the principal mass of the fluid is turbulent
Ty and Ty are quite similar so that in genmeral Tt can be
replaced by the known Ty. - At high Pr, temperature e
agrees with T4, hence with Ty (fig. 5); but at low Pr,
Ty 1s substantially lower than T,., Since Ty 1is appli-
cable only to the term of the transitional layer, the
approximate value from figure 5 will suffice.

Of particular influence on the heat transfer is the
temperature relation of the ndtl number in the laminar
layer if a very viscous fluid is involved. (For viscous
fluids the major resistaic

P
a

e to heat transfer is offered by
the laminar layer. Since the leminar layer thickness yga
varies with the temp. viscosity history of the fluid (see
equation 33) and since th emp. variation of Pr is fixed
primarily by the viscosity (cb and A vary but slightly
with temp.) Y, “depends on Pr/Pr, ‘But . it may not be
said that the thickness of the lam 1nar layer is a function
of Pr for this is a heat ‘transfer factor and the laminar
layer thickness depends on a purely hydrodynamic variable
as seen from equation 33,) In this event a mere estimate
of  Prq by means of a cursory t“mpérﬂturé T, may intro-
duce a serious error. Th 'pfedlﬁtlo of. " Pr by mesdns of
equation (35) is therefore in

To simplify the calculation a proportionality between
velocity and temperature for the non~1soth=rmal laminar
layer is assumed:
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/dA el g

\mmo - 5 | k43)

Further the temperature varlatlop of i is approximated
by the linear equation: s °p

P - Bpe”

(i +.ﬁ T) s (44)
to+ Fuo

where m 1is an empirical constant,

‘With the assumptions (43) and (44), equation (35) gives

Prq m ‘as
=1+—-—0, (—) @=14+
Pr 2 .dcO 0

T

IV E]

TR (45>
! |

A first approx1mat10n to the temperature gradlent ( >

at the wall is obtained from figure 4 where. for the
Prandtl number Pr'! the value of the wall, Pr' may
be chosen. : .

For a more accurate solution of Pry (to be ‘discussed

elsewhere) the real non-linear functions T(®) and Pr T)
must be used instead of the llwear relations alven by'f%
'oquatlons(43) and (44). :

THE DISTRIBUTION OF THE HEAT FLOW DENSITY

IV A CHANNEL:AND A PIPE

.

‘The dlfferentlal equatlen for the equilibrium of
-forces .in a fluid with - allowance- fo* the contlnulty equatlon
and .omission of dens 1ty varlatlons reads.

3 AR o i s
p :% + p V(T:W) = - grad o 4 uVBW .  (36)
i 7 gred _ e e
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where w is the velocity vector.

The differential equation for thermal convection
and conduction is written similarly?

T
P Cp S; t+ poep V (w3l) = e+ A, VYOO (47)

where
€ source of density per unit volume,

A formal analogy between the equations of momentum
and heat exist therefore for flows with grad p # O
only in the presence of spatial heat sources in such
flows, . Even though the internal friction of a fluid
is small in technical applications, the variable € 1is
retained in the equation for future consideration of the
analogye

Bgquations(46) and (47) are next applied to the com—
pletely developed turbulent flow in a flat rectangular
channel and in a pipe, PFor this type of flow the non—
uniform berms cancel out by averaging and likewise the
derivatives of the mean velocity along the principal
flow | &

With w =0 + u! and v! denoting the velocity and
fluctuating components of the velocity in the x and 'y
directions, respectively, where bars represent mean vel—
ocities with time and the primes represent instantaneous
variations from the mean, the scalar equation for two-
dimensional channel flow in terms.of mean values 1is

e 3. 0108

0
o, ! e s
P oy s 2 ) x +_u oy ?

=

(48)

In"this equation the bars are omitted from the pressure
and velocity terms as was done previously. The bars are
used only to represent the mean products of fluctuating
guantities,

The mean momentum interchange — p ul v!', which may be
regarded as a stress attitude is identieal with the tur—
bulent shear stress T3, while-'p £% is the viscous
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shear stress Ty, (Tgy 1is the turbulent momentum

transport in the —y direction. qu.%§“> 0 Tt is
likew positive; since the positive: u' - are associated

with the hegatlve v! and vice versa on the average.
For the exchange process the higher- u velocities arrive
from greater and th c- 1ow. velocities from closer wall

Hence T is the total shearing stress

— = — = constant ~ (channel) (47)
¥ ox :

The pressure drop is constant since the flow is fully
X _ ;

The heat balance in two—dimensional channel flow

follows from equation (47) =
T '— e Ry
P °p /1 E—- jl (Tt ut) + jL (o V‘)\ =€ 4+ N — (50)
\ 0x - 0x i dy : P B

Assuming that no great changes in (T!' u') occur in the
direction of flow x as certainly is the case for fully
developed temperature distributionsy the second ‘term on the
left side of equation (50) may be neglectgd., Thereremains,
then, only the fluctuation product. p-cpy T' v! which is
equivalents to the turbulent heat transpor® —q,  perpen—
dicular to the walls Introdueing the tebtal -heat flow
gl AT :
g g * A o——y further affords:
oy
\(J__ ::.-'ai-,
g; PR i Mg . (channel) (51)
Fo¥ fully-:developed flow in .a:pipe the. ollow1ng
"equatign In cylindriceal. oordlnaueg:(instead of equation
(43) for the channel) is obtained
MR s P GO .
: LB 5., ==— = constant (pipe)- (492)
BJ OF L 2l
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and (instead of equation (51) for the channel) the
eklu.a’o ion¥ -

5 3T N\ :
e 1-n)).= (1) Gw, W SE ) ipe) (51a)
e (Cl( P D, bx‘ / (p pe) (

where mn = % (r = radius of pipe or 1/2 width of‘channel).

