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Part I - Laminar Flows*

By H. Schlichting

First lecture (Dec. 1, 1941)

INTRODmION

Gentlemen: ~ the lecture series starting today I went to give
you a survey of a field of aerodynamics which has for a number of years
been attracting an ever growing interest. The subject is the theory of
flows with friction, and, within that field, particularly the theory of
friction layers, or boundary layers.

As you bow, a great many considerations of aerodynamics are based
on the so-called ideal fluid, that is, the tiictionless incompressible
fluid. By neglect of compressibility end friction the extensive math+
matical theory of the ideeJ fluid (potential theory) has been made
possible.

Actual liquids and gases satisfy the condlthn of incompressibility
rather well if the velocities are not extremely high or, more accurately,
if they are small in comparism with sonic velocity. For air, for
instance, the change in volume due to compressibility amounts to about
1 percent for a velocity of 60 meters per second.

The hypothesis of absence of friction is not satisfied by any
actual fltid; however, it is true that most technically important fluids,
for tistsnce air and water, have a very mall friction coefficient and
therefore behave in many cases almost like the ideal frictlonless fluid.
Many flow phenomena, in particular most cases of lift, canbe treated
satisfactorily, – that is, the calculations are in good agreement with
the test results, - under the assumption of frictionless fluid. However,
the calculations with frictionless flow show a very serious deficiency;
nsmely, the fact, Mown as d’Alenibert’sparadox, that in frictionless
flow each body has zero drag whereas in actual flow each body experiences
a drag of greater or smaller magnitude. For a 10I’ISthe the theory has
been unable to bridge this gap between the theory of fiictionless flow
and the experimental findings about actual flow. The cause of this
fundamental discrepancy is the viscosity which is neglected in the theory

*“vortr~reihe ‘$Grenzschichttheorie.’ Teil A: Laminere Strdmungen.”
Zentrale f$r wisscmschaftliches Berichtswesen der Luftfahrtforshung des
Generslluftzeugmeisters (ZWB) Berli-ershof, pp. 1–153. Given in the
Winter Semester 1941/42 at the Luftfahrtforschu@anstalt Eermamn G6ring,
Braunschweig. The original langusge version of this report is divided into
two main parts, Teil A and TeilB, which have been translated as separate
NACA Technicel Memorandums, Nos. 1217 and1218, designated pert I end prt 11,
respectively.
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of the ideal fluid; however, in spite of its extraordinary smallness it
is decisive for the course of the flow phenomenon. As a matter of fact
the problem of drsg can not be treated at all without taking the viscosity
Into account.

“4L
-..
“Ln

Although this fact had been known for a long time, no proper approach
to the theoretical treatment of the drag problem could be found until the
beginning of the present century. The main reason was that unsurmountable
mathematical difficulties stood in the ww of theoretical treatment of the
flow phenomena of the viscous fluid. It is Professor ~andtlss great merit
to have shown a way to numerical treatment of viscosity, particularly of
the technically important flows under consideration and thereby to have
opened up new vistas on many important perceptions about the drag problem
and related questions. Prandtl was able to show that in the case of most
of the technically important flows one may treat the flow, as a whole, as
frictionless end utilize the simplifications for the calculation thus made
possible, but that in the immediate neighborhood of the solid walls one
always had to take the friction into consideration. Thus Prandtl subdivides,
for the purpose of calculation, the flow surrounding a body into two
domains: a layer subJect to friction in the neighborhood of the body, and a
frictlonless region outside of thfs layer. The theory of this so+xdled
“Praudtlts friction or boundary layer”

d
has proved to be very fruitful in

modern flow theory; the present lecture will center around it.

At this point I want to indicate a few applications of the boundary-
layer theory. A first important application is the calculation of the r

frictional surface drag of bodies imersed In a flow, for instance, the
drag of a flat plate in longitudinal flow, the frictional dreg of a ship,
a wing profile, and an airplane fuselage. A special property of the
boundary layer is the fact that under certain circumstances reverse flow
occurs in the inmediate proximity of the surface. Then, in connection
with this reverse flow, a separation of the boundary layer takes place,
together with a more or less strong formation of vortices in the flow
behind the body. Thus a considerable change in pressure distribution,
compsred with frlctionless flow, results, which gives rise to the form
drag of the body immersed in the flow: The boundary-layer theory therefore
offers an approach to the calculation of this form drag. Separation occurs
not only in the flow around a body but also in the flow through a divergent
tunnel.

Thus flow phenomena in a diffuser, as, for instance, in the bucket
grid of a turbine, may be included in boundary-layer theory. Furthermme,
the phenomena connected with the Him-m liftr,.ofa ~nfh where flow
separation is concerned, can be understood only with the tid of bou.ndary-
layer theory. The problems of heat transfer also can be explained mly
by boundary-layer theory.

As will be shown in detail later, one must distinguish between the
two states of boundary-layer flow - laminar snd turbulent; their flow laws
are very different. Accordingly, the lecture will be divided into three
main parts: 1. Laminar flows, 2. Turbulent flows, 3. Laminar-turbulent
transition. Although the boundary layer will be our main consideration,
it will still be necessary as preparation to discuss to some extent the

●

● ✌
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general theory of
chapter.

3

the viscous fluid. This will be done in the first

CHAPTER I. VISCOSITY

Every fluid offers a resistance to a form variation taking place in
finite time interval, which is of different mgnitude according to the
type of fluid. It is, for instance, very large for syrup or oil, but
only small for the technically importmt fluids (water, air).

The concept of viscosity can be best made clear by means of a test
according to figure 1:

Let fluidbe between two parallel plates lying at a distance h
from each other. Let the lower plate be fixed, while the upper plate is
moved with the velocity ~ uniformly and parallel to the lower one.

For moving the upper plate a tangential force P must be expended which
is

9
(1.1)

.
according to experiment, where F is the sxea of the upper plate and v
is a constant of proportionality. (~d effects are not included). The
quantity w is called the viscosity coefficient or the dynamic viscosity.

Since the phenomenon in question is a parallel gliding, the transverse
velocity component in the y-direction, denoted by v, equals zero. The
fluid adheres to the ~per and lower surface, respectively, a linear
velocity distribution between the plates is set up, the magnitude of
which depends solely

Since for y = O: u

the tangential force
there follows:

= o, for y=h: u=%. If one designates P@,

per unit area, as the frictional sheering stress T,

T &= kg/m2
%

(1.2)
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The dimensions of v axe accordingly kg sec/m2. A flow as represented
in figure 1, where no transverse velocity occurs and the shearing stress
at all points of the flow is therefore given by equation .(1.2),is called
simple shear flow. In the special case described, the shearing stress 1s
everywhere of equal magnitude, and equal to that at the surface. Besides
the dynamic viscosity v the concept,of kinematic viscosity v is

E 1required, which for the density p kg sec2fi is defined as.-

‘v=
[1

JA m2/s
P

For 200 C, V is, for instance, for water:

. ~ 01 ~ ~o-6 m2,s
v.

for air:

4m2/s~ $10Am2/sv = 14.9 Xlo

.

if the air pressure has the standard value p. = 760 mm hg.

CHAPI’ERII. POISEUILLE FLOWTHRO~HAE12E

The elementary empirical friction law of the simple shear flow
derived alove permits the immediate determination of the flow and the
resistance in a smooth pipe of circular cross section and of constant
diameter, d = 2r. At a very large distsmce from the beginning of the
pipe one cuts off a piece of pipe of length 2 (fig. 2) and examines
the cylinder of diameter 2y, the axis of which is identical with the b
pipe axis. According to what has been said so far, the velocity probably
will be again a function of y. A pressure difference PI - P2 is

required for forcing the fluid through the cylinder. Accordhg to
practical experience, the static pressure across every cross section may

*

be regarded as constant. The flow is assauwto be steady and not
dependent on the distance from tke begiming of the pipe. Equilibrium
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must then exist between the pressure end the frictional shearing stress
which attempts to retsrd the motion. Thus for the cy~nder of radius y
the following equation is valid: pressure force difference acting at
the cross sections = frictional force acting along the cylinder wall, or

(q -++= 2JWZT

or

(2.1)
.

(2.la)

Since flow parallel to the sxis is to be e~ected, one takes from the

~ (the minus sign indicates that theprevious paragraph, T = - MQ

velocity diminishes with increasing distance from the axis; thus du/dy
is negative, the shesring stresses under consideration, however, are
positive), and, after separation of the variables, du becomes:

du=-
P1 -P,~

pz ,%f (2.2)

and, on integration:

PI -P,
u(y)

()

~?=— -.
1.11 4

From the fact that for y = r the velocity is supposed tobe u(y) = O
follows that the constant of integration C has to be C = r2/4C Thus:

P1 - P,
u(y) = —

4~2 (
r2 – y2) (2.3)
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This equaticm
the velocity
section. The

(2.3) iS
u(y) is

Poiseuillets law for pipe flow. It states that
distributed parabolically over the pipe cross

apex of the parabola lies on,the pipe exis; here the
velocity is greatest.,nemely:

PI

%lax= ~;zp2r2

.
Therewith one may write (2.3):

()“(J-)=%8X+

(2.4)

(2.3a)

By Poiseuille~s law (equation (2.3)) the drag of the developed laminar
flow (which is proportional to pl -p2) is directly proportional to

the first power of the velocity.

This statement Is chemcteristlc of all kinds of laminax flow
whsreas, as will be seen later, the drag in turbulent flow is almost .

proportional to the second power of the velocity.

The flow volume for the present case remains to be given. With dl?

/

●

designating en area element, Q is Q = u(y) d F = volume of the

velocity paraboloid, therefore

(2.5)

This flow law is often used for determination of the viscosity, by
measuring the quantity flowing subjected to a pressure gradient (usually
produced by gravity in a vertical.capillary tube). Of course, the
starting losses must be
zone (vortex formation)
extent,

A drag coefficient
are more important than
flow increases about as
refsrred to U2.

taken into consideration which due to the mixing
at the pipe end ere not recovered to their full

L will now be defined. Since
Iaminsr ones snd since the &a&
the square of the velocity, X

turbulent flows
in turbulent
will also be 0

For flow problems, let A thus be defined as: ratio of the pressure
drop along a te& secti& of a specified characteristic length to the dynamic “
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pressure q = g#/2, Qwith fi=n= the mean velocity (average taken
m=

acros,sthe cross section). Then:

k.tiA
&$

‘:

with d = characteristic length, thus, for the
diameter, and with k = dimensionless quantity.
laminar pipe flow, according to equation (2.5)

dp %-p2=&.=—
& 2 *4

Thus:

*

or

(2.6)

present case, the pipe
For the present developed

k
2d 8@ 2d8j.LQ=— 16* @&de—=— —=— =

pE2 ltr4 ~mz Yt#fi” pn(iy iid

L
64=—
Re

with the dimensionless quantity Re = #

of the circular pipe. Since the pressure
dependent on the velocity was referred to

)&e A logarithmic plot of J.= f(Re)
u

(2.7)

signifying the Reynolds nuniber

drop which is only linearily
fi2, then, for laminar flow:

orb= f(fi) therefore results

in a–straight line inclined 45° toward the Re-axis (compare fig. 82 Part IL~.

After this short analysis of the one-dimensional case of viscous
fluid we will now consider the three+limensional case.

0
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CKKPTER III. EQUATIONS OF MOTION OF THE lJTSCOUSFLUID

a. State of Stress

1.217

For this purpose one must know first of’all the general state of
stress in a moving viscous fluid and must then connect this state of
stress with the state of deformation. For the deformation of solid
bodies the resistance to the deformation is put proportional to the
magnitude of the deformation (assuming the validity of Hooke~s law).

For flowing fluids, on the other hand, the resistance to deformation
‘#illdepend on the deformation velocity, that is, on the variation of
velocity in the neighborhood of the point under consideration. (Solid
bodies: displacement gradient = displacement per second. Fluid:
velocity gradient).

One starts from the basic law of mechanics according to which:
mass x acceleration = sum of the acting, or result~t force. For the
mass-per-unit volume, that is, the density p, one may write the law

(391)

Dw=

Dt

K=

R=

F=

substantial acceleration

mass forces

surface forces, composed of pressure forces normal to the
surface and frictional forces in the direction of the
surface

negligible extraneous forces

.

Ih order to formulate the surface forces, one imagines a small rectangular
element of volume W = & dy &z cut out of the flow (fig. 3) the left
front corner of which lies at the point (x, y, z). The element is to be
very small so that only the lineer variations of a Taylor development
need to be taken into consideration; on its surfaces dy dz act the ,
resultant stresses (veotore):

“

??2
lx or lx+ & dx, respectively (3o2)

a

* T~o@out the text, underscored letters are used in plaCe Of

corresponding German script letters used in the original text.
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(The index x signifies that the stress tensor acts on a surface element
normal to the x-direction).

Analogous terms result for the surfaces dz dx normal to the
y-axis and dx dy normal to the ~is, if x in equation (3.2) is
replaced everywhere by y or z, respectively. horn this there results
as components of the resultant force:

a=
Force on the surface element normal to the x-Urection: —dxdydz

ax

aEy
Force on the surface element nor~l to the y+rection: —dydzdx

ay

ap
Force on the surface element normal to the z+irection: ~dzdxdy

az

The total resultant surface force
state of stress is therefore:

~ %x+=—

ax

~ per unit volume causedby the

h a2z
=z+— (3.3)
ay az

gx> P and p are vectors which can be further decomposed into
-Y

components. Ih this decomposition the components normal to every surface
element, that is, the normal stresses, are designated by u (indicating
by the index the direction of this normal stmess); the other components
(tangential stresses) ace denoted by T (with double iqdex: the first
indicates to which axis the surface element is perpendicular, the second,
the azial direction of the stress T). With these synibolsthere is:

[

P

1

=irJx+$r +kTxz
-x XY

[

P = iT + jT +kcr!
-z Zx Zy ‘1

This state of stress represents a tensor
which can be characterized by the stress

(394)

J

with nine vector components,
matrix (stress tensor):
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(‘w %

‘Zx ‘ZY

T

)

Xz

‘yz

‘z

(3*5)

1% cem readily be shown that those of the six tangential stresses
which have the same indices, although in interchanged sequence, must be
equal. This follows for a homogeneous state of stress from the equilibrium
of the small cube dx @ dz with respect to rotatim:

Since T= dy dx is the force attempting to rotate the cube counter-

clcmlswiseabout the =iss (seen from above in fig. 3), with the lever
arm h, and since, correspantingly, the force -T~ dx & attempts to

rotate the cube clockwise about the z-axis, with the lever arm dy the
balsnce of moments requires:

.

T#Yd---Tw&dz@ ‘osthusTw”Tw”

Correspondingly,because of freedom from rotation about the x-is
T =T
yz zy~

end because of freedom from rotation about the y-axis

T- =T-
Zx

the nine components of the stress tensor are reduced to sixXz’
and the stress matrix (equation (3.5)) is converted into the stress
matrix symmetrical with respect to the principal diagonal:

For the frictional force

(
ax

‘v

‘Xz

‘w

%

‘yz

T

)

Xz

‘yz

Cz

one obtains accordiw

(stress matrix) (3.6)

to equation (3.3) by
insertion of the components from equation (3.~) and by reduction to the
six remaining terms according to equation (3.6):

n

.



u

.

*

= x<omponent + y<omponent

)

~Tyz &z

‘T+:

(3.7)

+ z-component.

For the case of the frictionless (ideal) fluid all shearing

stresses disappear

‘W= TYZ= T== o (3.8)

and only the normal stresses remain, which in this case are all equal.
Since the normal stresses from within toward the outside are denoted as
positive, the normal stresses equal the negative fluid pressure:

ux= ‘Y==z =-’ (3.9)

The static pressure equals the negative arithmetic mean of the normal
stresses:

-P=*( u=+ay+cz
)

b. State of Deformation

The state of stress treated so far is, alone, not very useful.
!l!herefore,wewill now consider the state of dsfomation (that is the
field of velocity variations) and then set up the relations between
state of stress and stabe of defamation.
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Let the velocity EA with fie ~owonent~ ~A, VA, WA ~ the

directions of the axes exist at the point A- the coor~nates of which

‘e ‘A> yA9 ‘A-

If one limits oneself to the points x, y, z in the immediate
neighborhood of A with the velooity E = iu + Jv + ~, and if one
limits oneself - as also in setting up the state of defo~tion - to
linear terms only, one obtains for the deformation the relative change
in position between the points X, Y, z ~d xAs YAJ

‘A
per unit

time, that is, the difference of the velocities at the points x, y, z
snd X

A’ ‘A’ ‘A:

A= (x - x.) (Elv-v

w _wA=(_A)(?El

d.y.idu+jap+~dw.
neighborhood of the point

+ (y - ‘A)($)A‘-~ - ‘A) (~) = ‘u
A

1

–-.
-..

I‘(y-yA)($)A+ ~-zA)(~)=’v (3.~) .

+ (y - ‘A) ($)A + ~ - ‘.) ($~ = ‘w .

distortim of the fluid region in the
A.

Omitting the index A one obtains therefore:

(S.1.la)

Thus the velocity variation (and hence, on integration, the velocity.
itself) in the neighborhood of the point A is Mown if the nine
partial derivatives of the velocity components with respect to the space
coordinates axe known. Corresponding to the stress matrix, one nwy form
a deformation matrix:

,

.“.
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(3.12)

The friction forces of the viscous fluid sre given by a relation (which
will have to be determined) between these two matrices. First, the
deformation matrix is to be somewhat clarified.

1. Case of pure elongation.

One assumes U-us= a(x-xA), with a =&= constant. Let all

other terms of the matrix disappear; the matrix will then appear as
follows:

()
a 00

000

000

Then the velocity vaxiation is simply du = a dx, and u = ax.
All points of the y-is remain at rest, the points to the right and
left of it are elongated or compressed, according to whether a > 0
or a<O (fig. 5). The equation u=ax therefore represents an
elongation or expansion parallel to the x-exis. Corresponding relations
apply for the other terms of the principal diagonal of the matrix.

