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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 1217

LECTURE SERTES "BOUNDARY LAYFR THEORY"
Part T — Laminar Flows*
By H. Schlichting

First lecture (Dec. 1, 194l)

INTRODUCTION

Gentlemen: In ‘the lecture series starting today I want to give
you a survey of a field of aerodynamics which has for a number of years
been atiracting an ever growing Interest. The subject is the theory of
flows with frictlon, and, within that fleld, particularly the theory of
friction layers, or boundary layers.

As you know, a great meny conslderations of aerodynamice are based
on the so—called ideal fluld, that 1s, the frictlionless incompresaesible
fluid. By neglect of compressibllity and friction the extensive mathe—
matical theory of the ideal fluild (potentlial theory) has been made
posslble.

Actual liquide and gases satisfy the conditlon of incompressibility
rather well 1f the velocitles are not extremely high or, more accurately,
if they are small in comparison with sonic veloclty. TFor air, for
ingtance, the change 1n volume due to compressibllity amounts to about
1 percent for & veloclty of 60 meters per sscond.

The hypothesis of absence of friction 1s not satlisfled by any
actual fluwid; however, it 1s true that most technically important flulds,
for Instence alr and water, have a very small frictlon coefficlent and
therefore behave in many cases almost like the ideal frictlonless fluld.
Meny flow phenomena, in particular most cases of 1ift, can be treated
satlisfactorlly, — that 1s, the calculations are in good agreement with
the test results, — under the assumption of frictlonless fluid. However,
the calculations with frictionless flow show & very serious deflciency;
nemely, the fact, known as d'Alembert's paradox, that In frictlonless
flow each body has zero drag whereas ln asctual flow each body experilences
a drag of greater or smaller magnltude. For a long time the theory has
been unable to bridge this gap between the theory of frictionless flow
and the experimental findings about actual flow. The cause of this
fundamental dlscrepancy i1s the viscoslty which 1s neglected 1n the theory

*"Yortragsreihe 'Grenzschichttheorie.! Teil A: Laminare Strémngen.”
Zentrale fur wlssenschaftliches Berichtswesen der Luftfehrtforshung des
Generalluftzeugmeisters (ZWB) Berlin-Adlershof, pp. 1-153. Given in the
Winter Semester 1941/42 at the Iuftfahrtforschungsanstalt Hermann Gdring,
Braunschwelg. The orlginal language version of this report is divided into
two main parts, Tell A and Tell B, which have been translated as separate
NACA Technical Memorandums, Nos. 1217 and 1218, designated part I and part IT,
respectively.
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of the ildeal fluid; however, in spite of 1ts extreordinery smallness it

is decisive for the course of the flow phenomenon. As a matbter of fact
the problem of drag can not be treated at all without teking the viscoslty
into account.

Although this fact had been known for a long time, no proper approach
to the theoretical treatment of the drag problem could be found until the
beginning of the present century. The main reason was that unsurmountaeble
mathematical difficulties stood in the way of theoretical treatment of the
flow phenomena of the viscous fluld. It 1s Professor Prandtl's great merilt
to have shown a way to numerical treatment of viscoslty, particularly of
the technically important flows under consideration and thereby to have
opened up new vistas on many importent perceptions sbout the drag problem
and related questions. Prandtl was able to show that in the case of most
of the technlcally lmportant flows one may treat the flow, as a whole, as
frictionless and utilize the simplifications for the calculatlon thus made
possible, but that in the immediate neighborhood of the solid walls one

always had to teke the friction into consideration. Thus Prandtl subdivides,

for the purpose of calculation, the flow surrounding a body into two
domains: a layer subJect to friction in the neighborhood of the body, and a
frictionless region outside of this layer. The theory of this so—called
"Prandtl's friction or boundary layer" has proved to be very fruitful in
modern flow theory; the present lecture will center around it.

At this point I want to indicate a few applications of the boundary—
layer theory. A first ilmportant application is the calculation of the
frictional surface drag of bodies immersed in & flow, for 1nstance, the
drag of a flat plate in longitudinal flow, the frictional drag of a ship,

a wing profile, and an alrplane fuselage. A speclal property of the
boundary layer 1g the fact that under certaln circumstances reverse flow
occurs in the immediate proximity of the surface. Then, in connectlon
with this reverse flow, a separation of the boundary layer takes place,
together with a more or less strong formation of vortices in the flow
behind the body. Thue a considerable change in pressure distribution,
compared with frictionless flow, results, which gives rise to the form
drag of the body immersed In the flow: The boundary-layer theory therefore
offers an approach to the calculation of this form drag. Separation occurs
not only in the flow around a body but also in the flow through a divergent
tunnel.

Thus flow phenomens in a diffuser, as, for instance, 1n fhe bucket
grid of a turbine, may be included in boundary-—layer theory. Furthermore,
the phenomena connected with the maximum 1lift of a wing, where flow
seperation is concerned, can be understood only with the aid of boundary—
layer theory. The problems of heat transfer also can be explained only
by boundary-layer theory.

As will be shown 1n detall later, one must distinguish between the -
two mtates of boundary-layer flow — laminer and turbulent; their flow laws
are very different. Accordingly, the lecture wlll be divided into three
main parts: 1. Laminar flows, 2. Turbulent flows, 3. Laminar—turbulent
transition. Although the boundary layer will be ocur main consideration,
it will still be necessary as preparation to discuss to gsome extent the

€ P
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general theory of the viscous fluid. This wlll be done in the flrst
chapter.

CHAPTER I. VISCOSITY

Every fluld offers a resistance to & form variation taking place in
finite time Interval, which is of different magnitude according to the
type of fluid. It 1s, for instance, very large for syrup or oil, but
only small for the technlically importent fluids (water, air).

The concept of viscosity can be best made clear by means of a test
according to figure 1l: .

Let fluild be between two parallel plates lying at a distance h
from each other. Let the lower plate be fixed, while the uppsr plate is
moved with the velocity u, wuniformly and parallel to the lower one.

For moving the upper plate a tangential force P must be expended which
is :

P = uF 2 (1.1)

according to experiment, where F 1s the area of the upper plate and p
i1s a constant of proportionality. (End effects are not included). The
quantity p 18 called the viscosity coefficient or the dynamic viscosity.

Since the phenomenon 1n question is a parallel gliding, the transverse
velocity component in the y—direction, denoted by v, equals zero. The
fluld adheres to the upper end lower surface, respectlively, & linear
velocity distributlon between the plates is set up, the magnitude of
which depends solely on .

u
w(y) = u, % or: %? = E?

Since for y =0: w =0, for y =h: u=uy If one designates P/F,
the tangential force per unit area, as the frictional shearing stress T,
there follows:

du
= p == kg/m S ¢ -}
T g /m (1.2)
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The dimenslons of u are accordingly kg sec/m?. A flow as represented

In figure 1, where no transverse veloclty occures and the shearing stress

at all points of the flow is therefore given by equation (1.2), is called
simple shear flow. In the special cass described, the shearing stress is
everywhere of equal magnitude, and equal to that at the surface. Besides
the dynamic viscosity p the concept, of kinematic viscosity v 1is

required, which for the denslty p [%g secahr%] 18 defined as

Vo= % m?/é]
For 20© C, v 1s, for instance, for water:
v = 1.01 x 1070 u?/s
for air:
vV = 14,9 X 1076 u2/s o % 107+ n2/s

if the air pressure has the standard value p, = 760 mm hg.
CHAPTER II. POISEUILLE FLOW THROUGH A PIFE

The elementary empirical friction law of the simple shear flow
derived ebove permits the immediate determination of the flow and the
resistance in a smooth plpe of clrcular crose sectlon and of constant
dlameter, 4 = 2r. At a very large distance from the beginning of the
pipe one cute off a plece of pilpe of lemgth 1 (fig. 2) and examines
the cylinder of diameter 2y, the axis of which is 1dentical with the
pipe axis. According to what has been said so far, the welocity probably
will be ageln a function of y. A pressure difference P1 = P is

requlred for forcing the fluid through the cylinder. According to
practical experience, the static pressure across svery cross sectlon may
be regarded as constant. The fiow 1s assumesd to be steady and not
dependent on the dlstance from thke beginning of the pipe. Equilibrium

‘,l'-r"‘
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must then exlst between the pressure and the frictional shearing stress
which attempts to retard the motion. Thus for the cylinder of radius y
the following equation is valid: pressure force difference acting at

the cross sections = frictional force acting along the cylinder wall, or

<pl - p2>ny2 = 2nyiT (2.1)
or
Py — P
Tet 72 7 2% (2.1a)

Since flow parallel to the axis is to be expected, one takes from the

Previous paragreph, T = — u% (the minus sign indicates that the

velocity diminishes with increasing distance from the axis; thus du/dy
1s negative, the shearing stresses under consideration, however, are
positive), and, after separation of the variebles, du becomes:

__P1 =P
du = - 2L gy (2.2)

and, on integretion:

o - 22 (622

TV 1

From the fact that for y = r the velocity is supposed to be u(y) =0
follows that the constant of integration C has to be C = r2/4, Thus:

u(y) = 22 (z2 - 52) (2.3)
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This equation (2.3) i1s Poissullle's law for pipe flow. It states that
the velocity u(y) is distributed parabolically over the pipe cross
sectlon. Ths apex of the parebola lies on the pipe axls; here the
veloclity 1s greatest, namely:

P - o
2 e—ree— Y . (20)4-)
Unex bt
Thereﬁ;th one may write (2.3):
2
(3 = g (2~ T5) (2.30)
r

By Poiseuille's law (equation (2.3)) the drag of the developed laminar
flow (which 1s proportlonal to p; — py) is directly proportional to

the first power of the veloclty.

Thie statement 1s characteristic of 211 kinds of laminer flow
vhereas, as wlll be seen later, the drag in turbulent flow is almoet
proportional to the second power of the velocity. )

The flow volums for the present case remalns to be glven. With d4F
designating an area element, Q is Q = J‘u(y) 4 F = volume of the

velocity paraboloid, therefore

Q:lﬂreu =ItI'
2 max

81 (p; — pp) (2.5)

Thig flow law 1s often used for determination of the viscosity, by
measuring the quantity flowing subjected to a pressure gradient (usually
produced by gravity in a vertical capillary tube). Of course, the
starting losses must be taken Into conslderation which due to the mixing
zone (vortex formation) at the pipe end are not recovered to their full
extent.,

A drag coefflcient A will now be defined. Slnce turbulent flows
are more important than laminer ones and since the drag in turbulent
flow increases about as the square of the velocity, A wlll also be
referred to u°.

For flow problems, let A +thus be defined as: ratio of the pressure
drop along & test sectlon of a specified characteristic length to the dynamic
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pressure q = pﬁe/Q, with T = = the mean velocity (average taken

1 lo

acrogs the cross section). Then:

(2.6)

"
g
ol

with d = characteristic length, +thus, for the present case, the pips
diameter, and with A = dlmensionless quantity. For the present developed
laminar pipe flow, according to equation (2.5)

dp P17 P2 8ug
dx 1 m.h-
Thus: .
A o238 8uQ _208u @ _ 16d - /o
2 L —2 2. _12 ud
pi  wr pur- mQ pu()
S — 2
=1
or
6L
A= — 2.
= (2.7)

with the dimensionless quantity Re = %—d slgnifying the Reynolds number

of the clrcular plpe. Since the pressure drop which 1s only linesrlly
dependent on the velocity was referred to uS, then, for laminar flow:

A~ é A logarithmic plot of A = £(Re) or A = f£(U) therefore resulis
a :
in a straight line inclined 45° toward the Re—axis (compare fig. 82 Part IT.).

After this short analysls of the one—dimensional casge of wviscous
fluld we will now consider the three—dimenslonal case.
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CHAPTER ITTI. EQUATIONS OF MOTION OF THE VISCOUS FLUID

a. State of Stress

For this purpose one must know first of all the gemeral state of
gtress in a moving viscous fluld and must then comnect thils state of
stress with the state of deformation. For the deformation of solld
bodies the reslstance to the deformation is pubt proportional to the
magnitude of the deformation (assuming the valldity of Hookets law).

For flowing flulds, on the other hand, the resistance to deformation
will depend on the deformation wvelocity, that is, on the varlation of
velocity in the neighborhood of the point under consideration. (Solid
bodles: displacement gradlent = displacement per second. Fluid:
velocity gradient).

One starts from the basic law of mechanics according to which:
mags X acceleration = sum of the acting, or resultent force. For the
magg-per-unit volume, that 1s, the denglty p, one may write the law

*Dy
P —=K+R+F 3.1
Dt — — = ( )
Dw
5% = gubstantial acceleration
X = mass forces
R = surface forces, composed of pressure forces normal to the
surface and frictional forces in the directlion of the
gsurface
F = negligible extraneous forces

In order to formulate the surface forces, one imagines a small rectangular
element of volume 4V = dx dy dz cut out of the flow (fig. 3) the left
front corner of which lles at the polnt (x, ¥y, z). The elemsnt 1s to be
very small so that only the linear variations of a Taylor development
need to be taken into conslderation; on 1ts surfaces dy dz act the |
resultant stresses (vectors): :

Py OF P+ gEE dx, respectively (3.2)

* Throughout the text, underscored letters are used in place of
corresponding German script letters used in the original text.
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(The index x signifies that the stress tensor acts on a surface element
normal to the x—direction). :

Anslogous terms result for the surfaces 4z dx normal to the
y—axis and dx dy normal to the z—axis, 1f x in equation (3.2) is
replaced everywhere by y or =z, respectively. From this there results
as components of the resultant force:

Force on the surface element normal to the x—direction: —— dx 4y dz

Force on the surface element normal to the y—directlon: —= dy 4z ax

Force on the surface element normel to the z-direction: —= dz dx dy

The total resultant surface force R per unlt volume caused by the
gtate of stress is therefore:

(3.3)

ox dy dz

Px’ py and gz are vectors which can be further decomposed lnto

components. In this decomposition the components normal to every surface
element, that 1s, the normal stresses, ere designated by o (indicating
by the index the direction of thils normel stress); the other components
(tengential stresses) are denoted by T (with doubls index: +the first
indicates to which axis the surface elemsnt is perpendicular, the second,
the axial direction of the stress T). With these symbols there is:

r 7
=1 kT
By % ¥ JTxy ¥ Xz
{p =1iT + Jo + kT (3.4)

-y JX J Jz
p =1t + 3t + ko

=z bad zZy A
q J

This state of stress represents a tensor with nine vsctor components,
which can be characterized by the stress matrix (stress tensor):
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Txy -
%  Tys (3.5)
Tey Oy

It can readlly be shown that those of the six tangentlal stresses
which have the same indlces, although in lnterchanged sequence, must be
equal. This follows for a homogeneous state of strese from the equlilibrium
of the small cube dx dy dz with respect to rotation:

Since T dy dx is the force attempting to rotate the cube counter-—
clockwise about the z—axis, (seen from above in fig. 3), with the lever
arm dx, eand since, correspondingiy, the force '”kx dx dz attempts to

rotate the cube clockwise sbout the z-exis, with the lever axrm dy the
balance of moments requires:

Txy dy dz dx - Tyy dx dz dy = 0, thus Txy =™ Tyx*

Corresgpondingly, because of freedom from rotation about the x—exis
1}2 = sz, and because of freedom from rotatlon sbout the y-exls
T =T__,

zZX Xz .
and the stress matrix (equation (3.5)) is converted into the stress
matrix symmetrical with respect to the princlpal diasgonal:

the nine components of the stress tensor are reduced to six

% Txy Txz
sy Oy vz (stress matrix) (3.6)
Txz Tyz Oz

For the frictlonal force one obtains according to eguation (3.3) by
insertion of the components from equation (3.4) and by reduction to the
six remaining terms according to equation (3.6):
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) <Bax ¥y | xa) | J(afxy doy AT,

R = + + + +
- ox oy oz oy oz
= x—component + y-—component
(3.7)
. <aTxZ Loy, 2
“\ax Sy dz

+ z—~component.,

For the case of the frictionless (1deal) fluld sll shearing

stresses dlsappear

T = T = T =0 l . (3'8)

and only the normal siresses remain, which In thls case are all equal.
- Since the normal stresses from wlthin toward the outslide are denoted as
poslitive, the normal stresses equal the negative fluild pressure:

o, =0_=0_ =-p (3.9)

The statlc pressure equals the negative arithmstic msan of the normal
gtresses:

b. State of Deformation

The state of stress treated so far 1s, alone, not very useful.
Therefore we will now consider the state of deformation (that is the
. Pield of velocity variations) and then set up the relations between
stats of stress and state of deformstion.
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Let the velocity ¥, with the components Uy s Vas Wp in the

directions of the axes exist at the point A +the coordinates of which
are Xp, Yps Zpe

If one limits oneself to the points x, y, z in the immediate
neighborhood of A with the velocity w = iu + Jv + kw, and if one
limits oneself — as also in setting up the state of deformation — to
linear terms only, one obtains for the deformation the relative change

in position between the points x, y, z and xA yA, zA per unlt
time, that 1s, the difference of the velocities at the points x, y, z
and xA yA, zA:

. )
)A + (y - FA) <-§—;)A +—(z -~ ZA) <§—Z)A = du
e @) e b o

u-—uA=<x—xA)(

&’lﬁ’ ¥l

v-v, <x-—x)<
w_m=<x_ﬁ)<

&Y
h>\/
+
~
eq
|
::1
-
-~
LY
b
+
>
|
N
N
P
¥
:D\/
1
g

J
aw = 1 du + J d&v + k dw = distortion of the fluld region in the
neighborhood. of the point A.
Omlitting the Index A one obtains therefore:
v du du du du du )
dw = — dx + — ~dz =1 —dx + — — 4
-t A <3x YR Y
(3.112)
Foid Foid ov Feicd o¥ Qo
+ .j<axdx+aydy+az dz)+£<axdx+aydy+az dz

Thus the velocity varietion (and hence, on integration, the velocity
itself) in the neighborhood of the point A 1ig known if the nine
partial derivatives of the veloclty components with respect to the space
coordinates are known. Corresponding to the stress matrix, one may form
a deformation matrix:

-
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Su du  u
ox oy oz
ov ov ov deformation matrix (3.12)
x oy oz
M oW w
ax oy oz

The friction forces of the viscous fluld are given by a relation (which
will have to be determined) between these two matrices. First, the
deformation matrix is to be somewhat clarifled.

1. Case of pure elongation.

One assumes u — u, = a(x —-;A), with a = %% = congtant. Let all

other terms of the matrix disappear; the matrix will then appear as
follows: '

a 0 0
O 0 O
0O 0 o

Then the veloclty verlation 1s simply du = a dx, and u = ax,
Al]l points of the y—axis remaln at rest, the polnts to the right and
left of it are elongated or compressed, according to whether & > 0
or a <0 (fig. 5). The equation u = ax therefors represents an
elongation or expansion parallel to the x—axis. Corresponding relations
apply for the other terms of the principal diagonel of the matrix.

2, Case of pure translation

A1l terms_disappear; the matrix then reads:
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In this case, which, as & matter of fact, should have been mentioned
first, u-—-u, = 0, du = 0; u = constant, The veloclity component

parallel to the x-axis 1s uniform (correspondingly for the other axes).

3. Case of angular deformation.

One esstmes u — U, = o(y — ya), with e = % = constant. All

other terms equal zero, and the matrix reads:

0 e 0]
0O 0 ©
0 0 O

du = e dy and u = ey; +that is, all points of the x-axls retaln their
position; all points of the y-—axis shift to the right (left), wvhen o > O
(6 <0); for e >0 the y—exis is rotated clockwise by the angle ¢
(because of the linearity). The y—axls is simultaneously elongated. The
phenomenon in question is therefore a shearing (fig. 6), with tan € = e.

Correspondingly there results for v — v, =f (x - xA) and

o 0 O
M= £ 0 O
o 0 O

M1 points of the y-exls retein thelr position; the points of the x—exis
are rotated by the angle 8; <tan & = f (fig.7). Terms outside of the
principal diagonal of the matrix result therefore in a deformation of
the right angle with axis—elongation (shearing). The right angle between
the x— and y-exes is, therefore, for e >0 and £ >0 deformed by

€ +8 = foi + du _ o _ = Deformation about the z-axis
oy y
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Correspondingly: Yoo = = deformation about the y—axis

= deformation about the x—axis

(The deformation angles are herein regarded as small so that the tangent
may be replaced by the argument). .

¢. Navier—Stokes Formulation for the Stress Tensor

One now proceeds to relate the stress matrix (equation (3.6)) with
the deformation matrix (equation (3.12)). The former is symmetrical with
respect to the principal diagonal, but not the latter. However, one
ocbtains a symmetricel deformation matrix by adding to equation (3.12)
its reflection In the principal diagonal. Furthermore, one first splits
off the pressure p (contribution of the i1deal Fluld) from the stress
matrix and sets the remaining stress matrix, according to Stokes,
proportlional to the deformation matrix made symmetrical:

T % T = — v ov ov du ov oW .

xy yz OI>0+uaxayaz+uayayay (3.13)
W oW oW Su v ow

Txz Tyz %z °cor x d oz 3z dz O

From equation (3.13) each stress component may be given immedistely by
coordinating the homologous parts of the matrices to each other. TFor
ingtance:

6. =—D+ 2 Su = sgtatlic pressure + pressure due to
ox velocity variation, or:
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Op == D+ 2“%%’ cy ==—0D + 2u%§; 0, =— D+ 2u%§
T =T =u<§z+3u>
xy Jx Ax

vz oy

Txz = Tax ~ ”(g& + gﬁ)

= = pdu
[%hus for one—dimensional flow Try Tyx udy:]

Furthermore, there £ollows from equation (3.13):

%(cx+ay+az)=—p+§u<%%+ﬁ+m)

dy Oz
or -
% (ox * o+ UZ) =-p (3.14)
because
%% + %§ + %g =dlvy=0

for the incompressible flows free of sources and sinks under considera—
tion.* Thus for the viscous incompressible flow, as for the ldeal fluild
the pressure equals the arithmetic mean of the normal stresses.

