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SUIT MARY

A
The "general Prandtl number' s Pr r = q Pr, aside from

A
the Reynolds number determines the ratio of turbulent to
molecular heat transfer, and the temperature distribution
in turbulent friction layers. A  = exchange coefficient
for heat; A = exchange coefficient for momentum transfer.

A formula is derived from the equation defining the
general Prandtl number which describes the temperature.as
a function of the velocity. For fully developed thermal
boundary layers all questions relating to heat.transfer to
and from incompressible fluids can be treated in a simple
manner if the ratio of the turbulent shear stress to the
total stress T t/T in the layers near the wall is known,
and_ if the A q/A car. be regarded as independent of the
distance from the wall.

The velocity distribution across a flat smooth channel
and deep into the laminar sublayer was measured for isot'_lermal
flo g to establish the shear stress ratio T t/T and to extend
the universal r!all friction.law. The values of T t/T which
resulted from these measurements can be approximately repre-
sented by a linear function of the velocity in the laminar-
turbulent transition zono.

.The effect of the temperature relationship of the mate-
rial values on the flow near t.ze wall is briefly analyzed.
It was found that the velocity at the laminar boundary (iii
contrast to the thickness of the laminar layer) is approxi-
mately independent of the tem perature distribution.

The temperature gradient at the gall and the distribution
of temp erature and heat flow in the turbulent friction layers
were calculated on the basis of the data under equations (2)
to (4). The derived formulas and the figures reveal the ef-
fects of the Prandtl number, the Reynolds number, the exchange
quantities and the temperature relationship of the material
values.

*"Die Wa.rmeubertragung in turbulenten Reibungsschichten."
Z.f.a.M.M., vol. 20, no. 6, Dec. 1940 9 pp. 297-328.
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That the form of the wall and the pressure drop affect
the results is illustrated by the variation of the thermal
behavior of the friction layers in the pipe, channel, and
flat plate.

After a discussion of th .e different definitions of
the heat transfer coefficient a new formula for the rate
of heat transfer is given based on the maximum temperature
difference. The new equation differs from that offered by
PraneLtl by an additional term that allows for the conditions
in the laminar-turbulent transition zone.

INTRODUCTION

A survey of the literature on heat transfer in tur-
bulent boundary layers discloses that the problem has been
treated in numerous studies (reference 1). 	 Because of its
technological importance, the number of experimental projects
in which empirical or semi-empirical formulas established for
various conditions and. for various applications preponderate.

The theoretical principles are but rarely treated. The
literature-therefore contains only a few general formulae.
In .Germany the formulas by Nusselt and Prandtl are most
generally utilized.	 In the English literature it is custom-
&r ­ 	 introduce the Reynolds analogy which upon general-
izt^tion by G. I. Taylor leads to approximately the same
results as the Prand-tl theory.

The theories to date are based on simplifying assump-
tions, such as do . not usually obtain in reality. The derived
expressions therefore required extrapolation based on exper-
imental results, the extension extending beyond the original
range of validity. The practical point of view was maintained
in arranging the semi-empirical equations and questions of the
physical significance became secondary.

The research pro .-rams in heat transfer involving many
technically important special cases in the turbulent region
fail to allow the deduction of a general theory without
limitations. The solution of this problem is very closely
related to the research;of' . the flow processes in direct
proximity of the call.

Before proceeding - to an.analysis of these questions a
brief survey of the available theoretical contributions should
be of interest.
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REVIEW Or PREVIOUS CONTRIBUTIONS

The school of Nusselt has made great strides in the
study of '_p eat transfer probler,s by the use of tone theory
of similarity, particularly; in arranging the various sub -
divisions in reasonable order. The great technical im-
portance of the model studies is that it does not require
the exact knowledge of the individual processes, and. that
simple formulae are obtainable for practical use, even in
complicated cases. But since no details of the physical
mechanism are secured the results can be of a preliminary
nature only.

Reynolds (reference 2) attempted to define the rules
of heat transfer from the point—to—point vnri.>,tion of the
flow pattern.	 He proceeds from the assumpt14 -.;.,r that the
turbulent mechanism of heat transfer is the sz.,.;e az the
mechanism of the momentum transfer. But his considerations
are still incomplete for practical application and only
through supplementary considerations by Taylor (reference3)
and Stanton (reference 4) were the results of Prandtl
accomplished.

Prandtl (reference 5) also starts from the assumption
that heat and momentum are transferred by the same mechanism.
A complete analogy b;;ween these phenomena does not exist,
however, unless similar bounde.ry conditions obtain, when
the nondimensirnal µc P /X	 (t,-.rmed tho.Prandtl number. Pr)

is equal to unity, and when the pressure drop is negligible
(,as,for instance, in flow past a flat plate). 	 In contrast
the momentum transfer with press ire drop (pipes find channels )
is described by equations which differ from those of heat
transfer and momentum.

In order to treat the technically important case of flow
through a pipe Prandtl postulated fictitious heat sources in
the stream, by means of which a sufficient similarity of the
equations of. heat and momentum transfer is obtained. The
Reynolds --concept was taken, that is, that in aW ver,y thinlayer
near the wall practically all of the transfer is by molecular
action a.nd that outside of this la y er only the turbulent ex—
change. mechanism is effective, while the molecular conduc -
tivity may be neglected.

The heat source postulate then leads to a simple equation
between the heat transfer and the resistance to flow, which
may be written in the form:
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where

(1m	 heat transfer coefficient referred to the mean
temperature

Tm , c p specific heat

q 	 density of heat flow at the wall

T O	 shear stress at the wall

u	 mean flow velocity
m

ua	velocity at the "boundary" of transition from
laminar to.turbulent flow

To use equation (1) the ratio u a /um must be known.

In the absence of experimental data of the extremely thin
wall layer, Prandtl (reference _6) used the following reason-
ing to evaluate u a. In the laminar layer a linear velocity
increase exists, the slope of which is fixed by the shear
at the boundary.	 In the turbulent core the 1/7th power
law holds for Reynolds numbers below 10 6 . The plane in
which the two velocities coincide is called the boundary
between the laminar layer and the turbulent zone. The
exact determination of the boundary velocity u a is to

follow from the heat measurements.

The heat transfer data available to date indicate
that Prandtl's formula dons not hold for large Prandtl
numbers. In consequence there have been proposed various
corrections to this formula in order to meet the require-
ments of practice.

The basis of the discrepancies lies in the idealiza-
tion of the transition from laminar to turbulent flow.
This transition is naturally continuous, hence an inter-
mediate layer exists in which the viscous and turbulent
shear stresses are of the same order of magnitude.	 Since
the transition to turbulence occurs close to the wall, it
has not been possible so far to measure..the velocity dis -
tribution in the intermediate layer with sufficient accuracy.
Von Kerman (reference 7) has estimated the exchange conditions
in the transitional region based on an extrapolation of
idikuradse l s velocity measurements in the direction of the
wall. Based on his postulates, von Karman gives the formula
for the heat transfer coefficient as:
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a-1 = 1 + a	 (Pr-1) + b 1n (l+c (Pr-1) )] 	 (2)
a

•	 where

05 1	 heat transfer coefficient for Pr - 1

a, b, c,	 constants (reference 8)

An improvement of the theory has been carried.out by
Taylor (reference 9). 	 Starting from the postulates of
Reynolds-Taylor, the latter discusses the error of the
analogy between heat transfer and momentum trans?ar for
flow accompanied by pressure drop. Taylor calculates tho
temperature profile which corresponds to a velocity profile
measured by Stanton at Pr = 14 The temperature profile
differs somewhat from the velocity profile, that is, the
temperature gradient at the wall (and hence also the heat
transfer coefficient) is loner by several percent than the
wall velocity gradient.

Of great practical interest is the variation of the
heat transfer coefficient for non-isothermal flow in which
the material values vary with temperature. Apparently this
problem has not yet been solved analytically. The theories
to date imply isothermal flow (material properties not a
function of temperature or space). Since large temperature
differences do occur in practice, the proper mean magnitudes
of the material properties are introduced into the isothermal
expressions (reference 10).

While the present report.w as in the press, two further
articles dealing kith turbulent heat transfer have appeared,
one by Mattioli (reference 10a,) and the other by Hofmann
( reference 10b) .

Starting from special theoretical concepts with respect
to the turbulent mechanism, Mattioli extrapolates the tur-
bulent velocity distribution into the semi-laminar zone in
ord4r to deduce from this velocity concept the presumption
of equal exchang, ' quantities for.heat transfer and momentum
transfer the magnitude of the turbulent heat transfer. A
careful analysis of the difficult derivation shows that the
important phenopena nga± the boundary are not adequately
defined.	 In addition to the semi-laminar layer there is
presumed to exist a wall layer (which is established from
the heat transfer measurements of 3Uhno And from other fluid
flow measurements mentioned :above) which is much greater in
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thickness than the laminar layer. Mattioli is therefore
forced to assume a substantial exchange in his wall layer.
Since the Mattioli theory connot describe accurately this
exchange near the wall, the temperature change in the wall
layer is put proportional to (Pr) m , where m is established
from heat transfer ;measurements.

It is worth noting, however, that Mattioli quantitatively
allows for effect of temperature on the viscosity. For this
purpose a generalized distance parameter is introduced in a
manner similar to th p t employed in the present report (see
equation (30)).

Hofmann calculates the temperature distribution and
the heat transfer coefficient with special consideration
of the laminar layer whereby the usual simplifying postu -
lates are retained. The concept of a thermal boundary
bet — een the turbulent cord and a boundary layer is also
adopted and the thickness of this layer is discussed.	 In
contrast vith von Kabman, progress is made in that the lam-
inar layer thickness for high Prandtl numbers is introduced.
The arbitrarily chosen velocity distribution near the wall
lies above the test points of the present report.

The position taken by Hofmann that the heat transfer
depends solely on the velocity distribution and on the
Prondtl mixing length requires a correction. Basic to
every theory is a hypothesis of the turbulent diffusion
of heat.	 If the ratio of the exchange quantities for heat
and momentum transfer is chosen (Hofmann tacitly presumes
tho identity of these q uantities), then the lows of heat
transfer follow at once direct from the velocity profile
without the aid of any turbulence theory, hence without
the help of the Prandtl mixing length, which in consequence
drops out again in the course of the Hofmann calculation.

THE PROBLEMS

In order to avoid subsequent corrections and to pre-
sent the hydrodynamic theory of the turbulent heat transfer
coherently the following assignments are to be solved:

1. To derive a general equation for heat transfer into
which the technologically important boundary con-
ditions and the flow phenomena, pArticul?rly in
the transitional layer, con be introduced.
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2. To measure the flow process: s near the * p all for
technologically important casos, particularly
smooth surfaces, rough surfaces, almost isothermal
flow, non—isothermal flow, and so forth.

3. To introduce the obtained data on wail adjacent
.flow into the general expression to build special
formulae which can be checked by heat transfer
mn.,.surements.

The following statements are made relative to these
problems:

The presentation of the general theory should be clear
from a physical point.of view and it should be simple in
order that it may be utilized in practice.

The derivation of a generally applicable equation for
heat transfer is carried t.hrough in a simple manner.	 In
contrast the measurement of the flow distribution near the
i^,rall presents considerable difficulties . ..	 In order to obtain
practical test data especially thick-boundary layers are
essential. This requirement im plies large flo .a sections
and low flow velocities, that is, low dynamic pressures
and low pressure drops must be measured.

