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The present report describes a new method for the predlictlon
of the flow pattern of a gas in the twordimenslonal and axially
symmetrical case, It is assumed that the expansion of the gas 1is
adicbatic and the flow stabionary. The ssveral aesswptions
necessary on the nozzle shape effect, In gzensral, no essentisl
limitetion on the conventional nozzles. The method is applicable
throughout the entire speed range; the velocliy of sound itself
plays no singular part, The principel selght is placed on the
treatment of the flow near the throat of a converging-diverging
nozzle. For slender nozzles formules are Cerived for the calcula-
tion of  the veloclty cerponents as function of the location.

I, INTRODUCTION

The field of a compressible nozzle flow has been treabtsd
repeatedly, Thus, Th, Meyer (reference 1) computed the. transition
from subsonlc to supersonﬁc flow for a given velocity distri’bution
over the nozzle axis., G, I. Taylor (reference 2) celculated the
case of subsonic flow vhich at the throst of the nozzle reaches
such speoeds that the veloclty of sound is exceeded at several
points. H. Gortler {reference 3) dealt in perticular with the
transition from one of these types of flow into the othev.

II. DERIVATICN OF THE FUNDAMENTAL EQﬁATIONS
FOR TWO-DIMENSICNAL FLOW

The nozzle axis is indicated with =x, the normal %o it 1s y,
and the origln of the coordinate system im plsced in the center of
the narrowest cross section of =z Laval nozzle symuctrical sboub
the x-axis, figure 1. The velocity components are u and v, +the
direction of flow is from left to right. The shaps of tho nozzle
is given by a function #£(x), with £ denoting half the helght

*Dag Strammngsfeld in etner Lavaldiise.” Jahrbuch 1942
Luftfahrtforschung, pp. I 91-102.
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of the nozzle. Teking £(0) = 1 all linesr dimensions with half
the smallest nozzle height become nondimensional.

In contrast to the earlier repcorts u and v are expressed
by a power geries in y, the coefficlents of which depend on X,
. In view of the nozzle shape being symmetrical to the x~-axis the
flow itself is visualized as symmetrical to the x-axls. The
velocity at the x-axls is denoted by the subscript G, vy In
this cese is zero. Limited to terms of the fourth power of y
the velocity components are

1
wz, y) = Uy + 57 a272 + == &hy e e e
| > (1)

3y3+...

1
#x, ¥) = by + 53

-

with ug, &5, &, by and by a8 fundtions of x. The contents of

the present report consigt in establishing the relationsulp
botween these guantities and function - £(x). The first task will
be to ascertain the relationship of the coefficlents ap, gy,

by, and. by with the guantitles u(x) end £(x).

(a) Celculation of the COefficients ap, . ey, Dby, and by

Since a potential flow is always required, the following
equation of irrotational motion - .

ou Oy (2)
¢y ox
glves by means of (1)
l ..3 - 1 l x.,r.f‘
B.e;}" +-~3—~;'— al,r}. = bl.y + 5".; 1’.‘3 b

The prime mark on by! and by' 1s to indjeate the derivation with

respect to x. Betwoon the coefficients the following relations:
muat therefore preveil:

82 = bl'; aLJ_ =;b3’ . (2‘1)
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The density p 1s made dimensionless by the "tenk density, " theb

ig, the density at speed w = \’112 + 72 = 0 and ell velocitios by
the maximwm velocibty, that is, the wveloclity et density p = O,
Thus the energy theorem takes the form

W= L - pft (3)
K is the ratic of the specific heatsa

Elimination of pressure snd density from the Buler egiration
of the continulty condition and the gdiabatlc equation, leaves the
dynenmic-gas equation

{02 _ug) '?E"-F (02 -Va)?j-— qu:}_u: o
9x oy oy -

02 is the squared velocity of sound, which may be written as

2 = 15...2':..3; oL - ‘i_;..}. (1 - w2 (%)

Elimination of the sonic velocity from the dynsmic~gas equetion
by mesns of this equation gives

<-u2-K'+lv2\. 1..5_:."..3:112 A T W
. e b= " DL 5

Forming by (1) the first derivatives of u and v and ontering
these along with the vélocity couponents themselves in eguation (5),
gives by comparison of coerficients the relations between up,

8 &y, Dby, b3, 8,", g ', end ug'. The terms indopendent,
of y give a particulerly simple resuit, As is reedlly spporemnt

With equation (2a) the quantity ap in its relation with g
end thelr derivatlves can be compubed., Furthermore, it is poinbted
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oub a’c 'bhis point that the ’cerms bly and ~aoy2 in (1) relative

to wg are comparatively emall for a n.ozzle flow. .Thus for a
first epproximation of as and by 'it is sufficlent toNinsers the

velocity afforded by the _simple flow filament theory and lts
derivative in equation (b).

With wug; a8 the flow filament velocity the eqaation of
continui’cy for the simple flow filement theory reeds

: 1 .
us(l - use)m'l f = const,
L
. oK1
In compressible flow the functlon uﬂ(l - us‘-), srbegtltutes for

the veloclty, for ihcampressible. flow the quaubiiy ug. A spacial
symbol for thils function is found to be prnctical, Ve pub

L
O(w) = u(’l - “2>E—l = : (7)

The variation of the functlon is for =1, 400 as fol lows, the
values of the functions are gi*ren in table I.

For the derivatives of 6 :with respsct %o u the following
ebbreviations ave introduced .

S
1% wl_fril 1e% (72)
e an @ n(l - @) @ g O |
and
E: .G.E‘...u ?.l"}}.- ?l":a (7b)
2 "9 8 9

If the Punction for the velocity at the axis uo - o for the
flow 1 Llamont velocity ug 18 noeded, 1% 1z indlcated by the
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subsci'ipt o or 8. The formulas for b; and a, can then be
vritten as

bf=-€llsu0 'F : (8e)

agf® = bl'fg = - [uuo '( ) ]uo(“o )2 - go [(uo 'f)a

G 8
a2 ) _ 20 pye | U t 152
+ Uglhy L :!_ 5 (P'O f) - 5 LI 4 . (8b)

The terms 5—- b3y3 and i—;—— auyl" pley a prominent psrt at the

nozzle edge, since they diseppear with the third end fourth power
of y with approach to the x-exis., Hence it is logical to use
these terms to satlsfy the boundary conditions, With up and vy

designating the velocity components at the nozzle edge, the following
boundary conditions must be fulfilled: .