By introducing the shear stress at the wall T4
there follows for the pipe and the channel from equations
(49a) and (19), respectively:

T = T, (1-n) (chahnol.and pipe) (52)

fully develnped temperature distribution
t is confined the partial differential
flow become ordinary differential equations,
(Tho entrance cthes for fluid flow and heat diffusion are
indepcndent of el For instance, a sudden change
of wall temperature may. introduce a thermal entrance in a
hydrodynamically developed flow.) The similarity  of the
teuperature profiles states tnat the decrease of temperature
per unit temperature —dal/T
tance y from the wall
constant De. The omis
(56 1

(51) and (51a)

oy Gth
to Taleh

equations of h

n'distance ‘dx at each dis—
constant. Therefore —dT/dx =
f € 1leaves:instead of equations

—= = constant wu T (channel) (53)

d
— (q(1-nm)) = constant (1-m) u T (pipe) (53a)
dy

T 1is defined, as before, as the temperabture excess over
that” at Ui

the wall.

It should be noted, however, that a fully developed
temperature distribution is pos uible only at small excess
temperatures T, In general u.0/dx)(p op T) instead eof

b4 £ 300 : E
pcp U = would have %0 be reckoned with, For the fellow—

. R

g b is assumed that change £ pRof i remains ith i
ing it 1 s d that change of ofile remains within
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such
with

» = ufU gives?y

Y

ﬁL (1-n)

-0

A good approximation for

morandum- No,

and
nondimensional »

n
f{*)(pdn
:..'1-.--O

1
Soe an
0

n
g'ﬂ o(1-n)d n

1l «

1

i

J o o(1-n)d n
(o]

Q/QQ

equations (53) and (53a) and
(¢ = qo at N =0
the

q

1047

limits that equations (53) and (53a) remain applicable
sufficient accuracy.

introductieon
=0 ay H = 1)
T/® and

(channel) (54)

(pipe)(54a)

is obtained with the

application of the tcmperature cquations (37a) to (37c).
Although the introduction of the simplified temperature
equations (40a) to (41) is sufficient,

The velocity ‘distribution of the turbulent region
is represented by the well known power laws

where 0,18 > n> 0,10

® =10

~,

= <
for 4,10

(55)

< ‘R wNo,

The power law reprcsents the velgocity distribution

even better
is especially

for large
suitable

n's

for the present

'wall proximity the velocity is -ofcourse less

calculated by the power

is small

The
"

JF $ ©dn”~

0

ge of equat

law and

walls

the error of
only at high Reynolds numbers where
must be used near thre

than the logarithmic law and
calculation. . In

thmnt binases
the derivation
the power law

a cns (40a) to (41) and equation (55)
then yieclds approximatelys

1+n—n2)(Prt—=1)p,+ ¢ ,41/n
‘Yl4—2nx(Pr'—JJ¢a+:l+ejv'

(56)
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Here the lower limit ¢, .is replaced by O, Because the
value ©of this integral is practically zero at the Llimit ©,
4 & . . . . + 2 <
since the. exponent .1 .+ l/n is high and the integration
from 0. to ¢, yields.an.integral which is very small,

Thus the density of heat flow for channel -flow-at
high Reynolds numbers approximates tol

oo (Prt'=1)(1+n)o + o]
A L o—- ( A n)ﬁa @, @1+1/nu (channel)(57)
G5 C(Prt=1)(1+n)oy+1

A g S g | ,
where ¢ =m , so that gq/q, may be represented as a
funictidon. of . N :

In a similar fashion the heat flow through the fluid
in a pipe is approximately, according to equation (54a):
a
st Temn) =1

9

(Pf'—l)(1+2n)(2+n—(1+n)¢1/n)¢a+(1+p72)(2+2n—(1+2h)¢”h)¢

¢l+l/n
(Prt—1)(1+2n)p,+1+n/2

(pipe)  (58)

A good view of the variation of q/qy, may be obtained
for the special cases of Pr! =1 and Pr! —» o as sub—
stituted into equations (57) and (58)¢%

v

i+2n

éL = 1 - " (channel Pr! = 1) (57a)
Wy o i .
+ { . ? n . .
e A e AR (7 O e (57b)
i [e]
4 2 : ) gy 3
Ef-(1~n) = 1~ (2+2n - (1+ 2 n)n)n {pipe: Prt=1) (58a)
0 ’ ; 4
q - : sl
— (1n)i=. 1.~ {2 + 2’ (1 + n)n)n (pipe Pr!=w) (58b)
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The q/qo curves flatten out with increasing values
of Pr and Re (decreasing n), that is, they approach
g/a, = 1 -~ n which is the limit of equations (57a) and
(68a) for == 0, It further follows that the quantities
k and e decrease with increasing Pr' and Re (see

equations (13) and (39) and fig, 10).