With these resulis the components of the friction force may be
expressed acconding to equation (3.7) as follows:

% The compressibility menifests 1tself as normal stress, since it can
be interpreted as a pressure disturbance, for instance due to variation
in density, which attempts to spread in all directlons — congldered
infinitesimally.

-‘\
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ox oz ox 2 ayQ 322

or, since divw =20

Ry = -§§-+ pAu

R =-2, pav 1
v Sy (3.15)

RZ = -§§-+ RAW

in which Au = QEE + 2y + QEE
ax2 ay2 az2

If one finally designates the mass forces by K = p(iX + JY + kZ), and
aggumes the decomposition of the substantial derivative into & local

and convectlve part as known from Euler's equation, one obtains for the
components of the equation. of motion of the non—stationary, incompressible,
and viscous fluld from equation (3.1):

px o + uAu
ax

FETRE T I
ot ox oy oz

— U=+ TV — + W —

p(avav Bv&v)
dt Xx  dy dz

-t - > (3.26)
oy

3t T Sy >z

p ow u QE + v o + w ol = pZ ] + pAW
ox oz |

In addition, the continulity equation

Su, v, ow _
il (3.17)
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is used. Written in vector form, the Navier-Stokes differential equation
and the equation of continuliy read

l .
]];_if:g_sgradp+vm (3.18) :

divw =0 (3.19)

Due to the friction terms, therefore, terms of the second order enter
the differential equation.

Boundary conditions are attached to these equations. If all friction
terms on the right slde are cancelled, that is ¥ = 0, the differential
equations become equations of the first order and gpe boundary condition
is sufficient, namely the boundary condition of the potential flow:

v, = 0 on the bounding walls.

This means that the normal component v, of the velocity at the s

bounding surface must disappear on the surface itself whereas the fluld
gt11l can glide parallel to the boundary (tengentlal velocity Vi

parallel to the surface # 0).

For viscous flow where the differential equatlion 1s of the second
order, two boundary conditions are required, namely:

v, =0 and vy =0 (condition of no slip) (3.20)

that 1s, the fluld must in addition adhere to the surface.

Second lecture (Dec. 8, 194l)

CHAPTER IV. GENERAL PROPERTIES OF NAVIER-STOKES EQUATIONS

These Navier—Stokes differential. equations represent together with
the equation of continuity a system of four equetions for the four
unknown quentities u, v, W, p. On the left side of the Navier—Stokes *
differential equations are the inertia terms, on the right side the mass
forces, the pressure forces, and the friction forces.

Since Stokes! formulation is, of course, at first purely arblirary,
1% is not a priorl certain whether the Navier—Stokes differential
equations describe the motlon of a fluld correctly. They therefore
require verificatlon, which is possible only by way of experimentetion.
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Unfortunately, due to unsurmountable mathematical difficulties s &
general solution of the differential equation is not yet known, that is,
a solution where inertia and friction terms in the entire flow region
are of the same order of magnitude. However, known special solutions

(for instance, the pipe flow with predominant viscosity or cases with
large inertia effect) agree so well with the experimental findings,
that the general validity of Navier—Stokes differential equation hardly
seems questionable,

The plane problem:

By far the greatest part of the application of Navier-Stokes
differential equations concern "plane"™ cases, that is, the cases where
no fluid flows in one direction. The veloclty vector ¥ 1s then given

by

¥=1u (x, y, t) + v (x, ¥y, ) (J""l)

since w = 0. The equation system (equations (3.16) and (3.17)) then is
transformed into the 3 equations

p(§2+ua—u+v-§2)=px—%+u ﬁ+ﬁ

(T Ty X w2, [, &
p(at+uax+v3y> Ty tH ax2+ay2 (%.2)
du , ov _
$+—y—0

with the three unknown factors u, v, p (X and Y are the components
of the mass force K per unilt volums).

After various minor transformations the equation system may be
written as a slingle equation. To this end one introduces the rotational
vector rot w which for the plane case has only gne component not
equalling zero:

1 1f{ov _ou
3 TObRE = @y = 5<§;-g (4:3)
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Furthermore, the mass force in equation (4.2) is put equal to zero.
Thisg 18 permissible in all cases where the fluld 1s homogeneous and no
free surfaces are present. In order to introduce w, into equation (4.2),
the first equation of (4.2) is differentiated with respect to y, and
the second with respect to x; then the first l1s subtracted from the
second and one obtains: _.

{i(ﬁ_@z) . ui(?x_@) +"vi<gv__§a>]
ot \&x Jy ax \d&x Jy oy \ox .ay

1P o w 2 (v
- 5(E-2) - H(E-D (1)
or . . R . . -
X o X %w, %
o(atz+ua;+vayz)=u<axg+—a;§‘> = pAw, (4.5)

With thls transformation the pressure terms have been elliminated.
Equation (4.5) may now, with K/p =v, be written:

DO - yAp  (vorticity transport equation) (4.6)

Dt

with © = ®, being denoted as the vorticity.

This equation slgnifies: The convectilve (substential) variation
of the vortex strength equals the disslipation of vortlicity by
friction.

Equation (4.6) forms with the equation of continuity & system of
two equations with two unknowns, namely u and v, +the derivatives of
which define .

By introducing a flow function V(x,y) one may finally introduce
a single eguation with the unknown . The flow function represents
the integral of the equation of continulty. One sets:

u = gﬂ That 1g, therefore, the
y equation of continulty (%.7)
T = — ¥ is identically *
3¢ satisfied by V.
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Moreover,

w=%(§§_§?)=_l(§ ijk>__lm (1.8)

That is: The Laplaclan of the flow function is exactly minus two timss
as large &as the vorticity (angular velocity). With this result
equation (L4.5) becomes, after division by ©:

(at 2w —)A\y vaAY (4.9)

or expressed only in ¥ with equation (k.T7):

%‘E . %‘1‘; aaﬁ’ Sk A ay = VAN (4.10)

This one equation with the unknown ¥ 1is the vorticity transport
equation, but written in terms of V.

The inertla terms are again on the left, the viscosity terms on the
right sides Equatlion (4.10) is & differential equation of the fourth
order for the flow function. Again, 1ts general solution is extremely
difficult because of the non-linearity. For very slow (creeping) motlions
the friction terms very strongly predominate., Then one may set:

MY = 0 (k.11)

Thig simplificatlion 1s permissible only because the differential equation
remains of the fourth order, so that no boundsry condition is lost.
However, being linear, this eguation is at least solvable. It appears
also in the theory of elasticlty where it is designated as the bipotential
equation. There exists a solution of equation (4.11) by Stokes for
moving droplets,which was extended by Cunningham to very small drop
diameters (comparable to the mean free path of the molecules).

Herewith we shall conclude the more general comsiderations and turn
to the boundary layer problem proper, limiting ourselves to fluids of
very emall viscosity V.

A few preparatory considerations will lead up to the boundary layer
problem. One might conceive the notion of simply eliminating all the
friction terms of the Navier—Stokes! dlfferential equation in the case of
small viscosity. However, this would be fundamentally wrong as will be

proved below.
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An equation which is completely analogous to equation (4.5) occurs
in the theory of heat transfer:

>0 P 39 338 3% .
c — At U=+ V—|= [ —+ — ()4_.12)
ot ox dy a]:2 Bye

where the veloclty components are retained whereas the rotation
replaces the temperature ¥, +the density p the specific heat Cp

per unit volume, end the viscoslty p the thermal conductivity A. On
the left of equation (4.12) stands the temperature change due to
convection, on the right the change due to heat transfer.

The temperature distribution around a heated body immsrsed in a
flow with the free stream veloclty u, (for instance fig. 8) is

determined by the differential equation (k.12). One perceives intuitively

that for small u, the temperature Increase starting from the body

extends toward the front and all sides Par into the flow (solid contour)

whereas for large u, this Influence is mainly limited to a thin layer -
and a narrow wake (dashed contour).

The anslogy of equations (4.12) and (4.5) indicates that the
friction~rotation distribution in question must be similar: For small -
free stream veloclty the rotation is noticeable at large distance from
the body, whereas for large u, the rotation is limited to the immediate
nelghborhood of the body.

_ Thus for rapid motions, that 1s, large Reynolds numbers (compare
next section), ohe expecte the following solution of Navler—Stokes!
differential equatlons:

1., In the reglon outside of a thin boundary layer = 0, that is,
potential flow

2, Inside this thin boundary layer o # 0, +thus no potential flow.

Therefore, one musgt not set ® = 0 in this boundary layer, even
Por small viscosity.

It is true that the potential flow is alsc a solution of Navier—
Stokest differential equations, but 1t does not satlefy the boundary
layer condition Vg = C. .

Proof: The potential flow may be derived from potential &(x,y,z)
as:

2 2 2,
9%, 92,92 (%.13)

w = grad ¢, with A9 =
x> ¥y° et




NACA TM No. 1217 23

However, if Ab = 0, then also grad AP = A grad® = 0, that is, Aw =0
for potential flow. According to equation (3.18) this fact signifies
that In the Navier—Stokes differentlal equations the friction terms
vanish ldentically, and hence that the potential flow actually satisfies
the Navier—Stokes differential equations. However, 1t satisfies only
the one boundary condition v, = o.

Thus, for the 1llmlting case of small viscoslty, one obtains useful
solutions for the limiting process ¥y —>> 0 not by cancelling the
Priction terms in the dlfferential equation, since this reduces its
order (the differential equation of the fourth order for the flow
function would turn into an equation of the second order; the Navier—
Stokes differentisl equations would change from the second to the first
order), so that one can satiefy only correspondingly fewer boundary
condltions.,

Thus the limiting process ¥—>0 must not be performed in the
differential equation ltself, but only in its solution.

This can be clearly demonstrated on an example (referred to for
comparison by Prandtl) of the solution of an ordilnary differential
equation. Conslder the dsmped oscillatlon of & mass point. The
differential squation

2 _
ndZ i x&Eicx=0 (&.14)
th at oL

gpplies in which m represents the osclllating mass, k the damping
constant and ¢ the spring constant. (x = elongation, + = time).

Let for instance the two initial conditions be:

~ .

t=0; x=0; dxfdt =1

In analogy to the case in question one considers here the limiting
cage of a very small mass m, 8ince then the term of the highest order
tends toward zero. If ocne would simply put m = O, one would treat
nothing but the differential equation

k %%-+ cx =0 (+.15)

which by assuming the solution to be of the form x = A ext is
trensformed into k A + ¢ = O, whence A = —c/k. That is, the
solution reads:
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x=4e (4.16)

However, the two initial conditions x =0 and dx/dt = 1 at the
time t = O cannot be satisfled with this solution. But 1f one treats
the complete differential equation (4.14) in the seme manmer there results:

and hence:

or the square root might be developed into a series and (since now the
limiting process m—> 0 is to be performed) broken off after the
gecond term:

2cm
X + k:(l —-—-2)
My o= — k
1,2 2m

= — S. =X, 8
thus A, o Ao =+ E

Thus xl corresponds to the previous solution of the first order
differential equation, where, however, Ao hed been ldést. For very
small m, XE P —k/m; therewlith the general solution bqpomes, by
combination of the particular solutlons,

c k

x = A RELN A, R A o K% A,e T (4.17)

Since for t =0, x 1is also supposed to equal zero, there follows:

A2 = - Al’ thus:
_ S -k
x=A1<e k_ o m> (4.18)

This equation is plotted schematically in figure 9. The first term of
equation (4.18), which alone cannot satisfy the boundary conditions,

-
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starts from the value Ay at the time +t = 0 and decreases expo—
nentially. The second term is lmporitant only for small +t~~alues and
plays no role for large t. It 1ls very repldly variasble and assures
that the total solution (solid line) satisfies the boundary conditions.
The slowly varisble solution (in A;) corresponds to the potential flow,

the second, rapldly variable particular solution (in xa) indicates, as

it were, the narrow region of the boundary layer; the smaller m, the
narrower this region.,

Herewlth we shall conclude the general remarks and turn to the law
of similarity.

CHAPTER V. REYNOLDS®* LAW of SIMILARITY

So far no general methods for the solution of the Navler—Stokes
differential equations are known. Solutions that are wvalld for all
values of the viscoslty are so far known only for a very few special
cases (for instance, Poiseullle's pipe flow). Meanwhile the problem
of flow in a viscous fluid has been tackled by sterting from the limits,
that is, one has treated on the one hand flows of very great viscosity,
on the other hand Plows of very small viscosity, since one obtains in
this manner certain mathematical simplifications. However, starting
from these limiting cases one cannot possibly interpolate for flows of
average viscoslty.

The theoretical treatment of the limlting cases of very great and
very small viscosity is mathematically still very difficult. Thus
ressearch on viscous flulds was underteken largely from the experimental
slde. The Navier—Stokes dlfferential equations offer very useful indi-
cations, which permit a considerable reduction of the volume of experi-—
mental investigation. The rules in question are the so—called laws of
gimilarity.

The problem is: TUnder what conditions are the forms of flows of
any liqulds or gases around geometrically similarly shaped bodies them—
selves geomstrically similar? Such flows are called mechanically similar.

Consider for instance the flows of two dilfferent fluids of different
velocities around two spheres of different size (fig. 10). Under what
conditions are the flows geometrically similar to each other? Obvliously
thig 1s the case when at points of similar position in the two flow
patterns the forces acting on volume elements at these pointe have the
same ratio. Depending on what kinds of forces are in effect, various
laws of similarity will result from this requirement.

Most important for this investigation 1s the case where all forces
except the inertia and friction forces are negligible. Furthermore, no
free surfaces are to te present, so that the effect of gravity is
compensated by the hydrostatic pressure. In this case the flow around
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the two sphereé is geomstrically similar when the inertia and frictian
forces have the sems ratio at every polnt.

The expressions for the inertis and viscosity forces acting on the
volume element will now be derlved: +there 1s as frictlon force per

2
unit volume %; =l é—g, whereas the 1nertis force per unit volume is
oy

Ju
p u =. The ratio
ox

pu |
inertia force _ ax (5.1)
friction force 2
3 u
" 2
dy

mugt, therefore, be the same at all points of the flow. One now inguires
as to the variation of these forces with variation in the quantities
characteristic of the phenomenon: free stream velocity V, diameter 4,
density p, &and viscosity p. For variation of V and d the indi—
vidual quantities in equetion (5.1) at similarly located points vary

as follows:

u ~v- @ ~ El ﬁ ~ —Y—-
x4’ |2 2
dy a
Therewith equation (5.1) becomes:
2
inertia force P %"‘ ovd _ Iva
friction fore B _Ig- - M LA Re (5.2)
e _
. a

The law of mechanical similarity is therefore: The flows around
geometrically similar bodles similarly located and alined wlth respect
to the flow have, for equal p V d/u, geometrically similar stream
lines as well.  If the flows in question are, for instance, two flows
of the same fluid of equel temperature and density (p and p equal) around
two spheres,one of which has a diameter twice that of the other, the flows
are geometrically similar provided that the free stream velocity for the
larger sphere has half the megnitude of that for the smaller sphere.



NACA TM No. 1217 : 27

The quantity p V d./p is,a8 a quotient of two forces, a dimension—
lese number. Thls fact 1s immediately recognized by substituting for
the quantities thelr dimensions:

SR M
gec m2

pVd _ kg sec? m m e -
1 ¥ 8ec kg sec

This law of similarity was discovered by Osborne Reynolds in his
studies of fluid flows in a pipe. The dimensionless guentity is called
after him:

oV d&/u = V 4/y = Re = Reynolds! number

The introduction of this dimensionless quantity helped greatly in
advancing the development of modern hydrodynamics.

Connection between Similarity and
Dimensional Considerations
As 1s known, all physical laws can be expressed in a form free of
the units of measure. Thus the similarity consideration may be replaced

by a dimensional analysis. The following quantities appearing
In the Navier—Stokes differential equatlons are essential for the stream

line pattern: V, 4, p, u. The question is whether there ig a combination

v ab p” I_LB

which 18 a Reynolds number and therefore has the dimension 1. This
amounts to determining a, B, 7, 8 in such a menner that

VaP o7 W0 =xr1°7° =21 (5.3)

with K, L, T representing the symbols for force, length,and time,
respectively. Without limiting the-generality o may be set equal to
unity (o = 1) since eny power of a dimensionless quentity is still a
pure number. With o = 1 there results from equation (5.3)
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L 2\”
[vaf o7 ] - L 1p KT <m2.>s = K0 10 10 (5.4)
L L

By equating the exponents of L, T, K on the left and right sides one
obtains the three equatlons:

K; ry+ 5 =0
L: 1+B =4y —-28=0 (5.5)
T: 2y + & =1
The solution gives: .
p=1; y=1; 8 =-1 (5.6)

Accordingly the only possible dimensionless combination of V, d, p, u
is the guotlent : : - o - S

EEE = Re (5.7)

This dimensional analysis lacks the plctorial quality of the similarity
consideration; however, it offers the advantage of applicabillity even
when knowledge of the exact equation of motion is still miseing, 1if
there is only known what physical quantities determine the phenomenon.

CHAPTER VI. EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

In general, the problem of finding exact solutlons of the Navier—
Stokes differential equations encounters insurmountable difficulties,
particularly because of the non—linearity of these equations which
prohibits application of the principle of superpositlion. Nevertheless
one can give exact solutions for a few speclal cases, mostly, when the
second power terms vanish automatically. A few of these exact solutlons
will be treated here.

One Investlgates flret layer flows In general, that is, flows
where only one veloclty component exists which, morecver, is not
dependent on the analagous position coordinate, whereas the two other
veloclty components vanlsh ldentlcally; thus for Iinstance:
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A=\|[ve; a-= % (6.272)
the differential equation for o(§) with ¢ = V%-y reads:
e+ oo =02+ 1=0 (6.28)

with the boundary conditlions

£E=0: =09t =0
E = oo ot =1
The solution found by serlies development can be found in the thesis of

Hiemenz (reference 10), compare table 1¥, The velocity component
parallel to the surface 1s :

- la‘ £1(y) = pr(¢) (6.29)

It is indicated in figure 16. The curve o@!'(&) increases linearly at

£ = 0 and approaches one asymptotically. For sbout & = 2.6, o' & 0.99;

thus within sbout one percent of the final value. If one agaln designates
the corresponding distance from the surface y = 5 as the boundary layer

thickness (friction layer thickness), then

£, = e.s\g (6.30)

Thus in thls flow, as in the former ones,

5 =

at~

8~\1_17

It is also remarksble that the dimensionless velocity distribution
according to equation (6.29) and the boundary layer thickness according
to equation (6.30) are independent of x, thus do not vary along the wall.

*The tables appear in appendix, chapter XIT.
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For later applications the characteristics important for the friction
layer, dlsplacement thickness &% and momentum thlickness 9, are

Introduced here; they are defihed by

we= (m-wa (6.32)
J=0
2. 0
U9 =£ u(U - u) ay (6.32)
=0

The dlsplacement thickness gives the deflection of the stream lines of
the potential flow from the surface by the friction layer; the momentum
thickness 1s a measure of the momentum loss in the frictlon lsyer. By
ingertion of equation (6.29) in (6.31) and (6.32) and calculation.of the
deflnite integral one finds

N _
- _\/;Lo (1-¢) @& = o.6u82\fZ (6.33)
3 =\/gjp P (1 ~9) & = o.2923\j_g- (6.3%4)
§=0 _
and hence |
§*= 2.218 (6.35)

The quantity 8% i1g indicated in figure 16. For comparison with a
later approximate solutlon one also notes the numerical value of the

5% gu

dimensionless quentity —v—-E;. One finds from equations (6.17) and (6.33)
8%° ay
8% 40 _ o.4202 (6.36)
-V ax

The exact solution of the Nevier—Stokes dlfferentlial equations found
here glves, therefore, for large Reynolds numbers a frictlon layer

thickness decreasing with, \/%: and a transverse pressure gradlent
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decreasing with pa\[va. Both confirm the boundary layer assumptions*
to be discussed later.

d. Convergent and Divergent Channel

A further class of exact solutlons of the Navier—Stokes differential
equations exists for the convergent and divergent chanmel with plane walls
(fig. 17), as given by G. Hemel (reference 1ll),

Without entering into the detalls of the rather complicated calcu—
lations the character of the solutions wlll be briefly sketched:

The veloclty distributions for comvergent channels, plotted against
dlstance along the surface for various included angles a and for various
Re—numbers appear as indicated in figure 18. At the tunnel center the
velocity 1s almost constant, and at the surfaces it suddenly declines to zero.

In the case of dlvergent tunnels one obtains greatly differing
forms far the veloclity proflles, depending on the included angle and
the Re-number. Here all veloclty profiles have two inflection points.
For small Re-nunbers and small included angles the veloclty is positive
over the entire cross section (s0lid curve in fig. 19); for larger angles
and larger Re-numbers, on the other hand, the veloclty proflles have
reverse flow at the surface (dashed curve in Pig. 19). The reverse flow
is the initial phase of a vortex formation and therefors of the separation
of the flow from the surface., Generally, the separation does not occur
symmetrically on both surfaces; the flow separates from one slde and
adheres to the other surface (fig. 20).