'V'f = ufft . (9)

or also

1 L * 2 L
blf+-6-b3f3=f'(uo + 5 agf ‘eu 3'f)

Hence a differential equation for 'b3 vhich can be written in the
form

%"—b3f3 = ft (uo + }2‘5_‘23?2) - byf + %‘1 b3 ’fhf’ (3c)

The term not underscored is small compared to the term f'ugy, as

gseen from (1). It probably can be scored as =z zule., At leosst it
makes equation (8c) easy to iterate, by scoring the last texm at
the firat step of iterstion and then, by sraphicsl differentietion
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of the b3 obtained in first approximation, calculating & second

approximation of this quantity. With the newly formed derivative

this b3’ scarcely differs from the previous ome., It ﬂhould be

noted that 1t ls not a matter of the reletive variastion of b,

.)
but that the varlstion of the term %ﬂ 3’flL in reletion %o uo

1s declelve. This lteration does not involve much more paper work,
gince the coefficient g), had been mecured. It 1s recommended

to use the followlng expression which is readily obteined by (2a):

1 ayft = % Dy gl (84)

Thus with (8a) to (84) the coefficlents of the power series (1)
can be computed without excessive paper wwork, vhen £ and g are

glven as functions of x. As a rule £ is the given quantity,
while Uy 18 the factor looked for, But before proceedins to the

gsolutlon of this problem, simpler formules for the first epproxl-
mation of the coefficlents are indicated.

(») First Approximation for ap, &), by, and bg

If the principal flow-direction ie given by the u component
of the velocity, as is usually the case for nozzles, and which
alwvays holds for the throat of a converging-diversing nozzle
particularly, the value of the velocity Ug, obtained by simple

flow filament theory. represents a first approximetion for the

velocity at the axis., Compared to Ug the terms byy, %-agyz are

emall by assumption and a satisfactory first approxImation is
secured for these quantivies when the velocity U, and its

derivatives in (8) are replaced by the correspondins quantities of

Ug.

Bearing in mind that £ = 1 at the throat, the equation of
continuity from which the flow filement speed can be dotermined,
reads .

O Ff =0

sf = Omax (10)
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Differentiation with respect to x readily ylelds then the veloclity
increment _

6
WP = . et {(10a)
8 6

us

At the throat the equation becomes indeterminete. The application
of L!'Hopitelts law '

1
£t =03 u . f = . o= 1)ffie 10b
S ug? = (e - 1) (100)

In this equation £ could of course be omitted, since it was
taken equal to unibty, but, in view of the repeated appearance of
the expressions u'f and f£Ff!'!, <+the form is retained. Quantity £ff!
can be interpreted as the ratio of half the nozzle height and
curvature radius of the nozzle edge at the throat.

Thus the insertion of the flow Filament values in equation (8a)
glves the followlng formula for byf (+ sign and several dsshes

indicate that a first approximation is involved )

bl:t" = ugf! + « o » (11a)
By (2a5 :

8,52 = ugfETY + w_'EET - w LR 4 L (11p)

The last equation could have been obtained Jjust as well by
the insertion of the flow filament values in equation (8b). With
the aid of (10), wug, and w 'f. may be regarded as defined, egua-

tion (11) corttains no unknown factors, After using the flow filament
values for compubing these coefficients instead of the axes vzlues,
1t 1s loglcal to employ them also for compubing b 3

The'bound.ary condition (9) is written in first approximation
' Ve = Ugft 4 o Y
which by means of (1la) gzives

%b3f3 = ugf? - byf =0 (11c)
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hence, owing to (2a)

1 L '
L g f* =0 (114)

The last two results are to be expected beforehand. When inserting
the flow flilement values in the coefficients in (l) it is not %o

be expected to- immediately obtain two térms of the development.
Nothing is said further about (1la). The identical result
could pe obtained without any theory by an appraisal of v with

the aid of (9). Formula (11b) is more instructive. Forming u
with its ald, w can be calculated in first approximstion,

| | 2 ' 12 ug'f N\’
w=11E.+%(i) + ., ..Jelm‘kﬁvaz-é&"+ £ f§J+ oo

(11e)

Interesting most of all 1s the last bracketed teim; quontity ££!?
i1s always positive at the throat, - Assmuming subsonlc- velocity in
the converging part of the nozzle and supersonic velocity in the
dlverging part, the last summand in the subsonlc zone is negative,
in the supersonic positive. Two effectes can be differentiated in
first approximation, which cause a deviatlon in velocity w at a
point y from the respective veloclty Uge One of the cffects

rises as a result of the curvature of the nozzle edge, and is glven
by the term ff!?, the other-1s caused by the inclination of the

u, 't
nozzle edge and 1s glven by the term B £1, TIn the subsonic

u

. - )

range, curveature and lnclinatlon effect carry opposite signs; in
the supersonic range the effects are sccumulative, So if curves
of congtant velocity are plobtted in the nozzle, the lines in the
supersonic range wlll be curved much more than in the subsonic
range, In fact the curves of constant vedocity may even run
parallel to the y-axls in certaln circumstances, This chersctor-
igtic behavior of curves of constant velocity or constant Pressure,
vhlch is the same, are continuously observed agein.
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(c) Derivation of a Differential Tquation

for uo(x) Volume Corrsctions

To complete the solution the funchlon uo(x) must be found,

The character of the profiles ls determined by the coefficients,
It is clear that an equation for Uq must be obtained with the aid

of the continuity conditlon, which is written in the form

Vb , A
u(l - we - vz)n'l iy = M (12)
0

M is & maess flow made dlmensionless ‘By the tank density, the
maximum veloclty and the throat cross sectlon.

An equation for uy is obtainable then by developing the
Integrand at point u = vg and v =0 up bo the texms of the

fourth power of y followed by integrating. But a somewhat
shorter process ls preferred which in addition brings out the
importance of the individual terms more clearly.