2. Case of pure translation

All terms disappesr; the matrix then reads:

()
000

000*

000
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In this case, which, as a matter of fact, should have been mentioned
first, u – Ua = O, du = O; u = constant. The velocity component

parallel to the x+xis is uniform (correspondinglyfor the other axes).

3. Case of emgular deformation.

One assumes

other terms equal

au = eti and U

u —u = e(y -ya), with e = g = constant. Alla

zero, and the

(
o

0

0

matrix reads:

e o

00

00 )
= ey; that is, all points of the x-sxis retain their

position; all points of the y-axis shift to the right (left), when e > 0
(e < O); for e > 0 the y-axis is rotated clockwise%y the single G
(because of the linearity). The y+xis is simultaneously elongated. The
phenomenon in question is therefore a shearing (fig. 6), with tsn 6 = e.

Correspondingly there results for v -va = f (x -xA) md

HM= f O 0

000

C?.v=fdx; V=rx

Ml points of the y-is retain their position; the points of the x-axis
are rotated by the angle 8; tan 8 = f (fig.7). Terms outside of the
principal diagond of the matrix result therefore in a deformation of
the right angle with axis+longation (shearing). The rfght angle between
the x– and yaes is, therefore, for e>O and f>o deformedby

_av+&l=qG+b = Deformation about the z-axis
ax ay =

43

. .

.

.

.

4.
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m

.

Correspondtigly: auaw
7==%+ — = deformation about the y-axis

ax

~+ ~ = deformation about the x-is7 =
Y’ ay a’

(The deformation angles are herein regarded as
may be replaced by the argument).

c. Navier=tokes Formulation for t&e

small so that

Stress Tensor

the tangent

One now proceeds to relate the stress matrix (equation (3.6)) with
the deformation matrix (equation (3.12)). The former is symmetrical with
respect to the principal diagonal, but not the latter. However, one
obtains a symmetrical deformation matrix by adding to equation (3.12)
its reflection in the principal Magonal. Furthermore, one first splits
off the.pressure p (contribution of the ideal fluid) from the stress
mtrix and sets the remaining stress matrix, accorddng to Stokes,
proportional to the deformation ~trix made symmetrical:

‘x ‘m ‘=

‘XY % ‘y’

‘x’ ‘yz ‘z

poo

I=- lo p o

I

Oop aua$zik
az az az

From equation (3.13) each stress component qy be given immediately by
coordinating the homologous parts of the matrices to each other. For
instance:

au
‘x =-p+2~—= static pressure.+ pressure due to

ax velocity varitition,or:
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ux=- au
‘+2U=” %=- p+211~; crz=-p+2pig

b

=T=

(

@J+
‘w Yx

T

(

ik+
Xz ‘Tzx=vaz

[

Thus for one-dimensional flow

Furthermore, there follows from equation (3.13):

or

because

~ ( )Gx+cr+u =-p
3 Yz (3.14)

.

.

for the incompressible flows free of sources and sinks under considera-
tion.* Thus for the viscous incompressible flow, as for the ideal fluid
the pressure equals the arithmetic mean of the normal stresses.

With these results the components of the friction force may be
expressed acconding to equatfon (3.7) as follows: ●

.

* The compressibility ~ifests itself as normal StreSSj SiIICeit Cm T

be interpreted as a pressure disturb~ce, for ~st~ce due to ~~iation
In density, which attempts to spread in all directions - considered
infinitesimally.
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.

or, since divy=o,

R .-*+@v
Y b

Rz=- k+pAw
az

J

(3.15)

a%+3G+&in which Au = —
~2 ~2 az2

If one finally designates the mass forces by K = p(iX + jY + IsZ), and
assumes the decomposition of the substaatial derivative into a local
and convective part as -knownfrom Euler~s equation, one obtains for the
components of the equation.of nmtion of the non-stationary, incompressible,
and viscous fluid from ,equation(3.1):

( )h+ub+vh+wh .@
b

P
at zk ay az

-—+@u
ax

(

av av av av=py ap+@v
P —+u —+v —+w —

at h ay az ) ay

P
( )

aw &+v&+w&=pz &+tiw
%+u~ & az az

1

In addition, the continuity equation

(3.16)

(3.17)
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is used. Written in vector form, the Navie~tokes differential.equation
and the equation of continuity read

~_K
Dt -

-$gradp+V& (3.18)

(3.19)

Due to the friction terms, therefore, terms of the second order enter
the differential equation.

Boundary conditions are attached to these equations. If all friction
terms on the right side are cancelled, thht is V = O, the differential.
equations become equations of the first order and ~boundary condition
is sufficient, namely the boundary condition of the potential flow:

‘n = O on the bounding walls.

This means that the normal

bounding surface must Usappesr
still can glide parallel to the

parallel to the surface # O).

For viscous flow where the

component vn of the velocity at the

on the surface itself whereas the fluid
boundary (tmgential velocity Vt

differential equation is of the second
order, two boundary conditions are required, nsmely:

Trn = O and vt = O (condition of no slip)

that is, “thefluid must in addition adhere to the surface.

the

(3.20)

Secondlecture-(Dee. 8, 1941)

CHAXTER Iv. GENI?RALPROl?ERTIESOF NA~-SIOKl?IS EQUATIONS

The~e Naviefitokes differentialequations represent together
equatia of continuity a system of four equations for the four

with

unknown quantities u, v, w, p. On the left side of the NavieMtokes
differential equations exe the inertia terms, on the right side the mass
forces, the pressure forces, and the friction.forces.

Since Stokest formulation is, of course, at first.purely arbitrary,
it is not a priori certain whether the Navie~tokes differential
equations describe the motion of a fluid correctly. They therefore
require verification, which is possible only by way of experimentation.

*

b

--
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Unfortunately, due to unsurmountable
general solution of the differential

mathematical difficulties,
equation is not yet lmown,

19

a
that is,

a solution where inertia and friction terms In the entire flow region
me of the same order of magnitude. However.,known special solutions
(for instance, the pipe flow with predominant viscosi%y or cases with
lsrge inertia effect) agree so well with the experimental findings,
that the general validity of Navietitokes differential equation hardly
seems questionable,

The plane problem:

By far the greatest part of the application of Navi~tokes
differential equations concern “plane” cases, that is, the cases where
no fluid flows in one direction.
by

~= iu (x, y,

The velooi%y vector” x is then given

t) + jv (x, y, t) (4.1)

since w s O. The equation system (eqmtio~ (3.16) and (3.17)) thep is
transformed Into the 3 equations

(&+uav ) b
p at ZE+V $ =P~--+v

()

&+&
& &2 &2

(4.2)

with the three unlmown factors u, v, p (X and Y are the components
of the mass force ~ per unit volume).

After various minor treasformations the equation system~ be
written as a single equation. To this end one introduces the rotational
vector rot ~ which for the plane case has only ~ component not
equalling zero:

(463)
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Furthermore, the mass force in equation (4.2) is put equal to zero. ●

This is permissible in all cases where the fluid is homogeneous and no
free surfaces exe present. liIorder to introduce Uz into equation (4.2),
the first equation of (4.2) is differentiated with respect to y, and
the second with respect to x; then the first is subtracted from the

d

second and one obtains: —.

(4.4)

.

With this transformation the pressure terms have been eliminated.
Equation (4.!5)may now, With lA/P‘V, be written:

.

Ix!J— =VM (vorticity
Dt

trsnsport equation) (4.6)

with m = U.)zbeing denoted as the

This equation signifies: The
of the vortex strength equals the dissipation of mrticity by
frlctiono

vorticity.

convective (substantial)variation

Equation (4.6) forms with the equation of continuity a system of
two equations with tvo unlmowns, namely u and
which define O.

By introducing a flow function $(x,y} one
a single equation with the unlmown ~. The flow
the integral of the equation of continuity. One

v, the derivatives of

may finally introduce
function represents
sets:

~=~
ay

1

That is, therefore, the
equation of continuity

N is identically (4.7)
v =-—

ax satisfied by $.

b

.
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Moreover,

21

That is: The La@acien of the flow function is exactly minus two times
as large as the vorticity (angular velocity). With this result-.

(4.8)

equation (4.5) becomes, i&er-

(*+U

or expressed only in k with

&&+g

divisionby P:

&+v& )
~ A+ =VM~

equation (4.7):

.
This one equation with the unknown
equation, but written in terms of

~ is the vorticity transport
+.

(4.9)

(4.10)

The inertia terms are again on the left, the viscosity terms on the
right side: Equation (4.10) is a differential equation of the fourth
order for the flow function. Again, its general solution is extremely
difficult because of the non-linearity. For very slow (creeping) motions
the friction terms very strongly predominate. Then one may set:

M*=O

This simplification is permissible only
remains of the fourth order, so that no
However, being linear, this equation is

(4.11)

because the differential equation
boundary condition is lost.
at least solvable. It ap~ears

also in the theory of elasticity where it is designated as the bipotential
equation. There exists a solution of equation (4.11) by Stokes for
moving droplets~which was extended by Cunningham to very small drop
dlsmeters (comparable to the mean free path of the molecules).

Herewith we shall conclude the more general considerations end turn
to the boundary layer problem proper, limiting ourselves to fluids of
very small vi8cosi”ty V.

A few preparatory considerations will lead up to the boundary l~er
problem. One tight conceive the notion of simply eliminating all the
tiiction terms of the Navier~tokes~ differential equation in the case of
small viscosity. However, this would be fundamentally wrong as will be
proved bel’ow.
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.An equation
in the theory of

which is completely analogous to
heat transfer:
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equatim (4.5) occurs

(4.12)

where the velocity canponents are retafned khereas the rotation u
replaces the temperature O, the density p the specific heat Cp

per unit volume, end the viscosity v the thermal conductivity k. On
the left of equaticm (4.12) stands the temperature change due to
convection, on the right the change due to heat transfer.

The temperature distribution around a heated body immersed in a
flow with the free stream velocity U. (for instance fig. 8) is

determinedly the differential equation (4.12). One perceives intuitively
that for small U. the temperature increase starting from the body
extends ‘towardthe front and all sides far into the fIow (solid contour)
whereas for lsrge ~ this influence is mainly limited to a thin layer
and a narrow wake (dashed contour).

The malogy of equations (4.12) and (4.5) indicates that the
friction-rotation distribution In question must be sWIW: For -11
free stream velocity the rotatim is noticeable at large distance from
the body, whereas for large U. the rotation is limited to the imne~ate
neighborhood of the body.

Thus for rapid motions, that is, large Reynolds numbers (compare
next section), one expects the following solution of Navie*okes’
differential“equations:

1. In the region outside of a thin
potential-flow

2. Tnside this thin

Therefore, one must
for small viscosity.

It Is true that the

boundary layer

not set u = O

potential flow

boundary layer cc= O, that is,

0+0, thus no potential flow.

in this boundary layer, even

is also a solution of Navier-
Stokes? differential equations, but it does not satisfy the boundary
layer condition vt = O.

Proof: The potential flow may be derived fram potential @{x,Y,z)
as:

(4.13)

.

.

.
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However, if Al = O,
for potential flow.

then also grad A@ =
According to equation

23

A grad@ = O, that is, Ay = O
(3.18) this fact signifies

that-in the Navie~tokes differential equations the friction terms
vanish identically, end hence that the potential flow actually satisfies
the NavieHtokes differential equations. However, it satisfies only
the one.boundary condition Vn = O.

Thus, for the limiting case of small tiseosity, one obtains useful
solutions for the limiting process v -O not by cencelling the
friction terms in the differential equation, since this reduces its
order (the differential equation of the fourth order for the flow
function would turn into an equation of the second order; the Navie~
Stokes differential equations would change from the second to the first
order), so that one can satisfy only correspondingly fewer boundary
conditions.

Thus the limiting process V~O must not be performed in the

differential equation itself, but only in its solution.

This can be clearly demonstrated on an example (referred to for
comparison by Prsndtl) of the solution of an ordtnary differential
equation. Consider the damped oscillation of a mass point. The
differential equation

~dZX+kCh+cx=o

dt2 dt (4.14)-
-.

applies in which m represents the oscillating mass, k the damping
constent and c the spring constant. (x = elongation, t = time).

Let for instance the two initial conditions be:

. ●

t o; X=o;= dx/dt = 1

~ analogy to the case in question one considers here the limiting
case of a very small mass m, since then the term of the hfghest order
tends toward zero. If one would simply put m = O, one would treat
nothing but the differential equation -—

which by.assuming
transformed Into
solution reads:

k=+cx=O
at

the solution to be of the form x = A e~t is
kk+c=O, whence k= -@ ● That is, the

(4.15)
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However, the
timet=o
the complete

NACA TM NO. 3.217

- Gt
x =Aek (4.16) ‘

two initial.conditions X = O and dx/dt = 1 at the
cannot be satisfied with this solution.

..
But if one treats

differential equation (4.14) in the same manner there results:

m2+ix+c=o

and hence:

r 4cm–k&k l-—
k2

‘1,2 = 2m

or the sqme root might be developed into a series and (since now the
limiting process mjO is to be perfozmed) broken off after the
second term:

.

Thus Al corresponds to the previous solution of the first order

differential equation, where, however, ha had been lost. For very

small m, L2X +fi; therewith the general solution becomes, by

conibinationof the particular solutf.ms,

(4.17)

Since for .t = O, x is also supposed to equal zero, there follows:

b =-~, thus:

This equation is
equation (4.18),

x=%(++)
(4.18)

plotted schematically in figure-$). The first term of
which alone cannot satisfy the boundsry conditions
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✎✎

starts from the value Al at the time t = O and decreases expo-
nentially. The second term is important only for mall t+alues and
plays no role for large t. It is very rapidly variable end assures
that the total solution (solid line) satisfies the boundary conditions.
The slowly variable solution (in Xl) corresponds to the potential flow,

the second, rapidly variable particular solution (in X2] indicates, as

it were, the narrow region of the boundary layer; the smaller m, the
narrower this region.

Herewith we shall caaclude the general remarks and turn to the law
of similarity.

CHAPTER v. REYNOLDS? LAW of StMIIXRm

So fsr no general methods for the soluticm of the NavieHtokes
differential equations are known. Solutions that are valid for all
values of the viscosity are so far known only for a very few special
cases (for instance, Poiseuille~s pipe flow). Meanwhile the problem
of flow in a viscous fluid has been tackled by starting from the limits,
that is, one has treated on the one hand flows of very great viscosity,
on the other hand flows of very small viscosity, since one obtains in
this manner oertain mathematical simplifications. However, sterting
from these limlting cases one cannot possibly interpolate for fluws of
average viscosity.

The theoretical treatment of the limiting cases of very great and
very small viscosity is mathematically still very Ufficult. Thus
research on viscous fluidb -S undertaken largely from the experimental
side. The Navie=okes differential equations offer very useful indi-
cations, which permit a considerable reduction of the volume of experi-
mental investigation. The rules in question ere the s~alled laws of
similarity.

The problem is: Under what conditions exe the forms of flows of
any liquids or gases around geometrically similarly shaped bodies them-
selves geometrically similar? Such flows are called mechanically similar.

Consider for instance the flows of two different flulds of different
velocities srouniltwo spheres of different size (fig. 10). Under what
conditions are the flows geometrically SMIU to each other? Obviously
this is the case when at points of similar position in the two flow
pattezms the forces acting on volume elements at these points have the
same ratio. Depending.on what kinds of forces ~e ~ effect, v~ious
laws of similarity will result from this requirement.

Most important for this investigaticm is the case where all forces
except the inertia and friction forces exe negligible. Furthermore, no
free surfaces me to le present, so that the effect of gravity is
compensated by the hydrostatic pressure. = this case the flow around
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the two spheres is geometrically similar when the inertia end friction
forces have the ssme ratio at every point.

The expressions for the inertia and viscosity forces acting on the
volume element will nowbe derived: there is as friction force per

unit volume
~= &
w

whereas the

&
ay2’

pu—. The ratio
&

inertia force

frictfcm force

inertia force yer unit volume is

aupu—
ax=—

,2
Ou

w—
aY2

(5.1)

must, therefore, be the same at all points of the flow. One now inquires
as to the variation of these forces with variation in the quantities
characteristic of the phenomenon: free stream velocity V, diemeter d,
density p, sad viscosity V. For variation of V and d the indi-
vidual quantities in equation (5.1) at similarly located points vary
as follows:

Therewith equation (5.1) becomes:

inertia force =
~g

===

7 nF
= Re

friction force P
‘d

(5.2)

The law of mechanical similarity is therefore: The flows eround
geometrically similar bodies similarly located and alined with respect
to the flow have, for equal p V d/~, geometrically sitilar stream
lines as”well. If the flows in question are, for instance, two flows
of the same fluid of equal temperature and density (V and p equal) around
%WO spheres,one of which has a diameter twice that of the other, the flows
are geometrically similar provided that the free stream velocity for the
larger sphere has half the magnitude of that for the smaller sphere.

..-

.
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The quantity p V d/~ is,as a quotient of two forces, a dimension-
less nuniber. This fact is immediately recognized by su%stitutti for
the quantities their dimensions:

p~ i3ec2m..];V[-J&];d
‘l; “[!1

@=@sec2m ~2

M ~4 =mkgsec=l

This law of similarity was discovered by Osbozme Reynolds in his
studies of fluid flows in a pipe. The dimensionless qusntity is called
after him:

,

p~ d/p =Vd/V=Re = Reynolds: nuniber

The introduction of this dimensionless quentity helped greatly in
advancing the development of modern hydrodynamics.