These examples also confirm the theory that exact splutions have the same
character as approximaete solutions of boundary layer theory; in particular,
they confirm that for the convergent channel a very thin layer wilth con—
slderable friction effect 1s present near the surface (here also the
calculation shows that the layer thickness o \[y) and that for the
divergent channel reverse flow and seperation occur.

We here conclude the chapter on the exact solutions of the Ravier—
Stokes differentiel equations and turn 4o the approximate solutions,
By exact solutions have been itnderstood those where in the Navier-Stokes
difPerential equations all terms are teken into consideration that, in
the various cases, are not ldentically zero. By approximate solutions
of the Navier—Stokes differential equations will be understood, in
contrast, solutions where terms of small magnitude are neglected in the
differential equations themselves. However, by no means are &ll the
friction terms to be neglected slmultaneously, since this would represent
the case of potential Fflow.

*The rotatlionally—symmetrical stagnation—point flow has been
calculated by Homenn (reference 17). Instead of equation (6.28) one

obtains the differential equation o¢'" + 290" -2+ 1 =0,
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CHAPTER VII. VERY SLOW MOTION (STOEKES, OSEEN)

The exact solutions of the Navier—Stokes differential equations
dlscussed in the previous chapter are of a very special kind. Most of
them dealt with flows along a plane surface, where the stream lines
are rectilinear. Most flows exlsting In practice, as for instance flows
eround arbitrary bodles, cannot be celculated exactly from the Navier—
Stokes differential equations, but must be treated by approximate methods.
Two kindes of such approximations ars possible:

1. For predominant viscoslty, completely neglecting the Ilnertla terms
suggests itself (very emall Re—number; Re< 1).

2. For very small viscoslty and therefore predominant inertia one
takes the viscoslity Into conslderation only in a very thin
layer in the neighborhood of the solid wall; for the rest,
the flow 1s regarded as frictionless. Here the Re—number ig
very large (Prandtlts boundery layer theory). .

The first limiting case wlth very small Re-number will be dlscussed
in this chapter. A small Re—number indlicates small veloclities, small
body dimensions, and large viscoslity. BSlnce the lnertla terms depend
on the square of the velocity whereas the friction terms are linear,
all inertla terms In the Navier-Stokes differentlal equations are, for
very small Re-numbers, negligible. It 1s to be expected that an
approximation will thereby be obtained for very slow (creeping) motionm,
as for instance the Pfalling of a minute fog particle*) or the slow
motion of a body in a very viscld oil.

Neglecting all inertia terms one obtalne from the Navier—Stokes
differential equations (3.16) the following:

\
2
g.ygﬂmg (7.1)
d _
3 - M
/
'gi + %5 + §§ =0 ' (7.2)

*For a sphere falling in air (v = 14 X 1076 m®/sec) for inatance:
Re =V dN =1, for &=1m; V= 1,40 cm/sec.
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The 'same boundary conditlons apply to this system of equations as apply
to the complete Navier—Stokes differential equations, namely vanishing

of the normal component v, =0 and the tangential component vy = 0

at the bounding surfaces.

The neglect of all inertia terms in Navier—Stokes differential
equations does not represent as serlous ah inaccuracy as the neglect of
all friction terms when transforming the Navier—Stokes differential
equations 1nto Bulert!s differential equations of the frictionless Fflow.
That 1s, by neglecting the inertia terms, the order of the differential
equations is not lowered so that in the simplifled differential equations
the same boundary conditlons as in the Navier—Stokes complete differential
equations can stlill be satisfied.

Furthermore one obtains from the equatione (7.1l), taking into
account the continuity, by differentiating the flrst with respect to =x,
the second with respect to ¥y, the third with respect to 2z, the following
equation for the pressure p

2
aag+82§+812:=,3p=o (7.3)
x dy Oz

that is, for creeping motions the pressure function p(x, y, z) Is a
potentlal function.

The details of the calculation will not be discussed more thoroughly,
particularly since the creeplng motion 1s technically not very inporitant.
However, at least Stokes! famous solution for. the sphere will be discussed
briefly (fig. 21). The drag of a sphere for creeping motion comsists of
the contributions of the pressure drag (form drag) and the surface fric—
tion drag. The latter 1s obtalned by Integratlon of the wall shearing
gtress over the entlire sphere surface. Stokes performed the integration
of the equation systems (7.l) and (7.2) for a sphere in a uniform
flow of velocity U,. There results, according to Stokes, for the entire

drag of the sphere of radius R:

- W=WDr+WR=61rpRUO (7.4)

The drag is, therefore, proportional to the first power of the velocity.
If one introduces for the sphere a drag coefficient cy which, in the
customary manner, is referred to the frontal area and the dynamic pressure
of the free stream veloclty
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W= c, nR° 21U, (7.5)

¢y = =3 Re =-—— | (7.6)

One can state immediately that the stream line pattern of this
creeplng motion must be the same ahead of and behind the sphere since
for reversal of the initial flow (sign reversal of the velocity
components) the equation system (equation (7.1l)) goes over into itself.
The stream-line pattern for the viscous sphere flow, as it presents
itself to an observer who 1s &t rest relative to the flow at infinity,
is shown in figure 22. The fluld particles are pushed aslde dy the
sphere in front and come together again behind it.

As shown by a comparison of Stokes! drag formula equation (7.6)
with test results (reference 33), this formula is valid only for the
region Re < 1.

Correctlion by Oseen

In Oseen's later improvement of Stokes! solutlon for the sphere
the inertlas terms In the dlfferentlial equations are partly taken into
consideration. Oseen formulates the veloclty components u, v, w:

u=U,+ut; v=vt; w=wt (7.7)

where ut, v', w! may be considered as disturbance velocities which in
general are small compared with the free stream veloclty U,. This

asgumption g not actually correct for the lmmediete proximity of the
sphere surface., With the formulation (equation (7.T7)) the inertia terms
in equation (3.16) are divided into two groups, for instance:

Uog—zl,uo%xﬂ,... and u'gxi',u'g;',...

The second group of second order, as compared with the flrst group, is
neglected. Therewlith one then obtaine from the Navier—Stokes equations
of motlon (3.16) the following equations of motion, which are taken as

a bagig by Oseen. -
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dut

T g Bowt
Jv?

on§+§§= pAV? S (7.8)
ow!  Jp

Plo st o M

In addition, one uses the contlnulity equation:

dut Lo LW _
ox &y oz

(7.9)

and the same boundary conditions as in the Navier—Stokes differential
equations., One calls the contributions of the convective terms 19 these
equations that were taken into consideratlion, for instance U, =’ the
semi—quadratic terms. These differential equations of Oseen and Stokes!
differential equations are both:'llnear. The stream line pattern, as it
results for thls sphere flow according to Oseen, 1is given in figure 23.
Here agaln the observer is at rest relatlve to the fluid at large distance
from the sphere, Thus the sphere ig dragged past the observer with the
velocity Up. The stream line pattern shead of and behind the sphere are
now not the same, as was the case in Stokes! solution. Ahead of the
sphere exlsts almost the same displacement flow as In Stokes! pattern;
behind the sphere, however, the stream lines are closer together, that 1s
the velocity 1s greater here than in Stokes! case. A weke 1s present
behind the sphere similar to that from test results for large Reynolds
numbers.

For the sphere drag calculated by Stokes there results with the
drag coefficient ¢, Iintroduced in equation (7.5) the formula:

T.D
Cy = l%ei (1 + %Re);Re = % (7.10)

The test results (reference 33) show that Oseent!s formmlae 1s fairly
accurate up to gbout Re = 5. )

With these brief remarks we conclude the limiting case of small
Reynolds numbers and turn to the case which is of foremost interest in

practice: +the case of very large Reynolds number.



Ly ' NACA TM No. 1217

CEAPTER VIII. PRANDTL'S BOUNDARY LAYER EQUATIONS

The other extreme case of very small viscosity or of very large
Reynolds number will now be treated. In thls case the inertla effects
are predominant within the main body of the fluld whereas the viscosity
offects there are almost negligible,

A significant advance in the treatment of motion of fluids for
large Reynolds numbers, that is, in general, of flulds of very small
viscosity, was attained by L. Prandtl in 1904 (reference 7). Prandtl
demonstrated in what way viscoslity 1s essential for large Reynolds
numbers and how one can simplify the Navlier-Stokes dlifferentiel equations
in order to obtain at least approximete solutions.

Let us conelder the motlon of fluld of very small viscosity, for
instance of alr or water surrounding a cylindrical streamline body
(fig. 24). Up to very near the surface the velocities are of the order
of megnitude of the free stream velocity U,. The stream line pattern

as well as the velocity distridbution agree to & large extent with those
of the frictionless fluld (potential flow). More thorough investigations
show, however, that the fluid by no means glides along the surface (as

in potential flow) but adheres to 1t. The transition from zero velocity
at the surface to the fully developed veloclty as 1t exists at some-
distance from the body, ies effected in a .very thin leyer. Thus one must
diegtinguish between two regions which, it 1s true, cannot be rigorously
separated: :

1. A thin layer in the immediate proximity of the body where the
veloclty gradient normal to the surface is very large

(boundary laver). Here the viscoeity p, though very small,
plays an essential role inasmuch as the frictlonal shearing

gtress T =u QE cen sssume conslderable values.

on —

2. In the remaining reglon outside of this layer veloclity gradients
of such megnitude 4o not occur, so that there the effect of
viscoslty becomes insignlficant., Here frictionless potential
flow prevalls.

In general ‘one may say that the boundery layer is thimmer, the
smeller the viscoslty or, more generally, the larger the Re—number. It
was shown before on the basis of exact solutlions of the Navier—Stokes
differential equatione that the boundary leyer thickness 1s

5~\/T

The approximations to the Navier—Stokes dlffereritial equations to be made
below are more valid the thinmner the boundary layer. Thus the solutions

of the boundary layer equetions have an asymptotic character for infinitely
increasing Reynolds numbers.
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Lot us now make the simplifications of the Navler—Stokes dlfferential
equations for the boundary layer. To this end the order of magnitude of

the separate terms of the Navier—Stokes &lfferentlal equations must be
estimated., One considers the flow around & cylindrical body according

to figure 24. One imagines the Navier—Stokes differential equations
written non—dimensgionally, by referring a2ll velocities to the free stream
velocity U, and the lengths_to a body length 1. The pressure will be
made dimensionless with p Uy,2, the time with 1/U,. Furthermore

Usl
Re = -—3— represents the Reynolds number. Accordingly, the Navier-Stokes

differential ‘equations become — omititing the mass forces according to
equation (4.2), by writing the same letters for the dimensionless gquantities
ag for the dimensional ones —

N\
O T N R
ot ax y ox axa aye
1011 5% 82 1 1/8°
2
E+u§z+vi=—§£+}-a—az+§l L (8.1)
ot ox oy %y R axe aya
§ 186 5 1 52 & él-
a_u+§1=o
x oy
11 J

The estimation glves: Longitidinal velocity wu 1s of the order of
magnitude 1. Dimensionless boundary lsyer thickness 8/1<<l. Therefrom
follows:

Beu 1
2

o/
o
N
o

whereas the derivatives with respect to x are of normal order of
magnitude, thus -
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From the continuity equation follows therefore:

The transverse velocity v 1n the boundary layer is therefore, to the
first order, small in comparison with the longitudinal velocity. Further
there follows:

v

2
2 2
ox oy

¥y
o+

Thus there result for the single terms of Ravier—Stokes differential
equations the orders of magnitude noted in equation (8.1): On the right
gide 1n the first equation

Pu o 2%
x> oy

go that 1t can be neglected

One now obtalins within the boundary layer friction terms which are
of the same order of magnitude as the inertia terms, if 1/R 1s of the
order of magnitude 82, or, if the dimensional quentities are again
written, '

RPN SR
r R\ W, (8.2)

In the second equation of motion all terms then are of the order of
magnitude &, Including the transverse pressure gradlent %3. In the

boundary layer, as long as 1t 1s thln, the dependence of the pressure

on y may therefore be neglected. Thus approximately the same pressure
prevails within the boundary layer as at its edge, that is, the pressure

of the potential flow. The pressure wlthin the boundary layer 1ls therefores,

ag 1t were,lmpressed by the potential flow.

Thé second equation of motion is therewlth exhausted and does not
have to be consldered further. Using again the dimensional quantitles

!
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one now makes the Navier—Stokes dlfferentlal equations assume the following
simplified form:

ﬂ-l-uiq-v@s—i@-{-‘v&
3t ax dy p ox 352
L (8.3)
_a_li_l_iV_:O
ox oy
J
Boundary conditions: y =0: u=v =20
y=ee: u=70

The pressure in the boundery layer, which l1s dependent only on x, 1is
determined from the potential flow U (x, %), assumed to be known
according to Bernoullits equation.

\
L ye = Ly2
P+3 2 P, + 5 Uy~  for stationary flow
or S (8.4)
13 oU . oU
-= =T = + == for nonstatlonary flow
p ox dx dt

With the potential flow known, the equation system (8.3) represents
a system of two equatlions with the two unknowns u and v.

Numerical example: In order to help clerify the concepts a numerical
example is given for the thickness of the boundary layer. The problem is:
What is the boundary layer thlckness, for 1instance, 1n the case of the
plate in longltudinal flow at the distance 1 = 100 centimeters from the
leading edge? Let the velocity be uy = 30 meters per second and the

kinematic viscosity for air v = 0,14 X 10‘“ meters square per second;
then the Reynolds number is R = U, %.= 2.1 X 106 end VR = 1.45 X 103.

A numerical factor is still missing in the formula (8.2) for the boundery
layer thickness, For the plate in longltudinal flow 1t is, as later
calculations will show, filve, provided one understands by the boundary
thickness & +that dlstance from the surface where the velocity has the
value 0.99 u,. .Thus a calculation by the formula

\n
O

o~ | O

El
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results for the present case in a boundary layer thickness 5 = 3.45 mm.
It should be added that the Reynolds nunber is already so large that the
boundery layer at the end of the plate would be turbulent. The transition
from laminsr to turbulent lies further upstream, and at this point the
boundary layer thickness would then be somewhat smaller than the value
determined above.

Fourth lecture on December 22, 1942

Physical Summary and Conclusions

The physlcal content of the consideretions so far can be summed up
in the followling sentences:

1. In a very thin layer on the body, the boundary layer, the
veloclty passes from the value zero at the surface to the
value which the potential flow would have In the neighborhood
of the surface.

2, The pressure In the boundary layer is practically independent
of the coordinate normal to the surface and equals the
pressure of the potential flow along the surface.

3. In the boundary layer the only friction force to be taken into
consideration is the shearing stress T = gu
Ty
k., (without proof) The curvature of the surface may be neglected
in the boundary layer as long as the radius of curvature lis
large compared with the boundery layer thickness (Boltz,
Thesis, (reference 9)).

5. All these conslderations are valld only as long as no separation
of the flow from the surface occurs.

Without integration of the boundary layer equations one can draw from
these sentences important physicel conclusions as to the flow pattern:

In particular separation occurs if a transport of boundary layer materlal
into the interior of the fluid takes place. If a region with pressure
increase exists along the body contour, the retarded fluld In the boundary
layer is in general, because of its small kinetlc energy, not able to
penetrate too far into the,reglon of higher pressure. It then withdraws
laterally from the reglon of higher pressure, separating from the body,
end ie deflected into the interior (fig. 25). As the point of separation
one defines the bhoundary between forward flow and reverse flow of the
layer nearest the surface, thus
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point of separation: <§E> = 0% (8.5)

Determining when and where separation occurs requires for each case the
Integration of the boundary laeyer equations.

One can readily understand that for the veloclty profile u(y) at
the separation point and for all veloclity profiles in the decelerating

flow %E > 0) an inflection point** must be present. From equation (8.3)
namely, for the surface y = 0 there follows immedliately the relation

2 »
a_; = f—‘ﬁ (8.6)
3

y=0

The curvature of the velocity profile at the surface therefore exchanges
glgns with the pressure gradient. Thus for flow with pressure decrease

(a.ccelera.ted £low -%I?- < o), % <0 is valid and therefore

3 oy surface
also ? <0 1in the entire boundary layer (fig. 26). For the region
S .
of the pressure Increase (d.ecelera.ting flow, %E > 0) % > 0.
oy

surface
However, since in any case at larger distances from the surface

ég%{O, there must exist, for decelerating flow, within the boundary
oy 2
layer a point where % = 0 (inflectlon point) (fig. 27). For

oy
decelerating potentlal flow the boundary layer profile has, therefore,
an inflectlion point. Since the separation profile wilth vanishing surface
tangent must necessarily have an inflection point, it follows that
separatlion can occur only when the potential flow is decelerating

&)

* The veloclty proflile at the point of separation therefore starts
with a vanishing tangent (fig. 25). Velocity profiles behind the point
of separation have reverse flow in the neighborhood of the surface (fig. 25).

¥¥ The presence of an inflectlon point 1s significant for the
stability of the velocity profile (transition from laminar to turbulent,

compare chapter XXI Part II.)
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If separation is present, the potential flow can no longer envelop
the body closely everywhere. Thus the pressure distribution sometimes
deviates conglderably from that given by the potential theory. In such
cages the pressure varlation impressed on.the boundary layer can in
most casges be determined only empirically, because the frictionless outer
flow 1tself depends on the complicated phenomena connected with the
geparation,

Thus the boundary layer theory explains also the fact that in
addltion to the frictional drag a pure pressure drag, called "form drag, "
appears.

In regard to later calculations the followling expleanation shall be
given: If equation (8.3) 1s differentiated with respect to y, there
results for stationary flow

du  du du 3% v du 1 3% 3u

ugxf—a—y-+$$+vay2+$$=—saxay+ V—a?j (8.7)

Due to %? = 0 and to the boundary conditions u = v = 0 one obtains
from equation (8.7) for the surface y = 0 the relation

3
i’—g =0 (8.8)
ay surface

which 1s valid for all stetlonary boundary layer profiles (pressure
increase and pressure decrease).

Frictional Drag

Ag a result of the Integratlon of the boundary leyer equation one
obtainsg the veloclty distribution and the seperatlion point and can there—
from calculate the particuleaerly interesting surface friction drag in the
following menner. The friction drag Wy results from the integration of
the surface shearing stress over the surface of the body. For the plane
case one obtalns, with the symbols according to figure 28, for the friction
drag

YA
Wy = 2b T, cos § ds (8.9)

8=0

-
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The integration has to be extended over both sides of the surface from
the stagnation point to the separation point (& = i1'), b signifies the

height of the cylindricel body. Because cos ¢ ds = dx and T, = H (%?)
o

one obtains for the friction drag

1
W, = 2by (%) ax (8.10)
Q

=0

This Integration also has to be extended along both sides of the body.
For calculation of the frictlon drag one needs, therefore, the velocity
gradient at the surface. The latter can only be obtained by integration
of the boundary—layer differentiel equations. If the separation point
appears ahead of the tralling edge, the formmla has to be appllied only
up to the seperation point o¥, sometimes, up to the point of laminar—to—
turbulent transition which is located furthdr upstream. Behind this
transition point exists turbulent surfece friction drag. In order to
obtain the totel drag, the form drag has to be added to this friction
drag; however, the form drag cannot be obtained from the boundsry layer
calculation in & simple manner,

CHAPTER IX. EXACT SOLUTIONS OF THE BOUNDARY LAYER
EQUATTIONS FOR THE PLANE PROBLEM

&. The Flat Plate in Longitudinal Flow

One of the simplest examples for the application of the boundary
layer equations (8.3) 1s the flow along a flat plate. Let the plate
begin at x = 0, extend parallel to the x—-axls, and be infinitely
long (fig. 29). Let the stationary flow of the free stream velocity Uo
be treated. The calculetions for it were made by H. Blasius (reference 8)
in his GOttingen thesis. In this case the velocity of the potential flow
is constant, thus dp/dx = 0. The boundary layer equations (8.3) become
therefore

o )
u%.;v?&: V.é_.l.];
ox oy ay2
9.1)
2324.&:0 ? ) (
ax oy
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with the boundary conditlions

y=0: u=v=20
(9.1a)
y=w: u=70

Since the entire system has no characteristic length, the assumption
suggests itself that the veloclity profiles at various distances x are
affine to each other, so that one may write u/U, = ¢ (y/5). Let therein
5 = 8(x) represent a measure of the boundary layer thickness, increasing
with the length of run. One arrives at an estimate of the boundary layer
thickness in the following manner:

According to the former exact solutions of Navlier—Stokes equations
(chapter VI), for instance for the non-stationary problem of the surface
suddenly set in motion,

5 \(VE

with t denoting the time since the beginning of the motion. Applied
to the present stationary problem one mey substitute for the time +t the
time required by a fluid particle to travel from the leading edge of the

-plate to the point x. This tims + = éi and one has, therefore, for
o
the present case
o || XX (9.2)
o

Thus 1t is useful to introduce for the distance from the surface y the
new dimensionless coordinate 17 = y/B or according to equation (9.2)

U
n=y\[52 (9:3)

For further calculations one observes that

o __1n1, on_\|°
x 2x’ Jy vx

The continuity equetion 1s again integrated by introduction of the stream
function v; for the latter one assumes
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¥ =\vx U £(n) ' (9.4)

Accordingly £(n) is a dimensionless stream function; for the velocity
components one obtains from equation (9.4)

oV dﬂra_q

dy dn oy

it

= U £*(n) | (9.5)

:

. \’V U
v=__?ri=—\’vao f'(n)%—% xo f(n)

> (9.6)
vV U
v = 2\ =2 (gt - )
/
Furthermore one obtains
2

@—_lti ., Q— Uo ", aau_Uo g1t

x 2x L dy Y% vx s 5;5'_ ¥z T (9.7)

By insertion of these values in eqiation (9.1) there results
2 U-2

U U
[e] " (@) 1 (o] "
— —— f‘f + — f'_ =Y == b 4
P n > (n f) f f

or, after simplifyling, the following differential equation for the stream
function f£(n)

£ EY + 2 £1Y =0 (9.8)

Becauss of equation (9.la) and of equations (9.5) and (9.6) the boundary
conditions are

=0 F=Ff'=0; n=o £1=1 (9.9)

For ths present case thereforse, there results from the two partial
differential equations (9.1), by the similarity transformation (equation
(9.3)), an ordinary non-linear differential equation of the third order.
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The three boundary conditions according to equation (9.9) are sufficient
for a unique determination of the function f(n) from this equation

A particular solution of the differential equation (9.8) is the
solution

f = n 4+ constant

This solutlion corresponds to the potential flow; we shall revert to it
presently.