In analogy to (T)

1
6 v2) = u(t - v - 25t (72)

Observing that the development of u - Uq end of V& starts with

the second power of y, the development for e(u, v2) cen be
confined to '
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e(u, v2) = 9(110: 0) + (g%) o (u - uO) *'(:62 v
uo . v uDO

1629> 3
i+ — n - u )2 +
L(5) o

1 (a'?e I
+ -2— —— k2
ov2 10

% (u - uo) ve
U.a'V'E uoo

(7v)

It 1s readily seen that this equation can be expressed differently

vhen functiom (7) is introduced everywhere:

o(s, v2) - 8 + Oy (B - uo)

1 90 1
O — 2 ., -4 _ 2
2u,, a0 - ug 45 %0 (u uO)
1 1
—_— = il - 2
¥ on. \Puue = 7T 0uo + 8o (u uo) v
0 0 0
_ ) 3 Zuo 3 70 b
5\ Yuuo AT )y
811.02 Uy 1_102

Introducing in this expression the Gevelopment of
where only terms up to including the fourth power
sldered, and performlng the integral in (12) , the
of (8a), (8b), and (8c) gives

n - uy and of v2,
of 'y are con-
applicetion
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L N R 7
£+ 2 g a2f bl £

1 . _Buo _ Bg° b
* 2 <%uu -3 *3—3 bl%
Lou N Yy 3 02

This equation can be considerably simplified when certain
1imiting essumptions are made. Bearing in mind that the use of

L

1
gt11l other terms in equation (1) besides 50 ayf" would also

6 it is apparent that there is

involve & texrm of the form -%—-asf
no sense in carrying sunmands emounting to a mere tenth part

of ——=a fh or L b3f3 The game holds vwhen they are smaller

then the hundredth of -Jé'-aafz.

To effect a substantlal simplification consistont wlth accurate
results the task is restricted to an area near the throat secticn,
For this area it 1s assumed that

|£1] <0.10 - (13)
and
£rtt £ 0,50 (1k)

With the ald of (lOb) and {11la) it immediately affords the fbllowing
eatimates for k = 1,400, +that is, say, for alr

bif ¥ 0.0k m,'f ¥ C.20
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Since wy has at the throa% in gemeral, the value of O. Lo, e
get

= (byf + my'f) 2 0.1

l. p2 f......6..}__ ~ 2
3 et {2 -3 o Baf) 0.0 apf

All terms In the expression in the brackets can be volded except
the underscored term; the terms are small enough so that there 1s
no danger that added up they could contribute a substantial amount.
In the last bracketed expression the greatost term 1s glven by 6.,

as seen in bable I. This term cannot exceed the value 15. Since blf

occurs in the fourth power there is no hesitation to omit the last
term also, The result is the following equation to which on the
asgumption of (13) and (14) very substantial accuracy is attached:

M ' 'l o l I
-§= 60 + euo [g azf o — ah_f + —-f" (le o’f)]

| 2 -
* 8o [%—O <§2f2> + Eéuo aEfE (blf)g‘l (12a)

Equation (12a) mey be written in the form

Bﬁ—e + 0 : £2 4 fb’+~:£-f' b F 1
P70 wo | g% 12034 3 (l‘““uo J_

+~J;G af+1af)+ f'(bf+ il
2 “uuo | € %2 120 1t + U, )

1 \2 1 2 L
+ @ — { ' fe’ - e 8T T
uuo [90 ( 2t ) 720 2 Ly

1 2 1 o L '
é'o_" a2f2 (blf) - 32 aof (blf + uo’f) P o, . ]

The development of 6 was restricted to terms of the second
derivetive at the most, which is ample for the small velocity
differences, In the last equation the first thres terms can equally
be regarded as development for the value
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e - 1 2 = S R )
uo+du..u0+6a2f +120a1_[_f)' +=f (blf+u f) (15)

. at point u = ug, hencel write the eguation in the form

- fe(u + du) + feuuo [é—o (a2f2)2 - ;{-32;5 a2f2a4f” e ] (12b)

The brackets for 6 contain the velue of the function argument.
The second summand contains only the terms relsted to the throat.
The principal term is the first ome, as seen from (1).

Since 6y, 8 inverlably negative, the last term represents

a small negative quantity, vhich is easily estimated. L% f£¥ = 0,20
i1t corresponds to a 1:5 ratio of hslf the nozzle height to curvature
radius at the nozzle edge of the throat; a first apnroximation
8.an3.
by (1ib) gives aoff = 0 Ou, __‘é}i 15 less then 15, The second
sumand of {12b) is in this insbance, not quite 0.001 part of the
first, A4 later accurate calculation gives it at 0.5 percent of the Lirset.

. : 1£
The through flow volume 1ls nothlng else butb l g dy at the throat,
o)
but being near the maximum of function 6, the value of the
integral of £,y 18 buh very llttle different, Consequently,

the through flow volume of a ILaval nozzle should approach, as a

rule, 4he velus from flow filcment theory very, closely. So, if the
portion of the through £flow volume .by which this is smaller than by

the gimple flow filement theory is designated es volume correction dai,
equation (12b) cen be written with the aid of (10) as

O + M = fe(u + d‘L.) + £84u0 {—-— <2f2) - —l-aagfeal, h’ o ] (12¢)

The princlpsl terms here are the first term 4t the right- and
the left-hand side, Since the last term is very small, 1ts
variation with progressing x mnear the throzt is very small, too,
hence a solution by equating the twe principal terms, From

8g = 8(uy + au)
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the equallity of the arguments cen, of course, not be deduced, since
the reverse function of 8 is embiguous. However, 1t 1is obvious
that to.a subsonic wug a subsonic value ug + du mush correspond

end the same holds for supersonic valus, elee the difference

of ug and ug + du would continue to Increase with increasing
distance from x = 0, vhereas the two values are certainly near
each other. Hence by (15) .

ug = U +% laefe + %5 auf}’L - It ('blf + uO'f)] (16)

The relative volume correction ls then

aM  Oumo |1 o\ 1 2. ol

the values at the throat to be inserted at the right-hcnd side. It
18 of insignificant influence when the following approximation:
formula is used:

1m0 ws _ (kK + 1;? '

e
®max  Omax k-1

Equation (16) has a speciasl charecteristic. Select a place
at the. nozzle where ! = 0. It need not be the narrowest place
of the nozzle, and average the u component of the velocity over
the cross section. This average may even be egqueted to the
average veleccity w., Although v i1s in no ways equal to zoro
wvithin the limits of accuracy for f£?' =0, v still is small
enough that it plays no part for the formation of v, where it
entors squared. Hence for f£! = 0 :

W=Uu= un+ — ayfs + —— g),f
: 0T g2 120 B

On coneldering squation (16) it is seen thet at the throat
or any other place with mnerallel walls the veloclty averaged over
the section is equal to the flow filament velocity Ug.