Connection between Similarity and

Dimensional Considerations

As is known, all physical laws can be expressed in a form free of
the units of measure. Thus the similarity consideration ~ be.replaced
by a dimensional analysis. The following quantities appeering
in the Navier~tokes differential equations
line pattern: ~, d, p, y. The question is

are essen%l
whether there

for–the stream
is a conibination

which is a Reynolds nunber and therefore has the dimension 1. This
amounts to determining a, f3,7, 5 in such a manner that

@dppy~O=KOLOTO=l (5*3)

with K, L, T representing the symbols for force, length,and time,
respectively. Without limiting the-generality a may be set equal to

b unity (a = 1) since sny power of a dimensionless qu=tity is sti~ a
pure nuniber. With a = 1 there results from equation “(5.3)
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(5.4) ●

✎.“
By equating the exponents of L, T, K on the left and right sides one
obtains the three equations:

K: ‘ 7+5=0

L: l+j3 ~7-2~=0
1

(5*5)

T:

The solution gives:

p=l;

Accordingly the only possible
is the quotient

2++ 5=1 J

7 = 1; 5.-1 (5.6)

.
dimensionless conibinationof V, d, p, u

.

(5.7)

This dimensional enalysis lacks the pictorial quality of the similarity
consideration; however, it offers the advantage of applicability even
when knowledge of’the exact equation of motion is still mitssing,if
there is only known what physical quantities determine the phenomenon.

CUE’TER VI. EXACT SCKUTIONS OF TEE NA~-SI!OKXS EQUATIONS

In general, the problem of finding exact solutions of the Navier-
Stokes differential equations encounters insurmountable difficulties
particularly because of the non-linearity of these equations which
prohibits application of the principle of superposition. Nevertheless
one can give exact solutions for a few special cases, mostly, when the
second power terms venish automatically. A few of these exact solutions
will be treated here.

One investigates first layer flows in genere.l,,thatis, flows
where only one velocity component exists which, moreover, is not
dependent on the analagous ~osition coordinate, whereas the two other
velocity components vanish identically; thus for instance:
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* .

-. the differential equation for (p(g) with g =
[
$y reads:

cpf”+cpq)”=@2+l=o

with the boundary conditions

g=o: q)=cpt =()

‘5= m: Q*=l

37

(6.27a)

The solution found by series development can be found in the thesis
Hiemenz (reference 10), compare table 1*. The velocity component

(6.28)

parallel to the surface is

It is indicated in figure 16. The curve CP~(E) ticreases

of

(6.29)

linearly at
~ =0 and approaches-one asymptotically. ‘For-about g = 2.6, q)?~ 0.99;
thus within about one percent of the final value. If one again designates
the corresponding distance from the surface y = 5 as the boundary layer
thicbess (friction layer Wiclmess), then

Thus in this flow, as

. It is also remarkable
according to equation

in the fozmer ones,

(6.30)

that the dimensionless velocity distribution
(6.!29) and the boundary layer thfmkness according

to equation (6.30.)are independent of x, thus do not vary along the wall,

+$Thetables appear in appendix, chapter XII.
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For later applications the chsracteristios important for the friction
layer, displacement thickness 8* and momentum thiclaiessd, axe

4

introduced here; they are defihed by

~* . r (U-u)dy
y=o

(6.31)

[

w
u2i = U(TJ- u) dy (6.32)

=0

The displacement thickness gives the deflection of the streamlines of
the potential flow from the surface by the friction layer; the momentum
thickness is a measure of the momentum loss in the friction layer. By
insertion of equaticm (6.29) in (6.31) end (6.32) and calculation.of the
definite integral one finds

and hence

(6.33)

(6.34)

(6.35)

The quantity 5* is inticated in figure 16. For comparison with a
later approximate solution one also notes the numerical value of the

dimensionless quantity 5*2 dU~ ~. One finds from equations (6.17) and (6.33)

8*2 d~
——= 0.4202
v b

(6.36)

The exact solution of the liavier+3tokesdifferential equations found
here gives, therefore,”for large Reynolds nunibersa fii.ctionlayer

thickness’decreasing with
i

~ and a transverse pressure gradient

..

-.
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.

.

decreasing with pa~a. Both confirm the boundary l~er assumption@
to be discussed later.

d. Convergent end Divergent Channel

A further class of exact solutions of the Navie~okes differential
equations exists for the convergarb and divergent channel with plane walls
(fig. 17), as given by G. Hand (reference 11).

Without entering into the details of the rather complicated calcu-
lations the character of the solutions will be briefly sketched:

The velocity distributions for convergent channels, plotted against
distance along the surface for various fncluded angles a and for various
Re+mibers appear as inticated in figure 18. At the tunnel center the
velocity is almost cmsbsd, and at the surfaces it suddenly declines to zero.

h the case of divergent tunnels one obtains greatly differing
forms for the velocity profiles, depending on the included emgle and
the Re+mnber. Here all velooity profiles have two inflection points.
For small Re-n@ers and small included angles the velocity is positive
wer the entire cross section (solid curve in fig. 19); for lager angles
and larger Re+umibers, on the other hand.,the velocity profiles have
reverse flow at the surface (dashed curve in fig. 19). The reverse flow
is the initial phase of a vortex formation and therefore of the separation
of the flow from the surface. Generally, the separati= does not occur
_trfcaUy cmboth surfaces; the flow separates from one side and
adheres to the other surface (fig. 20).

These examples also confirm the theory that exact solutions have the same
character as approximate solutions of boundary layer theory; in particular,
they confirm that for the convergent channel a very thin layer with con-
siderable friction effect is present near the surface (here also the
calculation sho~s that the layer thickness - ~) end that for the
divergent channel reverse flow and separation occur.

We here conclude the chapter on the exact solution~ of the Navier-
Stokes differential equations and turn to the approximate solutions.
By exact solutions have been tmderstood those where in the Navie-ekes
differential equations all terms are taken into consideration that, in
the various cases, axe not identically zero. By approximate solutions
of the I?ayie=tokes differential equations will be understood, in
contrast, solutions where terms of small magnitude are neglected in the
differential equations themselves. However, by no means are all the
friction terms to be neglected simultaneously, since this would represent
the case of potential flow.

+@Therotationally-symmetrical stagnation-point flow has been
calculated by Homann (reference 17). Instead of equation {6.28) one

obtains the differential equation q?” + 2q@’ — P*2 + 1 = O.
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CHAPTER VII. VERY SLOW MOTION (SCOHN3, OSEIX?)

The exact’solutions of the Navi~okes differential equations
discussed in the previous chapter are of a very special kind. Most of
them dealt with flows along a plane surface, where the stream lines
sre rectilinear. Most flows existing in practice, as for instance flows
around arbitrary bodies, cannot be calculated exactly from the Navie~
Stokes differential equations, but must be treated by approximate methods.
Two kihds of such approximations are possible:

1. For predominant viscosity, completely neglecting the inertia terms
suggests itself (very small R~tiber; Re< 1).

2. For very small.viscosity and therefore predominant inertia one
takes the viscosity into consideration only in a very thin
layer in the neighborhood of the solid wall.;for the rest,
the flow is reg~ded as frictionless. Here the R~uMber is
very large (Prandtl*s boundary layer theory).

The first limiting case wi~ very small Re-anudberwill be discussed
in this chapter. A small Re-nuniberindicates small velocities, small
body dimensions, end large viscosity. Since the inertia terms depend
on the square of the velocity whereas the friction terms are linear,
all inertia terms in the Navie~okes differential equations sxe, for
very small R~unibers, negligible. It is to be e~ected that an
approximation will thereby be obtained for very slow (creeping) nmtion,
as for instance the falling of a minute fog particle*) or the slow
motion of a bob in a very viscid oil.

Neglecting all inertia terms on9 obtains from the Navie~tokes
differential equations (3.16) the following:

(7.1)

&_l+av+*=o

ax & az

.

(7.2)

.

Re =

*For a sphere falling in air (V = 14 X 104 m2/see) for instance:

vd/V=l, for d+lmm; V= 1.40 cm/see,
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The same boundary conditions apply to this system of equations as apply
to the complete NavieMtokes differential equations, namely vanishing
of the normal component Vn = O and the tangential component

Vt=o
at the bounding surfaces.

The neglect of all inertia terms in Navie~tokes di~ferential.
equations does not represent as serious ti inaccuracy as the neglect of
all friction terms when transforming the Ne,vie~tokes differential
equations into Euler’s differential equations of the frictionless flow.
That is, by neglecting the inertia terms, the order of the differential
equations is not lowered so that in the simplified differential equations
the ssmaboundsry conditions as in the Navie-ekes complete differential
equations can still be satisfied.

Furthermore one obtains from the equations (7.1), taking into
account the continuity, by differentiating the first with respect to x,
the second with respect to y, the third with respect to z, the following
equation for the pressure p

(7.3)

that is, for creeping motions the pressure function p(x, y, z) js a
potential function.

The details of the calculation will not be discussed more .th~roughly,
particularly since the creeping motion is technically not very tiportant.
However, at least Stokes~ famous solution for.the sphere will ‘bediscussed
briefly (fig. 21). The &s& of a sphere for creeping motion consists of
the contributions of the pressure drag (form dreg) and the stiface fric-
tion dreg. The latter is obtained by integration of the wall shearing
stress over the entire sphere surface. Stokes performed the integration
of the equation systems (7.1) and (7.2) for a sphere in a uniform
flow of velocity Uo. There results, according to Stokes, for the entire

drag of the sphere of radius R:

w =Wh+WR=6YqmJo (7.4)

The drag is, therefore, proportional to the first power of the velocity.
If one introduces for the sphere
customery manner, is referred to
of the free stream velocity

a dreg coefficient ~ w~ch, in the
the frontal area and the dynamic pressure
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W= CWJ(R 2 g U02

there results for the drag coefficient according

%
24 ~e _ ‘~= —*
Re’ v
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(7.5)

to Stokes? formula:

(7.6) “

m

._

One can state immediately that the stream line pattern of this
creeping motion must be the same ahead of and behind the sphere since
for reversal of the initial flow (sign reversal of the velocity
components) the equation system (equation (7.1)) goes over into itself.
The stremline pattern for the viscous sphere flow, as it presents
itself to an observer who is at rest relative to the flow at infinity,
is shown in figure 22. The fluid particles are pushed aside ly the
sphere in front and come together again behind it.

As ShOWl by
with test results
region Re < 1.

a comparison of Stokes~ &rag formula equation (7.6)
(reference 33), this formula is valid only for the *

#

Correction by Oseen

In Oseen’s later improvement of Stokesi solution for the sphere
the inertia terms in the dtfferentlal equations are pertly taken into
consideration. Oseen formulates the velocity components. u, v, w:

u= Uo+ut; v=v~; W=wt (7.7)

where U!, v!, W* may be considered as disturbance velocities which in
general are small compared with the free stream velocity Uo. This

asszmqkion is not actually correct for the immediate proximity of the
sphere surface. With the formulation (equation (7.7)) the inertia terms
in equation (3.16) are divided into two groups, for instance:

U.
&t
—, U.

&ri
sndut~,u~~,...

ax r“”” ax ax

The second group of second order, as compared with the fest group, is
neglected. Therewith one then obtains from the Navie-.okqs eq~ations
of motion (3.16) the following equations of motion, which me tsken as
a basis by Oseen. --
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.

P Uo $+$= tivt

&t
puo — ,&= @w,

ax az

Tn addlticm, one uses the continuity equation:

&t &* +&=o

K ‘Y az

(7.8)

(7.9)

and the same boundary conditions as in the Navier+tokes differential
equations. One calls the contributions of the convective terms in these
equations that were taken into consideration, for instance U. ~, the

semi~uadratic terms. These differential.equations of Oseen an~ Stokest
differential equaticms exe both-linear. The streamline pattern, as it
results for this sphere flow according to Oseen, is given in gigure 23.
Here again the obsemer Is at rest relative to the fluid at large distance
from the sphere. Thus the sphere is dragged past the observer with the
velocity Uo. The stresm line pattern ahead of and behind the sphere are
now not the same, as was the case in Stokesl solution. Ahead of the
sphere exists almost the seinedisplacement flow as in Stokes~ pattern;
behind the sphere, however, the stream lines are closer together, that is
the velocity is greater here them in Stokesf case. A wake is present
behind the sphere similar to that from test results for large Reynolds
numbers.

For the sphere drag calculatedly Stokes there results with the
drag coefficient Cw introduced in equation (7.5) the formula:

(7.10)

The test results (reference 33) show that Oseen*s formula Is fairly
accurate up to about Re = 5.

With these brief remerks we conclude the limiting case of small
Reynolds nunibersand turn to the case which is of foremost interest in
practice: the case of very large Reynolds number.



44 NACA TM NO. 2.217

CHAPTER VIII. PRANDTLtS BCXINIMRYLAYER EQUATIONS

The other extreme case of very small viscosity or of very lsrge
Reynolds” number will now be treated. In this case the inertia effects
are predominant within the main body of the fluid whereas the viscosity
effects there are almost negligible.

A signiflcaritadvance in the treatment of motion of fluids for
large Reynolds numbers, that is, in general, of fluids of very small
viscosity, was attained by L. Prandtl in 1904 (reference 7). Prandtl
demonstrated in what way viscosity is essential for large Reynolds
nwibers and how one can simplify the Navier-Stokes differential equations
in order to obtain at least approximate solutions.

Let us consider the motion of fluid of very small viscosity, for
instance of air or water surrounding a cylindrical streamline body
(fig. 24). Up to very near the surface the velocities are of the order
of magnitude of the free stream velocity Uo. The stream line pattern

as well as the velocity distribution egree to a large extent with those
of the frictionless fluid (potential flow). More thorough investigations
show, however, that the fluid by no means glides along the surface (as
in potential flow) but adheres to it. The transition from zero velocity
at the surface to the fully developed velocity as it exists at some’
distance from the body, is effected in a very thin layer. Thus one must
distinguish between two regions which, it is true, cannot be rigorously ‘9

sepsxated:

1. A thin layer in the immediate proximity of the body where the
velocity gradient normal to the surface $ is very large

(boundery layer). Here the viscosity V, though very small,
plays an essential role inasmuch as the frictional shearing

aw
stress 7 = I.I—

an
csn assume considerable values.

.

the remaining region outside of this layer velocity gradients
of such megnitude do not occur, so that there the effect of
viscosity becomes insignificant. Here frictionless potential
flow prevails.

In general-one may say that the boundmy layer is thinner, the
smaller the viscosity or, more generally, the larger the Re-number. It
was shown before on the basis of exact solutions of the Navie-ekes
differential equations that the boundary layer thickness is

6+/7-

The approximations to the NavieMtokes differential equations to be made
below are more valid the thinner the boundmy lwer. Thus the solutions
of the bounky layer equations have an asymptotic character for infinitely
increasing Reynolds nuribers.
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*

‘?

. Let us now make the simplifications of the Navie=okes differential
equations for the boundary layer. To this end the order of magnitude of
the seperate terms of the Havie-ekes differential equations must be
estimated. One considers the flow around a cylindrical body according
to figure 24. Gne imagines the liavie~okes differential equations
written non-dimensionally, by referring all velocities to the free stream
velocity U. and the lengths to a body length 2. The pressure will be
made &~nsionless with p U02, the time with I/Uo. Furthermore

Re=~ represents the Reynolds number. Accordingly, the Navier~tokes
v

differential “equationsbecome – otitting the mass forces according to
equation (4.2), by writing the seam letters for the dimensionless quantities

(8.1)

The estimation gives: Longitudinal velcmity u is of the order of
magnitude 1. Dimensionless boundsry layer thiclmess 8/z<d. Therefrom
follows:

whereas the derivatives with respect to x ere of normal order of
_itude, thus a

..

.
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From the continuity equation follows therefore:

The transverse velocity v in the boundary layer is therefore, to the
first order, small in comparison with the longitudinal velocity. Further
there follows:

Thus there result for the single terms of Navier-Stokes differential
equations the orders of magnitude noted in equation (8.1): On the right
side in the ffrst equation

&<<&
h2 ay2

so that }t can be neglected

One now obtains within the boundary l~er friction terms which are
of the same order of magnitude as the inertia terms, if 1~ is of the
order of ma+ydtude 52, or, if the dimensional quantities are again
written,

n

.–,-. .

(8.2)

- the second equation of motion all terms then are of the order of .

msgrdtude 5, *inoludlng the transverse pressure gradient —. In the
aY

boundary layer, as Iong as it is thin, the dependence of the-pressure
onY may therefore be neglected. Thus approximately the same pressure

4

prevails within the boundary layer as at its edge, that is, the pressure
of the potential Tlow. The pressure within the boundary layer Is therefore,
as it were~impressed by the potential flow. >

Th~ second equation of motion is therewith exhausted and does not
have to be considered further. Using again the dimensional quantities
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one now makes the Na.vie-ekes differential equations assume the following
simplified form:

Boundsry conditions: y = O: u = v
Y =Ce:u= u

The pressure in the boundary layer,
determined from the potentiaL flow
according to Bernotii’s equation.

or

(8.3)

= “o

= o

which is dependent only on x, is
u (x, *), assumed to be lmown

p+ :J2=PO+:TJ02 fob stationary flow

)
} (8.4)

_lap=uau+~ for nonstationary flow
p ax h at

J

With the potential flow known, the equation system (8.3) represents
a system of two equations with the two unlmowns u and v.

Numerical example: ~ order to help clarify the concepts a numerical
example is given for the thicbess of the boundsry layer. The problem is:
What is the boundary layer thickness, for instance, in the case of the
plate in longitudinal flow at the distance 2 = 100 centimeters from the
leading edge? Let the velocity be ~ = 30 meters per second and the

4kinematic viscosity for air V = 0.14 X 10 meters squsre per second;

then the Reynolds nuniberis R = T.JO$=2.1 X106 and ~= 1.45 X 103.