Figures 7 and 8 show (q/qo) (®) and (q/qo) (ﬂ),

respectively, for the pipe and channel at Re = 4 X 10%,
Figure 9 reveals  (q/q )(n). for various .values of Re
0

at Pr' = 0,72 and Pr' = 200, These curves were com-
puted for ® by the true velocity distribution as shown
in figure 1 rather than power law,

The variation of the heat flow density in proximity
of the wall is noteworthy, where (dq/dﬂ)o = 0 for the
channel, but (dq/dn) = q, for the pipe (see equations

(53) and (53%a))., The rise of the heat flow density of the
pipe beyond the value q, is due to the fact that the
total heat flow Q =~ q(l-n) near the wall is practically
constant, while the section through which the heat flows,
decrecases with (l-n). In channel flow no cross—sectional
area changes occur; thus the heat flux density and the
total heat flow are always directly -proportional.

At mid-~channel (and pipe, respectively) the variation
of the heat flow density is characterized by,

<dd\ Qo
an/y  suom

: Ta u
(see equations (54) ana (54a)), 3, = ?; and W£‘= -

denoting the dimensionless magnitudes of the mean stream
temperatures T, and the mean velocity (um), respectively, -
Since these magnitudes are smaller than unity, the negative

slope of q/qo is greater than unity, and is greater for
the pipé than for the channel.

Equations (57) and (58a) enable the calculation of
k and e1 (see equations (13) and (39)) through which the
second approximation to the temperature is secured. In fig-

ure 10 the e1 term for pipe flow is shown plotted against
Pr! for different Re,

(As mentioned above (equation (9)) G. I. Taylor has
computed a second approzimation to the temp. distribution
for the case of Pr = 1, His arguments rest on Reynolds!
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apalogy. -.In the calculation dT/dx .is assumed inde-
pendent of the distance from the wall which corresnonds
to. 3gq/dy proportioral to u (instead of "u T), - Through-
out. 4 correction term, uhlch g too small, results (for
instance at Re = 4, lO it,is 5 percent 1nqtead gf 9
percent, as is the case for hlgh Pr' (that Ae, o 2 =
constant))., (See fig. 10,)

’

COMFARISON BETWEEN MOMENTUM INTERCHANGE

AND HEAT.- TRANSFER &

Supplemental to this theory an attempt is made to
compare the differential. equations of heat and momentum
and-to indicate that the historic heat source theorem
also leads to a generalization of the Prandtl number,

The similarity of the differential equations (46)
and'(47)'ls so ‘obvious that ‘it need not e discugdsed -
further, However, it is necessary to analyze the
existing differences,

One substantial departuré lies in the fact that the
heat ‘equation contdins no term corresponding to the '
pressure drop in the momentum equation.- This difference
can, however, be removed in some cases (as Prandtl has

shown) in first approximation by sub:tltutlng a sultably

'choaer hpat source density €,

thelcallv thls artifice has the POIIOW1ng qlgn1f~

.icance. . The momentum of a flowing fluid can be maintained

by a pressure gradient, The heat content ‘of the fluid

is, in ‘¢contrast, reduced by the transfer through.the walls,
unlegs Heat is produced in the fluid itself (such as by

a current of electricity :flowing through the fluid), To
complete the analogy betweén heat transfer and momentum

"exXclhiange the volume heat sources must be so-digposed’ that
‘thée temperature :and velocity:profiles are similar, In the

particular dase where the velocity distribution:remains
constant in the axial direction (fully developed flow in

a pipe . or channel) the temperature profile should be main~
tained likewise., :

A further.difference between equations (46) and (47)
restes om thé-fact that equation- (46). is a vector equation
and equation (47) is & scalar equation,; hence only one
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component. of equation (46) .can de, compared with equation
(47) Th'e analogy ds, therefore . carried out for fully
aeyeloped plane channel; flow, ?y concentrating on the
“.gpecial case Qf:. plane> flow, the probdlem is much clearer,
and affords more:-far reachlng concluglonq than from

" equations (46) and (47). i

>

For this flow equatlon (46) and (47) give-

' ot B [ du g .~;___ )
. iz b s 0 P ) (49b)
dy  dy ” -dy X v> ox
d d /. aT . 2T
 — SR, )\_.. o 1 - Sy + 5l'b
_§ b \ el P cp L v.>. € P cp $3E oy ( )

In oraer to avoid n1<interpretat10ns, the mean values
are agaln rep*@eented by bars. '

In the most peneral fOrm the equatlonq for T
and o are analogous. But becauﬁe fully developed
flow has Deen‘postulated, the terms with du2/yx,

5 '______ ~a_‘_ —_— : Sen o B . ; T . PSR
3 (g:y?‘g;.(m.v)> drop outi while the term with '§% (o B

in the heat éQﬁation remains. The ‘problem, then, is to
choose € so that the term with 3dT/0x wvanishes.