For the derivation of (16) the assumption had been mede that
the relation
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1
&M = 9.5, [-9-0. (22)° - 720 agflatt + . L ]

is satisfied; ©but this is complied with exactly only &t the throat
vhere the correctness of the equation was simply demanded.

To agcertain the extent to which the fact +thet this equrtion
does not hold at other points of the nozzle may affect the equa-
tione (16), we put

ol
dM - feuuo [ ( QfE) - —""' azfeau_f' + e e o} = Ef

ug + du is then not exactly equal to wug and differs, say
by dug, from this quantity,

u0-+:au = dg + dug

Introduction of ¢f in (12c) followed by development glves
\ 1 2
g + €=10 (ué + Qug) = Og + Opgdug + §'euus (dus) 3

that is a quadretic equation for dug with the result

But the practical calculatlion shows that the second swmmend under
the root 1s small even very close to the throat with respect to
unity., Thersfore the development glves

" Pus
For a nozzle with the value ff!' = 0,20 at the throat the
following relationship between the error dug end the value £

was ascertained: The bracketed expression conbtelns a few more
terms that were amitted in the equation of ¢f. Besldes, the
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valus was computed also within a reglon of f£' which no longer
satisfies (13). TFigure 2 indicates that the error is entirely
insignificant., It amounts to less than 0.5 percent of the velocity.
So, within the limits of error of the theory, equation (16) can

be regarded as exact solution of (12) and (12a),

(d) First Approximetion of g and of the Volume Correction,

Range of Velocity of the First Approximatlion

As in the’ foregoing a firat approximetion for u, is secured

by the insertion of the first epproximstlion of agfe, ahfh,
and byf in equation (16). Quantity u,' is, of course, replaced

by w'
lf .
uo=us[ -—é—(ﬁf”-&-E%f’)]-&. . . (16a)

Thus the velocity distribution in a nozzle can be camputed by (1lla)
and. (16a) when its principal flow direction is glven by the veloclty
component x; ug end u'f are obbainmed by (10), (10a), and (10Db).

Equations (16) and (16a) are significent by themselves. In many
cases the pressure distribution ls meesured in the nozzls axis,
To compare 1t with the theoretical results quantity Uy can be

computed by (16) or (16a) depending upon the éemree of accuracy
roquired and the pressure at the axis readily obtalned. If
gatiefied with a first spproximation, & direct relation between
the pressure at the exis and the pressure of the flow filement
theory i simply derived according to (16a).

Equaetion (16a) resembles (lle) very much. Forming, for
example, the average velocity in first approximation, we can,
because the expression

2 oot
}.'Y—. ffr!,,_.&ﬂ_ff’
2 e Uy
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must be small relative to wnity, write by (1le)

!f ’
w7 -3 5]

where, of course, Vg = ¥ =10 for f£! =0, On the other hend i%

is seen that this equation is not velid for £? 7.( 0 since the term
vith £! 1in (16a) contains the factor 2, bub the qualitative
statements regarding curveture and inclination effect remain
applicable as before. While in the supersonic range Uug must

always be smaller than ug, ug can be > cr< ug.

Equation (16a) also effords a meszns for the range of validity
of the first approximation. In the coefficients a2f2 snd. byf ‘the

quantity up cen be replaced wlth more Jjustificetion by ug

g8 the slope f! of the nozzle and the dimensionless

curvaturs f£f'! Dbecome less. Forming with (162) the first approxi~
mation of wun'f gives -

1 2 4
t = = f L & I t | B B t et
u Of‘_ 'U.s il :.(us i + 3 us T £F i usf i

+2uy'f 12 L o u, 't fef') e (18)

From this squation the guestion of substitution uo'f by us'f
1s seen to be much more difficult to answer, + eny r=te it may
be sbated that this can be done with lems Justificatlion at the
throat of nozzles symmstrical about the y-axls than for ug

and ug, for by (18)

1 ' 1
= - = pFit . P o ! L= pptt .
Uy us( 6ff>+..., U‘Of ust. Qﬁ.)""

vhere (u,'f)? alsc enters in the formation of apf?, and in 1t

the main reason for a persistent failwre of the first approximation
is to be found. It must be reckoned with that for f£f!! small

with respect to unity the error of the first epproximstion

near f! = 0 i1s of the order of magnitude of f£If!! itself, which
is, that the first approximetion differs too much from the flow
filement theory. Therefore, the epplicabllity of the first
approximation is predlcated on the assumption that in the development



18 E NACA TM No. 1215

of 1 + fft! with respect to  £f!? 'the series can be broken off
after the first term.

Equation (17) affcyrds the relative volume correction factor,
that 1s, the difference of actual through flow volume from that
computed by flow filament theory. Putting in the equation the
first approximation results in ' .

K+ 1 B
.. -55*-(ff")2 P (172)
8

Considerable inaccuracy must be presumed for.greater ff'!, because
the same stapement made about the calculation of Uy -where aefe
was employed, applies in a congiderably greater measure here, vhere
this quentity appesrs squared and eal,r:f'LlL appears, 'Subsequent'

examples will show thet this formula exhlbits very gubgbantlial
errors, where the other first approximations gtill give very good
gervice. Bubt it 1s practical as estimation formula., The velume
correction for nozzles to which the present theory ie applied, is
unimportant, ’

(e) Solution of the Equatlon for ug

‘What im the best solution of (16)? Since agfe, by T,

and ahfh are in the Fingl analysip dopendent upon 'uo 'and its
derivatives, an ordinary differential equation for wup 1s involved.
By (8a) and (&b) , -

1 1 |G ( 2 Ouo _ 4
Vs U o= memer il .4 ! t | - i —— !
0= Y - T35 %k Z [? Uy f) +u 't T u i (ﬁ f‘ (16p)

aufh has been left, for the rest the equation contains only

8
functions of u,, such as Gy and 539, derivatives of w, and
.

functions of - x, such es f. and ug. The greatest terme are uj,
1 .