The conditions become complicated if the flow is not
isothermal. Through the influence of the temperature field,
not only the material properties but also the flow phenomena
are changed.

The presence of roughness introduces further complica -
tions.	 It is true that flow on rough walls has been exten -
sively studied and the lal,,r s of tale "nuclear flow" in pipes
are well known but there is no dependable knowledge of theflow
processes near the wall between the protuberances.

The experimental exploration of the flow distribution
near the wall is a broad field. of researchT.ohich can only be
accomplished p iecemeal. T he author first explored the data
available near the wall.	 +'+'hi.le these studies are not com-
plete, they have progressed far enough to enable a theoretical
treatment of the heat transfer at a smooth wall.

A particularly important sub—task consists in checking
the applicability of the theoretical formulae by means of
heat transfer measurements as the theory contains postulates
relative to the mechanism of heat transfer which require
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confirmation by experience. 	 If necessary the theoretical
assumptions must be modified to fit the experimental facts.
The heat. transfer measurements can be employed with great
benefit to clarify the questions of turbulence structure.

THE PRANDTL NUMBER

The hydrodynamic equation for the continuity of heat
flow (equation (47)) is not sufficient for predicting the
temperature distribution in the friction layers.	 It re-
quires another equation for the temperature which takes
into account the requirements of the system under consider-
ation.	 (This temperature equation,looked for,places the
continuity of heat flow equation (equation (47)) in the
position of a special condition that must always be satis-
fied.).

The Prandtl number Pr = PC-P governs the form of the

temperature profile. 	 It is logical,'therefore, to begin
;iith'the Prandtl number concept. 	 To secure a'differential
equation necessitates a determinating equation for Pr that
holds for each point in the fluid. 	 Since the individual
factors in Pr have "point" significance, the derivation
of such an equation is possible.

Let q equal the density of the heat flow, and T
the shearing stress of the density of momentum transfer.
Assume t'_iat the Heat flow and momentum flow act in the same
direction (±.y) at a given point, which is perpendicular
to the mean velocity u (time average) at this point.. In
the system under consideration y is measured perpendic—
ular to the wall and u parallel to it.

The total momentum T consists of a portion Tm by
the molecular transfer and a portion Tt by the turbulent
exchange motion. The same holds true for the heat flow.
hence

T = T  + 7 	 (3)

q = qm + q t	 (4)

'v+ith

µ	 coefficient of viscosity
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A	 thermal conductivity

A	 exchange coefficient for momentum

Aq	 corresponding coefficient for heat

c-p 	specific heat

u, T time averages of velocity and temperature, respectively

ut, vi	 velocity fluctuations in the x, y,directions, respec--
tively

T I	corresponding temperature fluctuation

du_
T 	 _ ^L dy .	 (5)

T = A d u. =— 
O 

ui. V t	 (6)t	 dy

a m =	 d 
dy	 (7)

o f = c p Aq dT =	 cp P Tn v t	 (8)
dy	 r

The coefficients p,_ ^\, A, A q , are defined by these equa-

tions.	 There presentation of T t and- q t	 in terms of the

fluctuating components is for the present irrelevant, but
will be clarified in Chapter 9.

Equations (5) : to (8) then .yield. the , follo l,•iing proportion:

q t	 A2	 T 
	

T Pr= Pr	 (9)
q 	 A	

T	 T
m	

m

Accordingly the ratio of turbulent to molecular heat flow
proportional to the _ratio of turbulent to molecular shear
stress. The proportionality factor is -Fr i = (Aq/A)Pr, a
quotient which is called "general P:candtl number."
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Equation (9) thus leads to an extension of the concept
of the Prandtl number for turbulent flow with P I = A q/A Pr
instead of Pr.	 Only ' in the case inhere the exchange coeffi-
cients are the same for momentum transfer and for heat
transfer will Pr and Pr I be equal.

Since equation (9) -refers to flow in which turbulent
and molecular shearing stresses act, it is particularly
suitable for the representation of the physical phenomena
in the transitional layer. 	 The treatment of the heat
tr..ansfer in the present report therefore starts from the
transitional flow, the "fully turbulent" core and the
laminar motion at the wall being treated as special cases.
(In the proximity ;'of the g all the exchange mechanism p er-
pendicular to the wall is not possible; therefore the
turbulent friction disappears andthe momentum transfer is
accomplished by internal friction only. Because of the
turbulent pressure fluctuations, the stream velocity near
the wall also experiences fluctuations. The continuity
of this fluid flow is largely maintained by the lateral
transverse fluctuations, so that the wall floor glides
practically parallel to the surface. 	 In this sense the --
viscous wall flow is "laminar. 11)

A picture of the physical significance of the Prandtl
number is best obtained by observation of the transitional
layer for extremely high values of Pr I (very viscous fluids).
In this case practically only turbulent heat transfer exists
(qt» qm) at those places in the transition region where only

small turbulence exists (Tt <c T m ).	 In this extreme case the

molecular heat transfer is so small, that even a slight con-
vection signifies a form of "short circuit" for the heat flow.
Therefore the temperature profiles for high Prandtl Numbers
are 11smoothed."

Even for the special case of Pr ; = 1 and q/T = constant,
the temperature profile can be fixed readily.	 It is

q t	 _a	 qmqm	 dT
or	 In this case the profiles of the

	

= T	 T- T =
qm	 m	 m	 du

temperature and velocity agree with each other.	 (The con-

dition that q	 T is well satisfied in 'the friction. layer
of a flat plate.)

THE GENEPAL TEMIDE;RATURE EQUATION

Tho tem p erature distribution follo l.rs from the equation

of the molecular heat stream qm =	 dT; q t must, therefore,
ay
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be replaced by (q - q,, i ) in equation (9).	 Introducing the
ratio q/T equations (5) and (7) then gives

q m	 X dT	 q/T

T	 µ du. - 1 + (Pr I - 1)Tt//T
(1J)

M, 

The boundary condition at the wall is to be introduced in
this general equation.	 That is,

r/dT^ _ µo qo

	

^du) 0	 T 0 TO

and when augmented by (11) , equation (10) is integrated to:

	

u	 µ o q To
/dT	 µo T qo TT -- T o = 

	

	 f A ^^ d u	 (12)
0 1 +^ .A Pr-1J T

(—du)o

T
The factor	 l	 is determined by extension. of the integral

over the total velocity field of the friction layer.

The temperature -velocityquotient (dT^ _ (_d 	 u)/
.\du)o	 dy/dy/ O

is a m_;as.ure for the amount of heat transferred to the ,gall.
The heat transfer at the wall is obtained from the temperature
distribution.

Equation (12),although designed to calculate the temper-
aturo distribution, has ganoral application. The considera-
tions so far are based solely on known definitions properly
rearranged and combined and no special assumptions relative
to the flo ,rf have entered the computations except the bound-

'	 a.ry condition of a laminar stall layer.

The above derivation indicates that a general result can
be secured without employing the hydrod ynamic equations
(46) and (47)).	 This is due to the fact that the basis of

(11)
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each theory, entirely independent of the method of calcu-
lation, is a postulate related to the exchange mechanism.
(For instance T 1 	is set proportional to u t , or more
generally A q = A, or as in the case in point, Aq/A is

to be determined later.) 	 This simple h^ rpothetical content
of the theory is seen also from the presentation of the
simple Prandtl analogy for the present subject is treated
in such a manner as to make this step possible.

To complete the temperature equation (12) the magni-
tudes Ag/A, gTo/goT and T t/T must be known. (These

quotients are introduced later in order that the effect of
each postulate may be observed independently. Also the
various deviations between the theory and experiment reveal
at a glance the direction in which the assumptions must be
modified.)

In order to carry through a calculation Lq/A is
assummed to be constant. The value of A q/A is to be
determined from experimental data.

The quotient . .'qTo /g o T cannot be fixed arbitrarily.
The heat stream . q .. .-is-related to the temperature T
through the differential continuity equation (see equation
(47)generalized Fouriar—Poisson) of heat flow. 	 But a first
approximation of the temperature distribution can be obtained
by assuming that the layer for heat transfer is of about the
sa g a thickness as the friction layer.

In this case the heat flow disappears where the shear
stress is zero, while on the wall q/q o = 1 and T / T 0 

= 1.

Thus-the total range of the friction layer can be expressed
with

q. 'o = 1 + k	 (13)
q  T

where k is small compared to 1 at least in proximity of
the wall.

In the turbulent friction layers the velocity gradient
is steep near the wall. The largest part of the velocity
region u lies in a zone where k is small. 	 So for the
integration T over u of equation (12) , 	 (gfi o /g 0 T) —1
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may be.put in first approximation. 	 (In the entrance zones
where thom . wall temperature changes suddenly this app roxi-^
mation is not pbss-ible. '- For such cases the heat boundary
layer is much thinner than th6 friction layer and-it there-
fore plays an-impor'tant role an the variation in heat flow.
Thermal entrance lengths in exLsting friction layers are
quite short however (see La.tzko, Z.a.M.?., Bd. 1 (1921)
p. 268) , so that when assuming	 (µ ^\ o /µ o ^ ) ^. 1 and,

T t / T is known, the integration can be completed.

This procedure yields a first approximation of the
temperature distribution b`r means of which the heat . flow
can be evaluated.	 The h .--at flora distribution then affords a
second approximation for the temperature distribution which
is ,ractically adequate for the case of constant material
properties.

Several quantitative conclusions can be drawn from
equation (12) relative to the temperature profile of various
frictionlayers which coincide approximately with the stress
quotient ( Tt / T) (such as, for example, the flow through a
pipe, channel or flat plate) at equ-Ll Ro=ol(ls. numbers,
whore the velocity distribution obeys the "universal law").

r
At the flat plate t dq` = 0 and likewise	 dT^ = 0.

dy^o	 ^dy o

The assumption k	 0 is therefore well satisfied over the
greeter pr-rt of the velocity field of the flat plate. No
appreciable differences obtained here between the first and
second approximation and-the final solution of T. 	 (Even
though T and q are very similar at the plate, they are
not coincident, for q depends on Pr I while T does not.
Therefore there-rill exist for the plate, a small difference
between the actual temperature profile and the first approxi-
me.tion of T.)

F.or floe with -pressure drop a far fron.negligible
difference exists between the second and fi-rst approximations
(th,-A is, between the actual profile and that of the "plate
profile" of the te-ap.erature.) 	 By pressure drop (d T /dy) o < 0,

but at the flat channel wall (dq/dy) o 	0 and in the pipe
(dq/dy) o > 0.	 Hence it follows for the tempsra,tu.re distri-

butions that the pipe profile diff;rs more from the plate
profile,: than the channel proflla, that is, according to equa-
tion_ (12), the temperature rise at the pipe call is flatter



/du\	 µ^_ _	 oT	 du
o	 µo

(C< T< Ta )	 (12a)

du1-Cd T", 
0

a	 bo

+^+
o	 A
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than at -thz. channel wall and even more so than at-.the flat.
plate:'{see fig. 4). For a quantitativ3 treatment of model
problems it is advisable to integrate the temperature
vquatioris by sections, that is, the laminar section, the
.transi:tio:nal r.egion-and the real turbulent layer. The bound-
ary-,at the end o'f -the, laminar zone is designated by the sub-
script a.,	 a.nd the .be.ginni.ng of the turbulent. layer by bo,

whence, after introducing the substitution equation (13),'
equation (12) gives

d u\l 	a
1	 —

d^T^o
o	 a

0` (1+ ko	 )

1+ (Pr - 1) It
T

d u	 (Ta< T< Tbo)(12b)

C

A c _o (u - ub o + f k du)
A q c pJt	 b a

Pr	 -1 ---1o^ 1 	 1	
M 

Pr 
i T A l

t

( T b o < T <-) (12c)

(0 = Max 'temp. difference between the wall and the flow-
ing fluid.)' In addition it should be observed that k may
be disregarded for the laminar region. A general disregard
of k in the main fluid stream is not tenable.- The sub-
script t indicates a mean value for the turbulent region
(f ormed over u) ,

In the actual turbulent region it is to be noted that
for small values of Reynolds numbers Tt/T is considerably
smaller than unit (see fig. 2), correspondingly T7  T	 is

not negligible.	 Ho-:!ever to an approximation	 (Tt/T)

( T t/ T ) t = constant.	 The point where Tt/T = ( T t /T) t	is

the turbulent boundary designated with bo.
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To utilize the temparature equations the variation
of	 (Tt/T)	 and the bor.ndary -relocitias ua, ub .(and corre-
spondingly u bo )	 1iiust be known, Thfis involves the flow

distribution near the walls, with limitation to the processes
at the smooth wall anj to flows obeyi:ig the .us1i_versa.1_v_Q1ocity
distribution equation.