The general solutlion of the differential equation (9.8) cannot be
glven in closed form. Therefore one must calculate 1t elther by numerical
methods or by serles developments. Blaslus obtained the solution by a
power serlies development near n = 0 and an asymptotlc development
near 7 =, which are combined at an appropriate point. Since the
method of calculatlion ls characterlstic of the solution of the boundary
layer differential equations it will be descrlbed In more detail. The
power series around 1 = 0 1s formulated in the form

A+ A+ 2% 72 + g% B+ .. W

£(n)

S (9.10)

" Ay .
£"(n) = A, + A3n + o n2 + 2? 73 +

A3 + An o+ & n2 + fé 73 +

f'"(n5 Y "

/

Because of the boundary conditions for n = O one has immedlately

By insertion of the equations (9.10) into the differential equation (9.8)
one obtains

Ay + n 2Ay + g% (AQE + EAED + %% (&AQ A + 2A6) 00 .=0

In order to make the equation (9.10) represent a solution of the differ—
ential equation it is required that in the last equation all coefficlents

of the single powers of rn +vanish. First, one has immediately A3 = Ay = O%
and further _ o

*This also Pollows at once from equations (8.6) and (8.8).
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1,2 o

A5=—§A2; A6=O; A7=O
=1 a3
.A.8— 2.A.2A5—-—1+—A2

Thus only the coefficilents A2, A5, A8 + +« o are different from zero.

The coefficient A, remains at first undetermined since the third boundary
gondition for n = was not yet satisfied. The remaining coefficients

A5, A8, All' . « can all be expressed In terms of AE' One therefore

sets up, with Ay = as a series for f(y) which progresses by powers
of 113 s 1In the following form: '

= n+l o) i
P = (_ iy Cpe 1 30 (9.11)
27 (3ne2)1
n=

The results for the Pirst coefficients are:

Co=1; ©Cp =1 Cp = 11

Q
|

3 = 375; O, = 278975 C5 = 3 817137

The a.sjmptotic development near 1 =« is formlated in the form

P = fl + f2 + ¢ ¢ (9.12)

where the higher approximations are to be small in comparison with the

lower sapproximations, for instance :E’2 << fl. The first asymptotic

approximation to correspond to the potential flow is, as was mentioned
above,

fl =N - B (9'13)

For this approximatlon £1" = 0, and one obteins therefore by replacing
the quentity f£f" 1n the differential equation (9.8) by f1f,"  the

following equation for the second asymptotic approximation:
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(n—B) £3 + 223t = 0

2
or
£
2 -1l(-1)
or
108‘f" =Epp-% n2 + C
2 2 4

If one substitutes for the integration constent C = —Be/h + log 7,
(y 1is thus a new integration constant) one obtains

-

. —%(n—ﬁ)2
kg o =7 e
and after integration
2
" -Lt-p
£y =7 e dn (9.1k)
r[=oa

Because fI () =1 and fé () = 0, +the solution ¥f! = fi + fé

satisfies the third boundary condition £t () = 1. Another integration
of equation (9.14) gives as second asymptotic solution for £ = £, + £p

k LR P
f=n—B+7/ drl o dn (9.15)

This solution still contains two integretion constants B and o
corresponding to the fact that only one of the three boundary conditions
was satisfied. The asymptotic solution can, in the same manner, be
improved stlll farther by_equating =14+ f2 + f3. The differential

equation for f3 was solved by Blasius; a more detalled discussion is
unnecessary.

These two solu%ions, the power series near 17 = O according to

equation (9.11) and the asymptotic solution neer n =« according to
equation (9.15), now have to be Joined together and the three integratioa
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constants «, B and y have thereby to be determined. This is effected
in the following way: At a polnt g = U where both solutions are

serviceable, f, f' and f" from the power series and the asymptotic
solution are brought to agreement. Becsuse of the differential
equation (9.8) the higher derivatives will then automatically agree.

In thils manner one obtains three equations for the three unknown
integration constants. The numerical calculation gives

a=0.332; B =1.73; 7 =0.231

A table for £, ft, £" taken from a treatise by L. Howarth (reference 18)
is given In table.2*%, The veloclty distribution in the boundary layer '
u/U, = £*(n) according to equation (9.5) 1is represented in figure 30.
In comparison with the stagnation point profile (fig. 16) it is striking
that the velocity profile of the plate flow near the surface has a very
slight curvature. eAt the surface 1tself it has an inflection point, that
is, for y = O: é—% = 0.
oy .

The transverse component of the velocity in the boundary layer
glven by equation (9.6) is plotted in figure 31. It is noteworthy that
outside of the friction layer, for 7w

VU
v = Ve = 0.865 U, f

The fact that on the outer edge of the boundary layer the transverse
component v % 0 1g caused by the deflection of the potential flow from
the body due to the boundary layer thickness increasing downstream. For
very large distances from the wall (far in the potential flow) the
boundary layer solution does not go over exactly into the undistrubed
potential flow u = Ug; " v = O. This has to be tolerated as a (very
slight) deficlency of the boundary layer solution.

For the present case a separation of the boundary layer does not
exist since the pressure gradient equals zero. :

Frictlion Drag

From the solutlon given above the surface friction drag of the
plate in longltudinal flow is to be calculated. According to equation (8.9)
the friction drag for one slde of the plate i1s

* See appendix,chapter XII.
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W= T dx = by (ﬁE) dx (9.165

X=0 =0

with b denoting the width, 1?7 the length of the plate. According to
equations (9.7) and (9.11) .

| N
du) - Uy Y% £"(0) = au,\| =2
oy o vx o\wvx
Therewith the local surface shearing stress is

‘/U T,
T = au Uy v—g = 0.332u UO\’\TJ% (9.17)

The friction drag according to equation (9.16) is therewith

S Y)
W=oub U \IUb & _2o4b U 10,
= b U\ v VGE" o\ P Y%

X=0

and therefore the drag of the plate wetted on both sides is

-

oW = ha b Ub3 np 1

1.328 b\/Uo3 up 1
J

If one introduces in the customary manner & dimensionless drag coefficient
by the equation —

> (9.18)

o = ———5 (F=25b 1 = wetted ares)

one obtains for the drag coefficlent the formmle

R I () (9.19)

VRe
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Displacement Thickness of the Boundary Layer

By the development of the boundary layer on the plate, which
increases downstream with \x, +the potentlal flow 1s deflected outward
from the surface by an amount &%, which 1s called the dlsplacement
thickness of the boundary layer. It can be easily calculated from the
velocity distribution in the boundary leyer, as follows: Let y; denote
& point outside the boundary layer; then sccording to the definition
for &%

Ja .
ud.y’=Uo<yl—5*>
y=0
or
Ja
&% = " 9.20
( U;)ay (9.20)
y=0
According to equation (9.5)
u X
ARELTY 3 B I
( UB)QY Uo
=0 1=0

Eo

Since the polnt 7 = M lies outslde of the boundary layer, one can put

for f(n) the firet approximation of the asymptotic solution according
to equation (9.13), thus

£(ny) =, —B=mn3 —1.73

Thus one finds for the displacement thlckness of the boundary layer
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8% = 1.73\[LE (9.21)

The dlstance from the surface y = 5% 1s also shown in flgure 30. Thus
the stream lines of the potential flow are, because of the friction
effect, deflected outward by this amount.,

The actual boundary layer thickmess & cannot be gilven accurately
since the friction effect in the boundary layer thlckness decreases
asymptotically toward the outside. The component of veloclty parallel
to the surface u is asymptotically converted into the velocity Ub

of the potential flow (the function ft(n) asymptotically approaches the
value 1). If one wante to define the boundary layer thickness as the
point where the veloclty w = 0.99 U, (full value), one obtalns for it

according to table 2, 1 = 5.0. Therewith one has for the thus defined
boundary layer thickness

- \,V_x '
5 = 5.0 T, (9.218)

The thus defined boundery leyer thickness equals about -three times the
displacement thickness of the boundary layer.

Let here also be introduced the velue for the momentum thickness 4,
needed later. This latter is a measure for the momentum loss due to

friction in the boundary leyer and is, as indicated before in equation (6.32),
defined by the equation

y=c
The calculatlon results, because of equetion (9.5), in

3 = £1(1 - f')dq {’I—x = 0.664 U—x (9.21b)
(o] (o

n=o0

Finally the form parameter becomss therewith
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-2—* = 2.605 (9.21c)

Experimental investigations of the laminar boundary layer on the flat

plate were performed by B. G. van der Hegge Zynen (reference 19) and

M. Hansen (reference 20). In all essential points the theoretical results

were well confirmed. The measurements showed that the laminar boundary

layer exists to about the Reynolds number (Ub x/b) it = 3.5 to 5 X 105,
cr

if x denotes the length of run of the boundary layer. For larger
Reynolds numbers transition to the turbulent state of flow takes place.

Fifth lecture on January 5, 19h2.
b. The Boundary Leyer on the Cylinder (symmetrical case)

The Ilntegration method of Blasius given in the previous section
was used by Hiemenz (thesls Gottingen 1911) for calculating the boundary
layer on the circular cylinder. The same method wae later further extended
by Howarth (reference 15) to the general case of & cylindrical body of
arbltrary cross section. Thls method wlill be briefly presented for the
symmetrical case. One conslders (fig. 32) a cylindrical body with
symmetrical cross section in a flow approaching in the direction of the
symmetry exis with the veloclty U,., Let x be the arc length along

the contour, measured from the front stagnation polnt, y +the vertical
distance from the surface. Let the potential flow TU(x) be given by
1ts power series development in x. At the stagnation point (x = 0),
U(x) = 0, and for the symmetrical case only the odd terms of the power
serles are dlfferent from zero. Therefore:

U(x) = wx + u3x3 + usx5 + e e (9.22)

The coefflicients 0, u3, « « o depend solely on the shape of the
body and are therefore quantities known from the potentlal flow,

The statlionary boundary layer equations according to equation (8.3)
are alsgo vaelid for thls case wlth & curved surface and therefore read:

ou d g W 3% )
b3 a
v ox v 3y dx v 3 2
> (9.23)
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From eguation (9.22) one obtaine for the pressure term:

" _ .
. 3u
U %'Lxl = u; [:ulx + 1;11_3::3 + <6.u5 + ui >x5 + o J (9.24)

The continulty equation is agaln Integrated by the stream function:

, ¥ T (9.25)

It is now neceseary to find a sultable formmlation for the veloclty
distribution u(x, y), v(x, y) and therewith for the stream

function V¥(x, y). In analogy to equation (9.22) a power serles in x
suggests iteelf for u(x, y) as well, with coefficients, however,. which
are dependent on y. It is important to find a form where the coeffi~
cients (or functions) dependent on y have a universal character, that
is, need not be calculated anew for each shape of body, but may be calcu—
lated once for all. Howarth (reference 15) succeeded in finding such a
formulation.

For the distance from the surface one introduces the dimensionless
variable:

1=7\l7 %9.26)

The expression (9.24) for the pressure term suggests that the following
equation be selected for V¥ .

2

~qr=-y—uxf(n)+h-ux3f()+6x5ug()+1-13—h() + (9.27)
w TP 3134 58541 ul5“ :

This ylelds: (' = differentiation with respect to 1q):
2 - o

u
u= ulej'_ + l|-u3x3f§ + 6x° u5g% + —-'D’u-]—- hé + 0 e (9.28)

*¥One obtalns this equetion from that of Blasius &according to
equation (9.3) by substituting for LS the first term of the serles

egquation (9.22).
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2
1
% =l 12113x2f' + 302 lug + =—ht | +... (9.29)

3 55 % 5

2
n
Su _ _u.l. wxf" + bu xoF" + 6x° ug"+ih" + .+ o0 (9.30)
oy v 3 3 u,

1 1 575
/
- ~
2
éEE = o w.xf1" + hu x3Pt" 4+ 6x0 g u3' g
5 = v YWl u3x 3 + 6x u535 + — + . . . 9 (9.31)
oy 1 A
J

. .
- 'u‘:_l wfy 12u3x2f3 + 30c* U585 + 1:-3— By |+ .00 (9.32)
v 1

<
]

- After insertion of the expressions (9.24) and (9.28) to (9.32) into the
first equation (9.23) one obtains by comparison of the coefficients a
system of ordinary differentlal equatlions for the unknown functions £1s

f3, g5, h5, e « « « 5 Which appears as follows:

"\
terms with gives the dlifferentlial eguatlion ' .
ux f2 - P " =1+ F1"
1 1 11 1l
3 —_— L] — " o_ "
hu1u3x hfif§ 3flf3 flf3 1+ f§
5 > (9.33)
6ulu5x 6fi§% - 5f£g5 -fig; =1+ gé"
6u_x° 6f'ht — 5¢"h_ — £ h" = Ly open 8(:?*2 - £ £")
3 15 15 15 2 3. 3 33
7/

Formulation of the flow function according to equation (9.27) has
thue accomplished the elimination of the coefflclents depending on body
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shape (ul, u3, « + «) from the differential equations- fdr the functions
fl, f3, s+ « o which thus now have a universal character.

The boundery conditlons.for the functions fl, T + «» Tollow

3

from

y=0: u=v=20
y =w: u=T

by comparison of equation (9.28) with equation (9.22); the& are

ft =0; f_=f'=0; g_=g

=0: £ = 1 =0
n 1 3773 5 5
= $ = T o o
By = b5 = 0 (9.34)
- o ¢ t = 1. R v = L, 1 =0; . . .
n=ew: f 1; f3 i 35 ] h 0; .

The differential equations (9.33) are all of the third order, and
equation (9.34) gives three boundary conditions for each. The differen—
tial equation for f,(n) is non—-linear and 1s identical with the differ—
ential equation (6.2%) obtained in chapter VI for the stagnetion point
flow; fy=@; n=¢E&, as follows by comparison of equation (6.26e)

with equation (6.26). All the remaining differential equations in
equation (9.33) are linear, with the coefficients determined by the
functione of the precedling spproximations. .

The solutions of the differential equations (9.33) are best obtained .
by numerical integration. The functlons f; and f3 were already '

calculated by Hiemenz (reference 10). Howarth (reference 15) improved
the tebles for f, and recently Nils FrOssling (reference 16) calculated
g end h as wadll. The fi which 1s 1dentical with ¢' according to

equation (6.28) was already given-in figure 16. The function f§ can be
seen from figure 33, the functlions gé and hé from figure 34. The

numerical values are compiled in table 3.

Concerning the applicablliity of this calculatlon method it must be
mentioned that for slender body shapes the series for U(x) and u(x,y)
converge poorly. The reason is, that for these body shapes U(x) has
a very steep ascent in the neighborhood of the stagnation point (fig. 35),
while showing & rather flat curve further on. Such a function cannot be
developed readily into a Taylor serles. For such body shapes many more of
the functions of the differential-equation system (9.33) would be required
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than have been calculated so far. For blunt bodies, as for instance the
circular cylinder, the convergence is considerably better so that one
proceeds rather far with this calculation although not a.lwa.ys up to the

point of separation.

Howarth (reference 15) also performed the corresponding calculation
for the unsymmetrical case where the even coefficlents also appear in
the power series for TU(x). Thie is the case for a symmetrical body
at an angle of attack and qulite generally for any unsymmetrical body.

Frossling (reference 16) made the application to the rotationally
symmetrical case.

Circuler Cylinder

The boundary layer on the clrculer cylinder will be treated as an
example for the application of this method. Whereas Hiemenz (reference 10)
took a pressure distribution measured by him as the basis for this cease,
we shall here calculate wlth the potential—theoretlcal pressure dlstribution.
The velocity distribution of the potential flow reads, with the symbols
according to figure 36,

U(x) = 20, sin ¢ = 2U, sin% (9.35)

The power series development gives:

Wﬂ=2q{§-%(§3+%(§5+..} (9.36)

In comparison with equation (9.22):

U T U
ul=2—9; u3=—-%—°_: u5=—g!-—9-; v e . (9.36a)
R 3t g3 5t 25
Therewlth follows from equation (9.26):
_ 1B _ 5[0 |
-4 | 2 : (9.37)

Tt follows that for the velocity dilstribution from equation (9.28)
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Lu(x,y) X _ 4 5)3 L §.>5
A 3 fl 3T (R fé + 57 (R (63% + 20}:%)— e (9.38)

One further calculates the poslition of the separation point x, Wwhich

is, according to equation (8.5) determined by <%E = 0, Therewlith
y
Yy=0

results from eguation (9.36): _

]
o

x x, \3 -
£2(0) EA_% £7(0) <ié) . (9.38a)

0.7246 one finds:

With the numerical values fi(o) = 1.2326k; f;(q)

TA - 1.60 o ¥
£ =1.60; o =92° (9-39)

Hiemenz (reference 10) based his calculation on hls experimental
pressure distribution; he calculated the separation point to be at
P, = 82°, vwhereas his measuremsnts gave P, = 81°, This result is

congiderably different from that obtained with the potential~theoretical
pressure distribution. The reason 1s that for a body as blunt asg the
clrcular cylinder the experimental and the potential-theoretical pressurse
digtribution in the nelghborhood of the geparation point differ greatly.

The method described here of calculating the boundary layer by a
power—geries development starting from the stagnation point has found
but little acceptance because of the extensive calculation required.

Tt is, however, indispenssble for fundamental considerations, since there
exist no other exact solutions of the differentlial equations of the
boundary layer for the flow ebout & body. ' '

Thus approximation methods came 1nto use for the practical per—
formance of boundary layer celculatlions; they will be discussed in the
following chapter. It i1s true that thelr accuracy 1s sometimes consider—
ebly lower than that of the previously discussed exact solutions.

c. Weke behind the Flat Plate in Longitudinal Flow

The application of the boundary leyer equations is not absolutely
limited to the presence of solid walls: They may also be applied if
there 1s present within the flow a layer in which the frictlon effect is

*¥This result varies somswhat 1f in the series developmerit
equation (9.38a), one takes further terms into consideration. However,
for this purpose one would have to calculate at least up to the term x!,
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predominant. This is the case for instance when within the flow two

layers of different velocities adjoin, as for instence in the wake reglion
behind a body or at the outflow from an opening. In this and the following
chapter we shall treat two examples of such Plows which we shall later
encounter again Iin the discussion of turbulent flows.

The wake flow behind the flat plate in longltudinal flow is chosen
as the first example (fig. 37). At the trailing edge of the plate the
two boundary layer profiles grow together and form a “wake profile"™ the
width of which increases with distaence while the velocity decrement at
its center decreases. The size of the "wake" is directly conmected with
the drag of the body. Otherwlse, however, the form of the veloclty
distribution in the wake at a large distance from the body 1s not dependent
on the shape of the body, whereas the velocity distribution very close
.behind the body naturally depends on the boundary layer of the body and
on any existing separation.

From the velocity distribution measured in the wake one may cal—
culate the drag by means of the momentum theorem in the following manner.
The momentum theorem states: The variation of the momentum with time
( = momentum flow through a control area fixed in space) equals the
sum of the resultent forces. By resultant forces one has to understanad:

1. Pressure forces on the control ares, 2. Extraneous forces, which are
transferred from solid bodies to the flowing f£luid, for instance the
shearing stress at the surface which gives the friction drag. For the
present case the control area AAiBBl is placed as indicated in figure 38.

Let the boundary AiBl which 1s parallel to the plate be so far distant

from it that it lles everywhere in the undisturbed velocity U,. Further—
more, the rear cross section BBy is to lie so far behind the plate that

the static pressure there has the same undisturbed value a&s in front of
the plate. Then the pressure is constant on the entire control area, so
that the pressure forces make no contribution. In caleulating the

momentum flow through this control area one has to consider that, due to
continuity, fluld must flow out through the boundary AiBl’ namely the

difference between the larger quentity flowing through the cross
section AA; and the smaller quantity flowing through the cross

gsection BB,. The cross section AB does not make a contribution to the
x-momentum, since for reasons of symmetry the transverse velocity on 1t
equals zero. The momentum balance is given in the table below, with
entering momentums counted as positive, outgoing ones as negative.
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Mags Momentum flow In x—direction
Cross section [m3/sec:[ = volume X density X velocity
AB o} 0
h h
AA 1:[ U, dy pb er dy
h
B B, —bf udy -pb ufay
' o)
h h
AyB4 -D (Uo - u)dy -pb U (U, —u)dy
o} o]
Z_ = ZMass Z Momentum Flow
Control area =0 =W

The total momentum loss of the flow for the present case gquals the

drag W of-.one side of the plate.