and U while EEG ahf"L reprogents the emallest term, when the

bracketed expresslon ls regarded as oneo term.
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Bearing in mind that % ahfl" is only one-~-fifth of the value

vhich the last term in the development of u (equation (1)) can
assume, it 1s clear that the quantity w3, given by

l;. .
= . 1
Uy = U+ 155 a)f ( 9)
differs very little from Ua. Quantity w; 1s neturally a much
better solution of u, than what was called "rirst approximation”
of ug. -The derivatives of up are therefore very closely

reproduced by the derivitives of u - and for the calculation

of a2f2 and ©byf, which themselves represgent only portions
of Uy quantity - wy 1s certainly sufficient. So if this

quantity is used for computing those two cosfficients equation (16)
can be written es follows:

6(115 - ul> = -2-]: ul’f)aﬁ u, 'f £ - 2—3—% ny £ (}E (u.l'f) (16c)

It 1s a differentlial equatlion of the second degree end second
order for w; wilth very characteristical properties, as will be

shown., Quantity u; can now be deteymined by an iteration process,
approximate values for u; and 1ts derivatives being entered at
‘the right-hend slde of the equation and a new ul(x) calculated,

This method however does mot alweys glve a very qulck result, I%
is less disturbing to meke a double graphicel differentiation
of w3 Dbecause of the last term. In viow of the smallness of the

particular term near sonic veloclty the errcr introduced here is,
in general, unimportent., Much mcre disturbing is the fact that
the error in ul’f may substantlally exceed thst in . u,. Naturzlly

the iteration is best started with the insertion of the approxi-
mation by (16a) and (18), which can be just z8 well regarded as
first approximations for ug end u, 'f as for w; and u.l’f

Figure 3 shows the convergence of 'bhis method for the nozzle & = 0,20
(described in BectionIV'c) Tts value at the throat x =0 is
£EYY = 0,20,

The xz-axis represents the result of tho flow fiIamon’c.theory,
g subscript added fcr w; indicates the number of iteratlons;
w! ls the first approximastion, obbained direct from the formulas,
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The second approximation is not as yet qulte satisfactory, but
even 80 it lies in vicinity of the throat x = 0 very close to

the solid curve which represents the finel solution, This was
obtained by means of a method which ylelded several solutions in
the subsonic range x < 0. The solution plotted here has the
property of having a common inbtersection point about equal to -1.2
with all epproximations for x, Three to four steps are necessary
to reach a result corresponding to the accuracy of the method. The
convergence of this lteration is likely to be largely dependent
upon the nozzle shape, In meny ceses where the first approximation
is still a little uncertain, the @econd should give emple service,

Another method of solving (16ec) glves qulcker results., As
mentioned in the foregolng, it is seen that solutions are lost in
the subsonic zone with the itorgtion method. We shsll deal with
these cases vhere the flow in vicinity of the taroat rises to
gupersonic speeds, After reaching sonic velocity 6,7 =0 the
last term plays a subordinate part in the neighbcrhood of the
throat, It ls advieable to first esbablish the first approxi-
metion of w3 and uq'f vhich are nothing else but the first
approximation of wup and uy'f, by meens of (16a) and (18).

The magnitude of the last term can then be easily estimated by a

e
gecond differentiation, since the functions G and u §E are

tabulated. In the neighborhood in which the last term is only
about 10 percent of the right hand of the equation the equstion
is best regarded as differentlal equation of the first order In uj

and then solved with respect to ul'f.

- ]
) = . o
v £ o4 VLGllé(?s - ui) + f-a;-(ul’f> U —gl] + f'el

u
1
Gy

(160}

The characterigtics of this equatioﬁ are best seen when the small
t auj-d-'t

terms f! and w3 — f - (ul f} are regarded os nonexistant,

: 6 dx - _

If w; 1s chosen too small. the value for ul' will be too high,

Hence in a progressive integration in pogltive x direction, that:
1s, in flow direction, all integral curves in throst vicinity lead
asymptotically to the saeme end curve, independent of the iniltial
value. If the size of the steps is nobt chosen smell enoush a

strongly demped oscillation of tho values result instead of a one-
slded approach to the asymptote. Thereforc a solution of {16e) is
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gecured by inserting close approximation values under the root
end then deflning vy by progressive integration in flow dlrection. -

While for wu, only an initial value must be essumed, %;-(ul’f) ,

must be Haken from the first approid.mation_un‘_bi_l the curve of uf,f

1s so steady that this curve can also be differentiated. OFf course,
the differential quotlent of ul’f- can never be compubed at the

exact place where uq 'f 1tself is looked for, but this is unimportant

at the smallness of the particulsr term. It ls practlcal Lo plot
the. departure from the stresm filement veloclity ug - w3 and Uy £
against x in the inberpretation of (16e) and to plot the curves

of the streem filement theory, and of the first approximation before
sterting the celculation. In the first case the flow filement theory
naturally gives the x-axls.

If the initlal value of wuy 1a chosen lncorrectly, vhich is
evidenced by conslderahle fluctuation of wy 7 . during meny steps,

1t is better to start all over agaln, in order to obtaln a smooth
curve before the throat as soon as possible, Eouation (16s) is
very appropriate even in the entlre supersonic ranze.

The described behavior of (16e) thus indicates thab values
of uy ‘and wy 'f are obbtained at the throat which are practically

independent of the chosen initial conditions. TFhyslcally 1t msans
that there 1s always a tendency 'boward. a well defined flow attitude
at the throat.

In the range in which the last term of (16e) alre=dy plays an
essentlal part, that is, exceeds gbout 10 percent of the right-hand
side; i1t is better to apply a formula obtained by integreting ’che
Just clted esquation.

s

101 1., 2 :

P I fod ol 10 . P! P - w1

Y1 Je Foam [2 Gy *)_ + £hug ' - 6(ug u;f)] dx + ( 1) 'F ) o (164)
0

Having defined by (16e) the piece of the curve of u;f oand u

neaxr the throat, the whole curve in the subsonic.and supsrsonic
range can be computed by (16d); Xy 1is tho point at which the last
calculztion is started., Approximate values of U 'T  therefore
substitute for =x in the integral, as obtailned by extrapolating
the wuqf curve. The determination of ul'f proceeds in the

gubsonic range in the direction toward the floor and it is found



22 NACA ™ No. 1215

that the integral curves Iin this direction spread out snd after
several steps lead to perceptibly different results. It results

in deviations from the cuxrves obbtalned by lteration, in both direc-
tions, while in the supersonic range and in the btransitlonzl zone
all the camputed curves are coincident (fig. 8). The next probably
surprising fact of spreading of the integral curves in the subsonic
range has a very good sense physically. ¥lows, which in the sub-
gonlc zone exhibit marked differences, still give the same flow in
the narrowest sectlion of the nozzle, This agrees with the experi-
mentally known fact thet the flow in supersonlc nozzles 1s aluwost
Independent of the shape of the nozzle entry. It probably elweys
tends toward the state of flow for meximm throuszh flow volume,

Attempts to start the integration in flow direction for
arbitrarily specifiled Ilnitial values wuj 'and w;f 1in the subsonic

range do not lead to the desired result. Even a slight variation
of u;. at greater distance from the throat for constant ul'f

produces. profound deviations before the throat, Figure 4 illustrates
two examples (the same nozzle 1s in fig. 3).