VELOCITY DIS'T'RIBUTION AT A SMOOT . ;WALL

The measurements by-Wikurad-se (refer.ence 11) have shown
that the turbulent velocity distribution can be approximately
represented by the follo:,ring equation:

u
5.75 In y* + B	 (14)

u*

where the dimensionl, ,̂ ss shearin ' stress velocity is defined
by

AP-0u*(15)
and the dimensionl3ss wall distance by

y* - u U	 (16)

The constant B dej)ends on conditions at the wall.
For smooth walls B is approximately 5.5. Equation (14)
is a. straight line -on semi-logarithmic paper as sho-:an in
figure 1.

The velocity distribution for the laminar wall layer
can also be represented by mans of u/u* and y*. Re-
arrangement of the Foiseuille equation results in

U = y* (1 - n }I
\ /

	 (17)

where 7^ = y/r and r is the radius of the pipe or channel
for the equation in the sub-layer. 	 In general the laminar
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layer is so thin that -n/2 may be neglected compered to
unity and therefore practically

u
= y*	 (17a)

u * 

Equation (17a) is therefore the universal equation
for the velocity distribution in the laminar zone.	 It is
shown in figure 1 as the curve which passes through the
point log y* = 1. u/u* = 10.

The flow conditions in the transitional layer are not
very well established experimentally. This sublayer
adjacent to the wall is usually so thin that accurate measure-
ments of the velocity can hardly be made. The closest wall
proximity was probably reached by Stanton with his surface
tube (reference 12).	 But even these test data are insuffi-
cient for the present arguments.

Sinco the application of our theory is predicted on
the knowledge of the shear stress ratio (T t /'r)	 in wall
proximity. a wall layer of such thickness was required
as to render a measurement of the wall flow possible.

The thickness of the laminar layer y a and the bound-
ary velocity ua a.re fixed by definite values of u/u*
and y*; ya increases ^ ,rith decreasing u* according to
equation (16).	 The reduction of u* is limited by the fact
that at too low shear forces the critical Reynolds number
is undercut and so the entire flow becomes laminar.	 It is
therefore appropriate to introduce the Reynolds number
Re = urn d/v in the place o .f u*.: Then the thickness of
the wall layer is

y a *d
Ja	

Re	 ^^ 8
	 (18)

where the so-called resistance coefficient ^ isdefined in

the usual manner as: =	 ,
Q1	 d

(19)
P . um 2 - 8

(	 decreases slightly with Re) .
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- The thickness of the wall layer ;rows with the
diameter d of the pipe or channel and decreases with
the Reynolds. number. For a giver_ Reynolds number ya/d
is independent of the choice of flowing medium.

The important number ya*, the exact value of which
is not. yet known, lies below 10 according to available
measurements. The critical Reynolds number is 3000, and
the corresponding	 ^' 0.04.	 Herewith

d
y  < 20

This equation reveals that even for the lowest possible
Reynolds number the stream diameter must, be fairly great
in order that a probe can be introduced into the laminar
wall layer.	 (With considerations to the influence Pf the
wall in the probe, the wall layer should be as thick as
possible.)

But the achievement of a. sufficient .boundary layer
thickness by increasing the stream diameter introduces
fundamental difficulties. 	 if the increase in diameter is
to achieve the purpose desired, the Reynolds number may
not be increased. (see equation 18). This means that the
velocity must be decreased in the same proportion as the
diameter is increased. As a reoult the dynamic pressure
and.. the pressure drop are reduced quadratical.ly with the
stream diameter, that is, with the boundary layer thickness.

This is exem p lified at the dynamic pressure of the
mean velocity um, for which introducing Re = dum/v, we
get

P	 2 K 2µ	 e2 =
2 

um	
o d2

To'fix the order of magnitude of this dynamic pressure
several numerical values are inserted. 	 Let Re ^' 3000,
d = 25 centimeter .(utilized in measurements reported
later in this paper). For air as the flowing medium
Q = 10 x 10 -`x , p = 1.2 x 10- 3 ) it is

P um2	 x 10 - 3 mm, H2O

(20)

(21)
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The pressure drop to be measured is of the same order of
magnitudes and is ea.ual to p U M 2 at 'Re = 3000 for

Al = 100 d. For flowing water these pressures are about
four ti?ies larger and only when utilizing a viscous oil
does the magnitude become equal to 1 millimeter of water.
If these pressures are to - be measured to within 1 percent
then the sensitivity of the manometer must be in the range
lu	 to 10 `5 millimeters of water.

The problem of precise measurement of the flow phenomena
close to the wall for non—isothermal flow involves the tech-
nical difficulty of measuring extremely small pressure differ-
ences.	 (The velocities can be determined without the use of
pressure measurements. 	 In the boundary layer itself a hot
wire anemometer or a thread anemometer can be used in place
of a, pitot. tube.	 These devices.must be calibrated and the
calibration at best depends on pressure measuring devices.
In addition pressure drop measurements are desired to check
the effective she.ar..stress.), Such measurements can be made
with the micromanometer designed by the author which has an
upper limit of sensitivity of 10_

6
 millimeters of water

(reference 13).

The turbulent flow measurements reported 'here were made
in -a. rectangular channel 25 centimaters._eigh, 1 millimeter
!ride z^nd 16 millimeters .lo.ng and with a maximum velocity of
80 centimeters per second. mine pitot tubes and hot wires
wero utilized. The hot wire anemometer was calibrated in
the parabolic distribution of a 3 centimeter high x - 30 centi-
motor wide .laminar channel in which at similar distances from
the wall, the same To obtained as in the turbulent channel.
To was evaluated from tae maximum velocity as well. as from
the pressure drop.

The measurements 1;rere made very difficult because the
low velocities were easily disturbed by external causes.
For instance, small temerature differences between the
air stream and the %;call (induced by unavoidable fluctuations
in room temperature) caused observable changes in the veloc-
ity distribi:.tion.	 Tferefore the turbulent velocity profile
was almost always slightly unsymmetrical and thus u* was
different on the upper and lo , :e:r urall.

On the top of that.the recorded pressure drops yielded
an average u* which was too great as compared with the
results of other authors. The channel flow obviously was
not completely developed (in a . tube the length of 64 diam—
eters would have been sufficient.) But since the pressure
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drop was held constant for all test points, it ,ias
possible to determine the mean u* by comparison with
indisputable measurements of other authors at higher
values of y*. For this purpose measurements of Nik-
uradse were utilized omitting those for which the wall
correction was questionable._ (Similarly the measurements
of the Stockholm report which do not lie in the range of
ot_zers of Nikuradse's measurements and are obviously too
high, have been omitted.)

The results of these measurements near the boundary
are shown in figure 1. The u/u* points approach the
laminar curve very gradually.	 It is reached at appros_i-
mately u/u* = 1.5, a va'.ue which is substantially lower

than that usually assessed.

`i'ha value u a/u* = 1.3 is however still uncertain
and it must finally be based on much more accurate measure-
ments.

It is also true, that an accurate determination of
the limit where du,/dy - (du/dy) 0 is not possible from

velocity measurements. For this purpose heat transfer
measurements at hig'-; Prandtl numbers will serve better
to determine the 1.—_-, J nar boundary. From heat transfer
measurements by Buhnc it would appear that u a /u* is

someT,., hat larger than 2.

The recorded velocit y distribution in the transitional
region can be approximated at:

in 	 _
b -a

1--
ya*\ 

21 ; -y	
- J\ 2

b -a
ya	 (22)
b-a

,3here

	

a = u!a	b = ub and

	

u*	 u*

Ua is the velocity at the laminar boundary and u b a

suitably selected volcit. at the turbulence boundary.
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As bofore n/2 can be neglected compared to 1 and
equation (22) then becomes a universal law. 	 In figure 1
equation (22) is presented for a = 2, b = 15.	 The curve
is.dashed above u/u* 15, where it loses its physical
significance.	 The measurements are satisfactorily rep-
resented by this equation.

It remains to be explained why the velocity distri-
bution in t ine transitional zone was approximated by
equ^.tion (22) although some other similar function had
been possible.

The ratio Tt/T is required. 	 To fix the ratio,
differentiate equation (22):

_`d	
U \ !

(1 - 1) d_ >r *	 b - a

where

u

d ^*	
µ du — Tm	

(24)
a^* 

Pu *2 dam'
 

To

The total shear stress for developed flour with pressure
drop is

T = To ( 1 - 'n)	 (25)

(near the wall one m p.. set	 T - T c ).	 Then, solving,
one obtains:

Tin	 u  - u
T =

	

	 (2s)u b - ua

T t	 u - ua
T	 (27)ub - ua

Since e q uation (22) is confirmed quite well by the measure-
ments for u  < U< u b the true variation of T t should
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not differ much from equation (27). An uncertaintly
exists, of course, at the limits_ a and b.

There follows from equation (27) by introducing the
often used ratio X)= u/J

U
T t 	u,^	 - r7

(27a)T 

b — a

where U is the maximum velocity at the edge of the friction
layer. U/u* is, in accordance with equation (14) a function
of r* (-that is, the valve of y* at the border of the
friction layer based on the distance r from the walk).
The relation between Re and r* is given by the identity.

U	 U * U r u*

2 u	 Re u* r	 u* V	 (28)
m

where

um	 mean velocity

um 9	 a function of Re
U	 m

Figure 2 shows TJ/T for different values of cp
with Reynolds numbers as the _parameter as calculated from
equation (27a) for the transitional layer and by equation
(14) for the turbulent region. The constants a and b
were chosen at 2 and 15.5,,respectively.

The actual Tt/T uistribution no doubt differs from
that shown in figure 2 for small values of Cy .  But the
difference between the velocity distribution as expressed
by equation (22) and the laminar curve is less than the
scatter of the experimental points (see fig. 1) so that
nothing certain may be said relative to the actual Tt/T

variation near the laminar boundary nor of the laminar
boundary itself.
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Details of the -variation of Tt/T play at first no

part.	 In contrast with earlier !cork in which the friction
layer was divided into t-wo regions in which Tt /T varied

from 0 to 1,	 it should for the first suffice to approxi -
mately describe the processes in the transitional zone.