A numerical factor is still missing in the formula (8.2) for the boundary
layer thickness. For the plate in longitudinal flow it is, as later
calculations will show, five, provided one understands by the boundary
thickness 5 that distance from the swface where the velocity has the
value 0.99~. ,Thus a calculation by the formula
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results for the present case in a boundery layer thickness 5 = 3.45 mm.
It shouldbe added that the Reynolds nuniberis already so large that the

4

boundsry layer at the end of the plate would be turbulent. The t~snsition
from lsminar to turbulent lles further upstream, and at this point the
boundary layer thickness would then be somewhat snd.ler than the value
determined above.

.A

Fourth lecture on December 22, 1942

Physical Summary and Conclusions

The physical content of the considerations so fsr can be summed UP
in the following sentences:

1. In a very thin layer on the body, the boundary layer, the
velocity passes from the value zero at the surface to the
value which the potential flow would have in the neighborhood
of the surface.

2. The pressure in the boundary layer is practically independent
of the coordinate normal to the surface and equals the
pressure of the potential flow along the surface.

3. lh the boundary layer the only friction force to be taken into
auconsideration is the shearing stress T = B —.
ay

4. (without proof) The cwature of the surface maybe neglected
in the boundary layer as long as the radius of curvature is
large compared with the boundary l&yer thickness (Boltz,
Thesis, (reference 9)).

5. All these considerations are valid only as long as no separation
of the flow from the surface occurs.

Without integration of the boundary layer equations one can draw from
these sentences important physical conclusims as to the flow pattern:
fi particular separation occurs if a transport of boundary layer material
into the interior of the fluid takes place. If a reg~n with pressure
increase exists along the body contour, the retarded fluid in the boundary
layer is in general, because of its small kinetic energy, not able to
penetrate too far into the)region of higher pressure. It then withdraws
laterally from the region of higher pressure, separating from the body,
and is deflected into the interior (fig. 25). As the point of separation

●

one defines the lzoundsrybetween forward flow and reverse flow of the
layer nearest the surface, thus .

.
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●

point of separation:
()$

. O* (8.5)

Y=o

Detenuining when aud where separation occurs requires for each case the
integration of the boundary layer equations.

One can readily understand that for the velocity profile u(y) at
the separation point and for all velocity profiles in the decelerating

““w (2 >0)
an inflection point- must be present. From equation (8.3)

namely, for the surface y = O there follows immediately the relation

(8.6)

The curvature of the velocity profile at the surface therefore exchsnges
signs with the pressure gradient. Thus for flow with pressure decrease

(

a+

)()
accelerated flow -~ <O , — <0 is valid and therefore

dx

also :>
&2 surface

— <O in the entire boundary layer (fig. 26). For the region

(
of the pressure increase decelerating flow,

)( )
9>0 & >0.
& &2 surface

However, since in any case at lsrger distances &om the surface

& <O, there mukt exist, for decelerating flow, within the boundsry
3y2
layer a point where a2u—= O (inflection point) (fig. 27). For

ay2
decelerating potential flow the boundary layer profile has, therefore,
an inflection point. Since the separation profile with vanishing surface
tangent must necessarily have an inflection yoint, it follows that
separation can occur only when the potential flow is decelerating

(2 ‘0)”

* The velocity profile at the point of separation therefore starts .
with a vanishing tangent (fig. 25). Velocity profiles behind the point
of separation have reverse flow in the neighborhood of the surface (fig. 25).

* The presence of an inflection point is significant for the

stability of the velocity profile (transition from laminsr to turbulent,
compere chapter XXI Part II.)
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separation ie present, the potential flow can no longer envelop
closely everywhere. Thus the pressure distribution sometimes
considerably from that given by the potential theory. h such

*

.+

cases the pressure vsriation impressed on.the-boundary layer-can in
most cases be determined only empirically, because the frictionless outer
flow itself depends on the complicated phenomena connected with the
separation.

Thus the boundary layer theory explains also the fact that In
addition to the frictional dreg a pure pressure dre& called “form drag,”
appears.

In regard to later calculations the following explanation shall be
given: If equation (8,3) is differentiated with respect to y, there
results for stationary flow

u a2u
hay +

bDue to —=0 and
h

from equation (8.7)

to the boundary

for the surface

—

avau a%lfi+ v——— =.—
ay b p a.xay

aY3
(8.7)

conditions u = v = O one obtains

Y = O the relation

()&. (8.8)

which Is valid for all stationary boundary layer profiles (pressure
increase and pressure decrease). .

As a result of the integration of the boundary layer equation one
obtains the velocity distribution and the separation point and can there
from calculate the particularly interesting surface friction drag in the
following manner. The l%iction drag ~ results from the integration of
the surface sheering stress over the surface of the body. For the plane
case one obtains, with the synibolsaccording to figure 28, for the friction ●

drag

r
‘R

=m

I

To COS Q,ds (8.9)
.

L1S=o
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The integration has to be extended over both sides of the surface from
the stagnation yoint to the separation point (s = 1~), b signifies the

he~ght of the cylindrical body. Because cos q dS = & ad To . ~ &
()b.

one obtains for the friction drag

(8.10)

This integration also has to be extended along both sides of the body.
For calculation of the friction drag one needs, therefore, the velocity
gradient at the surface. The latter can only be obtainedby integration
of the boundsry-layer differential equations. If the separation point
appears ahead of the trailing edge, the formula has to be applied only
up to the separation point or, sometimes, up to the point of lamin~~
turbulent transition which is located furth4r upstream. Behind this
tremsition point exists turbulent surface friction drag. Ih order to
obtain the total drag, the form dr~ has to be added to this friction
drag; however, the form drag cannot be obtained from the boundary layer
calculation in a simple menner.

CHKPIER IX. EXACT SOLUTIONS OF THEBOUNDARYIAYIR

EQUATIONS FOR THE PLANX PRCIBIiEM

a. The Flat Plate in Longitudinal Flow

One of the simplest examples for the application of the boundery
layer equations (8.3) is the flow along a flat plate. Let the plate
begin at x = O, extend parallel to the x+ixis, and be infinitely
long (fig. 2g). Let the stationery flow of the free stream velocity U.
be treated. The calculations for it were made by H. Blasius (reference 8)
in his G6ttingen thesis. Ih this case the velocity of the potential flow
is constant, thus dp/dx+ O. The boundary layer equations (8.3) become
therefore

(9.1)
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with the boundary conditions

Y=o: u=~=o
(g.la)

Y =Oo:u = U.

Since the entire system has no characteristic length, the assumption
suggests itself that the velocity profiles at various distances x sre
affine to each other, so that one may write
b

u~o = 9 (Y/b). Let therein
= 5(x) represent a measure of the boundary layer thiclmess, increasing

with the length of run. One srrives at an estimate of the boundary layer
thiclmess in the following manner:

According to the former exact solutions of Navie~okes equations
(chapter VI), for instance for the non-stationary problem of the surface
suddenly set in motion,

with t denoting the time since the beginning of the motion. Applied
to the present stationary problem one may substitute for the time t the
time required by a fluid particle to travel from the leadi~ edge of the
plate to the point x. This tires t = ~ and one has, therefore, for

o
the present case

(9.2)

Thus it is useful to introduce for tie dist~ce from the s~face Y the
new dimensionless coordinate q =y/5 or according to equation (9.2)

For further calculations one observes that

(993)

The continuity equation is again integrated by introduction of the stream
function $; for the latter one assumes

*

.
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* ‘F=wq) - (9.4)

Accordingly f(~) is a dimensionless stream function; for the velocity
& ‘componentsone obtains from equation (9.4)

Furthermore one obtafns
..4.

au 1 ‘o—=— -—
ax 2X

v.

,f”; $ = u. z,*; a = ~ f,f~
Vx

, ay2 “x

(995)

(9.6)

(9.7)

By insertion of these values in equation (9.1) there results

U2 ~2
–-&~frf” +* (Tjft-f)f“ sv~ft”

or, after simplifying, the following differential equation for the stream
function f(q)

..

fflf+zfl~l=() (9.8)

Becauss of equation (9.la) and of equations (9.5) ‘and (9.6) the boundary
conditions are

7 0: f=f’=o; n=m: ft=l=
(9.9)

For the present case therefore, there results from the two partial
differential equations (9.1), by the similarity transformation (equation

(9.3)), ~ or~narY non-line~ ~ffer~ti~ equation of the third order.
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The three boundary conditions according to equation (9.9) are sufficient
for a unique determination of the function

4
f(q) from this equation

A particular solution of the differential equation (9.8) is the .

solution u

f= q + constant

This solution corresponds to the potential flow; we shall revert to it
presently.

The general solution of the differential equation (9.8) cannot be
given in closed form. Therefore one must calculate it either by numerical
methods or by series developments. Blasius obtained the solution by a
power series development near q = O and an asymptotic development
neex 7 =Cv, whfch are combined at em appropriate point. Since the
method of calculation is characteristic of the solution of the boundary
layer differential equations it will be described in more detail. The
power series around q = O is formulated in the form

Because of the boundary conditions for 7 = O one has immediately

=0

By insertion of the equaticms (9.10) into the differential equation (9.8)
one obtains

2A3+qq+g(A22 + 2
%) +$(4% 5+%-)+” ”””0

.4

In order to make the equation (9.10) represent a solution .ofthe differ-
ential equation it is required that in the last equation all coefficients
of the single powers of q vanish. First, one has immediately Aq = ~ = O*

–.

and further

~his also follows at once from equations (8.6)”=d (8.8). -
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% =-$%%=+23
. . . .

The results for the first coefficients are:

.

●

Thus only the coefficients A2, ~, Ag. *.* are different from zero.

The coefficient A2 remains at first undetezmhed since’the third boundary
qondition for ~ = m was not yet satisfied. The remaining coefficients

‘5’
A8, \l. . . cen all be expressed in terms of A

2“
One therefore

sets up, with ~ = as a series for f(?) which progresses by powers

of q~, in the following form:

co

Z( T
n+l

&f= – Cna
2 (3n+2)?

n=o

co = 1; cl = 1; C!2=

C3 = 375; C4 = 27897; C5 =

11;

3 817137

(9.11)

The asymptotic development near

f =
‘1

n = w is formulated in the form

+f2 +... (9.12)

where the higher approximations are to.be small in comparison with the
lower approximations, for instance f2<< fl. The first asymptotic

approximation to correspond to the potential flow is, as was mentioned
above,

‘1=~-~ (9.13)

For this approximation fl” . 0, and one obtains therefore by replacing
the quantity ff” in the differential.equation (9.8) by P1f2” the

following equation for the second asymptotic approximation:
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—.

If one substitutes for the integration constant C = -$2/4 + log 7,
(7 is thus a new integration constant) one obtains

●

and after integration

-~(w3)2
fn
2
=ye

Because f~ (m) = 1 ~d f$ (w) = O, the solution ft = f; + f;

satisfies the third boundary condition ft (w) = 10 Another integration
of equation (9.14) gives as second asymptotic solution for f = fl + f2

(9.15)

This solution still contains two integration constants P and 7
corresponding to the fact that only one of the three boundary conditions
was satisfied. The asymptotic solution can, in the same manner, be
improved still farther by equating f =f1+f2+f3. T@ differential

equation for
‘3

was sol~ed by Blasius; a more detailed discussion is

unnecessary.

These two
equat,ion(9.11)
equation (9.15]

solu{ions, the power series neer q = O according to
and the asymptotic solution.neer q =aI according to

now have to be fioinedtogether and the three integration

(9.14)
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constants a, J3end 7 have thereby to he determined.*
in the following way: At a point T = VI, where both

57

This is effected
solutions are

serviceable, f, f? and f“ from the power series and the asymptotic
eolu~ion are brought to agreement. Beca&e of the differ&tial

b equation (9.8) the higher derivatives will then automatically agree.
IM this manner one obtains three equations for the three unlmown
integration constants. The numerical calculation gives

*

.

a= 0.332; ~ = 1.73; 7 = 0.231

A table for f, f:, f“ taken from a treatise by L. Howurth (reference
“

—.

is given in table.2*. The velocity distribution in the boundary layer
u/U. = fs(q) according to equation (9.5) is represented in figure 30.

18)

~ comparison with the stagnation point profile-(fig. 16) it is striking
that the velocity profile of the plate flow near the surface has a very
slight curvature. At the surface itself it has an inflection point, that

a2u ois,for y=o: —= .
&2

.

The transverse component of the velocity in the boundery layer
given by equation (9.6) is plotted in fi~”e 31. It is noteworthy that
outside of the friction layer, for ~~a

v= v. = 0.865u0
r
‘3
x

The fact that on the outer edge of the boundary layer the transverse
component V+o is caused by the deflection of the potential flow from
the %ody due to the boundary layer thickness increasing downstre~ For
very large distances from the wall (far in the potential flow) the
boundary layer solution does not go over exactly into the undistrubed
potential flow u = U.; ‘v = O. This has to be tolerated as a (very--
slight) deficiency of the boundary layer solution.

For the present case a separation of the boundary layer
exist qlnce the pressure gradient equals zero.

Friction Drag

does not

E&om the solution given above the smface friction drag
plate in longitudinal flow is to be calculated. According to
the friction drag for one side of the plate is

of the
equation (8.9)

* See appendix~chapter XII.

— — -—
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2

{L
2

w= ax = q.1 ()$(YZ‘o
y=o

X=o =0

(9.16)

with % denoting the width, 1 the length of the plate. According to
equations (9.7) and (9.11)

(??)O=‘& f”’O)=~dl%
Therewith the local surface shearing stress is

The friction drag according to equation (9.16) is therewith

and therefore the drag of the plate wetted on both sides is

If one introduces in the customary manner
by the equation

‘%= N (F=2b
F ~Uo2

(9.17)

(9.18)

)
a dimensionless Meg coefficient

2 = wetted area)

one obtains “forthe drag coefficient the formula

(9.19)
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b Displacement Thickness of the Boundary Layer

By the development of the %oundsry layer on the plate, which
increases downstream with ~, the poten~fal flow is deflected outward

% from the surface by an amount 5*, which is called the displacement
8 thiclmess of the boundary layer. Tt cen he easily calculated from the

velocity distributim in the boundary layer, as follows: Let yl denote
a point outside the boundary layer; then according to the definition
for 8*

f

Yl

Udy =
(

Uo yl -8*
)

IJy=o

or

(9.20)

\
8’=“t-~F

y=o

According to equation (9.5)

[(1 -~p =~[’ ~ -f@%
= =

.~;” ]v~ – %J

Since the point ~ = 71 lies outside of the boundary layer, one can put

*

for f(~) the first approximation of the asymptotic solution according
to equation (9.13), thus

f(lll) = ql– P=?-Q -1.73

Thus one finds fw the displacement thickness of the boundery layer
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The distance from the surface y = 8* is also shown in figure 30. Thus
the stream lines of the potential flow are, because of the friction
effect, deflected outward by this amount.

The actual boundary layer thickness 5 cannot be given accurately
since the friction effect in the boundary layer thic?mess decreases
asymptotically toward the outside. The component of velocity parallel
to the surface u is asymptotically converted into the velocity U.
of the potential fl,ow(the function f:(q) aswptotically approaches the
value 1). If one wants to define the boundary layer thiclmess as the
point where the velocity u = O.gg U. (full value), one obtains for it
according to table 2, q = 5.0. Therewith one has for the thus defined
boundary layer thickness

.

The thus defined boundary
displacement thiclme.ssof

layer thickness equals about-three timss the
the boundary layer.

Let here also be introduced the value for the momentum thickness d,
needed later. This latter is a measure for the momentum loss due to
friction in the boundary layer ana is, as indicateilbei?orein equation (6.32),
defined by the equation

ra

8=J <(+-jay ,
y=o

The calculation results, because of equation (9.5), in

f

m

-9= ft(l-f:)dq~= 0.664 @

d~=o

Finally the form parameter becomes theretith

(9.21b)

.
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(9.21c)

Experimental investigations of the laminar boundary layer on the flat
plate were performed byB. G. van der Hegge Zynen (reference 19) and
M. Hsnsen (reference 20). b all essential points the theoretical results
were well confirmed. The measurements showed that the laminar boundary
layer exists to about the Reynolds number (U. x/v) = 3.5 to 5 x105,

crit
if x denotes the length of run of the boundary layer. For lager
Reynolds nuniberstransition to the turbulent state of flow takes place.

Fifth lecture on January 5, 19k2.

b. The Boundary Layer on the Cylinder (symmetrical case)

The integration method of Bla@ius given in the previous section
was used by Hiemenz (thesis G5ttingen 193d.)for calculating the boundary
layer on the circulsr cylinder. The same method was later further extended
by Howarth (reference 15) to the general case of a cylindrical body of ●

arbitrary cross section. This method will.be briefly presented for the
symmetrical case. One considers (fig. 32) a cylindrical body with
symmetrical cross section in a flow’approaching in the direction of the
symmetry axis with the velocity Uo. Let x be the arc length along

the contour, measured from the front stagnation point, y the vertical
distance from the surface. Let the potential flow U(x) be given by
its power series development in x. At the s~atiori point (x = O),
u(x) = o, and for the symmetrical case only the odd terms of the power
series are different from zero. Therefore:

u(x) = %x + U3X3 +

The coefficients U1, ~, . . . depend

body and are therefore quantities tiown

5Ux. +...
5

(9.22)

solely on the shape of the

from the potential flow.

The stationary boundary layer equations accordhg to equati~ (8.3)
ere also valid for this case with a curved surface and therefore read:

au au u dU a2u

‘S+ p%= z+vg
\

(9.23)
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From eqwtion (9.22) one obtains for the pressure term:

TJ!g
[

~ ( , 2+;.]=u1~x+4x3+6u + (9.24)

The continuity equation is

*

again integrated by the stream function:

.=*. .=_2.?K
h’ ax

(9.25)

It is now necessary to find a suitable formulation for the veloclty
distribution U(X, y), V(X, y) and therewith for the stream
function V(x, y). In analogy to equation (9.22) a power series in x
suggests itself for U(X, y) as well, with coefficients, however= which
are dependent on y. It is important to find a form where the coeffi-
cients (or functions) dependent on y have a universal character, that
is, need not be calculated anew for each shape of body, but may be calcu-
lated once for all. Howarth (reference 15) succeeded in finding such a
formulation.