The s0lid: curve is the solution for genersl passagze throuvgh
the sonic velocity near the throat. The choice of a slightly too
high valuve of uy (dashed curve) at x = =1.5 vresilts in a climb

of ul'f' beyond. all limits, The flow camnot be continued at all

through the narrowest cross soction. The cholce of a little too
smell a value of wuy (desh-dots) leads to solubions at walch the

veloclty of sound 1s not reached at all. Near the bhroat w, 't =0
and is ultimately negative.

The previously cilted asymptotic movement of the values to one
and the game end curve therefore refers only to a very narrow range
near f?! = O, ' '

It is seen that 1t ls now possible to define wu; and ul'f
ag function of x, The coefficients =, &y, by, and by can

be computed by (8) where u; is utilized instoad of Ug with
sufficient accuracy. Equation (19) then yeilds uy and egua-
tion (1) the velocity components wu sand v.
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IIT. DERIVATION OF THE FIRST APPROXIMATION FOR THE
CASE OF AXTALLY SYMMETRICAL FLOW

In general the slope and curvebture of the walls in exially
symmetrical nozzles is not as great as for the Two-dimensional
problom, hence the first epproximetion .is hers of greater intorest.

Rather than repeat the previous derivetions, a new method. is
employed, With x denoting the nozzle axis, §y +the radlel
coordinate and f the nozzle radius the equation of conbinulity is
written in the form

) 9
= (pvy) = - 7 = (pu) | (=0)
v ox
where u and v eare the veloclty components in x and y direc—
tion; and, as before, we = ue + ve.

Now, in order to obtain an epproximate. valuve for v it must
suffice in the above equation to insert an approximste value for pu,
since v 1s to be small only relative to u, Restricted to the
value of the stream filament, designated by Pgllgs, 1tm equation

of conbtinuwity is

oo g = M (202)

As before f 1s made nondimensionzl by the radius at the throat
of the Lavel mozzle, o by the chamber density, p, end uw by the
maximom gpeed, so that M i1s a through flow volumé which is mzde
nondimensional in exactly the same way as in (12).

By logarithmic differentiation of (20a)

-uf
1 &ipg ) t 6,

: ‘us”=-2£-=—-‘-‘?-u= (20b)
Paltg dx £ €y 8

It should be noted that (10a) and (10b) are velid only when f is
broportlional to the cross section., If the cross mection is
proportional to the quantity f2 as in the axi elly symmetrical case
the factor 2 is additive to f£! in (10z) and to F££!! in (10D),

as equetion (20b) also indicates.
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By means of the last equation

f"
——(pw)—z‘ypss;—

This is, of course, an approximate equation, because the relation-
ghip of product pu and y is not considered at all, but en
approximete value introduced for it. The right-hand side of the
equation merely contains functions of x, aside from y, hence
integratlion with due remard to the boundary condlitlion ylelds

y=0; v=0; v=Dby=udf’ %—+. o . (212)

with e . 1 on the right-hand side accoxding to the esrlier

Pg

omlssions, With observance of the freedom from robetlon we
lmmediately get

u=uo+~;—a2y2=u +-~(uff”+u 'Yfrto- L11'2>»——+. . . (21v)

The formula for w and v agrees in first approximstion wlth the
formules for the velocity components in the two-dimemsional case,
Quantlty ug, ig again computed by the continulty equation in the

form

ne R}‘l £ '
M=2nr / yu(l -l . v2) Ty = j‘ ye(u, V’E\ dy (22)
itQ 310]

For G(u, veg the same development as before is used (I17b), but
the result arter integration is slightly different, namely,
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The omitted terms play no part in tie Lirst gpproximation. In the
last equation the brackets for € contain +the argument; this is
no product! The solutlion is found the same as before

M / . 1+ A
— =06_+86,; 3'—agf'2+-1—':l-‘-—_blgfz-:--11'-—-Q~.'-—blf_+...
U 8 -

]
t
&
l

1/ 2.1 .22 1, \
=~ {asfs + = Db, 7P e o4V + . .
8 ;] }_L(E, g 1 +2U-Ou° 1/+

%Gsffn -:--32—113’.1’ f‘) + o e : (23)'

This equation therefore differs in several Ffactors from (16a), the
corresponding first approximation of the two-dimensional problem,
The first approximation for the relative volums correctlon follows
as '

1

L (24)

o | &

Its difference fram (17a) is very little.

IV, APPLICATIONS AND MODEL FPROBLEMS

(a} The Two-Dimensional Source for Compressible Flow

The formulas of the first approximation for two-dimensional
flow are checked against an exact solution, Chosen is the example
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of compreasible source flow, by which a flow between two flat walls
gloped at angle 2o 1s given. The problem can be solved generally,
wvhen assuming that angle o i1is small. Consider the flow at point
of the "nozzle" of cross section f£. The point of intersection of

this cross seol'sion with the x-exis 1s dlstant Xo from the origin.

Tn sddition r° = £° + = (fig. 5).