The earlier division of the friction layer into a
laminar and a turbulent region is indicated by two vertical
linas in figure 2. The dotted line represents Re = 4 x
and a = 2 and the dot dashed line represents Re = 4 x 1404
but a = 8.8, which is the value chosen by Prandtl in 1928.
T t / T was defined as zero up to a = 2 (or 8.8) and unity
for greater values of y*.) At high Prandtl numbers where
the transitional layer can be regarded as part of the tur-
bulent zone core with respect to heat transfer (see equation
(9))	 a = 2 is in good agreement while a = 8.8 results in
a heat transfer rate which is too small.

THE EFFECT OF TEMPERATURE RELATIONSHIP Or THE

MATERIAL VALUES ON THE FLOW PHENOMENA

If the material values are functions of the temperature
then the .flow distribution across a section will be changed
as mentioned above and also reduction in temperatures in the
direction of flow causes hydrodynamic changes for all fluids
which are compressible.	 In this instance,.in principle at
least, there exist no velocity profiles which are similarg
the same statement holds for the temperature profiles both
considered as a function of length.

Since the magnitudes of the temperature differences and
the differences in the temperature coefficients of each prop-
erty enter into the evaluation of the profiles, a general
solution of the problem is hardly possible and the study re-
stricted to the simple case of, similar temperature profiles
which are practically achieved at relatively low differences.

If the viscosity of an isothermal friction layer is
changed from vl to U2 and if the remainder of the vari-
ables, particularly a* do not change, then equation (14)
reveals a parallel displacement of the turbulent velocity
profile (see fig. 3a) with a velocity difference of

V's
Du = 5.75 u* In

	

	 (29)
i
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From this it folloTas that the viscosity has practically:
no influence in the fully turbulent region, but affects
solely the boundary velocity near the wall.. (The tur-
bulent flo q slides at' the wall at a higher or lower
velocity equal in magnitude to A u.)

If the viscosity in the turbulent core of the iso-
thermal flow..plays no part its influence for non-isothermal
.flow is limited to the effect due to its variation. 	 Vis-
cosity variations in the turbulent core are not great, for
the temperature variations are not great. We may,. there-
fore, generalize the laws established for isotingr.mal flow
by omitting the effect of viscosity in the turbulent core
and by replacing the isothermal viscosity v in equation
(14) by a suitably defined laminar layer viscosity vZ.

Recently the resistance measurements. of Rohonczi
(reference 14) for non-isothermal flour of hot water
being cooled in a tube were published. The measurements
could not be adequately correlated if the friction factors
were plotted against Reynolds numbers in which trio viscosity
is evaluated at the mean fluid temperature. 	 In contrast
the correlation is satisfactory if the viscosity n o is
evaluated at the wall temperature.

The rest of the discrepancies can be eliminated if
a viscosity slightly less than that corresponding to the
wall is employed in the Reynolds numbers. As far as the
author could determine the results of Rohonczi can be
satisfactorily correlated and are in agreement with those
of Blasius-Nikuradse if the Reynolds number is referred
to the mean laminar layer viscosity 91 and V* is put

equal to 2.	 (Rohonczi chose v o, as the correct viscosity

.due to an error in conclusion from similarity reasoning;
in which the differential equation for isothermal flow
was applied to non-isothermal flo g,.	 Ia addition the v1

values of Rohonczi do not achieve coincidence of the iso-
thermal and nori-isothermal results. Up to this time the
thickness of the laminar sub-layer was chosen too thick,
resAltin, in a sublayer temperature which was too '_nigh
and a, value of vl which is too low.	 Only for one set of
data at high Reynolds number will the results yield to
adequate correlation.)

Consider next the influence of a uniform viscosity
variation on the flow conditions near the wall.	 If the
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friction velocity u* is not changed, then the boundary
velocities ua = a - u* ub = b u* are maintained since

a- and b are universal constants.' That is, only the
layer thicknesses change to

yam *	 v yb*
`^	 vya -	 u*	

b -	
u*

In figure 3a the velocity profiles for uniform changes
of viscosity are shown'in which, for-the sake of simplicity,
the transiticnal layer is included with the turbulent core.
Curve 1 is the original profile. Reducing, the viscosity
yields profile 2 with one--half the laminar layer thickness.
Increasing the viscosity by 50 percent yields profile 3
with a corresponding laminar-layer thickness of 1.5 of
the original layer:

The case of a locally var 4 abla'viscosity such as obtains
in non-isothermal flow stipulates a generalization of the
dimensionless distance: y* = yu*IV	 For tho viscous wall
layer the following simple possibility presents itself:

y = u* f dy
	

u* = To	 (30)
J	 ,/ p o

0

Tha -applicability of this concept must be . established by
. experiment. But it ma.y be stated that this concept (equa-
tion (30)) is more satisf?ctory than'the original and'that
one can predict well those cases in which the property-
temper?ture quotient is not tco great by.employing equa-
tion (30).

The ratio u/u* * can be generalized by re-arrangement
of equation (3) for the ' laaminar wall layer.

P d y
P d u

!-L T O

The following indentity holds for thQ laminar layer:
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1	 r
p d u = u*	 v	 y*
	 (31)

p u
* J

O	 0	 o
n

So yu*/v is replaced by u* ' dy = y*, then u/u*
;.	

o	
v

must be replaced •by o * t 
^ ,
o p d u in order to preserve

o	
J

the universal representation of the Poiseuille law.

Under the postulate that there exists a certain
critical number in this representation, the laminar
boundary of thenon-isothermal flow must be at the same
value as for the isothermal flora y o * = a. For the ratio
ua/u* equation (31) then gives

ua	 2a- _	 --	 (32)
*u	 po + pa

	

if in the first approximation p(T)	 a.nd T(u)	 are linear.
At constant density u a /u* = a as was the case for iso-
thermal flow.-

In incompressible fluids the laminar boundary velocity
therefore always a.pnroximates to the same value a u* no
matter what the viscosity variation in the laminar layer
may be. The integration limit ua in equations (12a) to
(12c) can therefore be retained for non-isothermal flow
also.

The effect of the viscosity expresses itself in the
thickness of the laminar layer, according to equations
(30) and (31);

a
fy, = 1  v

	

Y. 
= vo ^^ ^ µ d (u 	 (33)

`^ 	 `u* 	 u*	 ^e	 \U,o	 c

These ratios are expressed qualitatively in figure
3b,that is, for specified values of u* and µo at the
wall. The viscosity in the sub--layer is smaller in Profile
2, greater in Profile 3, than the viscosity p o for iso-
thermal flow illustrated in velocity Profile. l..
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It is seen that the parallel shift of the turbulent
profile in the non-isothermal case i.s much less than by
the uniform variation of µ. The velocity change may be
expressed approximately from equation (14) as:

i
^	 µ d u ^/

µ	 \u /
0 o	 a

Lu = 5.75 u* In (34)

Because of the neglect of the transitional layer this
shift is less than the true Au. An improvement is

i
	T 	 / u

possibly obtainable with the integral 	 µ m d 1 —

	

µ 0 T 	uo
0

THE TEMPERATURE DISTRIBUTION AND THE TEMPERATURE

GRADIENT AT A SMOOTH WALL

To further evaluate equations (12a) and (12c)
µTo/µ oN is substituted for c p o Pr/c p Pr o and the

dimensionless ratios	 u/U,	 = T/8 introduced.

To. simplify the calculation a constant Prandtl
number. Pr(u) and a constant specific heat cp— is

u
introduced for the transitional layer. For the turbulent
region itself c I, is equal to o pt , a constant.	 Further

the ratio of the exchange quant ties is assumed identical.
(For completely laminar flow the ratio A q/A loses of

course its significance.)

Defining .a mean Prandtl number for thc- laminar layer as:

^• L

C
Fr	

1	 1Q Pr dw	 (35)Fr i
	

CP a o
	

c p

and putting

f^ cpo pr Ik
e = ! cp -- d CP	 (36)

J	 T^0	 1 + (Pr-1) T
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it follows from equations (12a) to (12c) upon the intro-
duction of equation (27a.) and the application of Pr 1 0 =
A./A Pro and Pr t = 3q,/A Pr i that:

Prto .d Jo ^ = pr ? lcA a + e - Fr t Z CD 	 (0 < ,s < 14 a,)	 (37a)

- cD 

rto\d
t = Pr t Z "^ a + e + cpu 1-lbpr ^ ln^l+ (Ertl-1)^D 

—G^ J
o	 \	 b a

	

/ ,c	 < tin < ,4bo) (37b)

/d'f\	 Clio Mb —^f.)	 Cpo
Fr i 	`..a = Pr y D	 + e +	 In Pr t - +	 (CD- C-0)

o d^^o	

1. 

a	 CNu 1--1^?rta	 a	 cpt	 b

(_^bo < ,g <1 ) (37c)

From equation (37c) the temperature gradient at the '.rrall
is:

C-p t
r	 ^.	 c lnPrt

C.Ot 
===f o	 = 1+ e l +ZV\y Fr t ^^ _1 J+ (c _ a) 1 - 1 art_ - 1	 (38)

^^c o	 \d,^ 0	 0 o	 ub

whore e 	 is the value e= e for ^P = 1 multiplied by
c pt /c po .	 (See equation (36).)

The quantities "mo w = a u*/U and =Db = b u*/U are
known functions of r* and .?e (see equations (14) and.
(28)) i-	 and b are fixed.	 On the other :and, the
material -aloes Pri =,.nd Pr-, must be defined more

e xnlicitly..	 (To be c'_iscussed later.)

In equations (37c) and (38) rVbo was replaced by eOb
because a slight variation while defining the turbulence
boundary has practicall y no affect on the calculation of
the total temperature. 	 (At the boundary position Mbo

the ter--,p. difference over the turbulent region is greater by
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CP
b -^l b 	 d,n

Pr' c 
(dc^)o than at COb , while the :temp. difference

in the transitional zone is reduced by approx. the same
amount.)

In addition to the very small error terms, the
expression_

T
( CP - QP bo ) ( 1-11 Pr 1 o )	 mT)t

is also emmitted, since it is smaller than 0.02 (see fig. 2)
even for the largest (Tm/T)t at small Reynolds numbers.

The number el accounts for the effect of the variation
of q/T on the temperature gradient at the wall. Since
this term is less than unity (see fig. 10) it plays no
important part except at low P.randtl numbers as is seen
from equation (38). 	 The integration of equation (36)
between b and unity usually suffices to calculate el
ndby this operation Pr y and Cp disappear:

i
et ~^ k d CO	 (39a)

b

While the errors due to the inaccuracy of the speci-
fication of Tt/T by means of equation (27) tend to dis-

appear for high Pr, for Pr' = 1 the only term which
is in error is	 e l	(for Tt/T	 is eliminated) to the

e--tent that the errors due to the material vsslues. can
be discounted.

For Pr' = 1

el
cpt k 

d CD	 (39b)cp
0

Here the integration from . 0 to b for pipe f low is
appropriate, if the neynolds.r_umber is small (in this
avant li: in the transitional zone cannot be neglected. )
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=or constant material values and for CD b =CD a,

q/T - qO/T 0 (e -0) equations (38a) to (37c) and (38) ,
give the Prandtl approximations:

d ^\ CP

ti4
 ^

dCD\	 1

d^Ja = CPa + FL I (
	 a)

Fr'	 lCD\ =	 a1 + CD (Pr - 1)
(T^')

(4111<4<1)
	

(40b)

(41)

(Prandtl employed Pr instead of Pr'.	 He .al,.o used
UM and T 	 as reference values rather than U and 0,)

The fourth term of equation (36) which accounts for
the conditions in the transitional lay.-r is particularly
im-oortant for average values of the Prandtl number. But
at high valu:;s of	 Pr'	 the. fourth term is small com-
parei% with the third and for constant material vr.lues
Pra":dtl's equation (41) is approximately obtained again.