For the distance frcm the surface one introduces the dimensionless
variable:

n r ‘“
‘1

=Y~ *(9.26)

The expression (9.24) for the pressure term suggests that the following
equation be selected for W

r{+=; [ ’32h5(~)ulxfl(~) + 4u3x3f3(q) + 6x5 U5g5(~) + — 1}+...(9.27)
‘1

This yields: (, = differentiation with respect to q):

U = ~xf~ + 4u3x3f~ + 6X5

I“,g$+$+l+:oo -

(9.28)

●

u’

+&@e ob~ins thfs eq~tion from that of’Blasius ~ccordi~ to
.

equation (9.3) by substituting for U. the first term of the series

equation (9.22).
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[1IZ2
uf~+12ux2f? +30x4 ug’+~ht

2=1133
+.. . (9*29)

55 %5

au F‘h—=—
ay v

f-

1+ ● ● ● (9.30)

After insertion of the expressions (9.24) and (9.28) to (9.32) into the
first equation (9.23) one obtains by comparison of the coefficients a

●
system of ordinary differential equations for the unknown functions f~>

terms with

Ux
1

6u1~x5

6U3%5

gives the differential equation

f2 -ff”=l+f;”
1 11

kftft
13

f f“
-3f;f3 – 1 3

= 1 + f;~?

6f~g; _5f;g5 _flg; = I + g;”

fjf?ht
15

–5f”h –flh~ =;+ h~”–8(f~2-f3f~)
15

●

(9.33)

Formulation of the flow function according to equation (9.27) has
thus accomplished the elidnation of the coefficients depending on.body
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shape (ul, U3, ● s .) from the differential equations-fd!rthe functions

fl, f3, ● ● . which thus now have a universal character.

The boundary conditions.for the functions
‘1’ ‘3> “ “ “ ‘O1lOw

from

.

Y =0: U=T=O ,

by comparison of equation (9.28) with equation (9.22); they are

7 0: fl=f;=o;= =ft=o;
‘3 3

=gt=()
‘5 5

= h? =0; , . .
‘5 5 (9*34)

V =“: f?=l; fI=~; g?=~; h?=o; co.
1 3 5 5

T~e differential equations (9.33) are all of the third order, and
equation (9.34) gives three boundary conditions for each. The differen-
tial equation for f (~) is non-linear and is identical with the differ-

iential.equation (6.2 ) obtained in chapter VI for the stagnation point
flow: ‘1 ‘v; V=ES as follows by comparison of equation (6.26a)

with equation (6.26). All the remaining differential equations in
equation (9.33) are linear, with the coefficients determined by the
functions of the preceding approximations.

The solutions of the differential equations (9.33) are best obtained ..
by numerical integration. The functions fl and f3 were already

calculated by Hiemenz (reference 10). Howarth (reference 15) improved
the tables for f3 and recently Nils l&5ssling (reference 16) calculated

and h as W811. The f~ which is identical with cp~ according to
‘5 5
equation (6.28) was tieady given in figure 16. The fiction” f~ can be ‘

seen from figure 33, the functions gt and
5 %

t from figure 34. The .

numerical values are compiled in table 3.
.-

Concerning the applicability of this calculation method it must be
mentioned that for slender body shapes the series for U(x) andu(x,y)
converge poorly. The reason is, that for these body shapes U(X) has
a very steep ascent in the neighborhood of the stagnation point (fig. 35), .
while showing a rather flat curve further on. Such a function cannot be

developed readily fn$o a Taylor series. For such body shapes maqy more of
the functions of the differential-eqution system (9.33) would be required

.

A

●

✎✍
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*

‘k

than have been calculated so far. For blunt bodies, as for instance the
circ~ cylinder, the convergence Is considerably better so that one
proceeds rather far with this calculation although not always up to the
point of separation.

Howarth (reference 15) also performed the corresponding calculation
for the unsyqetrical case where the even coefficients elso appear in
the power series for U(x). This is the case for a symmetrical body
at an angle of attack and quite generally for any unsymmetrical be@.

ll%ssling (reference 16) made the application to the rotationally
smtrical case.

Circular Cylinder

The boundary layer on the circular cylinder will be treated as an
example for the application of this method. Whereas ILLemenz(reference 10)
took a pressure distribution measured by him as the basis for this case,
we shall here calculate with the potentisl-theoretical pressure distribution.
The velocity distribution of the potential flow reads,
according to figure 36,

u(x) =2uosinqk2uosin:

The power series development gives:

u(x)

{

o~-*(:)’+*($+. .=2U

h comparison with equation (9.22):

U.
U1 =23 u3=- 23; u _ 2 ‘o.

3! $ 5 5? ~5’

Therewith follows from equation (9.26):

witQ the symbols

(9.35)

.

}

● ✎ ✎

(9.36)

(g.%a)

(9*37)

It follows that for the velocity distribution from equation (9.28)
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1 U(x,y) 4 z3ft+~= 6g~+20h~.— =Zf?
2 UOR1 () (7( )

-+.*.
3? R 35:R5 5.

(9.38)

One further ce3culates the position of.the separation pOint xA which

is, according to equation (8.5) determined by
()
$ = O. Therewith

y=o
results from equation (9.36):

‘A
3“

()

‘A. f;(o) ~–~f”(o) ~ +...
33 3

=0 (9.3%)

.

With the numerical values f:(o) = 1.23264; f~(o) = 0.7246 one finds:

(9*39)

Hiemenz (reference 10) based his calculation on his experimental
pressure distrilnztion;he calculated the separation point to be at

= 82°,
‘A

whereas his measurements gave q = 81°. This result 1s
A

considerably different from that obtained with the potential-theoretical
pressure Mstrlbution. The reason is that for a body as blunt as the
circular cylinder the experimental and the potential-theoretical pressure
distribution in the neighborhood of the separation point differ greatly.

The method described here of calculating the boundary layer by a
power-series development starting from me stagnation yoint has found
but little acceptance because of the extensive calculation required.
It is, however, indispensable for fundamental considerations, since there
exist no other exact solutlons of the differential.equations of the
boundary layer for the flow about a body.

Thus approximation methods came into use-for the practical per-
formance of boundary layer calculations; they till be discussed in the
following chapter. It is true that their accuracy is sometimes consider-
ably lower than that of the previously dfscussed exact solutions.

c. Wake behind the Flat Plate in Longitudinal Flow

The application of the boundary layer equations is not absolutely
limited to the presence of solid walls; They w also bg applied if
there is present within the flow a layer in which the friction effect is

4-

*

.

.

Vhis result varies somewhat if in the series developmerlt
equatim (9.38a)3 one tales tither terms into consideration- However,
for this purpose one would have to calculate at least up to the term X7.



NACA TM NO. 1217 67

9

Ii

predominant. This is the case for instance when within the flow two
layers of different velocities ad~oin, as for instance in the wake region
behind a body or at the outflow from en opening. In this and the following
chapter we shall treat two examples of such flows which we shall later
encounter again in the discussion of turbulent flows.

The wake flow behind the flat plate in longi-tudinalflow is chosen
as the first exsmple (fig. 37). At the trailing edge of the plate the
two boundsry layer profiles grow together and forma “wake profile” the
width of which increases with distance while the velocit~ decrement at
its center decreases. The size of the “wake” is directly connected with
the drag of the body. Otherwise, however, the form of the velocity
distribution in the wake at a large distsnce from the body is not dependent
on the shape of the body, whereas the velocity distribution very close
behind the body haturally depends on the boundary layer of the body and
on any existing separation.

I&om the velocity distribution measured in the wake one may cal-
culate the drag by means of the momentum theorem in the following msnner.
The momentum theorem states: The variation of the momentum with time
( = mom&tum flow through a control area fixed in space) equals the
sum of tie resultant forces. By resultant forces one has to understand:
1. Pressure forces on the control area, 2. Extraneous forces, which sre
transferred from solid bodies to the flowing fluid’,for instance the
shesring stress at the surface which gives the friction drag. For the

. present case the control axea AAIBB1 is placed as indicated in figure 38.

Let the boundary AIB1 which is parallel to the plate be so far distant

from it that it lies everywhere in the undisturbed velocity Uo. l?hrthe~
more, the resr cross section BBl is to lie so far behind the plate that

the static pressure there has the same undisturbed value as in front of
the plate. Then the pressure is constant on the entire control area, so
‘chatthe pressure forces tie no contribution. n c~ctiating tie
momentum flow through this control area one has to consider that, due to
continuity, fluid must flow out through the boundsry ~B1s nmely the

difference between the lager quantity flowing through the cross
section AAl and the smaller quantity flowing through the cross

section BBlo The cross section AB does not make a contribution to the
x-momentum, since for reasons of symnetry the transverse velocity on it
equals zero. The momentum balance is given in the table below, with
entering momentums counted as positive, outgoing ones qs negative.

●
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Cross section
[.7s ]

Momentum flow in x-direction
3 sec = volumexdensityxvelocity

AB o 0

[

h

1

h

‘% , buody pb Uo%y

1 /

h

B B1 –b Udy -pb U2@

o

I

h

/

h

AIB1 --b (U. -U)dy -pb U (Uo-u)dy

o 0

E = z MasB z Momentum Flow

Control sxea =0 =W

The total momentum loss of the flow for the present case,equals the
drag W of,one side of the plate. Thus one obtains

W=b

f

U(uo-u)dy=ll
$

U(uo-u)dy

o IIo

The integration therein may be
from y = O to h, since for
vanishes. For the drag of the
therefore:

extended from y = O
y> h the integrand
plate wetted on both

.

. i?

.

P

—

(9.40)

..

to _m, instead of
in equation (9.40) ‘- “- ““ -
@de_s one obtains
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.

.

.

Zw=bp I Q-u) dy (9.41)

b equations (9.40) and (9.41) the integrals are to be extended over the
wake as indicated at a distance behind the plate where the static pressure
has its undisturbed value. However, one may naturally apply equations “
(9.40) ~d (9●41) also to the bOU~ layer on the plate at a certain
point x; then they give the drag of the part of the plate from the
leading edge to this.point. The definite integrals in equations (9.40)
and (9.41) represent physically the momentum loss due to the friction
effect. As mentioned before, it is customary to introduce for this
integral also the momentum loss thickness O by the following equation
(compare equation (6.32)).

uo2i3 =
I

u(uo-uj~ (9.42)

Therewith the formula for the drag w also be written, by comparison
with equation (9.40):

w =b pUo28 (9.43)

The velocity ~stribution fn the wake, particularly at large
distance x behind the plate in longitudinal flow (fig. 37) is to be
calculated next. This calculation must be performed in two steps:
1. By a development “from the front”, that is, by a calculation which
follows the further development of the Blasiu-oundary l~er profile
present at the trailing edge of the plate. 2. By a development “tiom
the rea” that is, by an asymptotic cal~ulation for the wake, under the
assumption that the difference velocity ‘

Ul(x, y) = U. -u(x, y)

is small.

(9.44)

The first ~alculation was perfomedby S. Goldstein (reference 21)
and is very troublesome; the second was indicated by Tollmien (reference 3)
and yields rather simple laws, in particular also an exact solution of the
differential boundary layer equation. Since such exact solutions are
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comparatively rare and since, moreover, the asymptotic law for the Wake
applies not only for the flat plate in longitudinal flow but for any

a

arbitrary body shape, this asymptotic so%ution will be treated here
somewhat more thoroughly. The wake velocity Ul(x, y) introduced b

equation (9.44) is assumed to be so small in comparison th the free
stresm velocity U. %

d
that the second-power terms {~/Uo) are negligible

relative to 1. Moreover, the pressure term dp/ti in the boundary l~er
equation,is to be set equal to zero for the first asymptotic approximation.
~-erewith the
present case:

differential boundary layer equaticm (8.5) beoo~~, for the

(9.45)

With the boundary cmiitions:

aul
Y = o: —=0

&
(9.45a)

Y = m: ‘1 =O(u=uo)

For the solution of
before in the plate
variable

the differential equation (9.45) one introduces as
flow according to Blasius? equation (9.3) the new

Further, one uses for ul the equation:

‘1 = ‘O c (~jidd

(g.k6)

(9*47)

The distance x from the trailing edge of the plate 1s thus made

dimensionless by @ividing by the plate length. The power
1 .

-~ for x .

is given by the fact that the momentum integral.which, according to
equation (9.41),gives the plate dmg must be independent of x. With

the second-power terms neglected the drag of the plate Wetted on both
sides is, according to equation (9.41):
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/

+m

!m=bpuo y%Y

Y&m

71

(9.48)

One finds further:

/

+a 1 +W +m-—
2

~(x,y)dy = U. c
() ~[? f %(ll)dq

rf
=Uc;

o g(~)dq (9*49)
o

d-en I@-.

and therewith:

+a

*2W d.bpuo2c ~# %(T)
o

The calculation of the single terms in equation

LI-C4

d~

d--

(9.45) gives:

+=uoc($)

(9.50)

}

(9.51)

By insertio~~to equation (9.45)

CU02 (x/2) 2X–1 the following
distribution g(q):

one obtains after division by

differential equation for the velocity

1
g~+$~gf+ @3=o (9.52)

.
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with the boundary conditions:

n 0: e’=o; n=~: g=o=

A single integration gives:

NAOA TM No. 1217

where, becau~e of
constant K must

where a
without

gl+~~g=K=O

the boundary condition at q = O; the integration
be zero. Repeated integration gives the solution:

2

g=e
-+

integration constant may be put equal to onemultiplicative
limiting the generfiity since the velocity ‘Ustribution U1

(9*53)

still contains,according to equation (9.47)5 the ~tiplicative free
constant C. This ccnstant C is determined from the consideration
that the plate drag obtained from the momentum loss (equation (9.50))
must be the sam6 as the frictional drag of the plate. First,

f

+m

I

+a _f

4
g(q) dq = e dq =2p

8

●

J-w J-a

and therewith frouequation (9.50):

2W= pb U02

●

On the other hand, the friction drag

.

●

of the plate wetted on both sides
was according to tie solution of Blasius (equation (9.18))

r

2 VI
.

2W= 1.328 PUO ~
o

.

Therefrom follows 2C~;-= 1.328 and
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.

Thus the final solution for
longitudinal flow becomes:

IL.

c _ 0.664

r n
0

73

(9.54)

the wake velocity for the flat plate in -.

(9=55)

The velocity distribution of this asymptotic law is represented in
figure 39. It is noteworthy that the function for the velocity distribution
is identical with Gaussi error function. = keeping tith the hypothesis
the law according to equation (9.55) is valid only for large distances
behind the plate, according to the calculations by Tollmien (reference 3)
for x ~ 31.

The development of the wake from the front, performed by Gcldstein
is mlidonly for comparatively small x/Z. However, for intermediate
Xjl both solutions can be joined to sorb extent, so that one then obtains
the velocity distribution in the entire wake. Such a figure is given by
Tollmien (reference 3).

Sixth Lecture on Januery 12, 1942.

d. The Plane Jet

A further example of a flow without bounding wall to which the
boundary layer theory is applicable is the outflow of a jet froIua hole.
The problem to be treated is the plane stationery one where the jet goes
out from a long narrow slot and mixes with the surrounding fluid at rest.
This is one of the rare cases where the differential boundary layer
equations may be integrated exactly. The calculations were perfommdby
E. Schlichting (reference 22) and W. Bickley (reference 30) and will be
discussed a little mre thoroughly.

Due t: the friction effect the jet entrains a part of the fluid at
rest and sweeps It along. There results a streoline pattern like the
one drawn in figure 40. Let the x-direction coincide with the jet axis
and the origin lie in the slot. It then immediately%ecomes clear that
the width of the set increases with the distance x and the mid-velocity
decreases with the distance X. For the calculation the slot is assumed
to be infinitely narrow. In order to make the volume of flow, together
with its momentum,.finite, the velocity in the slot is then infinitely
large. Again, a? in the previous example concerning the wake flow, the

pressure term dp/dx my be neglected since the pressure varies only
very little in the x-direction. The smallness of the pressure term can
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also be shown subsequently from the finished solution. Thus the differ-
ential boundary layer equations for the present case read, according to—
equation (8.3)-: - ,

,

with the boundary conditions:

Y =0: V=o; %=0
Y =Co:u= o

1
}

(9.56) ~

(9.56a)

Since the pressure is constant, the entire momentum flow in the x-
direction for control area fixed in space (compare figure 40) must be
inde~endent of the distance from the hole x. If one chooses the lateral
boundaries of the control area at so large a distance from the axis that
there u = O, then

f

+m

J=P U%y = constant (9.57)

It is to be noted for the integration of the equation of motion
equation (9.56) that for this problem, as before for the plate in longi-
tudinal flow; no special length-dimension exists. Thus affinity of the
velocity profiles U(X, y) is suggested, that is: with b signifying
a suitable width of the jet, the velocity profiles are only functions
of y~. Accordingly one uses the following expression for t,hestream
function ~:

$=’pf(:) ‘Xpf(a (9958)
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b The two - at first unknown - exponents p end q are detemined from
the conditions that

the momentum flow for the x+rectim is independent of x
according to equation (9.57), end that

hthe acceleration terms, for instance u -, and.the inertia
ax

term in eqution (9.56) are of the same order of magnitude
e.tldhence must be of the s- degree in X.

This yields the two equations

2P-Q=O

a -2q=1=p-3~
1

(9*59)

It follows:that .