Therefore fl'= tan o = i—-—; ff'' = 0. The angle @ is measured
o]
in radians, so that the stream filament velocity at the point of £
is given by '

e(ny) = ax ()
This equation can be developed. Pubting o = ben o = -?]:‘ tan3oo gives
;+9 (u-u‘ tano:--]-'-tan3oc)=tarore
8 us 0 s) 3 , S -

With observance of (10a) and amission of terms of higher order

e o '
uo-us-g'«—f——f’ =u-us+}-us'i’i"=0
3 6yg 0 3

or exactly the equation (16a) for fFf'!' =0

The welocity Wa in the polnt with the cooardinates =x = Xy

and y = f can be expressed in simple manner. First, it must be
equal to the veloclty on the x~axis at dlstance r from the
origin, developed 1t glves

_ . ! - '
Wp = ug+oug (r xo)

Second, We can be expressed by the x component of the velocity
in thls polnt up and the cosine of the angle,

Ve = z
i
0
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Development of r glves

* 4 ~ - —— '

vwhich written in the last two equations glves after ellminating wp

up - Uy = --;‘—usf‘2+-;-us’ff’

The same result had been obbteined for IFf'! =0 by (11b) and (1},

(b) Compsrison of Theory and Experiment on en
Axially Symmetrical Nozzle

T, E. Stanton (reference L) measured the velocity distribution
on the axis and along a line perallel to the sxis whooe disgbtance
from the wall at the point of minimum sectlon ambunted to aboubt
2.5 mlllimeters, where I£f'? = 0,21C, As explained iIn the two-
dimensional case at such a hicgh value of £f!'? mno complebe agree-
ment of the first approximetion with the sctual flow is to be
expected. Our theoretical values on the axls are a 1little too low
and on the wall a little too high. Stenton measured et various
chamber pressures (fig. 6, c¥ is the velocity of sound at M= 1).
In the firast three casos A, B, and C the chembor (or tank) pressure
is 8o low that tThe mexdmm veloclity is not atbained at the throatb
of the nozzle, with increasing sectlon the velocity drops azain.

In proximity of the wall the velocity of sound in caso C is even
excoeded in some areas, Thus the problem hore involves a solution
which is symmetrical to the minimum section of the nozzle. This
symietry is, of course, somevhat disturbed by doundary-layer
effects. Tho symmetrical solutlons are predlceted upon some
quantity in order %o he able to determine the theorstical curvos,
In the present instance the exlal velocity at throat was taken

&8 speclfied, In conscogquonce of which theory and test are ncarly
in complete accord on the axis. The computcd volocity in proximity
of tho wall 1s, s In casc E-F gonerally too low, bub this marked
deviation 18 et any ovent, attributable to the method of moaraurmnoht._

In the caso X -Fthe tank (or chambor) prossure is alveady high
enough so thet a goneral transition to supsrsorlc speeds in proximity
of the throat is involved. There the calculation of tho sposd
necessitates no fiurther asswption. The thcorctical velues of the
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speed at the axis are a little too low, exactly as expected in the
first approximation. The experimental wall velocities in the
supersonic range are peculiarly high. The cause of veloclty drop
in the neighborhood of x = 0,15 i1s undoubtedly introduced by a
compreasibility shock. Stanton's test series D is not reproduced,
since it camnot be interpreted without including boundery layer
effects,

(c) Flow Through Hyperbolic Nozzles, Two-Dimensional Problem

Figure T represents the transition from subsonlc to supersonic
velocity on three nozzles. The nozzle edge ls glven by the function

= dl + ax?

This is the egquatlion of a hyperbola, The helf nozzle height at ‘the
throat ia taken as oqual to unity. The reciprocal curvature
radius for f!' =0 is ff!' = a. The nozzle forms represontod by
the above function were proferred ower those of Gortler and Taylor,
gince they, like the nozzles uwsod in practice, have the proporty of
decreasing glde curvature with increasing distence from the throat.
Besides on thig nozzle form a groat curvature of the nozzle edge
for small x 'valuos goes hand in hand with a strong slope of the
nozzle edges for great x values. Accordingly the smaller a ls
the greater the accuracy of the theory.

In conformity with tho entlire thoeory the resuvlits are velocity
profiles rather than llnes of constant voloclty. Bubt it is an casy
matter to change to lines of comstant velocity. Thoy are proferable
for the representatlon. T

The three nozzles have the followlng values of ag
a = 0,10 ) a = 0,203 -a = 0,30

The linos of constant velocity of the final solutlon are shown as
8olid lines, those of the first approximation in. dashes and thoso
of the stroam fillament solution, which are straight, of courso,

in dashes and dots. The related velocities, exprossed in multiplos
of the velocity of somd c* at M= 1, arc enterod at the inter-
section polnt with the related line of congtant volocity.

As is poen the first aepproximatlon for all threo nozzles stlll
provides fairly practical value, and glves a falrly accurate account
of the deviations even in the case of a = 0,30, The error in the
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final solution within the region which satiefies the condition (13)
j£1} € 0.10, is sbout 10 percent of the difference of this solution
from the first epproximastion. The error of the first approximetion
et the axls ls, as already appraised for £t = 0, about a times

the difference from the stream filsment vélue at this point., The
result in the subsonic zone is not definite. Figure 7 shows the
golutions obtalned for Ug by iteration. This always gives only
one solution. .

Figures 8(a), (t), and ) ind:icate this ambiguity for the nozzle
_ : i -
a
egaingt x; figure 8(r)shows the corresponding curve for Uy s

figure 8(c)represents the lines of corstimb velocity for tle computed
extrems cames, Thus the solid and the dashed cwves reprosen’c exact
solu:tions wi’chin our acnuracy.

= 0.20. in the subsonic zone. - In figurs &(a), is plotted

Figure9(a) is the first approximetion for tie nozzle a = 0.20
for the case of maximum velocity at the throat and quosequent
‘fecregse, The valus 1 denotes the Mach numbor at the throzt
based on the stroem filament solution., Thus for 1 = 1.0 1t gives
solutions which are symmobrical to the throat and asymmobrical,

At values of 1 near unity the Mach number 1 ls excecded in wall
proximity, .Figure 9(b) represents the prscticclly mot so importent
cagos of symmetrical suporsonic flow., It atbeins its lowest
velocities in the losst section, Tho 1 +valuocs arc here so

chosen that in one case each for 1< 1.0 and 1> 1.0 the scme
velue of 9, that 1s, tho same through flow volums, proveils. Tho
regult is that this sorles of figuros reproscntc sssomticlly all
possible cases from the lowest to the highost velncities., Tho
Pigures are arranged so that flows with equal through flow volumes
have correspondingly ooual placos. The casc for i = 0,98 in the
supersonic zono ig nét shown. The lines of consbent velocity in
the supersonic zone arc fundsmontally difforont Prom those in the
subsonic zone. Interosting is tho fact that at vory high vcloclties
the velocity change is largely traonsverso to the flow directlon,

and smell velocity vaerlations are alroady aocompanioc'f. by approci"zblo
changes in density.