At Pr' - 1, and constant material values equation
(38) simplifies to:

^d	 ME + cob
Pr'	 = 1 + e l ,	 2	 (Pr.' - 1)	 (42)

In flow with pressure drop, consideration of the heat
flora distribution which enters into the ei term yields

as^.:.11er temperature increase at the wall than by the
ass -am ption q/ T = g 01/T 0 .	 For instance	 (d dcD) 0 is not

equal to unity at Pr' = 1 and Re = 4.10 5 but in a
chann,;l is o..ly about 0.94 and in the pipe a-.-,proximately
0.91 (see fic. 10).

in figure 4 (d^,ldcp) 0	 is presented - as a. function of

lr' for constant material values with Re as the param-
eter, a. = 2 and b = 15.5:	 The solid curves refer to
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the flow through a pipe. For Re = 4 X 10 5 the dot—dashed
curve is that of a channel while the dashed curves refer to
a flat plate.

The asymptotic limit value of 	 (d4l /dCO)	 for extremely
mhigh Prandtl numbers is 1/ a . The temperature gradient at

tho wall	 (di'-/dy) o 	is therefore at the most - 1/CP a times
greater than the corresponding velocity gradient.

For Pr = 0.72 (air and other gases at room temp.),
(dA/dr-A).0 — 0.8 at the plate, if A q = A (see equation (42)
and fig. 4).

Elias (reference 15) has established, for the flow
along a heated plate, that the temperature and velocity
profiles are simil=,r, that is, that 	 (d 4 /d D)o — 1.

This value for	 (d ,a/dcp ) o holds, however, for
(A O /A) Pr — 1.	 From this it follows that A q /A — 1/0.72 — 1.4.

A similar result was obtained by Lorenz and Friedrichs
(referenco 16) in their experiments with air flowing through
heated pipe.	 Re — 10 5 9,	(d,^/dQP)o — 0.97.	 This value lies

at ^r l — 1.08 as may be seen from figure 4 (equation (12)).
From this it follows that A q/A = 1.5.

The question regarding the ratio of the exchange
quantities, however, cannot be considered -solved, hence
no specified value Aq/A will be ascertained.

Figure 5 illustrates the temperature distribution
t1, ( CP)	 for various Pr i at Re = 4.10 4 .	 The solid. curves
.indicate th.e second approximation for pipe flow, the
dashed curves represent the first approximations which
approximately correspond to the temperature distribution
along the plate. The division into three flow regions
is indicated by the lines QPa = constant, CDb = constant
(that is, for a = 2.0 and b = 15.5).

In figure 6 the temperature- distributions of figure 5
are plotted against the dimensionless wall distance 'n.
For purposes of clarity only the , case of Pr  = 1 for the
first approximation k1so a near approx. f.or the plate)
is presented.	 This curve also represents the velocity
profile for Re	 4.104. for the universal velocity dis -
tribution curve approximately holds for the pipe as well
.Ws for the plate.

As to the non—isothermal problem the least trouble
is in the choice of the value of c 	 since the specific
heat varies but slightly with the tompera,ture. 	 In many
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cases one may write c ppo = c ps = cpt in which event
equation (38) i s greatly simplified.

For a more accurate analysis the approximate range
of the pertinent tem p eratures must be known. Employing
the subscri -otsutilized to describe the material values
and arrangin g the temperatures in the order of increasing
temperature results in

0 < m < T <T— < m < m < ^^ < 8
i ti	 a	 u	 yb	 1t

Herein addition to the material value temperatures,
the boundary temperatures Ta and Tb as well as tae
:ean temperature of the flowing fluid Tu are introduced.
(The definitions of -Tu and T t depend on the variations
of the material val-aes and are very complicated., (see
derivation of equation (38)	 3ut it is not necessary to
consider this matter further here.)

Since the principal mass of the fluid is turbulent
Tu and Tt are quite similar so that in general  Tt can be
replaced by the known ^Tu.­ At high Fr, tempe-reture Tu
agrees with T t , hence c,Tith Tu (fig. 5); but at low Pr,
Tu is substantially lower than Tu ... Since u is appli-
cable only to the tern; of the transitional layer, the
approximate value from figure 5 will suffice.

Of particular influence on the heat transfer is the
temperature relation of the Prandtl number iii the laminar
layer if a very viscous fluid is involved. 	 (For viscous
fluids the major resistance to _heat transfer.is  offered by
tho laminar layer. Since the laminar layer th'iekness ya
varies with the temp. viscosity history of the fluid (see
equation 33) and since the temp. variation of Pr is fixed
primarily by the viscosity (c^, and /N vary but sli fitly
with temp.). Ya depends on. :Pr/Pr o .	 But it may not be
said that the thickness of the laminar layer is a function
of Pr for this is a.heat transfer factor and the laminar
layer thickness depends on a purely hydrodynamic variable
as seen from equation 33.) In this event a mere estimate
Of Pri by means of a cursory temj)erature T j may intro-
duce t serious error. Tie prediction d.f- ' Pr by means of
equatio_. (35) is tHerefore indicr ted.

To simplify the calculation a proportionality between
velocity and temperature f or the non-isothermal laminar
lager is assumed:
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T _ CP 
rd̂^ .Q	 (43)

demo

Pr
Further the temperature variation of — is approximated
by the linear equation:	 cP

Pr Pro
+ m T)

c  cpo
4

(44)

where m is an empirical constant.

With the assumptions (43) and (44), equation (35) gives

Pr 1	 1 +	 r	 ('^ I n = 1 + m T	 (45)
oPr	 2 a \,dr^) o	 2 a

tiQ

A first approximation, to the temperature gradient 	 1
•	 d^/ o

at the wall is obtained from figure 4 where for ..the
Prandtl number Pr i the value of the wall, Pr i o may
be chosen.

For a more accurate solution of Pr 1 	(to be'discussed
elsewhere) the real non—linear functions T(M) and Pr (T)
must be used instead of the linear rela-tions given bar
equ:ati.ons (43) and .(44.)

THI; D I S TT'R I BUT I ON OF THE HEAT FLOW DENSITY

IN A CHANNEL;AND A PIPE

The differential ecaue,tion fair the equilibrium of
forces _in a fluid with . alloire,nce for the continuity equation
and .omission of density variations reads:

P
a 

+ P	 (VI 717)	 grad p' ± u 72 w.. .	 (36 )
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where Till is the velocity vector.

The differential equation for thermal cor_vecticn
and conduction is written similarly:

P c  
UT

+ p cp p ( w ; T ) _ E+ X p2T	 (47)
at

where

E	 source of density per unit volume.

A formal analogy between the eavations of momentum
and. heat exist therefore for flows with grad p j 0
only in the presence of spatial :Meat sources in such
floors. Even though the internal friction of a fluid
is small in technical applications, the variable E is
retained in the equation for future consideration of the
analogy.

Equations(46) and (47) are next applied to the com-
pletel;- developed turbulent flow in a flat rectangular
channel and in a pipe9 For this type of flow the non-
uniform terms cancel out by averaging and likewise the
derivatives of the mean velocity along the principal
flow X.

With u = u + u t and v , denoting the velocity and
-fluctuatinging conpor_ent s of the velocity in the x and y
directions., respectively, where bars represent mean vel—
ocities with time and the primes represent instantaneous
variations from the mean, the scalar equation for two—
dimensional channel flow in terms- of mean values is

6	 ------	 a p	 62U

pay 
(ut V1 ) =- 

ax
+µ a:2 (4e)

In this equation the bars are omitted from the pressure
and velocity terms as was done previously. The bars are
used only to represent the mean products of fluctuating
quantities.

The mean momentum interchange — o u i v 1 , which may be
res., rded as a stress attitude is identical with the tur-
bulent shear stress T t , while µ ry—u is the viscous

ay
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shear stress TI. (T4 is the turbulent momentum

transport in the -y direction. For au > 0 T t 	 isdy

like,-rise positive; since the oositive * u l - are associated
with the negative vt and vice versa on the average.
For the , exchange process the h i gher- u velocities arrive
fro:_: :treater and tho- lo-ir_velocities from closer wall
dintanccs,)

Hence T is the total shearing stress

-
- ]]	 constant	 ( channel) (47 )

0-7 - V x

Th .a nrassare drop is constant since the flow is` full:;-
dcy olo-^cd.

The heat balance in "two-dimensional char_nol flow
-ollows from equatio_i (^7)

Z rn /

Assur-`n- that no groat changes in (T' u') occur in the
direction of flow x as certainly is the case for fully
dovolopod tcmpuraturo distributio-rs,, the second term on the
left side o f equation (5.0) may be naglecte cl. Thor erema ins ,
thee, o'nIIv the f luctuation product p cp ^ I v t which is
eaaivwlolt to the t ,rbu.lent heat transport -q t perpen-
d icalar to the wall. Introducing the total, heat 'flow

q - eL + % ^ -, f ^^ the y affords.
-U

o

a^- - p op u ax - E	 ( channel) ( 51 )

No= fully developed. flow ir, ,a :pipe 4re_following
equatiQ. 	 of equation
(40) fo_ the channel) is obtained

	

T	 a

	

ti. \—	 - constant	 (pipe)'	 (49a)
V y	 J 1l
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and ( in s t end of equati on ( 51) for the channel) the
equation:

^T

oy ( 
q ( 1—^1)) . = ( 1--1^ Cp cp u 6T -- E I	 (Pipe) (51 )

where 'n = r (.r = radius of pipe or 1/2 width of channel).

Dy introducing tike ;hear, stress at the wall 're
there f o17.ows for the ripe and t he channel from equations
(49a) acid (19), respectively:

T = T o ( 1— r,)	 ( chann"O1 ._and pipe) (52 )

For the case of fully d.evel ,),ced'temporature distribution
to i-ti -ch the argument is con-fined the partial differential
eat_o is ofq u 	heat flow become ordinary differartial equations.
(The ontra.nco langths for Fluid flow and heat diffusion are
independent of each other. h^r instance, a sudden change
of WL)11 temperature ma;; introd -ace a, therrlal entrance in a
hydrodynamically d.evelo:,ed f_l_o::,) The si_nil.arity of the
tCTi^eiat iG profi les stag es that t-he decrease of temperature
per u.:.it temperature --ci'1i`-' in - di::tance dx at each dis--
tan^e y from the ^.--!all is a constant. Therefore —dT/dx =
cons tant T. Tike om! scion of E leeves'in.tead of equations
( 51) and ( 51a)

dG = corstant u T	 ( channel) (53)

CL (q(1—T 1 )) = cohista.t (1—'n) u T	 (pipe)	 (53a)
CLy

is defi:_ed, as before, as t I.- e teLpera.tnre excess over
that • at t_ne ti/E-I.L

It should be noted, howee , er , that a	 developed
te;^oc^ at ire distribution is possible o-.-il-,7 at small e._cess
tem -ID eratures T.	 Iii general u.( ^/ ,)_c)( p cn T) instead of

P c-^ a	 would have to be rQckoned -with. For the fallow-UX
ins it is assumed th,.,t change of profile reriains within
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such limits that equations (53) and (53a) remain applicable
with sefficient accuracy.