9 Therewith the final
read as follows:

p = l/3; q= 2/3

equations, after addition

(9.60)

of suitable constant factors,

(9.61)

* = #/2 xlls f(q) (9.62)

Therefra one obtains, with

the following expressions for the velocity components”snd their derivatives:
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u=

v= (f+f’ )
}
)

4/3 . “
&=

ax
-x ; (2~f”-f‘)

a2u
+/3

$ftw

‘2=X

By substitution into the differential equation (9.56)
1 -5/3after csncelling the factor
Tx ‘

the following

for the flow function f(~):

ftp + ff’n+ ftw = o

with the boundary conditims:

As for Blasiust plate
was obtained from the

4

(9.63)

there results,

differential equation

(g.64)

(9.64a)

flow here also au ordinary differential equation (9.64)
two partial differential equations (9.56) by means of

the similarity transformation equation (9.61). Here also, as inmost
boundary-layer problems, the Mfferential. equation is non-linesr end of
the third order.

The integration of this differential equation (9.64) is attained in
a surprisingly simple manner. First, one obtains by a single integraticm

fft + flt= constant = o (9.65)

.

.
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.

The constant of integration therein is zero because of the boundary
condition f“(o) = O. The secmd order differential equatim now obtained
could be integrated once more if a factor 2 were present in the first
term. This factor can be obtainedby perfoming the following further
sitilerity trani3forgu3tion:

One puts: ~=a~

f= 2a F(g)

a is a free constant which is determined later. With
and (9.67) one obtains from equation (9.65), the prime
differentiation with respect to ~,

F~+2FF~=0

with the boundary conditions:

~ 0: F=O; ~==: F’=0=

This differential equation can nowbe integrated

F~+F2=K

The constant of integration K is obtained from
equation (9.6*), as K = 1, if one stipulates
possible without limiting the generality because

again

(9.66)

(9.67)

the equations (9.66)
now signifying

(9.68)

(9.68a)

and yields

the boundary conditions,
FS(0) =1, whlchis
a is still present as

a free constant in F. One now has for F the first order non-linear
differential equation

.

F~+F2=l

which is a Riccati differential equation. The integration yields

/

dF=
E.—

l+FLlog===
2

arc tad F

1 – F2
1

(9.69)

and therewith for the inverse function
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-2E

F=tezih~= l-e
-2E

1+*

~ 1- tm2 E. If one inserts the solution
‘the-r*’ z ‘
equation (9.63), one obtains for the velocity distribution

(9.70)

found into

(9.71)

The velocity distribution over the width of the jet calculated frdm this
equation is represented in figure 41. The free constant a remains to
be detemined. This canbe done from the condition (equation (9.57))
according to which the momentum flow in the x+iirection is independent
of x. IYom equation (9.71) and (9.57) one obtains

Jo

v
(9.72)

Let the momentum J for the ~et be a prescribed constant which is, for
instance, directly relate~ to the excess pressure under which the jet
flows from the slot. Then a becomes, according to equation (9.72),

()
l/3

a=
0“8255 +

W

and therewith the velocity distribution

1/3

u

()

J2= 0.4543 ~
(
l-ta% )

v = 0.5503 ;:)1” ~, (1-td2E)-tdE}

()

1/3 y
E = 0.2752 ~

V3
Pv x

$,

=v

(9.73)

(9.74) , w
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The value of the lzrsnsversecomponent of the velocity at the edge
jet (y = =) also is noteworthy. From equation (9.74) one finds
this lateral inflow velocity

79

of the
for

(9*75)

One can further calcu@te the flow volune for a layer of unit height

+m

L

Q=P u dy. One finds

()
1/3

!$.=3.3019 y (9.76)

T!hefldw volume increases downstremn, since fluid at rest is carried
along from the side.

The solution indicated here naturally has a singular point at
x= o, since a infinitely narrow slot with infinitely large exit
velocity was assumed. Actually for a nerrow slot of finite width one
has inmmdiately behind the slot opening a velocity distribution that is
rectangular across the Jet cross section but which at some distance is
transformed into the bell+haped distribution found here with width

b - ~~3
– l/3

and mid-velocity - x .

Finally it should be mentioned that the corresponding rotationally–
symmetrical problem where the jet goes out from a very small circular
hole also can be solved in closed form. (compare H. Schlichting
(reference 22)). ~ this case the width of the jet is proportional to x
end the midvelocity proportional to X-l.

e. The Boundary Layer for the Potential Flow U = Ulxm.

Another class of exact solutims of the boundary layer equations
will be discussed briefly which includes the plate in longitudinal flow
and the stagnation point flow as special cases. Falkner and Skan
(reference 37) have shown that, just as for Blasius’ plate flow, the
boundary layer differential equations ~or the potential flow

u(x) ~ m=Ux

-—

(9.77)
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can be reduced by a similarity transformation
equation (u = constant, m>o accelerated,
m> O.x= b is the stagnation point of the

IUCA TM No. 1217

to an ordinary differential.
m< O retarded flow). For
flow. For m = O one

obtai& U = U1 = Uo, therefore the plate flow; m = 1 gives U = UIX~

therefore the stagnation point,flow according to equation (6.17).

The differential equations of the boun@ry layer read

&+av_o
ax by

The pressure term becomes

2U+1Ug =mu
12 x

As a new Independent variable one introduces

—

(9978)

and the continuity equation is integrated by introduction of a stream
function for which one uses the equation:

$=~~&% (9*79)

One has
m-l

i?

.

.
snd one obtains



v=

After insertion

. .l~-l one

au

{

—=ulxml mq’+~~cp”
& 2

}

-r [
+~x~ =q+’-lg Cpt

2 2
1

into the first equation of motion and division by

obtains, whm

the following differential

9*”

Boundery conditions:

!5 0:=

81

(9.80)

(9.81)

al
—B = (9.82)
m+l

equation for cp(~):

= - qrp”+ p (@2 -al) (9.83)

The clifferential equation (9.83) was solved for different values by ‘
~tree (reference 38). The result is given in figure kla. The
corresponding values of f3 and m are given in the following table.
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m.

-0,0654

0

0.111

0.333

1

4

B

-0.14

0

0.2

0.5

1

1.6
-
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u

.

For accelerated flow (m> O, B 7 O) one o%tains velocity profiles
without inflection points, for retarded I?1OW (m< O, f3< O) velocity
pdofiles with inflection points. Separation occurs for

$ =_ 0.199,tha% i4m=-O.@l

Separation takes place for
for very weak retardation.
result is obtained from an

Speoial cases:

4.091
the potential flow U(x) = u-x , thus
Compare chapter XI a, where%lmost the same
approximation calculation.

~.

1. Stagnation point flow: It is obtained for

;“P=l

Then ~ =
l-%w=mm=l ‘

x q(~). .These are the seineexpressions as

for the s&ation point flow,
and (6.26b). The differential
the equation of the stagnation

2. Plate in longitudinal

Itl

equation (6.26a) and (6.27a), SJ.so(6.19)
equation (9.83) abo is transformed into
point flow (equation (6.28)).

flow: This case is obtained for.

= o; fl=o

—

8“

.
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variable according to equation (9.3). ~thermore, ~ becomes

$=’~~ q(~); thus T=* compared with the expression

for ~ for the plate flow equation (9.4). Because of ~=~,

q“(~)=@ f“(~), snd Q’”(L)=
d?

2f~n(~), ths different% equation (9.83)

is for this case transformed into 2f~”(7) +ff’’(~) =0. This is identical
with equation (9.8).

CHAFKR X. APPROXIMATE SOLUTION OF THE BOUNDARY LAYER EQUATION

BY MEANS OF THE MOMENTUM THEOIZIZM

(JrARMAN+o~ METE@, PLANEPR(XUJIM)

a. The Flat Plate in Longitudinal Flow

.

The examples of exact solutions of the boundary layer equation
discussed in the previous chapter give sufficient proof of the rather
considerable mathematical difficulties in solving the differential
equation. Yet the exemples treated were selected as simple as possible.
Th some other cases the mathematical calculations me still more difficult

- than in those-examples. Particularly the problem of flow about a body
of arbitrarily prescribed shape cannot, in general, be solved by exact
solution of the differential equations of the boundary layer. Just this
problem, however, is of special practical importance, for instance for
the calculation of the boundery layers on airplane wings.

There exists therefore a tendency to apply at least approximate
methods, even if their accuracy is sometimes not quite satisfactory,
for cases where the exact solution cannot be ol)talnedwith a reasonable
expenditure of calculation time. Such simpler approximate ~olutions can
be attained if one does not attempt to satisfy the differential boundary
layer equation for every psrticle of fluid. Instead one selects a
plausible expression for the velocity distribution in the boundary layer
snd satisfies merely the momentum equation which is obtained by inte-
gration from the equation of motion. A method on this baqis for the
plane prob+em of flow about sn ~bitrary body was worked out by von Karman
and Pohlhausen.(references 23 and 24). We shall try out this method-in
this chapter at first on the siqler case of the flat plate in longi-
tudinal flow, where no press~ne variations exist. For this special case
the momentum theorem yields the statement that the momentum loss of the
flow through a control area fixed in space according to figure 42 equals
the friction drag W(x) of the plate from the leading edge (x = O) to
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the point x. Application of the momentum theorem for this case was
discussed in detail in chapter IX; for the dr~ of the plate wetted on #

one side according to equation (9.40) It had resulted in the formula:

/

m
&

w(x) =llp U(uo-u)dy (10.1)

Jy=o

On the
of the

other hand the friction drag can also be expressed as the integral
surface shearing stress, namely:

I
x

W(X) =b To (X) ik

In fomning the integral (equation
integrand outside of the boundary

‘acontribution. By comparison of
that:

IJx.o

(10.2)

(10.1)) it is to be noted that the
lqyer, where u = Uo, does not make

equations (10.1) and (10.2) It follows

f

m

T=
o P& U(uo-u)dy

,

(10.3)

IJy=o

If one introduces mxreover the momentum loss thickness, as defined in
equation (9.42), equation (10.3) csn also be written in the form:

,.

This is the momentum theorem of the boundary layer for
of the flat plate in longitudinal flow. Physically It

(10.4)

the special case
states that the

surface shearing stress equals the momentum loss in the friction layer,
since in the present case the pressure gradient makes no contribution.
The next chapter will acquaint us with the extension of-equation (10.4)
to include the more general case of a boundary layer with pressure
difference.

Equations (10.4) and (10.3), respectively, will nowbe used for
a~roximate calculation of the friction layer on the flat plate in
longitudinal flow. A comparison of the results of this approximate

“

.
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with the exact solution
about the usefulness of
calcul.atlonone selects
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accor~ to chapter ma will give
the approximation method. For the
a

velocity distribution in the boundary

u
()

=Uof ;

with

suitable expression for the
l~er in the form:

= U. f(~) (10.5)

= 5(X) (10.6)

5 represents the boundary layer thickness, undetermined at first. For
the flat plate it may, moreover, be assumed again that the velocity
profiles at various distances from the leading edge of the plate are
affine to each other. This assumption is contained in equation (10.5).
if f(q) there stands for a function which no longer contains any free
paramete~s. Furthermore, f(q) must, for large values q, assume the
constant value 1.

The velocity distribution being given by equation (10.5), the
momentum integral in equation (10.3) may be evaluated. It yields:

f

n

f

1

U(uo-u)dy=uo 26 f(l-f)dq (10.7)

Jo J7=0

The definite integral In equation (10.7) cenbe calculated immediately
ifa definite formulation is given for f(~). Thus one puts ,

f

1 ,

a= f(l-f) dq

lh)=o

Hence

\

m

U02 37= u(Uo-u)dy=a5U02

y=o

(10.8)

(10.9)

.

or:”

-9=ab (10.10)
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IRirthermore,the displacement thiclmess of the boundery l~er 5* becomes,
according to equation (9.20):

b
.

on

If

By

\

1

~*=~ (1- f)an. fq (10.108)
s

o

the other bend, the shearing stress To at the surface is:

To ()
vu

Vh
Vu.

—= .Qft(o). p—
P h 6 5

y=o

one introduces the further simplification

(10.11)

introduction
there results:

or

,

Theintegrati on
first result of

P = f~(o) (10.12)

of these expressicms into the momentum equation (10.4)
—.

(10.13)

,

(10.14)

with the initial value 5 = O for x = O yields, as
the calculation:

.

(lo.1~) -

.

Hence the sheering stress becomes, according to equation (lO.I-l):

(10.16)
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and furthdrmre

I
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and hence, finald.y,the total
according to equation (10.2):

21’T=

drag of the plate wetted on both sides

2b @ ~~ (10.17)

A comparison of the results for boundary layer thiclmess, surface shearing
stress, and total drag, which were thus found, with the corresponding
formulas for the exact solution according to equation (9. . .) shows tkt
the approximate calculation according to the momentum theorem reproduces
the characteristics of the formulas with perfect correctness in sJJ cases,
that is, the dependence of the boundary layer quantities on the length
of run x, the free stream velocity Uo, aniithe viscosity coef-
ficient V. The nuaibers a, ~, unknown at first, can be determined only
after msking special assumptions for the velocity distribution, that is,
explicitly prescribing the function f(q) in equation (10.5).

Numerical examples

“The usefulness of the method of approximation will be investigated
by a few numerical examples. The accura~y of the results will depend to
a great extent on a suitable choice of the expression for the velocity
distribution according to equation (10.5). At any rate the function f(~)
must equal zero for q = O smd have the constant value 1 for l=ge q.
As first example we select the very rough assumption that the velocity
distribution in the boundary layer is represented by a linear function
according to figure 43a. Thus:

Hence the results
ad (10.12) me:

for the nunibers a, P according to equation (10.8)
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formulas (10.15), (10.16) and (10.17) can now be evaluated -immediately.
obtains the results:

*

(10.20)

(lo.z!l)

2W=~b~’=li155-b~= (10.22)

A velocity distribution in the form of a cubic parabola according to
f@ure 43b is selected as second numerical example in Me following msmner:

4 (10.23)

.

that is, the boundary layer profile joins the velocity of the potential
flow with a continuous tangent. The calculation of the numerical factors
according to equations (10.8) and (10.12) gives:

a= 9; $=;
%2

. and hence for the characteristic parameters

—

i

U.
To = 0.323 @T. ~y

(10.24)

of the boundary layer:

(lo.25EL)

(lo.25b)
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m F=1.29 b VpUo Z (lo.25c)

,

The exact value for the drag is, according to eq~tion (9.18),

F2w= 1.328b U. WP2. The,simple assumption of a linear velocity distri-

bution therefore gives a drag too emall by thirteen percent, the culic
velocity distribution a drag

The calculation of the
layers according to equation

1 5,distribution, in 6* = ~

too sumll by three percent.

displacement-thicknesses of the boundary
(10.10a) results, for the lineu velocity

smd for the cubic velocity distribution

in 8*=~5. This givqs, because of

S* = 1.732
T-U:

5*

r

=1.740 +~
o

The ~eement with the exact

(Iinesx

equations (10.15) and (10.25a):

velocity &istribution)

(cubic velocity distribution)

value S*

r
= 1.728 * according

o

(10.26)

to

equation (9.21) is mmprisingly good; this is, howevers more or less
accidental..

The essential characteristics of the boundary layer according to
the approximate calculation described above are once more compiled with
the exact solution in the table below.

Characteristics of the Boundary Layer

Comparison of Approximate Calculation

on the Flat Plate;

tiExact Solution

nnd of calculation 5*R dg y g~ cw&)l/2

Linear approximation 1.732 0.578 3.00 0.289 1 ● 155
(fig. 43a)

Cubic approximation 1.740 0.645” 2.70 0.323 1.2g
(fig. 43b”)

lkact solution l.-@g 0.664 2.61 0.332 1.328
(Blasius)

.
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As one can see from this table, the agreement, particularly of the cubic
approximation and the exact solution, is rather good.

8
On the whole, the

results of this calc~ation with the aid of the momentum theorem maY be
regexded as
compared to

very satisfactory, especially in view of the simplicity; as
the exact calculation. 6

Seventh Lecture (Janusry 19, 19~2)

b. The Momentum Theorem for the Boundary Layer
with Pressure Drop (Plane Problem)

Last time the boundary l~er on the flat plate in longitudinal flow
was calculated by means of the momentum theorem. Today the general.case
of the boundary l~er with a pressure difference”in the flow direction
will be treated. One considers the flow along a curved surface, and
measures the coordinate x as arc length along the surface; let y be
the perpendicular distance from the surface, U(x) the given potential
flow (fig. 44). The fundamental equation may be obtained by a momentum
consideration as in chapter lXc; now, however, the pressure difference
has to be taken into consideration. The same result is obtained by
integratim of the equation of motion of the boundary layer with respect
to y from y = O (surface) to y = h, the layer y = h lying
everywhere outside of the friction layer (fig. h.h).

The differential equatims of the boundary layer for the steady
case read, according to equation (8.3),

with the boundary
integration from

au au 1 ap a%
U—+v—=———+ v—

ax b p ax 3Y2

&+&=o
axay

1
conditions: y=O: u=v=O; y=m: U=UO The

Y = O to h gives:

(10.27)

h

II

h

ld
u2m+

[r
v&y=–h=’+V&-—

2dx h pax ay o

y=o o
e

(10.28)

Ih the first term the differentiaticm with respect to x and the integra-
tion with respect to y may be interchanged, since the upper limit h
is independent of x. On the left side the second term is transformed by .

integration by perts:

,
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and hence:

.

.

‘h representing the

a-vBy continuity, — =
ay

—-

transverse velooity outside of the boundary layer.

h
-ZE ‘a

/

h

11=- &Y
0

fisertion in equation (10.28) gives, because of:

.

the relation:

This is the so-called
(reference 23).

(10.29)

(10.30)

(10.31)

K~ integral+ondition, first given by v.zK~~

term one now introduces the potential velocity U(x);
(10.31) is”to be transformed so that

For the pressure
furthermore, equation
thiclmess 5* end the momentum thiclmess ~ appear in it
equation (6.31) and (6.32), namely:

the displacement
as defined by
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/

h

u2d = U(u-u)dy
.