The integration therein may be extended from y =0 t0o e,
from y =0 to h,

vanighes.
therefore:

u(Uo—u)dy=b

o]

Thus one obtains

u (U, = u) &y (9.40)

o]

ingtead of _

gince for y> h the integrand in equation (9.40)
For the drag of the plate wetted on both sldes one obtalns
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+oc
W = bp w(Ug—u) dy (9.41)

-0

In equations (9.40) and (9.41) the integrals are to be extended over the
weke as indicated at a dlstance behind the plate where the static pressure
has its undlsturbed value. However, one may naturally apply equations
(9.40) and (9.41) also to the boundary layer on the plate at a certaln
point x; +then they give the drag of the part of the plate from the
leading edge to this point. The definite integrals in equations (9.40)
and (9.41) represent physically the momentum loss due to the friction
effect. As mentioned before, it 1s customary to introduce for this
integral alseo the momentum loss thickness I by the following equation
compare equation (6. 32))

U e =] u(y - u) dy (9.42)

y=0

Therewith the formule for the drag may also be wrltten, by comparison
with equation (9.40):

2
=bp T, 3 (9.43)

The veloclity distribution in the wake, particularly at large
distance x . behind the plate in longltudinal flow (fig. 37) is to be
calculated next. Thlis calculation must be performed In two steps:

1. By a development "from the front", that 1s, by a calculation which
follows the further development of the Blasius—boundary layer profile
present at the tralling edge of the plate. 2. By a development "from
the rear" that is, by an asymptotic calgulation for the wake, under the
assumption that the difference velocity

ul(x: y) = UO - u(x, y) (9.4%)

is small.

The first calculation was performed by S. Goldsteln (reference 21)
and is very troublesome; the second was indicated by Tollmien (reference 3)
and yields rather simple laws, in particular also an exact solution of the
differentlal boundary layer equation. Since such exact solutlons ars
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comparatively rare and since, moreover, the asymptotic law for the wake
applies not only for the flat plate In longitudinal flow but for any
arbitrary body shape, this asymptotic solutlon wlll be treated herse
somewhat more thoroughly. The weke veloclty ul(x, ¥) introduced in

equation (9.4h4) is assumed to be so small in comparison wlth the free
stream veloclty Ub that the second—power terms (ulbe) are negligible

relative to 1. Moreover, the pressure term dp/dx in the boundary layer
equation. 1s to be set equal to zero for the first asymptotic approximation.
Therewith the differential boundary layer equation (8.3) becomes, for the
present case:

. 2

aul a ul
Ty = ' (9.45)

. oy

With the boundary conditions:
ou

¥y = 0: S;l =0

(9.452)
y=w u =0 (u = Ub)

For the solution of the differential equation (9.45) one introduces as
before in the plate flow according to Blasius'! equation (9.3) the new
variable

L
n=I\5 (9.46)

Further, one uses for ul the equation:

w = U C (X)2g(n) (9.57)

The distance x from the tralling edge of the plate 1s thus made

1
dimensionless by dividing by the plate length. The power -5 for x

i@ given by the fact that the momentum integral which, according to
equation (9.hl),gives the plate drag must be independent of x. With
the second—power terms neglected the drag of the plate wetted on both
sides is, according to equetion (9.41):
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+c
2W =D p U, w dy
J== 2
One finde further:
+os 1 +eo +o
x\ 2 px vl
w, (x,y)dy =T, C (‘z') \fU—Go g(n)dn =T _ C T &(n)an

and therewith:

1
x 8 )

By insertion into equation (9.45) one obtains after division by

TL .

(9.48)

(9.50)

(9.51)

2 - -
C Uo (x/1) 2 1 the following differential equation for the veloclty

distribution g(n):

1 1
g"+5n8' +58=0

(9.52)
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with the boundary conditions:
T]=0: gt = 0; N = g=0
A plngle integration gives:

g' + % nege=X=0

where, because of the boundary condition at 1 = O, the integration
constant K must be zero. Repeated integration glves the solutlon:

g=e (9.53)

where & multiplicative integration constant may be put equal to one
without limiting the generalilty since the veloclity distribution uy

gtill contains, -according to equation (9.47), the mmltiplicative free
constant C. This constant € 1is determined from the comsideration
that the plate drag obtained from the momentum loss (equation (9.50))
mist be the sameé as the frictlonal drag of the plate. First,

+e0 oo _1]_2_
L

g(n) dn =| e dn = 2\x

and therewith from.equation (9.50):

2 v
H=pb U c\}t-liae\/'?

*

On the other hand, the friction drag of the plate wetted on both sldes
was according to the solution of Blasius (eguation (9.18))

2
oW = 1,328 p U U—7'

(o]

Therefrom follows 2C Vx = 1.328 and
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(9.54)

Thue the final solution for the wake veloclity for the flat plate in
longlitudinal flow becomes:

72U
e 0\i—6 (%)- %e' I T (9.55)
U T -

o}

The veloeity distribution of this asymptotlic law 1s represented in

figure 39. It is noteworthy that the function for the veloclity distribution
ig identical with Gauss! error function. In keeping with the hypothesis

the law according to equation (9.55) i1s valid only for large distances
behind the plate, according to the calculations by Tollmlen (reference 3)

for x P4 3.

The development of the wake from the front, performed by Goldstein
1s valid ‘only for comparatively small x/z. However, for intermediate
x/1 both solutlions can be joined to some extent, so that one then obtains
the velocity distribution in the entire weke. Such a figure is given by
Tollmien (reference 3).

Sixth Lecture on Januvary 12, 1942,
d. The Plane Jet

A further example of a flow without bounding wall to which the
boundary layer theory 1s appliceble is the outflow of a Jet from & hole.
The problem to be treated is the plane statlonary one where the Jet goes
out from & long narrow slot end mixes with the surrounding fluid at rest.
This is one of the rare cases where the differential boundary layer
equations may be integrated exactly. The calculations were performed by
H. Schlichting (reference 22) and W. Bickley (reference 30) and will be
discussed a little more thoroughly.

Due to the friction effect the Jet entralns a part of the fluid at
rest and sweeps it along. There results a stream—line pattern like the
one drawn in figuré 40. Let the x—direction coincide with the Jet axis
and the origin lie in the slot. It then immediately becomes clear that
the width of the Jet increases wlith the distance x and the mld—veloclty
decreases with the distance =x. For the calculatlon the slot 1s assumed
to be infinitely narrow. In order to make the volums of flow, together
with its momentum, finite, the velocity in the slot is then infinitely
lerge. Agaln, as in the previous example concerning the wake flow, the
pressure term dp/&x may be neglected since the pressure varies only
very little in the x—direction. The smallness of the pressure term can
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also be shown subsequently from the finished solution. Thus the differ-—
ential boundary leyer equations for the present case reed, according to
equation (8.3):

-
. _ . du
ug+va—y-=v—2
oy
Y (9.56)
2 g§ =0
/
with the boundary conditions:
y=0: v =0; g% =0

(9.56a)

Since the pressure 1s constant, the entlre momentum flow in the x—
direction for control area fixed in space (compare figure 40) must be
independent of the distence from the hole x. If one chooses the lateral
boundaeries of the control area at so large a distance from the axis that
there u = 0, then :

+60

J=p uldy = Constant (9.57)

Tt 1s to be noted for the integration of the equation of motion

equation (9.56) that for thie problem, as before for the plate in longl—
tudinal flow; no special length—dimension exists. Thue affinity of the
velocity profiles u(x, y) is suggested, that is: with b signifying

a pultable width of the Jet, the velocity profiles are only functioms

of y/b. Accordingly one uses the following expression for the stream
function

o)) o

X
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The two — at flrst unknown — oxponents p and q are determined from
the conditions that

1. the momentum flow for the x—direction is independent of x
according to equation (9.57), and that

2, the acceleration terms, for Instance wu g%, and the inertis

term in equation (9.56) are of the same order of magnitude
and hence mst be of the same degree in x.

This yields the two equations

2p—q=0
(9.59)
2p - 29 -1 =p - 3¢
It follows:that
Pp=1/3; q=2/3 (9.60)

Therewith the final equations, after addition of suiteble constant factors,
read as follows:

1 J _
= _— 9.61
1 12 23 ( )
3v x
v = vM2 23 p(n) (9.62)
Therefrom one obtailns, with
)
on__2n :_x /3
ax 3% 3y 5 1/2
v

the following expriessions for the velocity components and their derivatives:
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|
1
u = _——7P £1(q)
311 3
9.63
v = - % y/2 23 (£—enf?) (5-63)
J

4 /3 - _
-g—: = —x % (2ng"s")

g? =x % y1/2 g

Y =—— =X if'"

ay2 27

By substitution Into the differential equation (9.56) there results,

after cencelling the factor -g% x—5/3, the followling differential equation
for the flow function £(q):
2 1 2
P14+ PE" 4 £1" = O (9.64)

wlth the boundary conditions:
(9.64a)

As for Blasius! plate flow here also an ordinary differential equation (9.64)
was obtalned from the two partial differentisl equations (9.56) by means of
the similarity transformation equation (9.61). Here also, as in most
boundary—layer problems, the differential equation is non-linear and of

the third order.

The integration of this differential equation (9.64) is attained in
a surprisingly simple manner. First, one obtains by a single integration

PPt + £" = Constant = O (9.65)
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The constant of integration therein 1s zero because of the boundary
condition #£"(o) = 0. The second order differential equation now obtained
could be Integrated once more if a factor 2 were present in the first
term. This factor can be obtalned by performing the following further
simllarity transformation:

One puts: E=anq (9.66)

2a F(E) (9.67)

|..h
|

a 1s a free constant which is determined later. With the equations (9.66)
and (9.67) one obtains from equation (9.65), the prims now signifying
differentiation with respect to &,

h
(@]

" 4 2FF! (9.68)

with the boundary conditlons:
E=0: F=0; £t =w: Ft =0 (9.68a)

This differential equation cen now be integrated ageln and yields

F' + F° =K

The constent of integration K 1s cbtained from the boundary conditions,
equation (9.68a), as K = 1, if one stipulates F'(o) = 1, which is
possible without limiting the generality because o« 1s still present as
a free constant In ¥. One now has for F the first order non~linear
differential equation

-

Ft P =1 (9.69)

which 1s a Riccatl differential equatlon. The integration yields

and therewith for the inverse function
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F —teapht = L —© : (9.70)

Furthermore, %% = 1 - tan2 ¢, If one inserts the solution found into
equation (9.63), one obtains for the velocity distribution

Y

u=2a®x 3(1—tanh?t) (9.71)

w o

The véloclty distribution over the width of the Jet calculated from this
equation 1s represented in figure 41. The free constant a remains to
be determined. This can be done from the condition (equation (9.57))
according to which the momentum flow in the x—direction 1s independent
of x. From equation (9.71) and (9.57) one obtains

2
J=%pa3vl/2 (1 ~tenft ) at =19—69m3vl/2 (9.72)

0

Lot the momentum J for the Jet be a prescribed constant which is, for
instance, directly related to the excess pressure under which the Jet
flows from the slot. Then « becomes, according to equation (9.72),

o = 0.8255 —17 (9.73)
PV

and therewith the veloclity distribution

5 1/3

u = 0.4543 ( —I— (1—ta.nh2§)

p VX

1/3 '
v = 0.5503 k_‘%> 2t (1-tarh®t )—temnbr §  (9.74)

px

1/3

t = 0.2752 J2 2/3

PV b d

«

«

£
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The value of the transverse component of the veloclty at the edge of the
Jet (y = ») also is noteworthy. From equation (9.74) one finde for
this lgteral inflow velocltiy

1/3
Ve = - 0.550 (V) (9.75)

2
px/3

One can further calculate the flow volume for & layer of unit height
+o0
Q= j[m u dy. One finds

1/3
Jv
8- 3.3009 (22) (5.76)

The flow volums Increases downstream, since fluld at rest 1s carriled
along from the side.

The solution indicated here naturally has & singular point at
x =0, since an infinitely narrow slot with infinitely large exit
veloclity was assumed, Actually for a narrow slot of finite width one
hag immediately behind the slot opening a veloclty dlstribution that 1is
rectangular across the Jet cross section but which at some distence is
transformed intoc the bell—shaped distribution found here with width

2/3 -1/3

b x and mid—velocity ~ x

Finally it should be mentioned that the corresponding rotationally—
symmetricel problem where the Jet goes out from a very small circular
hole also can be solved in closed form. (compare H. Schlichting
(reference 22)). In this case the width of the Jet 1s proportional to x
and the midvelocity proportional to x L.

e. The Boundary Layer for the Potential Flow U = ulxm.

Another class of exact solutions of the boundary layer equations
will be discussed briefly which lncludes the plate Iin longitudinal flow
and the stagnation point flow as special cases. Falkner and Skan
(reference 37) have shown that, Just as for Blaslus?! plate flow, the
boundary layer differential equations for the potential flow

U(x) = u = (9.77)
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can be reduced by a similarity transformation to an ordinary differential
equation (u; = constant, m > O accelerated, m < O retarded flow). For
m>0, x = is the stagnation point of the flow., For m = 0 one
obtaing U = uy = Uy, therefore the plate flow; m =1 gives U = ux,

therefore the stagnation point flow according to equation (6.1T).

The differential equations of the boundary layer read

du du ag d%u

U—+7V—=0—+ Yy =
oy dx a‘_,'2
a_u+i=0 h
x oy

The pressure term becomes

om—-1
U [+16 QU 2 x
ax 1

As a new independent varlable ome lintroduces

m—1
n 2
t = \[’L"—i \[—l—yx (9.78)
2 v

and the continulty equation 1s integrated by lntroduction of a stream
function for which one uses the equation:

ml
2
¢=\Lfl\h%x MU. (9.79)

One has

H
1
-

o
M |y

el
N ST
£l ay_ 2 v

and one obtainsg
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w=uz () = Tol(8) (9.80)

m—1
e

o ymp
w x 2 gt(t)

m + l

v £Z %ii¢+m;1§®} (9.81)

After insertlon into the first equation of motion and division by

2 om-1

It uy one obtains, when

B

= B (9.82)

B
+
|

the followlng differential equation for o(t):
(3t 4 '2 Yy
Q" = —ogp" + B (9 —.1) (9.83)
Boundary conditions:
The differential equation (9.83) was solved for different values by

Hartree (reference 38). The result is given in figure 4la. The
corresponding values of B and m are given in the following table.
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~0.0654 ~0.1k4

0 0
0.111 0.2
0.333 0.5
1 1

L 1.6

For accelerated flow (m> 0, B> 0) one obtains velocity profiles
without inflection points, for retarded flow (m< 0, B < 0) velocity
profiles with inflection pointe. Separation occurs for

g = — 0.199, that ig,m = — 0.091

-0.091
Separation takee place for the potential flow U(x) = u.x s ‘thus

for very weak retardation. Compare chapter XI a, where almost the same
result 1s obtalned from an approximstion calculation.

Speclal cases:

1. Stagnation point flow: It 1ls obtained for

m=1; B=1
uy '
Then . & =\ 75 ¥= \(vy, X ¢(t). - These are the sams expressions as

for the stagnation point flow, equation (6.26a) and (6.27a), also (6.19)
and (6.26b). The differential equation (9.83) also is transformed into
the equation of the stagnation polnt flow (equation (6.28)).

2. Plate in longitudinal flow: Thls case is obtalned for
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Ry At 1 1] %
Then & == \|—=y == \|—3 = - with 7 signifying Blasius'
Y2 Yvx "z Vv V2 . |

x
variable according to equation (9.3). Furthermore, ¥ becomes

¥ = \ﬁ; VVbe o(E); thus ¢ = VE compared with the expression
for ¥ for the plate flow equation (9.4). Because of @ _ EE,

' ' dg dnq
o"(t) = \/2 £"(n), and o'™(E) = 2F1"(y), ths differential equation (9.83)

is for thie case transformed into 2f'"(n) + ££"(n) = O. This is identical
with equation (9.8).

CEAPTER X. APPROXTMATE SOLUTION OF THE BOUNDARY LAYER EQUATION
BY MEANS OF THE MOMENTUM THEOREM
(KARMAN-POHLHAUSEN METHOD, PLANE PROBLEM)

a, The Flat Plate in ILongiltudinal Flow

The examples of exact solutions of the boundary layer equation
discussed in the previous chepter give sufficient proof of the rather
considerable mathematical difflculties in solving the differential
equation. Yet the examples treated were selected as simple as posslble.
In some other cases the mathematical calculations are stlll more difficult
than in those, examples. Partlcularly the problem of flow sbout a body
of arbltrarlly prescribed shape cannot, ln general, be solved by exact
solution of the differential equations of the boundeary layer. Just this
problem, however, 1s of special practical lmportance, for instance for
the calculation of the boundary layers on alrplane wings.

There exlsts therefore a tendency to apply at least approximate
methods, even 1f thelr accuracy is sometimes not quite satisfactory,
for cases where the exact solutlon cannot be obtained with a reasocnable
expenditure of calculation time, Such simpler approximate solutions can
be attalned if one does not attempt to satlefy the differentiael boundary
layer equation for every particle of fluid. Instead one selects a
plausible expression for the veloclty dlstribution in the boundary layer
and satisfies merely the momentum equation which is obtained by inte—
gration from the equation of motion. A method on this bagie for the
plane problem of flow about an arbitrary body was worked out by von Karman
and Pohlhausen. (references 23 and 24). We shall try out this method in
this chapter at first on the simpler case of the flat plate in longli—
tudinal flow, where no pressure variatlions exist. For this special case
the momentum theorem ylselds the statement that the momentum loss of the
flow through a control area fixed 1n space according to figure L2 equals
the friction drag W(x) of the plate from the leading edge (x = 0) to



8L . NACA TM No. 1217

the point x. Application of the momentum theorem for this case was
discussed in detail in chapter IX; for the drag of the plate wetted on
one side according to equation (9.40) it had resulted in the formula:

W(x) =b p u (Ug —u) dy (10.1)

y=0

On the other hand the friction drag can also be expressed as the Integral
of the surface shearing stress, namely:

X
W(x) =b| T, (x) ax (10.2)

X=0

In forming the integral (equation (10.1)) it is to be noted that the
integrand outside of the boundary layer, where u = U,, does not make

a contribution. By comparison of equations (10.1) and (10.2) it follows
that:

To=e—| u(l,-u) (10.3)

y=0

If one introduces moreover the momentum loss thickness, as defined in
equation (9.42), equation (10.3) can also be written in the form:

248 _To (10.4)
5 |

Uo

IS

This is the momentum theorem of the boundary layer for the speclal case
of thé flat plate in longitudinal flow. Physically it states that the
surface shearing stress equals the momentum loss in the friction layer,
since in the present case the pressure gradient mekes no contributlon.
The next chapter will acquaint us with the extension of .equation (10.4)
4o include the more general case of a boundery layer with pressure
dlfference. . :

Equations (10.4t) and (10.3), respectively, will now be used for
approximate calculation of the friction layer on the flat plate in
longitudinal flow, A comparison of the results of thisTapproximate
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calculation wlth the exact solution according to chapter IXe will give
Informatlion about the usefulness of the approximation method. For the

approximate calculation one selects a
veloclty distribution in the boundary

_ J
u—Uof<g>

with

=
]
o
s
(o)

suitable expression for the
layer in the form:

U, £(n) (10.5)

8(x) (10.6)

8 represents the boundary layer thickness, undetermined at first. For
the flat plate 1t may, moreover, be assumed egain that the velocity
proflles at varlous distances from the leading edge of the plate are
affine to each other. This assumption ie contained in equation (10.5).
if f(n) +there stands for a function which no longer contains any free

parameters. Furthermore, £(q)  must,

constant value 1.

The velocity distribution being

for large values 1, assume the

glven by equation (10.5), the

momentum integral 1n equation (10.3) may be evaluated. It ylelds:

u (U, —u) dy = Ube 5

o}

The definite integral in equation (10.

1
f (1 ~-F) dy (10.7)

n=0

T) can be calculated immediately

if a definite formmlation is given for f(n). Thus one puts .

1 .
a = £(1 - £) dn (10.8)
n=0
Hence
[ ]
2 =a 8 2 10.9)
U, 9= u(Ub -—u)dy = o U, (10.9
y=0
or:’
d=aBd (10.10)
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Furthermore, the dlsplacemsnt thickness of the boundary layer &% becomes,
according to equation (9.20):

5* =8| (1 ~7F)dn=0ab (10.10a)

On the other hand, the shearing stress To at the surface 1s:

y=0

if one Introduces the further simplification
= £1(0) (10.12)

By introduction of these expressicns into the momentum equaticn (10.%4)
there results: . -

B -59 =U,~ @ = ' (10.13)
or ,
: g 48 _B Y .
. ‘ B =T . (10.14)

The -integration with the initial value % =0 for x = 0 ylelds, as
first result of the calculation:

5 = \fé@ \/Y_'E " (10.15)
Q Ub

Hence the shearing stress becomes, according to equation (10.}1):

- = “U°\F_° | (10.16)
2 vx
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end furthérmore

)
T, dx = \[ap \/upU°3z

(o}

and hence, finally, the total drag of the plate wetted on both sldes
according to equation (10.2):

oW = 2b \[2aB \{ uon3Z (10.17)

A comparisén of the results for boundary layer thickness, surface shearing
stress, and totel drasg, which were thus found, with the corresponding
formulas for the exact solution according to equation (9. . .) shows that
the approximate calculation according to the momentum theorem reproduces
the characteristics of the formulas with perfect correctness in all cases,
that is, the dependence of the boundary layer quentitlies on the length

of run x, the free stream velocity TU,, and the viscosity coef-—
ficient V. The numbers a, B, unknown &t first, can be determined only
after making special assumptions for the velocity distribution, that is,
explicitly prescribing the function f(q) in equation (10.5).