" As shown'above - da/dy ~ —u bi/bx ~u T (see equation
3 b Jhus for &4 given héat.source distridbution
=kuT, a suitable choice of "k “will ‘cause BT/BX

to diminish to Zero: For'everv y, without in any way

- nod1fy1n5 the temperature dlqtrlbutlon T or the exchange
T! ! o With this ¢hoice of " € .thé-actual témperature
.profile will be retained; 1t simply remediés the earlier
decrease in temperature in the direction of flow,

" (53)
S

However thls hoat denslty which varies with the
distance from the wall cannhot be compared with the
pressure gradient which is constant over the section,
So. in order to carry through the consideration of the
.analogy it is necessary that € = constant. In this

. case .also it may be stipulated that 0T/dx -should

vanish at each position of y. Then the heat flow is?
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= = € = constant

Under this condition T is of course no longer the
actual temperature, but rather an approximation to the
temperature, which is that the postulate ¢ = constant
vields toe great a temperature gradient at the wall be-
cause the-wall layers are heated excessively by constant
source dengity. But in view of the fairly well compensated
temperature profiles the error must be small.,

Now the identity of equations (49b) and (51b) can
be adduced by putting conformably to Prandtl, p cp = A
(Pr = 1) and T = B (B = constant).

But the equation T = B uw 1is -only one possibdle
solution. The solution is, in fact, somewhat special,
since it not omly requires the time averages of the
velocity and the temperature proportional, bdbut the
fluctuations ut! and v' themselves to be proportional
at every instant.

4 BT (59)
Tt = B u! ' | (595)

These equations are obviously fulfilled. if the mech=-
anism of transfer of the u~component of the momentum and
" the mechanism of heat transfer are completely similar,

- Thi's may eccur in particular cases.

‘Consider next the general case where the correlation
coefficient between u and T .i< ‘less than 1. To this
purpose the turbulent terms in equations (49b) and (51b)
are expressed by A dU/dy and cp Aq(dT/dy)e. The
' A Aq cp
g
(that is, Pr! = 1)  for each-distance y . from the wall
and when equation (59).is-satisfied..

identity of the equations is attained when

Equation {59) thus represents an approximate solution
of the heat equation for the case defined by Pr! = 1,
In this case assumptions relative to the fluctuations of
u! and T! are no longer required.
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_ The solution (equation (59)) stipulates that the fic=
titious source strength € be fixed by:

- Ay dp
e 83 sl Vel g .
g = B cp e (60)

On the basis of the postulate dq/dy = ~€ the
source strength € may be defined in terms of heat
flow at the wall q4t

2= qo/r (1)

(r is the half-width of the chanrel). Introducing the
shear stress at the wall for the pressure drop, it
follows from equation (60) that:

qo=Bc L el , : (62)

(This change of form of the equations has the advantage
that the form of the fluid boundary (whether pipe, channel,
rlate, and so forth) which is unessential for these con-
siderations does not affect the result.) This equation
may be derived also, for the quasi-plane case of the

pipe. The constant B can be expressed by appropriate
standard values (for instance, by the mavimum values)

the mived mean temp. of T or u,.

At EBr' # 1, the analogy is not complete for the
total fluid, but only for the turbulent-gore in which

the terms of molecular conduction can be neglected,

Then equation (59) is appropriately replaced by:
Ty =B (@~ uy) - (55b)

where T, and wu, are time averages at M"the point of
transition to the leminar flow",” For the rest the
calculation is the same and equation (62) holds for

“Pr # 1. ‘Solely B Dbecomes another proportionality

faetor.

For the prediction of B the maximum values of ©

or U, the temperature and velocity, respectively, can




dq/dn = - ¢ = constant, it follows that
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be used, It is also possible, however, to introduce the W
"sectional averages Ty and wup (as was done in the

Prandtl derivation) since the section of the laminar layer \
of the flow is negligible compared with the total flow |
section, With' T, expressed in terms of wu, and Prt: w

B = B Eol uy (63)

- an equation which results upon the applicatien of equation ‘
(62) to the laminar layer, = equation (59b) gives:

®/u
B = / (64)
: 1+ (Pr'-1)u,/U
or
0
m/ “m
24 . (64a) \
1+ (Pr'-1)u,/uy :
|
The following useful conclusion can be drawn from
equations (64) and (64a): :
|
@m4-ma(Pr'~l)
s Tha : (65)
o 1 + @9 (Prt'-1)
8 Tm (0] “n
H S ey Ty = 53 The dimensionless mean temperature is
identicaliat *‘Pr' =1 “with the dimensionless mean velocity

(within the framework of the present approx,). With increased
Prandtl number 4 approaches unity.

m

Since ‘it has been established that the correct heat
flow distribution over the section is not necessary for
the determination or .the temperature distribution in first
approximation, ¢/T = q_o/'r0 and this assumption compared with
the . assumption of a constant source strength, which as
shown above,is necessary to establish the analogy. TFrom
q=q (l-n)e On

-the other hand, for completely developed flow T = To (l—n),
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For fully developed flow our approximations therefore
agree with the postulate of constant heat source distrib-
ution, The two idealizations differ, however, in their
consequences for further theoretical treatment as well
as in the justification of their physical admissibility,
although both methods of treatment agree with great com=
pleteness as a basis of the turbulent velocity profile.