0

Accordhg to Bernoulli?s equation:

which can also be written:

(10.32)

(10.33)

(10.34)

By substitution of equation (10.34) into equation (10.31) there results:

/

h

‘O d
—=— (T3-u2)”dpJ:

/

(U-u)dy
P~

0 0

and-after differentiation of the eecond term:
,

/

h

[

h

‘O d—=— (U-u) udy+: (u-u)@
Pm

0

(10.35)

*

.
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The displacement
directly end one

or

93
.

thiclmess and the momentum thickness can now be introduced
obtains: -.

23!224 (10.36)

Tlxlsis the form of the momentum equation for the boun~y layer with
pressure drop that will be used as a basis for further considerations.
Since in it ?0 is quite generally the surface shearing stress,
equation (JO.36) must apply in the same way to turbulent flow, too. We
shall come back to that later. For the special case of vanishing pressure

drop & s o, equation (10.36) is transformed into equation (10.4) found

before for the flat plate in longitudinal flow.

The further calculation of the boundary layer on the basis of
equation (10.36) is performed for the laminar case according to the method
of Pohlhausen (reference 24) and for the turbulent case according to the
method of Gruschwitz (reference 34) (chapter 2PiZII).

c. Calculation of the Boundary Layer According to the

Method of KkrmaM?ohlhausewEolsteti

For further calculation it is of importance to find a suitable
expression for the velocity distribution in the boundsry layer U(X, y).
According to our understanding of the exact solutions of the differential
equations of the boundary layer this expression must at least satisfy
the conditions that for y = O: u = O, and for y =CO: u = U. Further-
more the derivative b~ must vanish for large y. Moreover, velocity
profiles with and without inflection points must he possible, as they
occur in the pressure decrease and pres~ure increase region, respectively.

Finally, a profile with ()
au
E = O must be possible in order to have a
\uJ /y=o

separation point result from the approximate calculation.

.

u (x,
One chooses for the

Y) = uf(y/~p)~ ~d
velocity distribution an expression
sets, according to Pohlhausms ‘

of the form
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for f(Y~p) a polynomial of the fourth order, hence:

<<
valid for O - y – 8P: *< <1

-n” “ 8P(x) stands for the

(10.37)

boundary layer

thickness, the dependence of which on x has yet to be calculated. The
boundary layer thiclmess of the approximate calculati~. 8P is here

provided with the index P ( = Pohlhausen) in order to avoid confusion
with the boundary layer thicbess 8’ used before. Whereas for the
exact solutions the velocity in the boundary layer asyiii-ptotically
approaches the velocity of the potential flow, (u~U for ysm);
the value u = U is to be attained in the approximation at a finite
distance from the surface y = ~, for reasons of cal.ctiation. This

modification of the actual relation is physically insignificant.

For the determination of the free constants a, b, c, d in
equation (10.37) the
of which follow from
(equation (8.3)) :

Y

Y

following boundary conditions are prescribed, all
the ~fferential equation of the Boundary layer

=bp: U=u; $=O; fi=o

aY2

a%= o: U=o; v—= -u+ )

(10.38)

b’ ax

J
Since the condition of no slip u = O for y = O is automatically
satisfied.by expression (10.37), the four free constants a, b, c, d
sre sufficient to satisfy the remaining four conditions. The last
of the five conditions follows immediately from the exact–differential
equation of the boundary layer if one puts y = O and takes the
boundary conditions into consideration. This condition is particularly
importent since it determines the curvature of the velocity profiles
neer the surface and assures that boundery layer profiles do not acquire
an inflection point in the region of pressure decrease and do acquire
one in the region of pressure increase, as required by the exact solution
according to chapter VTTI. From equation (10.38) follows for the
coefficients a, b, -c, d the equation system:
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a+ b+c+d=l

a+2b+3c+ kd=”O

2b+6c+12d=o

1
*=_uu*

%2 J
From the last equation follows m~ately:

if one introduces

The dimensionless
velocity profiles

the simplification:

5P2 Q
L=—

Vax

(10.39)
.

(10.40) “

(10.41)

quantity 1. plays the role of a form parsmeter of the
as will become clear wesentlr.

coefficie~ts one obtains from equation ~10.39):”

a= 2+~; c= -2+$; ii=l
6

For the remaining

L
‘6 (10.40b)

Hence the expression-for the velocity distribution, which satisfies all
boundary conditions according to equation (10.37), reads:

in which

u-=
u

:=

. (10.42)

(10.43)
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Dueto~= Y/8p(x) the boundary layer thickness 52(x) IS here the
only unknown. If that is calculated, the parameter k fbllows immediately

u

from equation (10.41). ~om equation (10.42) one understands that t$e
velocity profiles form with the form parameter k(x) a one-parameter
family, The functions F(q) and G(?) indicated in figure 45 and
table 4 have a universal chti”acter,that is, they do not-depend on the

k

special body shape. The velocity profiles for various values of h are
plotted in figure 46. The profile with k = O is obtained for dU/dx~ O,
that isj for the boundary layer without pressgre

Y
adient (flat plate in

longitudinal flow). The separatism profile tith k/~~ = O, that is,

a= O, has according to equation (10.40b) the paremeter X = -12. The
profile at the stagnation point has,ras will be shown below, x . 7.052.
For h >12 there result values of ufi >1 in the boundary layer, which
physically does not mske sense. These values therefore have to be excluded.
Since behind the
validity anyway,

separation point the boundary layer calculation loses its
the form parameter A is limited to the regian

The unknown boundary layer thickness an(x) remains to be

calculated. For this tQe nmmentum equation (~o.36), so far not utilized, is
at our disposal. Before performing this computation, a few preparatory
calculations ewe required, namely the determination of the boundary layer
characteristics, displacement thiclmess 5*, momentum loss thickness d,
and surface shearing stress To on the basis of the approximatlon-

expression equation (10.42): One obtains from equations (10.32) end
(10.42):

LJq=o

The calculation of the definite integrals, with the values of
.

F(v) and
G(TI) according to.equation (10.43), gives:

(10.45) ‘-
.
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k’.. QI. L__4

5P 315 945 9072
(10.46)

Further, there results for the surface shearing stress from To =
4)

&

ay o
according to equations (10.42) and (10.43)

Now the
5P(x). After

T
o

T

momentum equation
multiplication by

(u“ + *

% 12+X—=—
u 6

(10.47)

(10.36) is to be used for calculation of
fl/vU it acquires the dimensionless form:

(10.48)

The boundary layer thickness 8P
does not even appear in this equation;

however, this is not particularly astonishing, since % is a rather

arbitrary quantity of our approximate calculation and therefore without
special @ysical significance. The physically important quantities,
displacement thiclmess 5* and ~~nt~ lose t~c~ess O, appe~
instead In equation (10.48). Hence it suggests itself to first
calculate o frorathe momentum equation (1.o.48)end then to pass on
to 8~ by means of equation (10.46). For this purpose one introduces

according to Holstein and Bohlen (reference 25) aside from the first form
parameter X according to equaticm (10.41) a second form parameter R,
formed analogously with the momentum thiclmess $:

~=dut (10.49)
v

*

Then one sets:

z= z
v

(10.50)

Then

(10.51)
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Between the second form psrameter tc end the first form parameter L
exists, according to equations (10.40) and (10.41) the universal relation: *

( #
K . -u—___

315 9;5 9072}
L (10.52)

Furthermore, for simplification, one substitutes:

L-L
(10.53)

315 945 9072 .

To ~ To~~ ()( X212+X ~,_&__--= ——— =—
)
= f2(lc) (10.54)

vu ~u6p 6 315 943 9072

w
By introduction of ~ and Z acoording to equations (10.49) and (10.50)
and by substituting mom equation (10.53) and (10.54) one now obtains

ldzfrom the momentum equation (10.48), because of d08/v = ~= .

[ 1
lUM+ 2+fl(K)K-f2(@=o
2&

(10.55)

Finally, one sets as further simplification

or written in detail:

F(R) =
( ){
ax-~ _& 2

( )

2
A3-gk+ &+&

315 ~ 9072 L +&
}
(10.57)

and thus obtains the following differential equation for the momentum
w

thickness

c...’ (10.58)

.



NACA TM No. 1217 99

This is a non–linear differential equation of the first order
for z = d2/v. The fact that the function F(tc) is rather complicated
does not constitute any appreciable drawback, since F(tc) is universal,
that 1s, independent of the shape of the body, and hence may be tabulated
once and for all. The fynctions F(K), fl(~)~ f2(~) as also ~ = tc(k)
according to equation (10.52) axe gimm in table”5.

As to the solution of equation (10.58) the following remains to be
said: The calculation has to start at the stagnation point x = O. There
U=o; and the initial slope ~ wouldbe infinite if F(R) were not

also equal to zero at the stagnation ~oint. The function F(tc)actually
has a zero which yields a physicall~ significant initial value. This
zero of F(K) is given when the second bracket In equation (10.57)

●

disappears. One finds:

F(K) = O for K = K. = O.O~O; A = ho = 7.052 (10.59)

The value X = 7.052 therefore gives the value of the first form
● - parsmeter at the stagnation point. Then the initial slope of the integral

curve at the stagnation point now has the indeterminate value ~. The

*

latter may, however, be cticulated and hence finally yields the initial.
value and the initial slope of the integral curve as:

()dz
u:

Go
= ~.0652 —U:2

I

(10.60)

The index o denotes the values at the stagnation point. With these
inltlal values one succeeds easily in performing the integration of
equation (10.~), for instance, accor~ to the isocline method. A
calculation example is given in the appendix, figure 47, and talle 6.
The calculation is to be carried up to the separation point X = -12:
K = – 0.1567. Quantities entering the calculation that are given by the
potential flow axe the velocity U(x) and its first derivative with
respect to the arc length dU/dx.* (Only at the stagnation point Is
d%/dz2also required for the initial slope of the integration curve.)

* In Pohlhausen’s treatment (reference 24) a Ufferentia12equation is
obtained instead of equation (10.58), for the quantity z = ~p /vs formea
analogously to Z. Pohlhausenss differential equation also contains

d2U/dx2 which often can be obtainad from the given potential flow only
by a double graphica3 differentiation. The representation of Holstein
which completely avoids the qutity d%/dx2 therefore means an
essential improvement of the mewed.
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The values of the form parameters for the three special cases:
stagnation ~oint, velocity maximum (IP = O) (pressure gradient equals
zero), and separatim point are compiled in the table below.

—,
Case A K

Stagnation point 7.052 0 ● 0770

Velocity maximum o 0

Separation point -12 4.1567

The entire process of calculation takes the following course:

1. The integration of equation
according to equation (10.50), also

.,.– .Qfthe separation point.posluon

2.

3-

4.

59

6.

First form parameter h(x)

Displacement thiclmess 5*

Surface shearing stress ‘rO

(10.58) yields Z(x), R(X) and
d(x); furthermore it yields the

fiomequation (10.52)

from equation (10.55) .

from equation (10.54)

Boundary layer thickness 8P(X)

Velocity distribution UN from

from equation (10.45)

equation (10.42)

Flat Plate in Longitudinal flow

The special case of the flat plate in longitudinal flow which was
treated in chapter Xa with a different form for the approximation can
also be obtained very simply from the present calculation. U = U ;
u? !=o, and hence IC=X=O,

az—=
ax

end according to equation (10.58):

WL=Q!%E
U. U.

With the initial value d = O for x = O

32 = 0.4698~ or d =
o

there results

r0.685 ~“ -
0

.

(10.61)

.
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whereas the exact value according to Blasiust calculation, equation (9.21h),

iad= o.664~’”. Furthermore, it follows that the displacement

thic?mess is with 5*A = fl(0) = 2.54

(10.62) -

The shearing stress becomes, from”equation (10.54) with f2(0) = 0.235; _

(10.63)

while the exact value To iS To = o.332 I.LUoVUo/VX accordi% to
equation (9.17). The agreement with the exact values is rather satisfactory.
Iiifigure 50b the velocity
tion also is compared with
y/6*. This agreement also

Stagnation Point Profile

A Silllilsl’COmp~iSQIl
profile the exact solution
case x. ho = 7.052, R =
the mome~tum thiclmess is:

whereas accordipg to
il@7i7=0.292. The
calculation;

whereas according to

distribution obtained by the approximate calcula-
te exact calculation in the plot u/U against
is rather good.

can be perfomned for the stagnation point
of which was given in chapter VI. For this
Ko = 0.0770. For the approximate calculation

(10.64) ‘-

the exact calculation equation (6.34) it is
displacement thickness is, f?r the approximate

v
5* E= fl(~o) ~= 0“641 (10.65)

v

the e~act calculation, equation (6.33)3 it iS

5*y@~ . 0.648. Finally, according to the approximate calculation the
shearing stress is:

r
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compared with

the agreement

with
Here

To rv— — = @’(0) = 1.2+
Im u’

~th the exact values Is

The velocity distribution of the

!&L& .1.19
.

(10.66) 4

-.

by the exact calculation. Thus “ “i

here also satisfactory.

approximate talc.ti,ationis ccmrp~ed
the exact calcizlationin figure 50-a in the plot u/U against y/5*.
also the agreement is good.

.

The following table contains a compilation of the comparisons just
given, between the characteristics 5*, O, T. from exact and from
approximate calculation.

“

—

Blasius Profile Stagnation yoint profile
II

5*E @ ~~ : 1’*($($ ~;~ :~uos~x

t
Pohlhausen
Approximation

1.7’5 0.685 0.343 2.55 0.641.0.278 1.19 2.31

Exact solution 1.73 0.664 0.332 2.61~ 0.648 0.292 1.234 2.23.

Of course, it can not yet be concluded from this good agreement of
the approximate with the exact solution that similsr good agreement would
exist for all the boundary layer profiles along the body. Accurate
comparisons are not easily performsd since very few exact solutions
reaching from the stagnation point to the separation point exist. However,
one may conclude from occasionally made comparisons that in the region of
pressure decrease the agreement is mostly rather good; in the region of
pressure increase, particularly near the separation point, some deviation
might OCCUI’.

Since no other serviceable methods for loundery layer calculation
have so far become ho~the Pohlhausen method is for the present to he
regarded as the best. The time required for a boundery layer calculation
for one side of the body Immersed in a given potential flow amounts to
about three hours~

The calculation described here for the plane flow was applied by
Tomotika (reference 26) to the rotationally-yummtrlcal case.
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d. Examples

&

A few examples of boundary layer calculations will be given, all
of which were perfomed according to *he approximation method described
in the previous section.

The first example, tekeh from”a treatise of H. Schlichting and
A. Ulrich (reference 35) concerns a series of elliptical cylinders in a
flow psrallel to the major axis. The axis ratios are al/bl = 1

(circulsr cylinder), 2, 4, 8, w (flat plate). The velocity distrllutions
of the potential flow are given in figure 51. For slender cylinders they
are characterized by the fact that the ~elocity has a very flat maximum
and decreases steeply toward the front and rear. The result of the
boundary lqyer calculation is illustrated in figure 52. Figure 52-a
shows the dimensionless displacement ‘thicknessas a function of the arc
length. It is noteworthy that for ell elliptic cylinders the boundary
layer on the front half is smaller than for the flat plate; this is
caused by the pressure decrease. The laminar-separation point for the
circular.cylinder lies at S[t = 0.604 (q = 109.50). With increasing
fineness ratio it shifts further toward the reerJ it is also plotted in
figure ~1. Figure 524 shows the variation of the form parsmeter X and
figure 52-c the variation of the surface shearing stress. For every
elliptic cylinder the latter has a maximum,the position of which shifts
frontward with increasing fineness ratio. The variation of the shearing
stress for the cylinder of axis ratio eight shows only an insignificant
difference from the one for the flat plate in longitudinal flow. Figure 53
gives a survey of the variation of the boundary layer on the body and the
velocity profiles at various points along the surface. Corresponding
calculations for the rotationally-symetrical case (that is, for ellipsoids
of revolution with flow parallel to the axis) have been performed by
Pretsch (reference 27).

The second example (reference 35) gives the boundary layer on a
s-trical Joukowski profile of fifteen percent thickness for lift
coefficients in the region of ca = O to 1. Figure 54 gives the velocity

distribution according to the potential theory for the lift coefficients
Cfi= o, 0.25, 0.50, 0.7~,and 1.0. For the symmetrical approach flow

(Ca = O) the velocity mximnm lies rather far toward the front at .

s/t = 0.141. With growing lift coefficient the velocity maximum increases
on the suction side and decreases on the pressure side. Simultaneously
the maximum shifts farther forward on the sucticm side and farther rearward
on the pressure side. The magnitude of the velocity maximum and Its
position are of prim!my importance for the development of the boundary
layer and in particular for the yosition of the separation point. The
results of the bouhdary layer calculation are plotted separately for the
suction and pressure sides in fi

Y
e 55. Figure 55-a @ves the

variation of the displacement th chess, figure 5= the form

psrsmeter Xl,snd figure 5= the surface shearing stress. The position
of the laminar separation point is plotted in figure 54. Figure 56 gives
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a survey of the mariatlon of the boundsry layer along the surface and of
the velocity distribution in “theboundary layer for Ca = 0, figure 57
for Ca = 1.

Finally, the third example gives a survey-of the influence of the
most important profile prameters of a wing profile on the lamhar
boundery layer. K. Busemann (reference 36) performed the boundary layer
calculation for a family of Joukowsky profiles of relative thickness
d/t = O to 0.25 end relative cemiber f/t = O to 0.08 for ca- values

from O to 1. Figure 58 shbws the family of Joukowsky profiles. Of the
very voluminous results, only the position of the separation point shall
be shown here. Figure 59 shows the position of the separation point on
the suction side as a function of thickness, camber, and lift coefficient;
figure 60 shows the same result for the pressure side.

Herewith
of the laminer

the discussion
boundaxy layer

CHAPTER XI.

of the approximation method for calculation
will be concluded.