Numerilcal examples

=Ths usefulness of the method of approximation will be Ilnvestigated
by a few numerical examples. The asccuracy of the results will depend to
8 great extent on a sultable cholce of the expression for the veloclty
distribution according to eguation (10.5). At any rate the function f£(q)
must equal zero for 1 = O and have the constant value 1 for large 1.
As Pirst example we select the very rough assumptlion that the welocity
distributlion in the boundary layer is represented by a linear function
according to figure 43a. Thus:

(10.18)

o
IA
=}
IA
He
H
LY
=
A
I
-3

H
~~
-3

I
I
=

Hence the results for the numbers «, B according to equation (10.8)
and (10.12) are:

a=2% B=1 (10.19)
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The formulas (10.15), (10.16) and (10.17) can now be evaluated immedliately.
One obteins the results:

5=2\73 \/‘I’I—: = 3.&6&7"‘&—’: (10.20)

1 Uo U
To = —=— uU, -2 = 0,289 uU \’_Q 10.21
(@] o !—-3 24 (o} vx 9 U le) v ( )

MW = %— b \/ upU,3x = 1.155 b)\/pelo3x (10.22)

A velocity distribution in the form of a cublc parabola according to
figure 43b 1s selected as second numsrical example in the following manner:

3

02nS1: fm)=Fa-%n

‘ (10.23)
1

3
|
=~
H
~~
3
Nr?
]

that is, the boundary layer profile Joins the velocity of the potential
flow with a continuous tangent. The calculation of the numerical factors
according to equations (10.8) and (10.12) gives:

@ = 552 2. B = % | (10.24)
end hence for the characterlstic paramesters of the boundary layer:

& = h.64 (20.252)

S

U "
To = 0.323 “Uo\/v% (10.25b)
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MN=1.29b \/uon37, (10.25¢)

The exact value for the drag is, according to equﬁtion (9.18),

W= 1.328D \on3p.p3. The slmple assumption of a linear velocity distri-

bution therefore gives a drag toc small by thirteen percent, the cubic
velocity distributlion a drag too small by three percent.

The calculation of the displacement thicknesses of the boundary
layers according to equation (10.10a) results, for the linear velocity

distribution, in &% = % 5, and for the cubic velocity distribution
in &% = % 5. This gives, because of equations (10.15) and (10.25a):

-

5% = 1.732 \l!I_J'_f (1inear veloclty distribution)
o
= S (10.26)
8% = 1,7h0 T (cubic velocity distribution)
)
/

The agreement with the exact value &% = 1.728 %I- according to
d o

equation (9.21) is surprisingly good; this is, however, more or less
accidental.

The essentlal characteristics of the boundery layer according to

the approximste calculation described above are once more complled with
the exact solubtlon in the teble below.

Characteristics of the Boundary Leyer on the Flat Plate;

Comparison of Approximate Calculation and Exact Solution

T, U, * T Uol \L/2
*\/_0. o | &x | To [V <_o_
Kind of calculatlon |5 = 3 ryes 3 n Uo Uo Cy y

Linear approximation| 1.732 }[0.578 [3.00 0.289 1.155
(fig. 438)

Cubic approximstion | 1.T740 }0.645 |2.70 0.323 1.29
(fig. 43b)

Exact solution 1.729 |0.664 |2.61 0.332 1.328

(Blasius)
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As one can see from this table, the agreement, particularly of the cubic
approximation and the exact solution, 1s rather good. On the whole, the
results of this calcylation with the aid of the momentum theorem may be

regarded as very Batisfactory, especially in view of the simplicity, as

compared to the exact calculation. } - .

Seventh Lecture (January 19, 1942)

b. The Momentum Theorem for the Boundéry Layer
with Pressure Drop (Plane Problem)

Lagt time the boundary layer on the flat plate in longitudinal flow
wag calculated by means of the momentum theorem. Today the general case
of the boundery layer with a pressure difference in the flow direction
will be treated. One considers the flow along a curved surfece, and
mpagures the coordinate x as arc length along the surface; let ¥y Dbe
the perpendicular distance from the surface, U(x) the given potential
flow (fig. 44). The fundamental equation may be obtalned by a momentum
conslderation as in chapter IXc; now, however, the pressure difference
has to be taken into consideration. The same result 1s obtained by
integration of the equation of motion of the boundary layer wilth respect
to y from y =0 (surface) to y = h, +the layer y = h 1lying
everywhere outside of the friction layer (fig. 4k).

The differential equatlions of the boundary leyer for the steady
case read, according to equation (8.3),

& pdx 5P
v g r (10.27)
ax oy
J

with the boundary conditions: y =0: u=v=0; y=ew: u=TU. The
integration from y =0 to h glves:

h . . ph
i4d 2 Mg o _pldp, g
5 I u< dy + vaydy hpdx+ [ayo (10.28)
y=0 o]

In the first term the differentiation with respect to x and the integra-—
tion with respect to y may be interchanged, since the upper limit h
1s independent of x. On the left side the second term is transformed by

integration by parts:
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h h h
du
(o [¢] o]

Y representing the transverse velocity outside of the boundasry layer.

By continulty, _éz = — % and
oy

veo-| S (10.29)

and hence:

b T
ylSu -__° 10.30
[by]o P ( 30)
the rela'bio;tl:
h h
Al 42 ay - M4gro_bdp_To
= uc dy - U axdy it (10.31)
0 Q

This is the so—called Karmasn integral—condition, flrst glven by v./Ka./rmé:n
(reference 23).

For the pressure term one now Introduces the potential velocity U(x);
furthermore, equation (10.31) 1s to be transformed so that the displacement
thickness &% and the momentum thickness 3§ appear in 1t as defined by
equation (6.31) and (6.32), nemely:
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U d* = (U — u)dy (10.32)

0

h
U2'8 =f u (U - u) dy (10.33)
o

According to Bernoulll's equation:

S22 Pyrvi| vy (10.34)

(4]
o

By substitution of equation (10.3%4) into equation (10.31) there results:

h

(- ay-v 2] (-w e

®lo
Ble

(o] (o]

d a a
= (U—u)udy+EU (U-u) dy -U = (U - u) ay
[ [0} o}

and after differentiation of the second term:
h h

.
2L w-wug+E] w-w (10.35)
o) ax dx

(o)
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The displacemsnt thlickness and the momsntum thickness can now be introduced

directly and one cbtains:

To _ a *
? = E (U2‘8) + — 5 U
or
To a d
=2 e Ly vd (10.36)

This 1s the form of the momentum equation for the boundary layer with
pressure drop that will be used as a basle for further considerations.
Since in it T is quite gemerally the surface shearing stress,

equation (10, 3%) mist apply in the same way to turbulent flow, too. We
shall come back to that later. For the speclal case of vanishing pressure

drop %E:g 0, equation (10.36) is transformed into equation (10.4) found
before for the flat plate in longlitudinal flow.

The further calculatlon of the boundary layer on the basls of
equation (10.36) 1s performed for the laminar case according to the method
of Pohlhausen (reference 24) and for the turbulent case according to the
method of Gruschwitz (reference 34) (chapter XVIII).

c. Calculation of the Boundary Layer According to the

Method of Karman—Pohlhasusen—Holstein

For further calculation it is of lmportance to find a sultable
expression for the veloclty distribution in the boundary layer u(x, y).
According to our understanding of the exact solutions of the differential
equations of the boundary layer this expression must at least satlafy
the condltions that for y =0: u=0, and for y =%: u=7TU, Further—
more the derivatlve au/By must vanish for large y. Moreover, veloclty
profiles with end without inflection points must be possible, as they
occur 1n the preossure decrease and pressure increase reglon, respectively.

du

Finally, a profile with <§—) = 0 must be possible 1n order to have a
y
y=0 :

separation point result from the approximate calculation.

One chooses for the velocity distribution an expression of the form
u (x, y) = Uf(y/dp), and sets, according to Pohlhausen, '
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for .f(y/BP) a polynomial of the fourth order, hence:

% =an+b n2 + C n3 + 4 nu; N = —— (10.37)

valid for 0< yﬁi SP: o< nﬁi 1. SP(x) stands for the boundary layer

thickness, the dependence of which on x has yet to be calculated. The
boundary layer thickmess of the approximate calculation SP is here

provided with the index P ( = Pohlhausen) in order to avoid confusion
with the boundary layer thickness & used before. Whereas for the
exact solutions the veloclty in the boundary layer asymptotically
approaches the velocity of the potential flow, (u U for y S« );
thse value u = U 1is to be attalined iIn the approximation at a finite
distance from the surface y = 8p, for reasons of calculation. This

modification of the actual relation 1s physically insignificant.

For the determination of the free constants &a, b, ¢, 4 in
equation (10.37) the following boundary conditions are prescribed, all
of which follow from the dlfferential equation of the boundary layer
(equation (8.3)):

j
du %y
— . =U, ——— I3 ; e
y =0%: u oy aye
» g (10.38)
y=0: u=0; é—g = - %g
oy
J

Since the condltion of mo slip u =0 for y =0 1s automatically
satisfied by expression (10.37), the four free constants a, b, c, d
are sufficient to satisefy the remaining four conditions. The last

of the five conditlcns follows lmmedietely from the exact—differential
squation of the boundary layer. 1f one puts ¥y = O and tekes the
boundary conditions into consideration., This condition is particularly
important since it determines the curvature of the wvalocliy profiles
near the surface and assures that boundary layer profiles do not acquire
an inflection point In the reglon of pressure decrease and do acquire
one in the region of pressure lncrease, as required by the oxact sclution
according to chapter VIII. From equation (10.38) follows for the
coefficients a, b, ¢, 4 the equation system:
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il
o)

a+ b+ ¢+ 4a

a+2b+3¢c+ bkda=0

2b + 6c + 124 =0 B (10.39)
g% = =1 Ul
o )
From the last equation follows immediately:
age |
2 2
if one Introduces the simplification:
8p2 ay
. 0.4l
A vl (10.41)

The dimensionless quantity A plays the role of & form parameter of the
velocity profiles as will become clear presently. For the remaining
coefficients one obtains from equation (10.39): .

= L- = e L' = —-L- .
a=2+ g ° 2 + 3 d =1 g (19 40b)

Hence the expression.for the velocity distribution, which satisfies all
boundary conditions according to equation (10.37), reads:

%= (20 — 203 + g*) +% (n =302 + 303 — 1)
. (10.42)
Z=F(n) +» &(n)
in which
F(n) = 2n — 203 + n*
G(n) = % (n =372 + 303 = %) (10:43)



96 NACA TM No. 1217

Due to 1n = y/8p(x) the boundery layer thickness 8p(x) 1s here the

only unknown. If that is calculated, the psrameter A foOllows immediately
from equation (10.41). From equation (10.42) one understands that the
velocity profiles form with the form parameter A(x) & one—parameter
family. The functions F(n) and G(n) indicated in figure 45 and

teble 4 have a universal character, that is, they do not depend on the
special body shape. The veloclty profiles for wvarious values of A are
plotted in figure 46. The profile with A = O 1s obtained for dU/dx = 0,
that 1s,; for the boundary layer without pressure adient (flat plate in
longitidinal flow). The separatlion profile with (du/dy), = 0, +that is,

a = 0, has according to equation (10.40b) the parameter A\ = —12. The
profile at the stagnation point has, as will be shown below, A = T7.052.
For ) > 12 there result values of u/U > 1 in the boundary layer, which
physically does not make sense. These values therefore have to be excluded.
Since behind the separation polnt the boundary layer calculation loses its
validity anyway, the form parameter A 1is limited to the region '

~125) S22 (10.44)

The unknown boundary layer thickness BP(x) remains to be

calculated. For. this the momentum equetion (10.36), so Par not utilized, is
at our disposal. Before performing this computation, a few preparatory
calculations are required, namely the determination of the boundary layer
characteristics, dlsplacement thickness 8%, momentum loss thickness 9,

and surface shearing stress T, on the basis of the. approximation—

expression equation (10.42): One obtains from equations (10.32) and
(10.42):

= - [l - F(n) - xé(nS] an =
=0
1 : -
=1 [F) e aem) ] [2 - 7() - aetn)] an

n=0

3

8P
The calculation of the definite integrals, with the values of F(n) and
G(n) according to-equation (10.43), gives:

8% _ 3 _ A ' .
&, 10 120 | (10.45)
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2
G 37 A A
2 - - - 10.46
5, 315 945 9072 (10.46)
Further, there results for the surface shearing stress from Ty = %E)
Y /0
according to equations (10.42) and (10.43)
T B
o P _ 12+
— i D te—— lo-l"
T z (10.47)

Now the momentum equation (10.36) i1s to be used for calculation of
5p(x). After multiplication by 3/VU 1t acquires the dimensionless form:

2
USS* 5*\ Ut~ _ To 9
-T,—+<2+ﬂ e (10.48)

The boundary layer thickness BP does not even appear in this equation;
however, this is not particularly astonlshing, since SP is & rather

arbitrary quantity of our approximate calculation and therefore without
speclal physical significaence. The physically important quantities,
displacement thickness ®* &and momentum loss thickness 3, appear
instead in equation (10.48). Hence it suggests itself to first
calculate 9 from the momentum equation (10.48) and then to pass on
to 6? by means of equation (10.46). For this purpose one introduces

according to Holstein and Bohlen (reference 25) aside from the first form
parameter A according to equation (10.41) a second form parameter K,
formed enalogouely with the momentum thickness g:

2 .
g =4 g (10.49)
v
Then one sets:
2

Then

K= Z U’I (10.51)
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Between the second form perameter k and the first form parameter A
exlsts, according to equations (10.40) and (10.41) the universal relation:

2
¥ <315 ok5 9072 (10.52)

Furthermore, for simplificatlon, one substitutes:

3 -
.20 I () (20.53)
B ¥ QD N
315 945 9072
22=I_<z§1:_ﬁ_=<12+7~ 37 _ X —x2)=f(n) (10.5Lk)
LU U Bp 6 /\315 945 9072 2

By introduction of xk and Z according to equations (10.49) and (10.50)
and by substituting from equation (10.53) and (10.54) one now obtains

from the momentum equation (10.48), because of 98/ = % %%
1.4z
=U = 2 K)jk = f£ (k) =0 10.
50 [2r a0 —1y00) (10.55)
Finally, one sets as further simplification
2f5(k) ~ bi — 2f1(“) K = F(k) (10.56)

or written in detall:
31 _ A s 116 2 _1_> 2 2 .3
F( ﬂ'.) = 2(% - -9-E5- - 9072> {2 - 3—15' A+ <-§r'3 + 130 A+ ———9072 A (10.57)

and thus obtains the following differential equdtion for the momentum
thickness

T
U

kK = Z Ut (10.58)

4z
dx
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This is a non-linear differential equation of the first order

for z = aa/v. The fact that the function F(k) is rather complicated
does not constitute any appreciable drawback, since F(k) is universal,
that is, independent of the shape of the body, and hence may be tabulated
once and for all. The functions F(k), £i(k), f£5(k) as also k = k()
according to equation (10.52) are given in teble 5.

As to the solution of eguation (10.58) the following remsins to be
sgld: The calculation has to start at the stagnation point x = 0. There
U = 0; and the initial slope g% would be infinite if F(k) were not

also equal to zero at the stegnation point. The function F(k) actually
has a zero which yields a physically significant initial value. This
zero of F(k) 1is given when the second bracket in equation (10.57)
disappears. One finds:

F(k) = 0 for k = K = 0.0770; A = A = 7.052 (10.59)

The value A = T7.052 therefore glves the value of the first form
perameter at the stagnation point. Then the initiel slope of the integral
curve at the stagnation point now has the indeterminate value 8. The

latter may, however, be celculated and hence finally yields the initial
value and the iniltial slope of the integral curve as:

K b
7 =2 = Q,0770
R/ S ¢

3 (10.60)

4z —0.0652 22_
(dx)o +005 U12.
(o]

/

The index o denotes the values at the stagnation point. With these
initlal values one succeeds easily in performing the integration of
equation (10.58), for instance, according to the isocline method. A
calculation example is given 1n the eppendix, figure 47, and teble 6.
The calculation 1s to be carried up to the separatlon point A = —12:

B =— 0.1567. Quantities entering the calculation that are given by the
potential flow are the velocity U(x) and ite first derivative with
respect to the arc length dU/dx.* (Only at the stagnatlion polnt is
d2y/dx? also required for the initial slope of the Integration curve.)

* In Pohlhausent'!s treatmsnt (reference 24) a differential equation is
obtained instead of equation (10.58), for the quantity =z = SPa/v, formed
analogously to Z. Pohthausen's differential equation also contains
de'U/d.x2 which often can be obtainsd from the glven potential flow only
by a double graphical differentiation. Ths representation of Holstein
which completely avolds the quantity daU/dx2 therefore means an
esgsential improvement of the method.
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The values of the form parameters for the three speciel cases:
stagnation point, velocity maximm (U! = 0) (pressure gradient equals
zero), and separation point are compiled in the table below.

Cage A K
Stegnation point T.052 0.0770
Veloclty maximum 0 0]
Separation point 12 ~0.1567

The entire process of calculation tekes the followlng course:

1. The integration of equation (10.58) ylelds 2Z(x), k(x) and
according to equation (10.50), also 9(x); furthermore it ylelds the
posltion .af the separation point, '

2. First form parameter i(x) from equation (10.52)

3. Displacement thickness &% from eguation (10.5%3)

4. Surface shearing stress T, from equation (10.5k4)

5., Boundary layer thickness SP(x) from equation (10.45)

6. Velocity distribution u/U from equation (10.42)

Flat Plate 1n Longitudinal flow

The speclal case of the flat plate in longlitudlnal flow whlch was
treated in chapter Xa with a different form for the approximation can
also be obtalned very simply from the present calculation, U =T ;
Ut= 0, and hence g = A = 0, and according to equation (10.58):

dzZ _ F(0) _ 0.4698

dx Uy Uo

With the initial value 4 =0 for x = 0 there results

82 = 0.4698 E oor 9 =_0.685\/%’—c - (10.61)
(o]

o

*
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whereas the exact value according to Blasius! calculation, equation (9.21b),

is 9 = 0.664\fo/Ub. Furthermore, 1t follows that the displacemsnt
thickness is with 8%/ = f,(0) = 2.54

5% = 1.75\/‘{1—1 (10.62)
0

The shearing stress becomes, fram-equation (10.54) with £5(0) = 0.235;

To = 0,343 uU_\[—= (10.63)

while the exact value T, 18 To = 0.332 ul, \|Uo/Vx according to

equation (9.1T7). The agreement with the exact values 1is rather satisfactory.
In Pigure 50b the velocity distribution obtalned by the approximate calcula—
tion also 1s compared with the exact calculation In the plot u/U againsgt
y/8%. This agreement also is rather good.

Stagnation Point Profile

A similar comparisnn can be performed for the stagnation point

' profile the exact solution of which was given in chapter VI. For this
case A = Ag = 7.052, & = ko = 0.0770. For the approximate calculatlon
the momentum thickness 1s:

g\/Q} = \{Ko = 0.278 T (20.64)

whereas according to the exact calculation equation (6.34) it is
8\/U‘7v =0.292. The displacement thickness 1s, for the approximate
calculation;

a*\{gl = 2, (%) \[ko = 0.641 " (10.65)

whereas according to the exact calculation, equation (6.33), 1t is

o* VU'/V = 0.648. Finally, according to the approximate calculation the
shearing stress is:
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EELESL- 9&33— = 1.19 (10.66)

TO v " N -
compared with = VET'= o"(0) = 1.234 Dby the exact calculation. Thus
W
the agreement wlth the exact values 1s here also satisfactory.

The veloclty distribution of the approximate calculation l1s compared
with the exact calculation in figure 50-a in the plot u/U against y/8%.
Here also the agreement is good.

The following table contains a compilation of the comparisons just
given, between the chaeracteristics 8%, §, T, from exact and from
approximate calculation.

— , .
Blaslus Profile Stagnation point profille

* t 3 T X
w \[Bolg\To| o |e* |, Jrlfur | 7o |8
5 d el vt Y v 3

vx vx u.VEigizz; 3 MUVG7E;

Pohlhausen
Approximation | 1°T° 0.685 0.343 [2.55} 0.641/0.278] 1.19 |2.31

Exact solution| 1.73 [0.664| 0.332 [2.61] 0.648|0.292| 1.23% |2.21

0f course, it can not yet be concluded from this good agreement of
the approximate with the exact solutién that simllar good agreement would
exlat for all the boundary layer profiles along ths body. Accurate
comparisons are not easlly performed since very few exact solutlions
reaching from the stagnation polnt to the separation point exlst. However,
one may conclude from occasionally made comparisons that in the region of
pressure decreass the agreement 1s mostly rather good; in the reglon of
pressure increase, partlicularly near the separatlon point, soms deviation
might occur.

Since no other serviceable methods for boundary layer calculation

have so far become kmown, the Pohlhausen method 1s for the present to be
regarded as the best, The time required for a boundary layer calculation
for one side of the body lmmersed in & given potential flow amounts to

about three hours.