(Since the heat source theorem is designed to describe
analogous phenomena which in detail are not analogous, the
theory is definitely bounded, which limits its extension,

The heat source theory is not purposed to consider particular
force fields in detail, merely intended to reproduce and
clarify the essential characteristics of the heat flow by
comparison with known phenomena of the momentum transfer,)

HEAT VOLUME TRANSMITTED TO THE WALL

(a) Determination of the heat transfer from the
| temperature gradients at the wall,

| From the temperature rise at the wall the unit heat
| rate at the wall follows directly at:

\ (dy/o = CZOTS (66)

This equation,i= naturally general, is not affecdted by

the type of flow nor by the time or ‘space variation of
To and (du/aT),.

The rate of heat transfer Q over the area F is
obtained by integrating equation (66). If U is the
velocity and © the temperature difference of the fluid

with respect to the wall &4t the boundary of the frlctlon
| layer, thre heat flow is:

| : . '
| b Q= Jf Cpo i i 7 (67)

U
o\da
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For an area over which - ©, U, and (d@Vdﬂ)o are

sensibly constant it follows further that:

@ L7
Pngia S 0 AN (68)
ao\ - U
s LT Y
‘ro\dﬁ/o

where

AW resistance to flow offered by the area under consider-
atiion.,

If a turbulent friction layer is involved Pro (dché)o

in equation (68) is expressed by equation (38).

As to the permigssible size of the area to which equa-

tion (68) can be applied in friction layers free to extend

unhindered over the surface (that is, the actual boundary
layers), @ 1is, in general, the constant temperature
corresponding to potential flow. In this case the ad-
misgible size of the area is dependent on the adequate con-

stancy of ° U and (dm/ds)o ma and Dy respectively,
of equation (38) -~ s, and ®, are functions of the BRe

of the velocity profile and so vary with the arc-length x).

In flow through pipes or channels, the Reynolds number

for fully developed-velocity profile is constant; but the

maximum temperature © decreases, TFor which reason equa=-
tion (68) holds only for pipes and channels if the flow
section 1s sufficiently short. In long pipes the tempera-
ture drop must be accounted for, as shown in the next sec~
tion,

(b) Consideration of the heat loss in the friction
ayer, The heat stream Q; flowing through a flow section
is

o

o

Qu=fpcpTudf

Introducing the mean flow temperature Tu (that is, the mean
tempe of the fluid mass flowing through the flow section)affords
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£
S T uwarf

Uy ig

or for constant values of cp and 3

Qu = p cp Ty up £

The heat volume given off at the wall over the arc
length (x—x;), is cqual to the différence § = By = %%,

in the flow sections f and - f;, With the postulate
that the profiles of the velocity and temperature are
simlla;: Tul/®l :-Tu/@'> and..uml/Ul = um/U, hence

.x Q=P Cp %y P (Uy Oy £, = U © 1) (69)

where .8, = Tu/® and @, = uy /U,

Equation (69) can be utilized to chcck experimentally
thb theory (similarly combined with equations (38) and
(68)). All guantitigs in equation (69) are readily measure—

able, A L_JOT complication is introduced in fixing Bos
for whi¢h a mixing chamber is required. -

Also #  can be evaluated from the theorye. For the

. : 5 ‘
J 4 o dn wa $¢ dn (threce dimensional
8, = = - friction layers)
" P s J e dn

)
i
f
=y
o
Lp ]
+
o
0]
H
]
o
£
v
B
fov]
g
1
L)
(0]

1 o
of*“P (1-n) a n o.I' s (1=n) dn

b= B = (pipe)
% P, St o(1-n) 4 n
m
0
T} Thvetipie il 5 ﬁu is shown for the flat plate and
for the pipe as a fuhction of Pr for several Reynolds
nunbors, - Tho effcct of the Reynolds number on 44 is
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less -than the effect of Pr, sgsinece ® (Re) appears in
the numerator and the d nominator.

(1) Pipe or channel flow.

In flow through a pipe or channel, the development
of the friction layer is limited and the strength of the
final friection layer is equal to one half the distance to
the opposite wall, .The mass of fluid moved in the fully
developed friction l er does not change, and the heat
given off by the fluid can be calculated from the reduction
of temperature,

So, when no change in cross—-sectional area is con=
sidered equation (69) glves:

Q=0 Cy 2 um‘(r -0)f | (70)

On the other hand, the heat transferred is also de-
fined by equation &67) Here, it must be noted that, be=-
cause Qf the -similarity of the temperature profiles the
pcrcentage tempcrature drop = dT/T over the length dx
ig the seme at all distances from the wall. Hence it
also applies to the mean temperature:

@1 . >
In . — = constant (x-xi)

)
and equation- (67) yields

°p W ;
Q= : = (71)
91\ /dom
la k= ) oo

5 \d8/0
where
& given maximum initial temperatune
W frictional ‘resistance of the pertinent pipe or

1
channel le
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(At small temperaturc differences ®3-© equation
(71) changes to equation (68)). :

By equating equations (70) and (71), the reduction
of the mean temperature is:

@1- ¥
1n <~‘é‘>= %;':" (X—Xl) (72)

Here the dimensionless variable o* defined in edﬁation
(82) is introduced and s 1is the perimeter of the section
f.