1 :: V eZ7rat ion o
of the limit values
in conjunction with

U	 „:Ves;

0.C'Uations (53j and ( 3a) an  luLro du­ ction
( q = q o at 'i =0	 and	 q. 

:7- 
0 at	 'n = 1 )

the nond.imensional a = T/0- and .

q
f	 d ^1	

( channel) ( 54)

q 	 f $	 d ^l
0

T1

J 10 cp( 1-r, ) d n

1
f ,a tp ( 1-r, ) d ^1

0

a ( l-r1 ) = i -
Q 

(pipe)( 54a)

.A food approximation for q/q o is o -taincd with the

application of the temperaturo equations (37a) to (37c).
Alt'rou.gh the introdiction of the simplificd temperature
equations (40a) to (41) is sufficient.

The velocity'distriblation of the turbulent region
is .reprosented by tho well known power lair:

(P _ In n	 (55)

E
whc;re O.18> -n> 0.10 fo-r 4.10 `'< i?e < 4.10

The power law represents the volgcity distribution
even better for large -n I s than t h a logar ithmi c law and
is especially suitable for the present calculat ion. Ire
well pro_1imity the -velocity is of course loss than that
calcu ated by the power lat.,, and the error of the derivation
is small only at '_ii{;.- 'Re ,,r nolds nu..1) rs whore the power law
:Nast be used rear t , o ^^lall ,

The ec o of equations (40a) to ( 111 1) -and equation (55)
then yields aE.pro_•_ima,tely:

r $	
d 

	 + n-n 2 )(Pr I - 1) oe + co ^l+i^ n	( ^)
J	 (1+ 2n) Pr - 1.)cp a + 1+ o)
0
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. Here the lower Limit cp 0 is replaced by 0. Because the
value of this integral is practically zero at the, limit :pa
since the..eaponen .t .1 .+ l/n is high and the integration
from G. to cp a yields. an .integral which is very small.

Thus the density of heat flow for channel -flow •.at
nigh -Heynolds numbers approximates toi

q	 (Pr y-1)(1+.z)<^a+^	 iai r= 1 -	 cp	 /	 ( channel)(57)
q o	 (Fr1-1)( 1+n)cpa+l

whore c7 = ra n , so that q . / qo may be represented as a
function_ of r^.

In a similar fashion the heat flow through the fluid
in a pipe is approximately, according to equation (54a):

C1
(1-0 = 1

qo

- (Prt-1)(1+2n)(2+r1-( 1-^-i1)^1/i1)^a+( 1+r^2)(2+2n--( 1+2n)^pl^n)^ i+i/n

(Fr t -1)( 1+2n)cpa+1+"!/2

(pipe)	 (58)

A goad view of the variation of ci/go may be obtained
for the special cases of Pr I = 1 and Pr t -	 as sub-
stituted into equations (57) and (58)'C

	

q	 1+ 2n
q0 1 - tl	 ( channel Pr t = 1)	 (57,1)

	

q	
1+n

nnel Pr	 (57b)(cha t = oil
q 0

q	 1+2n
w

	

(1--n) = 1	 (2+ 2n — (1+ 2 n) 71)n	 (pipe Pr t = 1)	 (580)
0

q. (1+1) _.1-- { 2  
,+n

qo
+ n -- ('1 + n)n) ^1	 (pipe Pr'	 (58b)

,
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The 0/0 0 curves flatten out with increasing values
of Pr and Re (decreasing n), that is, they approach
q/q o = 1 - r which is the limit of e quations (57a) and
(58a)	 for 'n = 0,	 It *urther follows that thr quantit ie s
k and e decrease with increasing Pr' and Re (see
equations(13) and (39) and fig. 10).

Figures 7 and 8 show	 (q/q q ) (C^)	 and	 (q/qq) (n),

respectively, for the pipe and channel at Re = 4 x 104.
Figure 9 reveals .(q/q. )('n). :for various -values of	 RP

0
at Pr' = 0.72 and Pr' = 200. These curves were com-
puted for ZP by the true velocity distribution as shown
in figure 1 rather than power law.

The variation of the heat flow density in proximity
of the wall is noteworthy, where 	 (do/dr) o = 0 for the
channel, but	 (dq/dT)) o = qp for the pipe (see equations

(53) and (53a)1. The rise of the heat flow density of the
pipe beyond the value q o is due to the fact that the
total heat flow w	 q(1-r,) near the wall is practically
constant, while the section through which the heat flows,
decreases with (1--'n).	 In channel flow no cross-sectional
area changes occur; thus the heat flue density and the
total heat flow are always directly proportional.

At mid-channel	 (and pipe, respectively) the variation
of the heat flo e! density is characterized by,

d q-^ 	 q o

Tr), _
	

uc.Pm

Tu um
(see equations (54) and (54a)) 9 4 u = 0 and MM, - U

denoting the diu;ensi.or_lE ss mrignitudes of the mean stream
temp eratures Tu and thF mean -%*elocity (um ), respectively.
Since these magnitud-es are smallFr than unity, the negative
lope of q/q o is greater than unity, and is greater for
the pipe than for the channel.

Equations (57) and (58a) enable the calculation of
k and ei (see equations (13) and (39)) through which the
second apprpximation to the tem p erature is secured.	 In fig-
ure 10 the e l term for pipe floe is shown plotted against
P.r'	 for different Re.

(As mentioned above (equation 9)) G. I. Taylor has
computed a second approximation to the temp. distribution
for the case of Pr = 1. His arguments rest on Reynold;'
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analogy. In the calculation_
pendent. of the distance from
to, dq/,_^y proportior_a1 to
out, a, correction term, tkrh•ich
instance at	 Re = 4.10 4 	 it .11

percent, as is the case for
constant ) ).	 (See fib;. 10.

aT/ax is assumed ind.e-
the wall which corresponds1.

U (instead 'of u T)., -through-
is too sa11, results (for
is 5 ercent instead of 9
high

p
 Pr (that As, for T

COMPARISON BETWEEN MOMENTUM ! TERCHANGE

ANI) HEAT- TRA11?SFER

Supplemental to this theory an attempt is made to
comj. ,are  the differential. equations of lie at and momentum
and to indicate that the historic heat, source theorem
also leads to a generalization of the- Prandtl number.

The similarity of the differential eouations (46)
and -(47) is so ' obvious' that 'it need not o'e discussed
further. However, it is riecessary to analyze the
existing differences,

One substantial uepartu.r'e lies in the fact that the
heat -equation contains no term corres-7Ponding to the ^.
pressure drop in the momentum e •auation.-• This difference
can, however, be removed 

In. 
some cases (as Prandtl has

shown) in first approximation by substituting a suitably
chosen heat source densit,y.C.

Phys i cally this artifice has the following signif--
.ica,nce. The m-om.entum of a flowing fluid can be maintained
by a pressure gradient. The heat content of the fluid
is, i2) Co:itrast, reduced by the transfer throi)gh-the walls,
unless heat is Tiroduced in the .fluid itself (such as by
a current of electri-cit:y -,flowing through th'e fluid), 	 To
comT,lete the analogy between.heat txansft = r and momentum
exchange the volume-heat sources must be so disposed that
the tem-perature :and velocit, , -.profiles are .'s `.Lrii 1 -Ar,  In the
particular Case where the v p loci	 distribut -L rDn ;remains
constant in the axial direction (fully develone t flo,,, in
a pipe or channel) the temperature p rofile should be main-
tained likewise.

A further.differcnce between. equations (46) and (47)
rests cia t7,e • fact that eouation- (46) is a vector equation
and Equation (47) 1s a scalar equation; hence only one
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component. of ;eauati-.on • (46) can be : compared with equation
(47).	 Th'e an'alogy',is . , therefore,.. carried out 'for "fully
developed plane 'ch-ar_ne.l. -low. Ry. concentrating on the
spec'ial case. o'f. plan e,-fl°ow, the problem is much clearer,
and 'affords more far reael•_ing conclusions than from
eauation,s ` (46) and .(47').,

For this floo,, equations+ (46) and (47) give:

ar	 a (. au	 ap

ay - ay \µ ^ay	 p u' v	
(49b

	

') - aA 
	 )

^q = a— /^ 3T	 c T	 - E+	 al	 ^	 v ^	
) _	 ,.	 (.	 )

,. y .	 y\ y	
P p	 /	 P yp u

	 alb

In order to avoid misinterpretations, the mean values
are again represented by bars.

In the most i7vneral form, the equations for.T
and a are analogous.	 7?ut because fully developed
flown has been postulated, the terms with 6u2/6x-,

dy (u 'v) ay (T..v)	 drop ou•t „ while the. team ?,r ith	 (u T).

in the brat equation remains. Thp. p.rcbl'em, then, is to
choose E so that the term with	 Tfax vanishes.

As shown above , Way- -u dtjax,- u T (see equation
(53)).	 Tlius for a given heat..source distribution
E	 k u T;.a suitablF Choi^e of kwill cause aT/ax
to diminish to zero-for every y, without in any way
r.odifying the temperature distribution T or the exchange
T 1 v. 1	With this Choice of E the actual temperature
.profile will .. be retained; it "simply remedies the earlier
decrease ir_ t•empe rature in the direction of flow.

However this heat density which varies with the
distance from the wall cannot be compared with the
pressure gradient which is constant over the section.
So in,order t. o carry through the consideration of the
an alo,-y it is necessary that E = constant. In this
case .also, it ' 'may be stipulated that WE/ ax should
vanish at each position of y.	 Then the hE=at flow is:
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aq
E	 constant

dy

Under this condition T is of course no longer the
actual temperature, but rather an approximation to the
temperature, which i s that the postulate E = constant
yields too greet a. temperature gradient at the wall be-
ca.use the-vr ,all layers are heated excessively by constant
source density. But in view of the fairly well compensated
tem p erature profiles the error must be small.

Now the identity of equations (49b) and (51b) can
be adduced b y putting conformably to Prandtl, µ c p = T
(Pr= 1) and T = ^ u (a = constant).

?ut the equation T = p u is only one possible
solution.	 The solution is, in fact, somewhat special,
since it not only requiros the time averages of the
velocity and the temperature proportional, but the
fluctuations u l and v i themselves to be proportional
at every instant.

	

T =	 'u	 (59)

	T ? -	 ul	 (59a)

These equations are obviously fulfilled if the mech-
anism of transfer of the u-component of the momentum and
the mechanism of heat transfer arse aomioletely similar.
This.may occur in particular cases.

"Consider ns:4t the general case where the correlation
coefficient bet.aeen a and T -is less than 1.	 To this
purpose the turbulent terms in equations (49b) and (51b)
^re expressed by _A d dy and cp Aq (dT/dy). The

identity of the equations is attained tahen A _ A q c p

(that is, Pr t = 1)' for each-distance . y from the wall
and when equation (59). is satisfied...

Equation {59) th ,zs represents an approximate solution
Of the heat equation for the c-ase defined 'by Fr i = 1.
I,n this case assuriptions relc.l.tive to the fluctuations of
v, t and T I are no longer required.
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The solution (equation (59)) stipulates that the fic-
titious source strength	 E be fined by:

A O dp
E _ ^- ^ C	 (6^)

P A dx

On the basis of the postulate dq/dy = —E,	 the
source strength E may be defined in terms of heat
'low at the wall qo:

E = a /r	 (61)
`o

(r is the half—width of the channel).	 Introducing the
shear stress at the wall for the p-ressure drop, it
follows from e quation. (60) that:

A
q  = S cp A To	 (62)

(This change of form
that the form of the
plate, and so forth)
siderations does not
may be derived also,
pipe. The constant
standard values (for
the mixed mean temp.

of the eouations has the advantage
fluid boundary (whether pipe, channel,
which is unessential for these con--
afft-ct the result . )	 This ea_uation
for the auasi —plane case of the
S car,, be expressed by appropriate
in s tance, by the ma 4 imum values)
of	 T	 or u,.