The calculation described here for the plane flow was applied by
Tomotika (reference 26) to the rotationally—symmetrical cass.

L

v
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d. Examples

A few examples of boundary layer calculations will be given, all
of which were performed according to the approximation method described
in the previous section.

The first example, taken from a treatise of H. Schlichting and
A, Ulrich (reference 35) concerns a series of elliptical eylinders in a
flow parallel to the major axis. The axis ratios are ay/b; =1

(circular cylinder), 2, 4, 8, = (flat plate). The velocity distributions
of the potentlial flow are given in figure 51, For slender cylinders they
are characterized by the fact that the velocity has a very flat maxlimum
and decreases steeply toward the front and rear. The result of the
boundary layer calculation ls illustrated in Ffigure 52. Figure 52-a

shows the dimensionless displacement thickness as a functlion of the arc
length., It is noteworthy that for all elliptic cylinders the boundary
layer on the front half is emaller than for the flat plate; this is

caused by the pressure decrease. The laminar—separation point for the
circular cylinder lies at &/t = 0.604 (¢ = 109.5°). With increasing
Pineness ratio it shifts further toward the rear; it i1s also plotted in
figure 51. Figure 52-b shows the variation of the form parameter A and
figure 52— the varlation of the surface shearing stress. For every
elliptic cylinder the latter has a maximum,the position of which shifts
frontward with increasling fineness ratlo. The varlation of the shearing
stress for the cylinder of axis ratio eight shows only an insignificant
difference from the one for the flat plate 1n longitudinal flow. Flgure 53
gives a survey of the varlation of the boundary layer on the body and the
velocity proflles at varlous points along the surface. Corresponding
calculations for the rotationally—symmetrical case (that is, for ellipsoids
of revolutlon with flow parallel to the axis) have been performed by
Pretsch (reference 27). .

The second example (reference 35) gives the boundary layer on a
symmetrical Joukowskl profile of fifteen percent thickness for 11ft
coefficients in the region of cg5 = 0 to 1. Figure 54 gives the velocity

distribution according to the potentlal theory for the 1lift coefficlents
cg = 0, 0.25, 0.50, 0.75,and 1.0. For the symmetrical epproach flow

(cqg = 0) the velocity maximum lles rather far toward the front at

8/t = 0,1k1. With growing 1ift coefficient the velocity maeximum increases
on the suctlon slde and decreasee on the pressure side. Simultaneously
the maximum shifts farther Porward on ths suction side and farther rearward
on the pressure side. The magnitude of the veloclty maximum and its
position are of primary importence for the development of the boundary
layer and in particular for the position of the separation point. The
results of the boundary layer calculation are plotted separately for the
suction and pressure slides in fi e 55. Figure 55—a gives the

variation of the displacgment thickness, flgure 55-b the form

parameter xlgand figure 55—-¢ the surface shearing stress. The position
of the laminar separation point is plotted in figure 54, Figure 56 gives
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a survey of the variation of the boundary layer along the surface and of
the velocity distributlion in “the boundary layer for cq = 0, figure 57
fOI‘ Ca = l-

Finally, the third example gives a survey-of the Influence of the
most important profile paramsters of -a wing proflle on the laminar
boundary layer. K. Bussmann (reference 36) performed the boundary layer
calculation for a family of Joukowsky profiles of relative thickness
i/t = 0 to 0.25 and relative camber f/t = O to 0.08 for cg— values

from 0 to 1. TFigure 58 shows the family of Joukowsky profiles. Of the
very voluminous results, only the position of the separation point shall
be shown here. Figure 59 shows the position of the separation point on
the suction side as a function of thickness, camber, and lift coefflclent;
figure 60 shows the same result for the pressure side.

Herewlth the discussion of the approximation method for calculation
of the laminar boundary layer will be concluded.

Eighth Lecture (January 26, 1942)

CHAPTER XI. PREVENTION OF SEPARATION

For practical flow problems the flow with pressure Increase
(retarded flow) plays an important role. It is always desirable that
no separation of the flow from the wall occur, because of the resulting
large losses in energy. The wing presents a good example. A pressure
increase exists on the suction side toward the trailing edge (fig. 61).
If separation occurs, the wing will have an undesirably large drag and
small 1ift. Another example 1s the flow in an expanding passage
(diffuser) which transforms kinetic energy into pressure energy (as for
instance in the wind tunnel or in the bucket grid of & turbine).

Calculations will presently show that the ability of a laminar flow
to overcome & pressure increase without separation is exceedingly small.
Thus the pressure increases present in practical flows would, for laminar
flow, almost always lead to separation. The reason that, nevertheless,
in many cases of practical flows considerable pressure increases are
surmounted without separation is that the flow is turbulent. As we shall
gee more clearly later, the ablility to overcome a pressure increase with—
out separation is very much greater for turbulent than for laminar flow.
Since, moreover, the pressure increase always gives rlse to an early
transition from laminar to turbulent*, one has to deal almost exclusively
with turbulent flow in practical flows with pressure increase.

Nevertheless it ig useful to clarify the fundamental relations
regarding preventlion of separation for laminar flow, particularly because
its phenomensa lend themselves more readily to numericdl treatment than
those of the turbulent flow. ) T '

¥Details are given in chapter XXI "Transition from Laminar to Turbulent.
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[ 4
Varlous posslibllities exlst for preventlion of separation., The
simplest way 1s to make the pressure Increase so small that separation
is avolded. A numerlcal estimation In the next sectlon wlll give
information about this possibility. Another: posslibility consists in
artificially influencing the boundary layer, for Instance by blowing
or suction of fluld, or else by appllication of an euxiliary wing that
provides acceleration at the critlcal polnts of the boundary layer.
Some details will be given In the followlng sections of thils chapter.

a. IEstimation of the Admissible Pressure Gradlent

We are going to make, following Prandtl (reference 2), & gensrally
valid estimation of the pressure lncreases in a laminar boundary layer
that are possible without the occurrence of seperation., We take as the
basis the Kermén-Pohlhsusen approximate calculation according to
Chapter X and make the assumption that under the effect of the pressure
gradient given by the potential flow the boundary layer has developed
111 near the separation point (Point O in fig. 62). From here on
the pressure distribution is to be such that the form of the veloclty
profile does not change further downstream, that 1s, the form parameter
A 18 to remsin constant. Since the value corresponding to'the separation
point is A = —12, thls constant A—value shall be chosen at A = —10%,
A definite value of the second form paramster (according to teble 5)
corresponds to this choice:

A =-~10; k =-0.1369; F(x) = 1.523 (11.1)

For the prevention of separation the following relation between the
potential—~flow velocity U(x) and the momentum thickmess Jd(x) results
according to equations (10.50) and (10.51):

2 0.1369 °
. 3— =2="3 (11.2)
or
az .o
T - 0.1369 E:E . (11.3)
or
az %o Uu" _
U 5 = 0.1369 ;—5 = 0.1369 © (11.4)

if one puts for simplification

*At eny rate, thls A—value must be negative, since otherwise the flow
in gquestion 1s not retarded.
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On the other hand, the momentum equation according to
equation (10.58) holds for the further development of the boundary layer
for x> 0:

U %:Z; = F(k) = F(~0.1369) = 1.523 (11.6)

The numerical value must be substituted for F(k), 1f the form parameters
are to remain constant at the values glven by equation (11l.1). From
equations (11.6) and (11l.4) follows therewith, for the constancy of the
form parsmeter A = —10, the conditlonal equation

0.1369 U—U"§ = 1.523
-
or B
0 = Ul'- = 11-13 z ll (11‘7)
u?

For o > 11 the boundary layer cen still bear the pressure Increase;

for o < 11 separation occurs; for o = 11 the boundary layer always
remains with A = =10, on the verge of separation., Qualitatively, the
following can be immediately said about the dlstribution of the potential—
flow velocity U(x) which gives no separation. Becauss of equation (11.7)
e necesgary conditlon for avolding separation 1n retarded flow is:

U"> 0 for U< O (11.7a)

that is, a negative<+veloclity gradlent U' must exist, the magnitude of
which decreases in the flow direction. If, therefore, the curve U(x)
in figure 63 is curved downward behind the maximum (U™ < 0), separation
occurs in every case; if it is curved upward (U™ > O), separation some-—
times does not occur. The limiting case U" =0 for U'< O always
leads to separation. The gufficient condition for avolding separation

1s UU" /U2 > 11.
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One now proceeds to calculate what potentlal flow and what boundary
layer thickness variation correspond to o = +1l. From equation (11.7)
follows:

Iﬂ:]_]_IL'
gt U

and after integration: log U' = 11 log U — log C]'_ or

U _-_g¢!

ol 1

with Ci as Integration constant. Repeated Integratlon glves:

1
L5 crzsc, (11.8)
10 1
For x =0, TU(x) shall be U(x) = Uy, thus
1 —=10 :
Furthermore, one puts
. 10
€] To =0 (11.10)
_and obtailns from equation (11.8) for the potential flow
Uo
U - P (lJ-oll)

0.1
(1 + 10 Cyx)

Thereby 1s found the desired velocity distribution that Just avoids
separation. The constent C, can be determined from the boundary layer
thickness 80 at the Inilti point x = O:

2
X:H%L:—lo
5 = {[1QY

_U‘l
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According to equation (11.11)

U = — Cl UO
l.l
(1 + 10 C;x)

and thence

_.[10v 0.55
5 = al—Uo-(l-l'loclI)

From d = $° for x =0 follows

C, = -J--Ql2 (11.12)
UOSO

and thus, as the final solution for the potential flow and the boundary
layer thickness varlsation,

-0.1 %
U = Ty[1 + 100 ”2 (11.13)
: anq
0. '
8 = 5,(1 + 100 —-X 72 (11.1h)
2
UOBO

The permissible retardation (velocity decrease) is therefore comparable

0
to 1/{/:x and 1s thus very small. The velocity 1is thus very close to
the constant velocity of the flat plate in longltudinal flow. For the

present case the growth of the boundery layer thickness 3 must thereforé

1/2

be somewhat, larger than for the flat plate, where & ~ x . Here

&5~ xo'55; thus the increase is only slightly larger.

The flow in a divergent channel with plane walls (two—dimensional
problem) will be treated as another example. In figure 64 let x be
the radial distance from the origin O. The walls start at x = a, where
the entrance velocity of the potential flow equals TU,. The potentlal
flow 18

*Compare Chepter IX e where 1t was found, as exact solution of the
differential equation of the boundary layer, that in retarded flow

0,091
separation occurs when . U(x) = u X 9
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a )
U(I) = UO E
a
U= -T, — > (11.15)
X
()
T - 2w, S
* ~

Thus U'< O and U"> O for all x so that the necessary condition
equation (11.7a) for avolding separation is satisfied. However, calcula—
tion of the dimensionless number ¢ according to equation (11.5) gives

c=2 (11.16)

The sufficlent condltion for avoiding separation, o> 11 according to
equation (11.7) is therefore violated. For the divergent channel with

plane walls separation therefore occurs for any included engle. This

example shows especially clearly the low ebility of the laminar flow to
overcome & pressure lncrease without separation., According to a calcula-—
tion of Pohlhausen (reference 24) the separation point lies at (x/a.) = 1,213
and thus is Independent of the included angle «.

b. Varlous Technical Arrangements for Avolding Separation

It 1s a Pavorable circumstance for technical applications that for
higher Reynolds numbers the boundary layer does not remain laminar but
becomes turbulent. The turbulence consists of en lrregular mixing motion.
By this mixing motion momentum 1s continuously transported into the layers
near the wall, and the particles rstarded at the wall are carried out into
the free stream and thus re—accelerated.

Because of this mechanlsm the turbulent flow is able to withetsand,
without separation, considerebly higher pressure increases than the
laminar flow; thus the pressure increases existing in technical flows
are made possibls.

A few technicel possibilities for avolding separation will be
discussed.

1. Blowing. For a wing profile the separation of the boundary
layer for large angles of attack (fig. 65) can be prevented by blowing
air in the flow direction from a slot directed toward the rear. The
velocity for the layer near the surfece 1s thus Increased by the energy
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supplied and the danger of separation is therefore eliminated. It is
true that in the practical execution not much 1s gained, because of the
large Jet energy required for any considerable improvement of the flow.
In order to mske the energy output small, the width of the Jet must be
kept small. But then the Jet, soon after ite exit, breaks up into
vortices.

2. Another possibility of avolding separation is the arrangement
of a slotted wing according to figure 66. The effect depends on the
boundary layer formed on the slot AB being carried away into the free
stream, before 1t separates, by the flow through the slot. A new
boundary leyer develops at C which is, however, at first very thin
end reaches D without separation.

The same principle 1s used for the Townend ring and NACA cowling
(£ig. 67T).

3. Suction. A further possibllity for ths prevention of separation
is suction. For the wing, for instance, the retarded boundary-layer
material 1s sucked off into the interior of the wing through one or
several slots (fig. 68). The point of suction lies slightly ahead of
or behind the separation point so that no reversal of the flow can occur.
A new boundary layer which at first 18 very thin develops behind the
suction point and permite the pressure to increase further. In this
manner one can overcome congiderably larger pressure increases and
attain higher values of maximum 1ift for the wing. Many different suction
arrangements- for increasing maximum 1ift have been investigated by
0. Schrenk (reference 28). Values for a max of 3 to &k were obtained.

¢. Theory of the Boundary Layer with Suction

Suction 1s a very effectlve means for Influencing ths friction
layer on a body immersed in a flow and particularly for avoiding
separation. This was pointed out for the first time in 190& by L. Prandtl
in his fundamental work on the boundary layer.

Another possibility of applicatian of suction, recognized only
recently, is to keep ths friction layér laminar. Here the boundary layer
is, by suction, kept so thin that transition to the turbulent state of
flow is avolded. The surface friction drag 1s thereby reduced. Experimental
investigations of this effect were cayried out by Ackeret (reference 39)

The laminsar friction layer wilth suction can aleo be subJected to a
numerical treatment which will be briefly discussed. The followlng
esgumptions are made- for the calculation:
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1. The suction is introduced into the calculation through the
assumption that the normal velocity at the wall vo(x) 1is
different from zero. The wall ls therefore assumed to be
permeable. A continuous distrlbution of the suction velocity

i’ v'o(x) serves the purpose of numerical treatment best.

2. The suctlion quantities are so small that only the parts in the
immedlate neighborhood of the wall are sucked from the
boundary layer. This leads to a very small ratio of suction
velocity v,(x) to free stream velocity U,: vo/U, = 0.001

to 0.01.

3. The no—slip condition at the wall u =0 is‘ retained with
suction, likewise the expression for the wall shearing stress

T —u(au>
o= —_—
; oy o

- The equations of motion for the boundary layer with suction therefore
read
2 )
* u.—+vé=tr-ﬁ£+v—au

> (11.17)
Su, v _,
ox 9y
J
with the boundary conditions
y=0 w=0 v = vo(x)
' (11.18)

Vo <O signifies suction; v, > O blowlng.

As In chapter X b the momentum theorem is again applied to the
boundary layer wilth suction. The momentum equation for the boundary layer
with suctlon 1s obtained In exactly the sams manner as in chapter X b
(compare fig. L4) provided one takes into consideration, in addition,
that the normal velocity at the wall is different from zero. In chapter
X b the momentum equation was derived by integratlon of the equation of
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motion for the x—direction over y between the limits y = 0 and

¥y ='o (compare equation (10.28)). One imagines exactly the same calcula—
tion performed for the boundary layer with suction: then the expression
for the normal velocity at the distance from the wall y =h isg
different, compared with the calculation in chapter X b. The normal
velocity now becomes

v o=v — %dy (11.19)

The remaining calculation l1s exactly the same as in chapter X b and
Pinally ylelds as the momentum squation for the boundary layer with
suction.

TO=U2

=2 (20 + &%) U <X & _vu (11.20)

ad
dx

The newly edded term -v, U (compared with equation (lO 36)) gives the
loss of momentum due %o %he suction at the wall.

We shall now treat the special case of the flat plate with suction
in longitudinal flow (fig. 69) (reference 29). The free—stream velocity
is U,. Equation (11.20) then becomes

2 T
ad o du
U, —-7vU= - =" <By> (11.21)

1f one tekes the law for the laminar wall shearing stress into consider-—
ation. Furthermore, the assumption 1s made that the suctlon velocity
(or blowing velocity) =—v, along the plate is constant. In this case
one can obtain from the momentum equation (11.21), by the following
simple calculatlon, an estimate of the varletion of the momentum thick—
ness along the plate. One puts

(%)o ='p % C (11.22)

B 2'0 gignifying & dimensionless form parameter of the velocity profile.
Tt may be assumed, to a first approximation, that B varles only little
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wlth the length of run =x; accordingly, B will be consldered congtent.
Then equation (11.21) may be written :

2
(11.23)

o) o
JE
I
™
+
o7
[~

&ﬂlc

with the initiel condition 3 = 0 for x = 0. For suction (v, < 0) one
obtaing d8/dx = 0 for

v
B —_V; (suction) (11.2}4-)

(that is, therefore, the momentum thickness reaches, after a certain
approach length, a constant asymptotic value given by equation (11.24)).
Simultaneously, displacement thickness, veloclty distribution, and all
other boundary leyer coefficients also becoms asymptotically independent
of x. '

For blowing (v, >0) the value dd/dx is, according to equation

(11.23), larger than zero along the entire plate; that is, §(x) increases
with the length of run x without limit so that for large values of x,
one cen neglect in equation (11.23) the first term on the right side as
compared with the second. OQne obtains therefore, as asymptotic law,

<

Vg = U—° x (blowing) (11.25)
(o]

On the whole, one obtalns the remarkable result that for the flat plate
in longitudinal flow with constant suction or blowing velocity, the
boundary leyer thickness for suctlon becomss constant after a certain
approach length, whereas for blowing, it increases proportionally to the
length of run x. In between lies the case of the impermeable wall
where the boundary layer thickness lncreases with \[x.

For the case of the laminar boundary layer wilth the asymptotically
congtant boundary layer thickness 1t 1s also possible to give lmmediately
an exact solution of the dlfferential equetions of the boundary layer in
& surprisingly simple form. In this case Bu/ax = 0, hence also,
according to equation (11.17), ov/dy = 0 and therefore

v(x,y) = v, = constant ' (11.26)
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Hence there follows from equation (11.17)

2
v % =V 5_‘21 (11.27)
oy
and from 1t the solution which satisfies the boundary conditions
equation (11.18)
T7
v
uly) =U €1 —e (11.28)

(o]

From this equation results the displacement thickness of the asymptotic
boundary layer

o
the momentum thickness
v
.3.‘” = %_ = (_11.30)

B* -
and the form parameter 151 = 2. By comparing equation (11.29) with
-]
equation (11.2k) one finds the factor B = 1. The veloclty distribution
of the asymptotic boundery layer profile according to equation (11.28)
is plotted in flgure 7O together with the Blasius solution for the

impermeable wall.

Herewlth the consliderations of boundary layer with suction will
be concluded.

CHAPTER XII. APPENDIX TO PART I )
a. Examples of the Boundery Layer Calculation
According to the Pohlhausen-Holbstelin Method
For the integration of the differential equation (10.58) 1t is

best to use the lsocline method. It 1s expedlent to calculate with
dimensionless queantities. The arc length & 1s made dimenslonless by
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dlviding by a characteristic length of the body immersed in the flow,

for instance, for the wing, by the wing chord +%. The varisble = ﬁQ/V
U,
is made dimensionless by multiplying by q?. Thus one puts:
2
iU
7% = o _ <§>F _QE
vt t v
(12.1)
_ 8
=3z
Hence the differential equation reads:
az* t 4qu
aex =T k=g . (12.2)

The calculated example concerns a symmetrical wing profile (J 015) in
symmetrical approach flow (cy, = 0). The prescribed potential—flow
velocity and ite first derivative with respect to the arc length is
given in table 6. The initial values for the integration are calculated,
according to equation (10.60), to be, for the present case:

N
*
1

0.00 149 e

1
SN’

since at the stagnation point d2U/ds® = 0. The auxiliary function F()
requlred for the integration is given in Ffigure 47—e and taeble 5. The
calculation according to the isocline method is shown in figure 48. Here
the curve &k = -0.1567 which gives the separation point can be calculated

according to the relation:

t 4u t 4o
Z¥ = - K —_—— = - 0,1 —
Al g, ds T T, ds

The intersection of the integral curve with this curve gives the separa—
tion point. As a result of the lntegration one obtalne at first the varia—
tion of the momentum thickness. By means of the function &%/ = (k)

T
and %;—9 = fa(n) given in table 5 one can also calculate the displacement
m .
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thickness and the shearing stress. The result of the calculation is
compiled in table 6 and given in figure 49. Moreover, the velocity
distribution in the boundary layer can be seen from figure 56.