For pipes s/f = 4/d for flat rectangular channels
s/f = 2/h (4 = pipe diameter, b = channel width, h =
channel height, b>>h). :

- (2) Boundary layer flow.

; If- the flow along a wall is not bounded, the friction
layer can develop unhindered, and while the boundary layer
increases in thickness in the direction of flow, the maxi=-
mum temperature © on the boundary of the friction layer

remains, in general, unchanged. :

If the surface of the body has the temperature © of
the fluid, then the heat flow density at a particular point
~in the friction layer is equal to p ¢y, ©y « But the cool=
ing action of the wall lowers the temperature by ©-~ T, The
"cold stream®" through the section f of the boundary layer
at the point in question .is therefore:

s
Q=p cp JF (0-7) uw a f (74)
(0]

where

] heat volume absorbed by the body surface up to the
particular point x in unit time.

By introducing the dimensionless value of the mean
flow temperature, equation (74) gives:
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Q’;fb'cé ®tué (1= )f (75)

the value of 4,3 for any given velocity profile is
approximately defined by the theory. !

At constant maximum veloeity U  the heat absorbed
over a length nx—x;Vis,fixed by the increase in section
of the boundary layer thickness in the direction of flow,"
since ©®p and %, vary but little (¥, increases and

(1~9y) decreases with the Re of the boundary layer).

The effect of Pr on the heat transfer is expressed
by the factor (1l-®y).- With increasing Pr ' the tempera-
ture profile becomes more blunt-nosed and + approaches
unity. :

From the momentum lost in the boundary layer relative
to potential flow the flow resistance W of the body can
be written in a similar manner to that used for the heat
diffusion Q -

W

0
0!
-4

ug (1-0,)f g - (76)
» I" 2 0
Herein ®, is defined by @, @, f-:ﬂ/i@e df;_ The differ-

ence between the equations lies in the velocity U in--
potential flow which, in general, is not constant like ®
but varies with the arc-length  x, ‘ : -

But the analogy ‘between equations (75) and (76) is to
be carried out for ‘a surface area over which © and U
are constant. (a pressure drop is to be avoided), If

f-f; is eliminated, and if 9,; and @, are the mean

values over the particular arc length:

1=y AW
gt B ey 8
o ; u

Here the heat transfer is expressed by the heat loss in the
friction layer, while in equation (68) it appears in terms

of the temperature gradient at the wall, Conmparing equations
(68) and (77) ytelds:
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.‘-{" = 1 —cp
. (78)
(d“D\
d's/o
FG?V Pri’i= Pr,'= 1, (d®/ds), = 1 and hence 3y = ¥,

which is due to the similarity of the velocity and temper-
ature proflles for Zero pressure drop. 2L, (d@/d@)o in-

creases with dincrea sed Pr_-and 8y > 1,

; For the rest, equation: (78) is. easily verified for the
simple friction layer (equations’ (40a) to (41)).

(c) Heat transfer coefficients.

The heat .transfer coefficient o is defined by |
Newton's law of cooling: o A

AQ = a (T-T,) AF (79)

in which the heat'trahéfef‘per unit time through the
boundary area AE is put proportional to the temperature
difference. .(T.-Tq) . of the fluid and of the wall.

‘Originally the proportionality factor « was thought
of ‘2s 4 pure material value comparable with the thermal
conductivity and in the older literature was designated as
the "outer thermal conductivity"., With the increase of
experimental data, it became more and more apparent that
the floy phenemen? adjacent: to the wall contridbuted greatly
to the +héeat transfer and varied in a complicated manner
therewiths Hence the cooling law is only apparently simple,
that is, when the.simple form of equation (29) is maintained.
2ll of the problems of heat transfer by convection are cone
densed in the factor.a.

This naturally does not help.to clarify the physical
phenomena and later reséarch has produced other axioms which
throw light on the mechanism of heat transfer., For the prac-
tical application of research data it is, however, advantageous
if complicated relations can be expressed by a single coeffi=
01ent,the value of whlch is obtalnable 1rom graphs or tables.
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In equation (79) the fluid temperature T remains
undefined. What temperature between Ty and qux to
use is purely a matter of expediency. Only one point is
necessary, namely, that the fluid temperature employed is
adequately defined. The reference temperature must bDe

relatively constant over the area under consideration.

Since this condition holds true in all cases only over a
small area - AF. the heat transfer coefficient must be

"defined as local quantity.

In the-earliér derivations the heat transfer coeffi-

‘cient was based on the mean temperature Tp.

The calculation of a heat transfer coefficient

ah = qO/Tm by means of equation (66) requires an express-

< IS | da) - .

lon-2or ol L3 (du) from the theory, if T, 1s referred to
Up (at)

the mean velocity wup. Such an equation can be obtained
from equation (37c) after forming a mean value of the
velocity and the temperature over the section of the
turbulent region., Since this section is not much smaller
than the total flow section it can be approximated to?

prt Im EE\

o
~ 1+ em+u2é (Pr! - 1)+ub ua,(ln Pr
u

u m {
m dT/ o m U, T

\

This equation applies so much more as the boundary layer
is thinner, that is, as the Reynolds number is greater,

Bp!