At Pr f # 1, the analogy is not complete for the
total fluid, but only for the turbulent-Core in which
the terms of molecular conduction can be. neglected.

Then equation (59) is appropriatel y replaced by:

T -- Ta	 (u — u a )	 (5Sb)

where T a and u 	 are time averages at ."the point of
transition to the laminar flow".' For the rest the
calculation is the same and e q uation (62) holds for
Pr 1 1.	 Solely	 becor,es another proportionality
Xactor.

For the prediction of	 the maximum values of 0
or u, the temperature and velocity, respectively, can
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be used.	 it, is also possible, however, to introduce the
sectional averages TM ^zr.d umi	 (as was done in the
Prandtl derivation) since the section of the laminar layer
of the flour is negligible compared with the total flow
section. With T. expressed in terms of ua and Pr':

Ta = P Pr.' ua
	 (63)

- an equation which results upon the application of equation
(62) to the laminar layer,	 equation (59b) gives:

G =	 ^/U —	 (64)

or

1m /um	 (64a)
1+ (Pr' - 1)ua%um

The following useful conclusion car. be drawn from
equations (64) and (64a):

QP m + co a (Pr 1-11,

^m =	 (65)
1 +.CPa(Pr'-1)

m =	 ; ^Pm = U) The dimensionless mean temperature is

identical at	 Pr' - 1 -^-ith . th.e dimensionless mean velocity
(within the framework of the present approx.). With increased
Prandtl number	 ^i approaches unity.

Since it has been established that the correct heat
flow distribution over the section is not necessary for
the determination or the temperature distribution in first
approximation, q/T = g o /To and this assumption compared with
the assumption of a constant source strength, which as
shown above,is necessary to establish the analogy. From
dgldr, _ - e = constant, it follows that q = q	 On

the other hand, for completely developed flow T = To
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For fully developed flow our approximations therefore
agree with the postulate of constant heat source distrib-
ution. The two idealizations differ, however, in their
consequences for further theoretical treatment as well
as in the justification of their physical admissibility,
althougr, both methods of treatment agree with great com -

pleteness as a basis of the turbulent velocity profile.

(Since the heat source theorem is designed to describe
analogous phenomena which in detail are not analogous, the
theory is. definitely bounded, which limits its extension.
The heat source theory is not purposed to consider particular
force fields in detail, merely intended to reproduce and
clarify the essential characteristics of the heat flow by
comparison with known phenomena of the momentum transfer.)

HEAT VOLUME TRANSMITTED TO THE WALL

(a) Determination of the heat transfer From the
temperature gradients at the wall.

From the temperature rise at the wall the unit heat
rate at the wall follows directly at.:

= T	 a^\1	
CP°T0

q°.	 ° CdyJo	 d^ )
	

(6G)

Pr ° dT)o

This equation, naturally general, is not affected br
the type of flow nor by the time or space variation of
T ° and (du% dT) °>

The rate of heat transfer Q over the area F is
obtained by integrating equation (6 0').	 If U is the
velocity and 8 the temperature difference of the fluid
with respect to the wall at the boundary of the friction
layer, tfre heat flow is:

cpo BT 

Pr 1 3̂ I U
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For rin area over which - 0, U, 	 and (d M/d^) 0 are

sensibly constant it follows further that

(6,9)
U

Pro
\d o

,+.r here

A ld	 re2istance to flow offered bar the area under consider-
ation.

If a turbulent friction layer is involved Pro W_O/ds) 0
in equation (68) is expressed by equation (38).

As to the permissible size of the area to which equa-
tion (68) can be applied in friction layers free to extend
unhindered over the surface (that is, the actual boundary
layers),	 C is, in general, the constant temperature
corresponding to potential flow. 	 In this case the ad-
missible size of the area is dependent on the adequate con-
s t an. cy of U and	 (dcp/d6t ) 0 CO 	 and CD b , respectively,
of equation (38) - cps, and cp b are functions of the Re
of the velocity profile and so vary with the arc-length x).

In flow through pipes or channels, the Reynolds number,
for fully .de veloped velocity profile is constant; but the
m-ximum temperature O decreases. For which, reason equa-
tion (68) holds only for p ipes and channels if the flow
section is sufficiently ;hort. 	 In long_, pipes the tempera-
ture drop must be accounted for, as shown in the next sec-
tion.

(b) Consideration of the hePA loss in the friction
layer. The heat stream Qu flowing through a flow section
f	 is

f
,: ^+

T,qu
-	 p

c p u d f

Intro ucing the mean flow temperature Tu (that is, the mean
tomp, of the fluid mass flowing; through t1_:e flow section)affords
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f
f T -z d f

'	 `n
1u =

um

or `'or constant values of cp and P:

	

Qu	 P cp 1 u UM f

The heat volume giv
length (x.--x l ) , is equal

in the flow sections f
that the -p rofiles of the
s^.iiia,r: Tu / 0-1 = Tu %0f.	 Z

on off at the wall over the arc
to the difference Q = QIU - Qul

ar.d f l . With the postulate
velocity and tenroorature are
and um 1 /U 1 = u /U, hence

Q = p cp ''u wm (U 1 O1 f 1 -, U 0 f)	 (S9)

d:harc 4 a = Tu/O and cP m = u./U.

Equation (69) car. be utilized to check experimentally
, tho theory ( similarly combined with equat_ons (38) and
(68)). _ni quanti.tics in equation (69) are readily measure--
able. A ^-:lor complication is introduced in fixing 	 su,
for which a mixing chamber is reo_uired.

Al s. 	 can be evaluated from the theory. For the
pla_zc case:

• 	 1	 I

	od q	 ^f a cp d r,	 (t hroo  dimensional
_	 ---	 friction lagers)

U' 	 ^ 1 c? d ^t

and 'cr the flow in a pipe

1	 1

0 5	
1-r^) d ^1	 of 1a	 (1--^) d ^1

2a = 2- 	 --	 - -	 _—	 -- (pipe)
u	 cp	 f 1 4( 1-r) ^^ -1

a	 o

in f i F;ure 11, 1° U	 is shown f or tho f lat plate and
for the pipe as a function_ of Fr for several Reynolds
nur:acrs. - The eff oct of the Reynolds number on 4u is
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less than thethe effect of Pr,	 since	 cp (:fie) appears in
the nurr_err^,tor and t'_ze denominator.

(1) Pipe or channel flow,

In flow through a pipe or channel, the development
of the friction layer is limited and the strength of the
fi___ l friction layer is equal to one h —I.f the distance to
the  Opposite wall. The r:as s Of 'Ll°LLid .roved in the fully
de--eloped f-rictiozi layer does not r-hange, and the heat
given off by the fluid can be calculated fro::: the _reduction
of temperature.

So, When no change in cross-sectional area is con-
sidered equation (69) gives;

	

= .0 c p ^.0 um . , ( 0 1-a) f	 (70)

On the other hand, the.heat transferred is also de-
fined by equation (67)

_
.	 'Here, it must ba noted th,-..t, be-

cause of the simllarity of the temperature profiles the
percentage temperature drop - d,/T over the length dx
is the se.me at all distances from the Wall. Hence it
also applies to the mean temperature:

O1 	 '
In	 coast-,nt (x-xi)

and equation-(F7) ;Melds

Op("1-C) 

	

,U	 (71)
r^1^	 /d ca\

In \ e ) Pr o (	 1

Where

R1	 given maximum initial tomper it;ure

?tr	 frictional resistance of the pertinent pipe or
c hanii e l l en mth.
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(At small temperature differences O.y-O equation
(71) changes to equation (68)).

By equating equations(70) and (71), the reduction
of the mean temperature is:

In \O/	 r ( X-x	 (72)
u 1

Here the dimensionless variable a* defined in equation
(82) is introduced and s is the perimeter of the section
f.

For pipes s/f = 4/d for flat rectangular channels
s/f = 2/h (d = pipe diameter, b = channel width, h =
channel height , b>> h) .

(2)	 Boundary layer flo4-i.

If the flow along a wall is not bounded, the friction
layer aan.develop unhindered, and while the boundary layer
increases in thickness in the direction of flow, the maxi-
mum temperature (;) on the boundary of the friction layer
rema.ins,in general,unchanged.

If the surface of the body has the temperature O of
the fluid, then the heat flow density at a particular point

,.in the friction layer is equal to p c p (Du	 But the cool-
in actio:i of the wall lowers the temperature by 9- T. The
"cold -,tream n through the'sect `ion f of the boundary layer
at the point in quostio .n...is therefore:

f	 ..

Q= p cp 
f 

(n-T) u d f	 (74)

0

where

Q	 heat volume absorbed by the body surface up to the
particular point x in unit time.

By introducing the dimensionless value of the mean
flo;r temperature, equation (74) gives:
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Q 
'_.o. 

cp O um (1-,,	f	 (75)

the value of 1111u for any given velocity profile is
approximately defined by the theory.

At constant..max mum velocity i1 the heat n.bsorbed
over a length -.x-x, is fixed by the increase in section
of the boundary layer thickness in the direction of flow,
since CDm and ^tu vary but little (CPm increases and
(1-au) decreases with the Re of , the boundary'layer).

The effect bf P:• on the heat transfer is expressed
by the factor (1-^u). With increasing Pr the'tempera-
ture profile becomes more blunt-nosed and ,? approaches
unity.

From the momentum lost in the boundary layer relative
to potential flow the flow resistance W of the body can
be written in a similar manner to that used for the heat
d i`f.f -u s i on 	 Q,

uT = P U um 1- 4ou)f	 (76)

f
Herein Tu is defined by CPu CPm f	 ^.'P2 d f. The differ-

.
once between the equations lies in the velocity U in
potential flow which,in general,-is not constant like 0
but varies with the .arc-length x.

Put the analogy between equations (75.) and (76) is to
be carried out f-or a surface area over which 0 and U
are constant. (n pressure drop is to be avoided). 	 If
f-fl	is eliminated, and if I'u and 1Pu are the mean

values over the particular are length: .

1 -'u A 
AQ, - c  

_
) 1- C2 U	

(77)
1

Here the heat transfer is expressed by the heat loss in the
friction layer, while in cqu?tion (68) it appears in terms
of the temperature gradient at the wall. Comparing equations
(68) -,nd (77) ,yields:
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1 - cpu
(78)u

/d. CDNlFro { —

VO*.r . Pr i o' = 'Pr o = 1., (dcp/d^) 0 = 1	 and hence	 & u = CDu+

which is due to the similarity of the velocity and temper-
atur .e profiles for. zero pressure drop. 	 Pr o (dM/dtn ) 0 in-

creh.ses with increased Pr and . -&u > 1.

For the rest,.egAation- :(78) is.. easily verified for the
simple friction layer . ( . equations (40a) to (41)).

(c) Heat transfer coefficients.

The heat transfer coefficient a is defined by
Newton t s .law of cooling:

4Q = a (T-T o ) '^F	 (79)

in which the heat transfer per unit time through the
boundary area AF is put proportional to the temperature
difference. (T - ' , T o )	 of the fluid and of the wall.