Tranelated by Mary L. Mahler ‘ S -
National Advisory Committee
for Aeronsutics
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TABLE I. — THE FUNCTION ¢ OF THE PLANE STAGNATION POINT

FLOW (ACCORDING TO HIEMENZ (REFERENCE 10)); TO FIGURE 16

E=\Ey; L-ore)

3 P LY o"
0 1.23264
0.0060 1183 1.1328

0.0510
0.0881
0.1336 0.494s 0.7583
0.1867 0.5662 0.6751
0.2466 0.6298 0.5973
0.312h4 0.6859 0.5251
0.3835 0.7350 0.4586
0.4592 0.7778 0.3980
0.5389 0.8149 0.3431
0.6220 0.8467 0.2937
0.7081 0.8739 0.2498
0.7966 0.8968 0.2109
0.8873 0.9161 0.1769
0.9798 0.932% 0.1473
1.0738 0.9457 0.1218
1.1688 0.9569 0.0999
1.2650 0.9659 0.0814
1.3619 0.9732 0.0658
1.4596 0.9792 0.0528
1.5577 0.9841 0.0420
1.6563 0.9876 0.0332
1.7552 0.9905 0.0260
1.8543 0.9928 0.0202
1.9537 0.9946 0.0156
2.0533 0.9960 0.0119
2.1529 0.9971 0.0091
2.2528 0.9979 0.0068
2.3525 0.9985 0.0051
2.4523 0.9988 0.0036 .
2.5522 0.9992 0.0027
2.6521 0.9994 0.0023 =
2,7521 0.9996 0.0019
2.8520 0.9997 0.0014
2.9520 0.9998 0.0010
3.0519 0.9999 0
3.1518 0.9999 0
3.2518 0.9999 0
3.3518 1.0000 0.0002

0

0

0

0
0l
0.0233 0.2266 1.0345
o}
0

[ ) [ ] L) - - - [ ) [ ] - L ] - - L ]
O I OV OGO FD R I OO0 OV FW 0 O 01 I EW o 12 00 03 v = o b

3.4518 1,0000
3.5518 1.0000
3.6518 1.0000

-F‘-F’-F‘-F'ww(_»wwwww(;»k.»[\)[\)l\)I\)I\J[\)l\)[\)l\)[\)l—‘l—-‘l—‘t—‘l—'l—'l—-‘!—'l—'l—'OOOOO0.00.00
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TABLE II. — THE FUNCTION £ OF THE BOUNDARY LAYER ON THE FLAT PLATE

IN LONGITUDINAL FLOW (ACCORDING TO BLASIUS (REFERENCE 8)); TO
- .
FIGURE 30 =g 2; L =p
30 ¢ Y\’ o (1)

f' fll

=
H

0 o] 0.33206
0.00686L 0.06641 0.33199
0.02656 0.13277 0.33147
0.05974 0.19804 0.33008
0.10611 | 0.26471 0.32739
0.16557 0.32979 0.32301
0.23795 | 0.39378 0.31659
0.32298 0.45627 0.30787
0.42032 0.51676 0.29917
0.52952 0.5T4TT 0.28293
0.65003 0.62977 0.26675
0.78120 0.68132 0.24835
0.92230 0.72859 0.22809
1.07252 0. 77246 0.206L46
1.23099 0.81152 0.18501
1.39682 0.84605 0.16136
1.56911 0.87609 0.13913
1.74696 0.90177 0.11788
1.92954 0.92333 0.09809
2.11605 0.94112 0.08013
2.30576 0.95552 0.06424
2.49806 0.96696 0.05052
2.69238 | 0.97587 0.03897
2.88826 0.98269 0.02948
3.0853k4 0.98779 0.02187
3.28329 0.99155 0.01591
3.48189 0.99425 0.01134
3. b 0.99616 0.00793
3.88031 0.99748 0.00543
4.07990 0.99838 0.00365
k. 27964 0.99898 0.00240
L. k7948 0.99937 0.00155
4.67938 0.99961 0.00098
4.87931 0.99977 0.00061

PNRENODAFNOORFNVNOPAFNODNFNO DAFNVODRAEN O BAFD O 0O\

ED.CD(I)ODSD-Q?]-J-:]?] U\O\P\O\O\JI\_JIYI\.J'IUI -F'-F‘-F‘-F-F‘wwwwwNNNNNHI—'I—'HHOOOOO

. 5.07928 0.99987 0.00037
5.27926 0.99992 0.00022
5.47925 0.99996 0.00013
5.67924 0.99998 0.00007
5.87924 0.99999 0.00004

. 6.07923 1.00000 0.00002
6.27923 1.00000 0.00001
6.47923 1.00000 0.00001
6.67923 1.00000 o}
6.87923 1.00000 o]
7.07923 1.00000 o]
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ON THE CYLINDER (SYMMETRICAL CASE) ACCORDING TO HOWARTE

(REFERENCE 15) AND FROSSLING (REFERENCE 16). 1§ = y "L_l
f fl 1] 1 1
" 3 3 3 n 8 &5 &5
(o} 0 o} 0.724% o] o} 0 0.6348
0.1 0.0035 0.0675 0.624g 0.2 0.011% 0.1072 o.hho2
0.2 0.0132 0.1251 0.5286 0.4 0.0405 0.1778 0.2717
0.3 0.0282 0.173h4 0.k375 0.6 0.0806 0.2184 0.1%08
0.4 0.0476 0.2129 0.3539 0.8 0.1264 0.2367 0.0483
0.5 0.0705 0.244h 0.2780 1.0 0.1742 0,2399 -0.0106
0.6 0.0962 0.2688 0.2112 1.2 0.2218 0.2342 -0.0431
0.7 0.1240 0.2869 0.1530 1.k 0.2676 0.2239 -0.0567
0.8 0.1534 0.2997 0.1037 1.6 0.3112 0.2123 ~0.0580
0.9 0.1838 0.3080 0.0626 1.8 0.3526 0.2012 -0.0522
1.0 0.2149 0.3125 0.0292 2.0 0.3918 0.1916 -0.0432
1.1 0.2562 0.3140 0.0028 2.2 0.4293 0.1839 -0.0335
1.2 0.2776 0.3132 -0.0173 2.4 0.4655 0.1781 -0.0245
1.3 0.3088 0.3107 —0.0320 2.6 0.5007 0.1T40 -0.0171
1.k 0.3397 0.3070 —0.0420 2.8 0.5352 0.1712 -0.011%
1.5 0.3702 0.3025 -0.0482 3.0 0.5692 0.1694 -0.0072
1.6 0.Lk0oo2 0.2947 -0.0513 3.2 0.6030 0.1682 ~0.00%43
1.7 0.4297 0.2923 -0.0518 3.k 0.6365 0.1676 —-0,0026
1.8 0.4587 0.287L -0,0506 3.6 0.6700 0.1672 -0.0015
1.9 0.4871 0.2822 -0,0480 3.8 0.703% 0.1669 -0.0010
2.0 0.5151 0.2775 —0.04kl k.0 0.7368 0.1668 ~0.0004
2,1 0.5426 0.2733 -0.0402 4.2 0.7701 0.1667 -0,0001
2,2 0.5698 0.2695 -0.0358 4.k 0.8035 0.1667 ~0.,0001
2.3 0.5966 0.2662 ~0.0314
2. 0.6230 0.2632 -0.0271 1 h ht h"
2.5 0.6492 0.2607 -0.0230 ) 5 P
2.6 0.6752 0.2586 ~0,016% o] o 7] 0.1192
2.7 0.7010 0.2568 -0.0160 0.2 0.00LT 0.0141 0.02k9
2.8 0.7266 0.2554 -0,0131 0.k 0.0045 0.0117 -0.0436
2.9 0.7520 0.2542 ~0.0106 0.6 0.0057 —0.0010 —0.0783
3.0 C.TTTH 0.2533 ~0.0085 0.8 0.0039 —0.0176 -0.0833
3.1 0.8027 0.2525 ~0.,0067 1.0 -0.0012 -0.0330 -0.
3.2 0.8279 0.2519 -0.0052 1.2 -~0.0090 =0.04k1 ~0.0423
3.3 0.8531 0.2515 ~0,0041 1.4 -0.0185 -0.0498 -0.0149
3.4 0.8782 0.2511 —-0,0032 1.6 -0.0286 ~0,0503 +0,0088
3.5 0.9033 0.2508 -0.002k 1.8 -0.038% ~0.0468 0.0256
3.6 0.928) 0.2506 -0.0019 2.0 -0.04T2 —0.0406 0.0351
3.7 0.9534 0.250% -0,001% 2,2 ~0.0546 ~0.0331 0.0380
3.8 0.9785 0.2503 -0.0011 2.4 ~0.0604 -0.0257 0.0361
3.9 1.0035 0.2502 ~0.0008 2,6 -0.0649 -0.0180 0.0312
k.o 1.0285 0.2502 -0.0006 2.8 —0.0681 -0.0133 0.0249
k.1 1.0535 0.2501 ~0,0004 3.0 -0,0703 -0.0089 0.0187
L2 1.0785 0.2501 -0.0003 3.2 -0.0717 -0.0058 0.0132
4,3 1.1035 0.2500 -0.0002 3.k -0,0726 —0.0036 0.0089
bk 1.1285 0.2500 -0.0001 3.6 -0.0732 -0,0021 0.0057
3.8 -0.0735 -0.0012 0.0036
L,0 -0.073T -0,0006 0.0022
L2 —0.0738 -0.0003 0.0012
4.4 -0.0738 ~0.0001 0.0007
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TABLE IV. — THE FUNCTIONS F(y/8p) end G(y/sp) FOR THE VELOCITY
DISTRIBUTION IN THE BOUNDARY LAYER ACCORDING TO POHLEAUSEN

(REFERENCE 24) AND HOWARTH (REFERENCE 15)

s% F G
0 o} o)
0.1 0.1981 0.01215
0.2 0.3856 0.01725
0.3 0.5541 0.01715
0.4 0.6976 0.014k
0.5 0.8125 0.0104
0.6 0.8976 0.0064
007 00951;1 0500315 -
0.8 0.9856 0.00105
0.9 0.9981 0.00015
1.0 1 o]

4
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TABLE V. — AUXILIARY FUNCTIONS FOR THE BOUNDARY LAYER CALCULATION

ACCORDING TO HOLSTEIN (REFERENCE 25)

T
A . F(x) XORS £o(e) = 52
15 0.0885 -0.065T 2.279 0.345
i 0.0920 —0.0814 2.262 0.351
13 0.0941 -0.0913 2.253 - 0.354
12 0.0948 =0.0946 2.250 0.3
11 0.0941 -0,0911 2.253 0.354
10 0.0920 -0, 0806 2,260 0,351
9 0.0882 -0.0608 2,273 0.346
8 0.0831 -0,0332 2.280 0.340
7.8 0.0820 -0.0271 2,293 0.338
T.6 0.0807 -0,0203 2.297 0.337
T.4 0.0794 +0.0132 2.301 0.335
T.2 0.0780 -0.0051 2.305 0.333
7.05 0.0770 b 2,308 0.332
7 0.0767 0.0021 2.309 0.331
6.9 0.0760 0.0061 2.312 0.330
6.8 0.0752 0.0102 2,314 0.330
6.7 0.0Thl 0.01kh 2.316 0.329
6.6 0.0737 0.0186 2.318 0.328
6.5 0.0729 0.0230 2,321 0.327
6.4 0.0721 0.027h 2.323 0.326
6.3 0.0713 0.0319 2.326 0.325
6.2 0.0706 0.0365 2,328 0.324
6.1 0.0697 C.0412 2,331 0.322
6 0.0689 0.0k59 2.333 0.321
5 0.0599 0.0978 2.361 0.310
3 0.0497 0.1579 2.392 0.297
3 0.0385 0.2255 2.h27 0.283
-2 0,026k 0.3000 2.466 0.268
1 0.0135 0.3820 2.508 0.252
0 0 0.4698 2,554 0.235
-1 -0.0140 0.5633 2,604 0.217
-2 -0,028% 0.6616 2,658 0.199
-3 -0.0429 0.7640 2.716 0.179
4 -0.0575 0.8608 2.779 0.160
-5 -0,0720 0.9780 2.847 0.140
-6 -0.0862 1.0853 2,921 - 0.119
-7 -0.0559 1.1981 2.999 0,100
-8 -0.1130 1.3078 3.084 0.079
-9 -0.1255 1.4173 3.177 0.059
=10 -0.,1369 1.5231 3.276 0.039
-11 0,144 1.6251 3.383 0.019
2 ~0.1567 1.7237 3.500 0
-13 -0.1648 1.8159 3.627 -0.019
-1k -0.1T715 1.9020 3.765 -0.037
=15 -0,1767 1.96821 3.920 -0,054




TABLE VI. — EXAMPLE FOR THE BOUNDARY LAYER CALCULATION ACCORDING
TO HOLSTEIN (REFERENCE 25). (PROFILE J 015; cg = 0)

8 I { L ‘EE ko |z* = ﬂaUO A B¥ Upb | 270 | Tot
+ T, U, ds vt tr Vv Pan v
0 51.T 0.0770 | 0.00149 | T.052] 0.08 0
0,0049 | 0.231 | k9,0 0.0Th5 | 0.00152 | 6.70 | 0.0805| 3.90
0.0099 | 0.445 | k2.2 0.0708 | 0.00168 | 6.24 0.0957| T.05
0.0148 | 0.6327] 32.6 0.0662 | 0.00203 5.6 0.1057| 8.95
0.0197{ 0.782 | 24.75 | 0.0631L1-0.00255 | S5.32 | 0.119 9.7k
0.0308 | 0.993 | 12.70 | 0.0513 | O.o0hO4 | 4,15 | 0,152 9.36
0.04431{ 1.011| 6.16 | 0.0389 | 0.00632 | 3.03 | 0.193 T.94
0.0787| 1.233| 1.573 | 0.0200 | 0.01325 | 1.57 | 0.287 5.5T
0.123 | 1.270} 0.235 | 0.0057| 0.0267 0.41 | o.k0 3.81
0.135 | 1.271| © 0 0.0340 0 0.460 3.43
0.178 | 1.267|-0.209 |-0.0101-| 0.0485 | -0.T1L | O.564 2.58
0.24) | 1.245 | -0.387 |-0.0317| 0.0820 | -2,23 | 0.765 | 1.69
0.313 | 1.212 | -0.468 |~0.0616 | 0.1315 | k.27 | 1.005 1.05
0.390 | 1.178 | —0.485 |~0.2024 | 0.211 ~7.18 | 1.38% 0.h49
0.573 | 1.136 | <0487 |~0.1510 | 0.310 |-11.37 | 1.910 0.049
A 89.5] 0.483 | 1.130| ~0.48T |-0.1567 | 0.32% |12 1.990 0

80 | 0.561 |1.095|-0.487

T0 | o0.648 |1.053}~-0.4Th

60 | 0.733 | 1.01k | -0.458

50 | 0.812 | 0.997 | ~0.4k2

4o | 0.885 | 0.945 | ~0.420

30 .| 0.94% [ 0.917 | —0.416

20 0.990 008% _o.hll!"'

10 11.018 | 0.889 | —0.409

5 1.025 | 0.886} ~0.409

0 |1,028 } 0.884] -0.409

LTIST *ON Wd VOUNM

&gl




126 NACA TM No. 1217

UO ——-p
//////4//////////////,/
vyl p
Y

TIITI T P770T
Figure 1.- Simple shear flow,
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Figure 2.- Hagen-Poiseuille’s pipe flow.

/y
\ . \ dpk
%Z&b/ NP g’ / T~ roo+ ;i ax

=X

// /

s
xXyzZ dx

Figure 3.- The general stress tensor.
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Figure 4.- The shearing stress (to fig. 3).
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Figure 5.- The deformation of a pure elongation.
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Figure 6.- Pure angular deformation (e > 0).
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f>0

Figure 7.- Pure angular deformation (f— 0).

Figure 8.- Analogy between heat boundary layer and flow boundary layer.
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Figure 9.- Types of solutions of the Navier-Stokes differential equations.
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Figure 10.-

Reynolds’ law of similarity.

Figure 11.~ Laminar pipe flow.
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Figure 13.- Velocity distribution on an oscillating surface.
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Figure 14,~- Velocity distribution on a surface set suddenly in motion.
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Figure 15.- The plane stagnation point flow.
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Figure 16.- The velocity profile of the plane stagnation point flow.
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Figure 18.~ Velocity distribution in the convergent channel.
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Reverse flow

Figure 19.- Velocity distribution in the divergent channel.

Figure 21.- Viscous flow around a sphere.
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Figure 22.- Streamline pattern of the viscous flow around a sphere
(according to Stokes).
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Figure 23.- Streamline pattern of the viscous flow around a sphere
(according to Oseen).

Figure 24.- Concerning Prandtl’s boundary-layer equation. (Boundary-
layer thickness & magnified.)
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Figure 25.- Separation of the boundary layer.
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Figure 26.- Velocity distribution in the boundary layer for pressure
decrease (%% < O).
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Figure 27.- Velocity distribution in the boundary layer for pressure
i dp )
increase ( I o).

Figure 28.- Concerning the calculation of the friction drag.
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Figure 28.- The boundary layer on the flat vlate in longitudinal flow.
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Figure 30.~ Velocity distribution u(x,y) in the boundary layer on the
flat plate (according to Blasius).
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Figure 31.- The transverse velocity v(x,y) in the boundary layer on
the flat plate.
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Figure 32.- The boundary layer on a cylindrical body of arbitrary
cross section (symmetrical case).
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Figure 33.- The function f3’ of the velocity distribution in the
boundary layer.
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Figure 34.- The functions gg’ and hg’ of the velocity distribution
in the boundary layer.
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Figure 85.- Velocity distribution of the potential
flow for a wing profile,

Figure 36.~ Concerning the calculation of the friction layer on the
. circular cylinder.
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Figure 37.- Wake flow behind the flat plate in longitudinal flow.
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Figure 38.- Concerning application of the momentum theorem for the
flat plate in longitudinal flow.
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Figure 39.- Asymptotic velocity distribution in the wake behind the
flat plate in longitudinal flow.
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Figure 40.- Streamline pattern and velocity distribution of the plane jet.
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Figure 41.- The velocity profile of the plane jet.
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Figure 41(a).- Boundary-layer profiles for the potential flow U(x) = ulxm.
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Figure 42.- Application of the momentum theorem for the flat plate in
longitudinal flow.

Figure 43.- Velocity distribution in the boundary layer on the flat plate
in longitudinal flow.

(2) Linear approxiniation.
(b) Cubic approximation for the velocity profile.

Figure 44.- Application of the momentum theorem to the boundary layer
with pressure gradient.
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Figure 45.- The universal functions F(y/sp) and G(y/ap) for the
velocity distribution in the boundary layer according to Pohlhausen.
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Figure 46.- The one-parameter family of velocity profiles according
to Pohlhausen. '
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Figure 47(2).- Auxiliary functions of the boundary layer calculation
according to Holsteln (cf. table 5); A and F(x) against .
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Figure 47(b).- Auxilisry functions for the boundary layer calculation
according to Holstein (cf. table 5); f;(x) and fz(n) against «.
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Figure 48.- Integration of the differential equation of the boundary layer
according to Pohlhausen and Holstein (profile ] 015; ¢y = 0).



150 NACA TM No. 1217

20

0,483

| A= i N\

Joukowsky profile d/t = 0.15

Figure 49.- Result of the boundary-layer calculation for the example
according to figure 48 (profile ] 015; c, = 0). .
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Figure 50.- Comparison of the approximate calculation according to
Pohlhausen with the exact solution.
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Figure 51.- Potential-theoretical velocity distribution on the elliptic
cylinders with axis ratio aj/b; =1, 2, 4, 8 for flow parallel to the

major axis (A = laminar separation point), t' = half the circumference.
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Figure 52.- Result of the boundary-layer calculation for the elliptic
cylinders of axis ratio ay/b; = 1, 2, 4, 8.
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Figure 54.- Potential-theoretical velocity distribution for the Joukowsky
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Suction side
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Pressure side

Flgure 55.- Result of the boundary-layer calculation for the Joukowsky
profile J 015 (t’ = half the profile perimeter).
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Figure 57.~ Potential flow and laminar friction layer for the Joukowsky
profile JO015 at ¢, = 1.
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Joukowsky profile
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Figure 58.- Joukowskyprofiles; thickness d/t = 0 to 0.25; camber
f/t=0 to 0.08.
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Figure 59.- Position of the laminar separation point for the Joukowskag
profiles of figure 58; suction side.
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Figure 60.- Position of the laminar separation point for the Joukowsky
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5 Danger of separation
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Pressure

Figure 61.- Pressure distribution and separation on a wing.
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Figure 63.- Potential flow with separation: U’ < 0; U” < 0;
sometimes without separation: U’ < 0; U” > 0.
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Figure 64.- Divergent channel.

Figure 65.~ Prevention of separation on wing by blowing.

Figure 66.- Preventlon of separation by a slotted wing.
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Figure 67.- NACA cowling for prevention of separation.
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PREFTACE

I gave the lecture series "Boundary-Layer Theory" in the winter
semester 1941/42 for the members of my ITnetitute and for a conslderable
number of collaborators from the Hermenn GOring Institute for Aviation
Regearch, The series embraced a total of sixteen two—hour lectures.

The alm of the lecture series was to glve a survey of the more
recent results of the theory of viscous flulds as far as they are of
importance for actual spplications. Naturally the theory of the boundary
of frictional layer tekes up the greatest part. In view of the great
volume of material, & complete treatuwent was out of the questlon,
However, - I took palns to make concepts everywhere stand out clearly.
Moreover, several important typlcal exaemples were treated in detail.

Dr. H, Hahnemann (LFA, Institute for Motor Research) went to
considerable trouble in order to perfect an eleboration of this lecturs
series which I examimed and supplemented in s few placeéds. Miss Hildegard
Munz participated in the illustration. To both I owe my most sincere
thanks for this collaboration.

Schlichting

Aerodynamisches Institut
der Technischen Hochschule, Braunschwelg
October 1942.
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Figure 68.- Prevention of separation on wing by suction.
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Figure 69.- Flat plate in longitudinal flow with suction.
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