Neglecting the term e, and putting u, = uy, and

Aq A, equations (656) and (38a) give an expression for
Qo qo/T? )which is identical with the Prandtl formula
l .

equation

non

The mixed mean ‘temperature Ty is usually employed

"rather than the mean temperature Tp which is difficult

to measure., This reéquires an equation for ‘ay = qb/Tu

from the theory, Here a difficulty arises. Proper treat-
ment of equation (37c)eaffords a formula for (du/dT)

in which the mean temperature of the turbulent region is
the reference temperature. But then the equation includes
a mean square value of u over the turbulent section in
place of the mean velocity across the section.

- 1) (38a)




(o2}
[ab)
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By approximation the mean of :the squares of. u

‘can, of course,-be replaced by wuw, (particularly.-at -
"high ‘Re) Jjust as- -T,, can be roughly approximated in—

stead of Tpi But this also mean$ returning.to equa—
tion (38a), that is, the Prandtl formula.- '

The difference between Ty and Ty played no part,
however, in the earlier considerations,_ ,In view 0of the
experimental difficulties, this difference usually lies
well within the. experimental. error, Further, the omis—
sion of the transitional layer and the postulate of in—
variable material values accounted for larger discrep—
ancies’ than this temperature difference.

In developing a theoretical equation for q,/Ty

which is in accord with experience, ten Bosch (refer—

ence (17)) proposed a semi—empirical equation. The form
of the Prandtl equation was followed, but the constants
were replaced by variables whose magnitudes were deter—
mined as a function of Re and Pr from measurements
available, the resulting equation being¥?

q 0.125 ¢
~ ¢ —0. 1 —0,185 " (80)
Oulchy iy Wy ® 1 o BRe T v Bey ' {Brgrd)
(for heating P ~ l.4 for gooling B ~ 1l.12s Pr refers
to the layers near the wall. In the remainder of the form—

ula the properties are fixed at the medn flow temp.)

In connection with the theory of the present report,
thé Neat transfer coefficient is most appropriately expressed
in terms of the maximuri temperature . €, since only this
temperature can be used as a reference quantity without
reservation (see the derivation of equation (38)), The
maximum temperature has in addition the advantage that
it can be-measured without the use of a mixing cup. (In
cases where T, ocan bc measured more reliably than C)

]
® mnaybe calculated as Ty/9,.) Honce the definition
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or in nondimensional representation by dividing by

Po ®po Ym?

o Q « g
= . B . 81}

Po ®po Ynm

Po cPo e ® A F

In the technical literature the heat flow 4, is

usually referred to p cp up Ty (see equation (80)).
- Further, it is customary to introduce the Nusselt number

Nu = q, 4/A T,

| in which gq, is referred to as 'the heat flow: A T /d.

These two dimensionless heat factors are related as

follows:

* do N Nu _ Fa *
0 cp > P Tu Re Pr Pe du
\ " where
G s 20

‘ Pe P°P ™m = Peclet number
‘ A

g The older Nusselt number had proved itself in the

‘ representation of cases where the heat transfer phenomena

) were not to be separated. But, for those cases where
statements can be made relative to the local heat transfer,
and where g, can be written directly in terms of

A (dT/dY)O it is proper to refer the known quantity q_

to the product o Cp U T as will be seen in subsequent
derivations. ' '

In certain cases it may be desirable to compare the
two dimensionless groups. . Butiin general, both Nu and Pe
rare superfluous i¥ a-well founded formula for the dimension-
less group qq/p cp u T is available. '
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In order-tnat~'qo/po cpo u, ©® mneed not be repeated

unnecessarily the symbol «* has been introduced. The
dimensionless factor «a* refers the heat volume 4,

transferred to the wall to a heat volume p, cp un ®
flowing past the wall, The njmber «* 1is, therefore, a
kind of "efflclency" of the heat transfer. Ordinarily
o* is very small (108 > q® > 10”5, see fig. 13) so
that only a small fraction of the heat becomes useful
for transfer.

. Since oa* represents a locally defined quantity
as well, equation (68) must be applied for the subsequent
treatment of equation (8l), Then equation (19) in con-
junction with @y = u,/U give

1o

"o \d 19)

This formula is as general as equation (68) and the
definition equation (19). ' It is therefore applicable,
independent of the character of the flow.

Formula (82) had already been utilized to introduce
a in equation (72) in order to establish the tempera=-
ture drop which accompanies pressure drop. On the other
hand, equation (72) can equally be used to define a¥.

*

®,\ f
a¥ = 3 Tun <_..}. o] 7
. 5" e (72a)

which for a sufficiently short section affords

Oml oagl v - -
- ; _ (722)

a* =

Thig equation is, with regard to equation (70) identical
with the definition (eguation (81)) for a*.

. For turbulent ?rlctlon 1ayera the Pz, (d¢ydﬂ)o‘ from
equation (38) must be introduced in equation (82). With
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Q w¥ . ¥
P = 8 55 and P = Db ?;.fand assuming  Cpo ~ Cpq VCpt

(which is permissible)

&1 Bl : = _ \
; A \
l+ey+a “;(éﬂ Pr1"1>4—(b-a) ke (1n(Pru a/4) -1
U™ U \1-4/4,4 Prg )
where
L't oy U/A% are known functions of Re

In equatlon (83) all variables and coefficients are
known except a,-b, and A, /A, TFrom flow measurements
s = 145, b = 15,5, ‘The value of 1.55 may be used since
b. occurs only in’the term referring to the transitional
layer, But the assigned value of a 1s very uncertain,
Hence a and Ag/A must be determined from measured
values of a¥ according to equation (83).