Origlftally th e proportionality factor a was thought
of-as a pure material value comparable with the thermal
conductivity and in the older literature vias designated as
the 11 outer thermal conductivity'. With the increase of
experimental data, it became:more and more apparent that
the flo4,	 a.phenomen adjacent- to the wall contributed greatly
to the-heat transfer and varied in a complicated manner
therewith. hence the cooling law is only apparently simple,
that is, when the.simple form of equation (29) is maintained.
P-11 of the problems of heat transfer by convection are con-
densed in the factor...

This naturally do g s not . help to clarify the physical
phenomena and later research has produced other axioms which
throw light on the mechanism of heat transfer. For the prac-
tical'application of research data it is, however, advantageous
if complicated relations , car^ be expressed by a single coeffi-
cient,the value .. of which is obtainable from graphs or tables.
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I.n equation (79) th.e fliUd temperature T remains
undefined., 'ghat temperature between To and Tmax to

use is purely a .ma.tter of expediency. Only one point is
necessary, namely, that the fluid temperature employed is
adequately defined. The reference temperature must be
relatively constant over the area under consideration..
Since this condition holds true in all cases only over a
small area AF. the heat transfer coefficient must be
defined as local quantity..

.In the earlier derivations the heat transfer coeffi-
cient was based on the mean temperature T11.

The calculation of a heat transfer coefficient
am = g o /Tm by means of equation (66) requires an express-

ion for LEI
	

from the theory, if To is referred to
'am (dt)o

the mean velocity u m .. Such an equation can be obtained
from equation (37e) after forming a mean value of the
velocity and - the temperature over the section of the
turbulent region.	 Since this section is not much smaller
than the total flow section it can be approximated to:

Pr I Tmdui	 1 + e + ua (r,. _ i)+ ub-ua In Pr i - 
1 (38a)

Um	
m

rn CdT^o	 um	 u	 _ 1
m \ 1/Fr'

This equation applies so much more as the boundary layer
is thinner, that is, as the Reynolds number is greater.

Neglecting the term e., and putting ua = ub , and

Aq = A, equations(66) and (38a) give an expression for
am = q o /T	 which is identical with the Prandtl formula
equation Ti).

The mixed mean'temperature Tu is usually employed
rather than the mean temperature Tm which is difficult
to measure. This requires an equation for au = go/Tu

from the theory. Here a difficulty arises.	 Proper treat-
ment of equation (37c)-affords a formula for (du/dT)

0
in which the mean temperature of the turbulent region is
the reference temperature. But then the equation includes
a "jean square value of u over the turbulent section in
place of the mean_ velocity across the section.
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-D7r aproxim^.tion the r can of :the squares of u-o 
can of course, be re^olaced by urn (particularly at
higi, ?e) just as- -Tu can be roughly approx-imated in-
stead of Tn, But this also means returning, to equa-
tion (38a) , that is, the Prandt i formula.

The difference between Tu and T LS . played no part,
however, in the earlier considerations._, In view - "o'f the
e.perimental difficulties, this difference usually lies
we,l-1 within the.. experimental. error. F-arther, the omis-
sion of the transitional layer and the postulate of in-
variable material values accounted for larger discrep-
ancios than this temperature difference.

In developing a theoretical equation for C1 /Tu
which is in accord with exp erience, ten Bosch ( refer-
ence (17)) proposed a soli-e: pirical oquatior_. The form
of the Prandtl equation ,.ras follovied, 'out the cor-stants
were replacea by .variables itAiose- magnitudes were deter-
mined as a function of Re ar_d Pr from -measurements
available, the resulting equation being:

qo	 _	 0.125 Y

p. co um -'U1 a B Be-o. 1 71 -o. 185 (Pr -1)	
(a0)

g.

(for heating S - 1.4 for cooling R - 1.12. Pr 	 refers
to the layers noar the Tvall. In the remainder of the form-
ula the -properties are fixed at the -_dean-flow' temp.) '-

In connection with t1e theory of the present report,
the heat transfer coefficient is rlost appropriately e_xpressed
in towns of the maxi zul; temperature n, since only this
temperature can be used as a reference quantity without
rese--va.t ion ( see the derivation of equat ton (38)) . The
maximum temperature has in addition the advantage that
it can be measured ^,rithaut the use of a mixing cup. (In
cases where Tu can be measured more reliably than
8 _--,ia,-5:-be calculated as	 T.u /•& u .)	 Hence the definition

Q _ qo
a	

G F
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or in nondimensional representation by dividing by

p o c po um.

A	 po

	

po c po um 6 A F	 p o c po um

In the technical literature the heat flow qo is

usually referred to p c  u m Tu (see equation (80)).

Further, it is customary to introduce the Nusselt number

Nu = qo d/N T 

in which qo is referred t"o as the heat flov-- N Tu/u.

These two dimensionless heat factors are related as
follows:

qo	 Aiu	 idu	 a*

p c  um T 
	 Re Pr	 Fe	 as u

where

P c u d
Pe =	 p m	 = Peclet number

N

The older
representation
were not to be
statements can
and where qo
^\ (dT/dy) o	it

to the product
derivations.

Nusselt number had proved itself in the
of cases where the heat transfer phenomena
separated.	 But, for those cases where
be made relative to the local heat transfer,
can be written directly in terms of
is proper to refer the known quantity q

0

P cp u T as will be seer. in subsequent

In certain cases it may be desirable to compare the
two dimensionless groups. Butiin general,both Nu and Fe
are superfluous 'if a well founded formula for the dimension-
less group q o /p c p u T is available.



a* =

>f
S CDm

(82)
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In order . that - g o'/ P' o cpo um ' O need not be repeated

unnecessarily the symbol a* has been intro -duced. The
dimensionless factor a* refers the heat volume qo

transferred to . the wall to a heat volume Po c p um ^7

flowing past the wall. The njmber a* is, therefore, a
kind of "efficiency" of the heat transfer. 	 Ordinarily
a* is very small (10- 2' > a* > 10 -5 , see fig. 13) so
that only a small fraction of the heat becomes useful
for transfer.

.Since a.* represents a locally defined quantity
as well, equation (68) 'must be*applied for the subsequent
treatment of equation (81).	 Then equationequation (19) in con-
junction with CDm = um/U give

8 Pr ^ dro
° \d o

This formula. is as general as equation (68) and the
definition equation (19).- It is therefore applicable,
independent of the character of the flow.

Formula (82) had already been utilized to introduce
a* in equation (72) in order to establish the tempera-
ture drop which accompanies pressure drop. On the other
hand, equation (72)_ can equally be used to define (1*.

_	 e1^ f

	

a* - ^u In 0̂ ) 
F	

(72a)

which for a sufficiently short section affords

X7 1 --n f
a* _ u	 0	

F	 (72b)F

This equation is, with regard to equation (70) identical
with the definition (equation (81)) for a*.

For turbulent , friction —layers the Pr o (d(P/d 4) 0` from

equation (38) must be introdiice"d in equation (82). With
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^a =	 u, and. Mb = b .	 and assuming cpo - cpu - cpt
U	 U

(which is permissible)

0, 1?5 ; ::
gym 

Aq^/A
(8 3)

a .*_ /^	 1	 u'	 In (PruAq/A)
1 F e 1 F w	 P.r -1 J+ (b-a)

U A	 U `1 A/A q Pr •u

,.:chore

^, T M , U/u*	 are known functions of Re

In.e.quationA 83) all variables and coefficients are
known except. a,, b, and A ( 1A, From flow- measuremen-ts
a = 1.5, b = 15.5.	 The,

 A ( 1A,
 of 1,,55 maybe used since

b. occurs only in'the_term referring to the transitional
layer. But the assigned value of a is very uncertain.
Hence a and. A./A must be determined from measured
values of a9` according to equation (83)..

• Admittedly there exists a certain difficulty, involving
two unknowns but equation (83) indicates that Aq/A sca,resly
affects a* at high Pr, and a has bat little influence
on o^* a.t ]- ow Pr. Hence a can be from ;seat transfer
measurements at high Prandtl numbers and

..
t1q/A 'from

similar measurements at small Prandtl numbers' .

FiFuro 12 illustr.wtea t'-c mefsures ents by h'i,ine
(reference (18)) and Ko-rris and 'Whitman ( reference (19))
at high Prandtl numbers and tine measurements by Hohonezi
(1.c.) at lets Prandtl numbers co^ipa.red r; it'a predicted a*.
For the calculation a = � .-1 etnd Aq/A = 1 ,Arere chosen
to achieve the best correla;,tion of predicted -i-th exper-
imental results. The spread of the test points at high
Pr is iznd.erstando.ble because of the difficulty of r.-aasure-
ment at high Pr and t.1e fo,ct that non-isothermal flow
theory is not yet complete.

For eonstEnt or slir;:itly variable material values only
one value of Pr enters in equr,,tion. (83).	 For this case
(fig;. 13) shows a* as a function of Pr ? at several
Reynolds numbers. t'fith the '-,elp of a* est ,blished by
equation (83), t. a heat diLLTASIon a	 of a given area
AF can be cn1cula,ted.
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A Q, = Po cpo um O	 F a'"	 (68a)

This is a form derived from equation (81) which is
another form of equation (68):

The variable a* is a. point .function and holds only
over a small area; The area must be chosen just large
enough so that 8 is sensibly constant over it.

Equation (68a) _cannot. be used for long pipes in
which the temperature changes materiall y . Here the heat
transfer may be computed by means of equation (70) if
the temperature reduction. ( IA& in the pipe length
under consideration is known_. The end tem p erature n
can be predicted from equation (72) when the initial
temperature 81 is given.

As is seen . the variable I 	 likewise plays a role,
But this is only true for long pipe lengths for here the
heat less in,thq friction layer is decisive. For short
pipe sections	 I 	 does not enter (this isalso the region
it which the .conductance is applicable) (see equation(68a)).
Then the temperatures are . practically constant along the
short surface length, and the heat diffusion AR is given
by equation (68a) as a function of the temperature gradients
at the will, which.fact is included in equation (a& for

Trnnslation by L. M. K. 3oelter,
University of California.
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Figure 5.- Temperature (g) as a	 Figure 6.- Temperature (,g) as a
function of velocity 	 function of T) =	 (y/r)

(cp) for flow through pipes and 	 where y = the distance from the
along plates with Pr y	as the	 wall for the pipe with Pr' 	 as the
parameter. Re = 4 x 10 4 .	 parameter and the velocity dis-

tribution P = S at a flat plate
for Pr = 1. Re = 4 x 10
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Figs. 7,8,9,10
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Figure 7.- Heat rate q/qo and shear Figure 8.- Distribution of the heat
stress	 ( -r/To) distribution in a rate (q/.qo) and shear stress

pipe and in a channel as functions (r/-ro) as a function of the wall
of the velocity cP,	 with Pr'	 as	 the distance 'q for Re = 4 x 104.
parameter. Re = 4 x 104.
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Figure 9.- Distribution of the heat
rate q/qo as a function of n in a

pipe for Pr' = 0.72 and Pr' = 200
with Re as the parameter.
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Figs. 12,13
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Figure 12.— Heat transfer coefficient o(' in tubes from the
measurements of Bdhne, Morris and Whitman and

Rohonczi compared with the predicted values from equation
83. (a = 2.2, Aq/A = 1.1).
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Figure 13.— Heat transfer coefficient oc' as a function of Pr
from the theory with Reynolds' number as the

parameter (properties invariable, a = 2 , Aq/A = 1). Prandtl's
redicted results are included for a = 2.0 (dashed) and a = 8.8
dotted).
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