(d) Flow Through Hyperbolic 'Nézzles, Axially Symmetrical Flow

The same function chosop for the two-dimonsional- problcm wes
used for tho distanco of the nozzle edge from tho axis f. Tho
nozzle paraméter was indicated by ap. Morcly the first approxi-
mation, vhose linos of constant veloclty aro showm o8 solid linos P
was compubod. Figure 10 ropresonts the throc casocs
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eg = 0,10; ag = 6.20 "~ and ap = 0,30

Lie the velocity changes with the sguare of £, hence iz much
greater than in the two-dimensional csse, the lines of constant
velocity ere closer together. A veloclty change in proximity of
the axig does not smount to as much ag one in wall proximity,
since the flow volumes are substantially greaber, In accord with
it,1t is seen that in the axially symmeirical case a departure of
the velocity from the sbtream filawent value at the well is com-
vensated by a much hlgher velocity variation at the exls. TFor

the rest,the great veloclity differences on & séchlion are less than
in the case of two-dimensional flow.

() Correction of Volume for Hyperbolic Nozzles

With (17) end (17a) the volume corraection can be compubed in
first approximation from the hyperbolic nozzlos described in

soction ¢, With (5?3 denoting tho first approximation the results
_ 5
areo as follows: +

i pis ] I'IE l
0.10 -0.00018 -0.00027
.20 -.00053 -.00105

The voluwo corroction is exsromely small, Tn addition 1t 1s scen
that formilla {17) is moroly practical for estimating. At & - 0.30
the velue obtained in first epproximation i throe timos too high,

(f) The Significance of the Wall Curvaturo at Throat in tho
Construction of Supersonic Nozzloes with Par:llel Jotb

The construction of supersonic nozzles wlth parzllol flow for
supersonic wind tynnels by tho Prendtl-Busemann mcthod wenerally
proceods from the assumpbion that in this caso.with sufficlent
accuracy at tho throat of the nozzle tho Mach mumbor over tho
ontlre section can be put equal to unity. To analyzc the orror
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introduced by this assumption two constructlons of & supersonic
nozzle with a parallel Jet with & Mach number of about equel to 2
were effected, one on the bapis of an assumed coustant..velosity
over the section at the'throat, the other on thse basis of a
velocity distribution attained by.our method. At the throat £F"
was taken as ff" = 0.30. Minimum directional changes or one
radian were involved. The volume correctlon of the nozzle awounts
to about 0.8 percent. The end sections obtalned with the two ’
constructions should therefore differ by no more than 0.8 porcant
but the difference of the end secticns did amount to 2.4 perceat

- and for that reason this guantity can be regarded as measure for
the accuracy of the construction., The greatest sectional differsnce
in the two constructions amounted to 3.3 percent so that the two

" curves may be said to show no differeuce within the accuracy of
construction. The Justification of proceeding with the cometruce
tion of supersonic nozzles with parallel jet frwum the assumption
Ma =1 dn 'bhe narrowsst section of the nozzle 18 tharefore
‘oonfirmed..

' Transiat* on by J. Vanier
‘Natiowl & c.v;aory Coxuithes
_for Azporaucics
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TABLE I
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70 | 28577 | .2309% | 0 1.943 | -1k.88 €.78 555
Y75 | .30619 | .23939 1.577 | -1k.84 7 .46 483
.80 | .32660 | 24637 1.234 | ~14.79 "8.19 103
.85 | .3hk701 | 25177 .909 | -1h.72 8.97 ,315
90 | 36742 | .25569 598 | -14.63 Q.22 220
95 | 3878k | 25802 206 | -1k.53 10.75 115
1.00 | o085 | 2588 .000 | ~1h.kO 11.76 .000
1.05 | L2866 | 2583 -.293 | ~1h.24 12.87 -.126
1.10 | .4hoo7 | .25572 -.586 | -14.0k 14.09 -.263
1.15 | 46949 | .25192 -.881 | -13.8 15.45 -4k
1.20 | .48990 | .2L677 -1.18 | -13.50 16.96 -.579
1.25 | .51031 | .2hkook -1.490 | ~13.1k4 18.66 - 761
1.30 | .B3072 | .23209 -1.810 | -12.69 20.56 . -, 961
1.35 | 55114 | .o2002 2,144 | ~12.14 22,74 ~1.181
1.k0 | 57155 | .21962 -2,495 | ~11.h47 25,21 ~1.426
1.45 | .59196 | .20130 -2.867 | ~10.63 28.06 | -1.697
1.50 | .61237 | .18910 ~3.265 ~9.60 31.35 -2.0C9
1.60 | .65320°| .16260 -l .166 -5.69 39.74 -2,721
1.70 | 69402 | ,13k2hk -5,247 -2.,05 51.50 -3,042
1.80 | 73485 | .10541 -6.627 5.67 69.46 1 -4.870
1.90 | 77567 .07765 -8.4k47 19.22 9717 ~6.550
2.00 | .81650 | .0523 ~11.023 45.021 146.95 -2.000
2.10 | .85732 | .03100 | ~15.009 | 100.39! 24i.16 { -12.868
2.20 | .89815 | .01k76 | =22.115 | 246.161 L480.60 | ~19.863
2,30 | .93897 | .00453 | -38.609 | 817.681 1341.06 | ~36.253
2.40 | .97980 | .00031 |-121.479 |8630.5k [12248.82 |~119.0R5
2.45 |1.00000 | .00000 -co o P “co
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Figura 1.- Section of converging-diverging nozzle.

Sketch: The function o (u) for « = 1.400.
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Figure 2.- The error dug as a function of the wall slope £ "
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Figure 3.-

Convergence of the iteration method.
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Figure 4.~ Integration in flow direction for given uq and uif at greater
distance from the throat of the nozzle.
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Figure b.-

Notation for the two-dimensional source.
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Figure 6.- Comparison of theory and test
(first approximation).
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Lines of constant velocity of the stream filament theory,

of the first approximation and the final solution (two-dimensional

problem).

Figure 7.-
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Figure 8.~ Ambiguity of the solution

in the subsonic zone.
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Figure 9a.- Lines of con&a;ntvlvelocity
(1. approximation) for symmetrical sub-
sopic flow,
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Figure 9b.- Lines of constant velocity
(1, approximation) for symmetrical
supersonic flow.
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Figure 10.¥ Lines of constant velocity of the stream filament theory and the
1. approximation (axially symmetrical problem)