.~

Admittedly there exists a certain difficulty, involving
two unknowns but equation (83) izdicate~ that A /A scaresly

-affects a® at high Pr, and a has but little 1nfluence

dorw.g®™ &t low Pri HenC' a can be from heat transfer
measurements at high Prandtl numbers and ~Ag/A from
similar measurements at ;all Prandtl numberss

Figure 12 illustrates the measurements by 3hne
(reference (18)) and Morris and Whitman (reference (19))
at high Prandtl numbers and the measurements by Rohoncz
(l.ce) at low Prandtl numbers compared with predicted ao¥,
For the calculation & = 2,2 and A,/A = 1 were chosen
to achieve the best correlation of predicted with exper=-
imental results., The spread of the test points at high
Pr is understandable because of the difficulty of measure-
ment at high Pr and the fact that non-isothermal flow
theory 1is not yet complete.

i

For constant or slightly variable material values only
one value of Pr enters in equation (83), For this case
(fig. 13) shows a* as a function of Pr' at several g s
Reynolds numbers, With the “elp of a* established by

quation (83), the heat dif:dsion AQ of a given area
F can be alculatcﬁ

o

'-J Lo

DC’J
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BR= Po Cpo W @A T G - Sods 43 (662

This is a form derived from eguation (81) which is
another form of equation (68).

The variable a* is a point function and holds only
over a small area.,  The area must be chosen just large
enough so that- © 1is sensibly constant over it,

Equation (68a) .cannot. be used for long pipes in
which the temperature changes materially. Here the heat
transfer may be computed by means of equation (70) if
the temperature reduction (©®;-0) in the pipe length
under consideration is known. The end temperature ©
can be predicted from equation (72) when the initial
temperature ©1 1is given. :

As is seen the variable 4, 1likewise plays a role,

But- this is only true for long pipe lengths for here the
heat loss in, the friction layer is decisive, For short

pipe sections %, does not enter (this is also the region
in which the conductance is applicable) (see equation(68a)).
Then the temperatures are practically constant along the
short surface length, and -the heat diffaesion AQ 1is given
by equation (68a) as a function of the temperature gradients-
at the wall, which.fact is included in equation (83) for
a¥ ‘

Translation by L. M, K, Boelter,
University of California,
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Figs. 4,5,6

20— 9721 2 3 4
@Qﬁraﬂ Pr R";
14 — 410
P
@ FPipe L Re410° /
———Chonnel 2 // | | s10¢
———Plate AZED T L Figure 4.- (d$/d¥),,
9 V7 v S ) the ratio
e T T " of the temperature
47 717 ——5%" gradient (d¢/dy)o to
{;/////' 5 ) the velocity gradient
15 Y /' Z (do/dy)o both measured
| / ?Q D at the wall as a
o . function of the
: v/ ¥ generalized Prandtl
g /’ number-
4
—— Rpe
-——Plate
05 4 Y
/ 2 T
0 0 lid
Q 2 0721 2 5 10 20 5 100 200 500 1000 5000
I,O T ﬁ' L . ,O = p;'
1 - H == 5 I I, =
Qg_ﬂ’ | }’9——‘ L= mr | 21— /jﬁ/é
4 //,— - 7/ i 4 fa /
r .’L/” / /'I// /’A 7 i )/ == /% [
08 4 . - e ’,/ 0 ) > =1 |
Z Za P /’ :,/% 4 /
Z 5 / ;'f/ LA oA %
77 Vi X Z : /
7 WA /1
s ,/ o ,/,,/ // ,I/ & Q
// // /,/ / I I /19 e ¢
VAR v ' okl — ¥ Ppe
87 S i [ === @ =V Ate for Pr=7
¥4 ,,’ 71,/ Q72| : ! | !
A S/ < ]; Q‘ I
/’// | Re=4.10* 0
P —— Ppe &
& 5
% :—' Flate 02
s o1 : Bl |
il d ] 2 ,_&i J_ | 7
a3 04 Q6 @6 @7 @8 09 10 0 = Q1 3 4 06 07 08 09 (0

Figure 5.- Temperature (4) as a
function of velocity
(p) for flow through pipes and
along plates with Pr! 28 the
parameter. Re = 4 x 10%.

Figure 6.- Temperature (§) as a

function of n = (y/r)
where y = the distance from the
wall for the pipe with Pr' as the
parameter and the velocity dis-
tribution ¥ = § at a flgt plate
for Pr = 1. Re.= 4 x 10
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Figure 9.~ Distribution of the heat

rate q/qo as a function of m in a
pipe for Pr' = 0.72 and Pr' = 200
with Re as the parameter.



NACA Technical Memorandum No.1047 Figs. 12,13

200 |
o0 /ca/cu/afed}
g
00— X
50
9 (o]
Q
o
*
M L
2 .
o Bihne
° °
o 0Q Morris - Whitman
X Rohonczr
0
g a“'ﬂ‘(measured}
i
5 b/ 20 50 700 200
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