. Eighth Lecture (January 26, 1942)

ERETENTION OF SEPAMTION

For practical flow problems the flow with pressure increase
(retarded flow) plays an important role. It is always desirable that
no se-oerationof the flow from the wall occur; because of the resulting
large 10ssss in energy. The wi~ presents a good example. A pressure
Increase exists on the suction side towemi the bailing edge (fig. 61).
If separation occurs, the wing will have an undesirably large drag end
small lift. Another example is the flow in an expanding passage
(diffuser) which transforms kinetic energy into pressure energy (as for
instance in the wind tumnel or in the bucket grid of a turbine).

Calculations will presently show that the ability of a Un@mr flow
to overcome a pressure increase without separation is exceedingly small.
Thus the pressure increases present in practical flows would, for l~ar
flow, ahnost always lead to separation. The-reason th@, nevertheless,
in many cases of practical flows considerable pressure increases me
surmounted without separation is that the flow is turbulent. As we shall
see more clearly later, the ability to overc~ a Yresswe increase ~t~
out separation is very much greater for turbulent than for laminer flow.
Since, ~reover, the pressure increase always gives rise to an early
transition from laminar to turbulent*, one has to deal almost exclusively
with turbulent flow in practical flows with pressure increase.

Nevertheless it is useful to clarify the fundamental relations
regarding prevention of separation for laminqr flow, pa@icularly because
its phenome~ lend themselves more readily to n~ricdl_treatment than
those of the turbulent flow.

*

*Detjaflsare given in chapter XXI “Transition from Laminar to Turbulen&”
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V;ious possibilities exist for prevention
simplest way is to make the pressure increase so

105

of separation. The
small that se~aration

is avoided. A numerical estimation in the next section will give
information about this possibility. Another”possibility consists in
artificially influencing the bom,dary layer, for Instsnce by blowing
or suction of fluid, or else ly application of an auxiliary wing that
provides acceleration at the critical points of the boundary layer.
Some details will be given in the following sections of this chapter.

a. Estimation of the Admissible Pressure Gradient

We are going to mike, following Prandtl (reference 2), a ge=rally
valid estimation of the pressure increases in a laminsr boundary layer
that are possible without the occurrence of separation. We take as the
basis the K4rmdn-Pohlhausen approximate calculation according to
Chapter X and make the assumption that under the effect of the pressure
gradient given by the potential flow the boundary layer has developed
till nesr the separation point (Point O in fig. 62). From here on
the pressure distribution is to be such that the form of the velocity
profile does not change further downstream, that is, the fomn parameter
x is to remain constant. Since the value corresponding to”the separation
point is L = -12, this constant h–value shall be chosen at L = -10*.
A definite value of the second form parameter (according to table 5)
corresponds to this choice:

1.=

For the prevention of

-lo; It=-0.1369; F(E)

separation the following

= 1.523 (11.1)

relation between the
DOtSntifi-flOW velocity ‘U(X) and the ~mentti thic~ess fl(x) res~ts
~ccorting to equations-(10~50) snd (10.51):

or

32 0.1369 ‘
. —= z==

v

or

dz u“—= o.1369-—dx Ut2

dz—= o.1329~=o.1369 u‘ax Ut

(11.2)

(11.3)

(11.4)

if one puts for simplification

*At any rate, this k-value must be negative, since othefise the flow
in question is not retarded.
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*
a

~w
=—

2 (=.5)
u?

On the other hand, the momentum equation according to
equation (10.58) holds for the further development of the boundsry layer
for x> O:

~fg_ F(R) =F(+.1369) =1.523

The numerical value must be substituted for F(k), if
are to remain constant at the values given by equation
equations (11.6) and (11.4) follows therewith, for the
form parameter X = -10, the conditional equation

(

0.1369 ~ = 1.523
u? ,.-

or

a m’=—=11.13zll
u?2

(sL.6)

the form parameters
(11.1). ~om
constancy of the

For a > 11 the boundary l~er can still bear the pressure increase;
for a < 11 separation occurs; for u = 11 the boundary layer always
remains with A = -10, on the verge of separation. Qualitatively, the
following can be immediately said about the distribution of the potential-
flow velocity U(x) which gives no separation. Because of equation (J-I-.7)
a necessary condition for avoiding separation in retarded flow is:

that is~ a negative~elocfty madfent U’ ~st exfstj the mmftude of
which decreases in the flow direction. If, therefore; the curve U(x)
in figure 63 is curvdd downward behind the maximum (u”< O), separation
occurs in every case; if it is curved upw~d (@’ > O)s sep~atfon SO~-
times does not-occm. The limiting case ‘U” =
l~ads to separation. The
is m/U~2 >11.

m?fi cient ccmiition
O for Ui < 0 always
for avoiding separation

.

.

.

9
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One now proceeds t~ calculate what
layer thickness veriation correspond to
follows:

107

potential flow and what boundary
u = +11. Xi-onequation (1.1.7)

and after integratim: log U1 =lllogu - 10g Cl or

Ut
_=_fJ?

# 1

with C; as integration constant. Repeated integration gives:

-10
$U =c~x+c2

1

For X = 0, U(x) slmllbe U(x) = Uo, thus

.

1 Uo-loc2=~

Furthermore, one puts

10
c~ Uo = c1

-and obtains from equation (11.8) for the potential flow

U.
u=

(1+ 10 clx)O”l

(u.8)

(11.9)

(11.lo)

● (11.11)

Thereby is found the desired velocity distribution that just avoids
separation. The constant C

al
can be determined from the bounddy layer

thiclmess 50 at the initi point x = O:

L .* = -lo
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According to equation (11.11)

ut=_ c1 Uo

(1 + 10 Clx’)
1.1

s
and thence

5 r 0.55= ~(l+loclx)
10

lllrom5 = 50 for x = O follows

c1
.2Q2L (11.12)

U0502

and thus, as the final solution for the potential flow and the boundary
layer thickness veriation,

(11.13)

(11.14)

The permissible retardation (velocity decrease) i.stherefore comparable

Pto 1 % and is thus very small. The velocity is thus very close to
the constant velocity-of the flat plate in longitudinal flow. For the
present case the growth of the boundary layer thickness ?3 must therefore

1/2
be somewhat.larger than for the flat plate, where 5- x . Here

~ ~ XO*55; thus the ~crease is only slightly larger.

The flow in a divergent channel with plane walls (two-dimensional
problem) wilJ-be treated as another example. In figure 6h let x be
the radial distance from the origin O. The walls start at x = a, where

●

the entrerme velocity of the potential flow equals Uo. The potential
flow is

*compare Chapter IX e where it was found, as exact SOlutlOn Of
differential equation of the boundary layer, that in retarded flow

the
d

a.ogl
separation occurs when U(x) = ul x



.

u(x) =Uo ; 1
log

(11.15)

u“ =ETJOS
X3

Thus U~ < 0 and ~> O for all x so that the necessary condition
equation (11.7a) for avoiding separation is satisfied.. However, calcula-
tion of the dimensionless number u according to equation (11.5) gives

a =2 (11.16)

The sufficient condition for avoiting seperatim, u> 11 according to
equation (11.7) is therefore violated. For the divergent channel with
plane walls separation therefore occurs for any included sngle. This
example shows especiaUy clearly the low ability of the laminar flow to
overcome a pressure increase without separation. According to a calcula-
tion of Pohlhausen (reference 24) the separation point lies at (x/a)A = 1.21s
snd thus is independent of the included @e a.

b. Various Technical Arrangements for Avoiding Separation

It is a favorable circumstance for technical applications that for
higher Re~olds nmibers the boundary layer does not remain laminar but
becomes turbulent. The turbulence consists of an irregular mixing motion.
By this mixing motion momentum is continuously transported into the layers
near the wall, and the psrticles retarded at the wall sre carried out into
the free stream and thus r~ccelerated.

Because of this mechenism the turbulent flow is able to withstand,
without sep=ation, considerably lrlgherpressure increases than the
laminar flow; thus the pressure increases existing in techhical flows
are made possible.

A few technical possibilities for avoiding separation wiU be
discussed.

1. Blowing. For a wing profile the separation of the boundary
layer for lsrge angles of attack (i’lg.65) can be prevent,edby blowing

air in the flow direction from R slot directed toward the rear. The

velocity for the layer near the surfeceis thus increased by the energy
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supplied and the
true that in the
large ~et energy
~ order to make
kept small. But
vortices.

demger of sepwation is therefore eliminated. It is
practical execution not much is gained, lecause of the
required for any considerable improvement of the flow.
the energy output small, the width of the jet must be
then the jet, soon after Its exit, breaks up into

2. Another possibility of avoiding separation is the arrangement
of a slotted W- according to figure 66. The effect dep~ds on the
boundary layer formed on the slot AB being carried away into the free
stream, before it separates, by the flow through the slot. A new
boundary layer develops at C which 1s, however, at first very thin
and reaches D without separation.

The same principle is used for the Townand r- andNACA cowling
(fig. 67).

.

3. Suction. A further possibility for the prevention of separation
ts suction. For the wing, for instance, the retarded boundary-layer
material is.sucked off into the interior of the wing through one or
several slots (fig. 68). The point of suction lies slightly ahead of
or behind the separation point so that no reversal of the flow can occur.
A new boundary layer which at first is very thin develops behtid the
suction point and permits the pressure to increase further. Zn this
manner one csn overcome considerably larger pressure increases end
attain higher values of maximum lift for the wing. Many differ~t suction
arrsngementsfor increasing maxfmum lift have been investigated by

i

O. Schrenk (reference 28). Values for Caq of 3 to 4 were ob~~ed.

c. Theory of the Boundary Layer with Suction
..

Suction is a very effective means for influencing the $riction
layer on a body immersed in a flow and particularly for avoiding
separation. This was pointed out for the first time ir-L904 by L. Prandtl
in his fundamental work on the boundaiy layer.

Another possibility of applicati~ of suction, rec@nized only
recently, is to keep ths friction lay~r laminv. Here the boundary layer
is, by suction, kept so thin that tr~sition to the turbulent state of
flow 5s avoided. The surface friction dreg is thereby reduced. Experimental
investigations of this effect were cqried out by Ackeret (reference 39).

.
The laminar friction layer with auction can also be subjected to a

numerical treatment which will be briefly discussed. The following ●

assumptions are made.for the calculation:

.-.
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1. The suction is introduced into the calculation through the
assumption that the norml velocity at the wall Vo(x) is
different from zero. The wall is therefore assumed to be
permeable. A continuous distribution of the suction velocity
To(x) serves the purpose of numerical tieabnent best.

2. The suction quantities are so small that only the parts in the
imnediate neighborhood of the wall sre sucked from the
boundary layer. This leads to a very small ratio of suction
velocity vo(x) to free stream velocity Uo: %/% = 0.001

to 0.01.

3. The n~lip condition at the wall u = O is”retained with
sucticm~ likewise the expression

The equations of motion for the
read

-()auTo=v—
ay o

for the wall sheering stress

boupdary l~er with

au u au a2u—=
ay

~+v——

b2

22+*”=0
ax ay

with the boundary coalitions

Y =Ou=ov= Vo(x)

Y =m u =U

v. < 0 signifies suction; V. > 0 blowing.

suction therefore

(1.1.17)

}

(u.18)

#

As in chapter X b the momentk theorem is again applied to the
boundary layer with suction. The momentum equation for the boundary layer
with suction is obtained in exactly the same msmner as in chapter X b
(compere fig. 44) provided one takes into consideration, in addition,

that the normal velocity at the wall is different from zero. In chapter
X b the momentum equation was derived by integration of the equation of
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motion for the x-direction over y between the limits y = O and
Y =’m (compare equation (lo.28)~ tiei~ines e=ctiythe s-ecalcda-
tion performed for the boundary layer with suction: then the expre~sioi
for the normal.velocity at the distance from the wall y = h is
different, compared with the calculation in chapter X b. The normal
velocity now becomes

(11.lg)

The remaining calculation is exactly the same as in chapter X b and
finally yields as the momentum equation for the boundary layer with
suction.

2= T3M+(2$+5*)ug-vou
P &

(11.20)

The newly added term -v U (compered with equation (10.36)) gives the
?loss of momentum due to he suction at the wall.

We shall now treat the special case of the flat plate with suction
in longitudinal.flow (fig. 69) (reference @). The free-stream velocity
is Uo. Equation (11.20) then becomes

2 dflU. ‘o
()

h~—vou=~=v —
by ~=o

(11.21)

if one takes the law for the leminar wall shearing stress Into consider-
ation. Furthermore, the assun@ion is made that the suction velocity
(or blowing velocity) -v. along the plate is constant. In this case
one can obtain from the momentum equation (11.21), by the following
simple calculation, em estimate of the variation of the momentum thick-
ness along the plate. One puts

(11.22)

$? O signifying a dimensionless fo~ parameter of the velocity profile.
It may be assumed, to a first approximation, that p varies only little
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-. with the length of run x; accordingly, P will be considered conqtant.
Then’equation (11.21) mq be written

(11.23)

with the initial contition ~ = O for x = 00 For suction (v. < O) one
obtains d79/dx= O for

19m=$v~ (suction) (11.24)

(that is, therefore, the momentum thickness reaches, after a certain
approach length, a constant asymptotic value gimn%y equatim (11.24)).
Simultaneously, displacement thickness, velocity distrilnztion,and all
other boundary layer coefficients also become asymptotically independent
of x. ‘

.

.

For blowing (To >0) the value dd/dx is, according to equation

(11.23),larger than zero along the entire plate; that is, fl(x) increases
with the length of run x without limit so that for lerge values of x,
one can neglect in equation (lJ.23) the first term on the right side as
compared with the second. One obtains therefore, as asymptotic law,

19m= ‘o
TX (blowing)
o

(n.25)

On the whole, one obtains the remarkable result that for the flat plate
in longitudinal flow with constant suction or blowing velocity, the
boundery layer thickness for suction becomes constant after a certain
approach length, whereas for blowing, it increases proportionally to the
length of run x. In between lies the case of the impermeable wall
where the boundary lager thickness increases with ~.

For the case of the-laminar boundary layer with the asymptotically
constant boundary layer thicbess it is also possible to give hmedlately
en exact solution of the differential equations of the boundary layer in
a surprisingly simple
according to equation

form. h this case ~~- O, hence ~so,-
(11.17), b/ay s O and therefore

v(x,y) = To = constant (11.26)
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Hence there follows from equation (11.17)

and from it the solution which satisfies the
equation (11.18) .

r

(11.27)

boundary conditions

\

I
Toy

M
v

u(y)=Uo l-e (11.28)

.
from this equation results the displacement thiclmess of the asymptotic
boundsry layer

v5* .—
m -v

(11.29)
0

the momentum thiclmess

(11.30)

8*
m

and the form -parameter —=2.
19W

By comparing equation (11.2g) with

equation (11.24) one finds the factor 13= 1. The velocity distribution
of the asymptotic boundary layer profile according to equation (11.28)
is plotted in figure 70 together with the 31asius solution for the
impermeable wall.

Herewith the
be concluded.

considerations of boundary layer with suction will

CHAFTIRXII. APPENTHXTOPART I ‘

a. Examples of the Boundary Layer Calculation

According to the Pohlhausen-HolBteinMethod

For the integration of the differentialsquation (10.58) it is
best to use the isocline method. It is expedient to calculate with

dimensionless quantities. The wc length s is made dimensionless by
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dividing by a characteristic length of the body inmersed in the flow. _
for ‘instance,for the

is made dimensionless

whg, by the wing chord ‘t. The variable Z =“+2P

U.
bytitiplyingb~ —. Thus one puts:

t

o“21J
Z* o ()

~2u~
=— =—
Vt tv

*=S T
1

Hence the differential equation reads:

(12.1)

(12.2)

The calculated exsmple cmcerns a symmetrical wing profile (J 015) in
symmetrical approach flow (ca = O). The prescribed potential-flow
velocity and.its first derivative with respect to the src length is
given in t~ble 6. The initial +alues for the integration are calculated,
according to equation (10.60), to be, for the present case:

ZO* = 0.00 149

since at the stagnation point a%/ds2 = o. The auxilisry function F(~)
required for the Integration is given in figure 47- and table 5. The
c~ctiatiqn according to the isocline method is shown h figure 48. Here
the curve tc= -0.1567 which gives the separation point can be calculated
according to the relation:

The intersection of the integral curve with this curve gives the separa-
tion point. As a result of the integraticm one obtains at first the varia–
tion of the momentum thickness. By means of the function 5*/~ = f(~)

~~ d ‘o—— = f2(K) given in table 5 one can also calculate the displacement
U1.1
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thickness and the sheering stress. The result of the calculation is
compiled in table 6 and given in figure 49. Moreover, the velocity
distribution in tlieboundary layer canbe seen from figure 56.

Translated by Mary L. Mahler “
National Advisory Committee
for Aeronautics

.
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TABLE I. - THE FUNCTION q OF TEE PLANE 91MGNATIONPOINT

FLOW (ACCORDINGTO lIDIWENZ(REFERENCE10)); TO FIGURE 16

‘E
o
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1*1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

;::

::;
3*3
3.4

;:2
3*7
3.8

::;

:::
4.3

P

o
0.0060
0.0233
0.0510
0.0881
0.1336
0●1867
0.2466
0.3124
0.3835
0.4s2
0.5389
0.6220
0.7081
0.7966
0.8873
0.9798
1.0738
1.1688
1.2650
1.3619
1.4596
1.5577
1.6563
1.7552
1.8543
1.9537
2.f)~33
2.1529
2.2528
2.35-
2.4523
2.5522
2.6521
2,7521
2.8520
2.9520
3.0519
3.1518
3.2518
3.3518
3.4518
3.5518
3.6518

o
0.1183
0.2266
0.3252
0.4144
0.4946
0.5662
0.6298
0.6859
0.7350
0.7778
0.8149
0.8467
0.8739
0.8968
0.9161
0.9324
0.9457
0●9569
0.9659
0.9732
0.9792
0.9841
0.9876
0.9905
0.9928
0.9946
0*9960
0.9971
0.9979
0.9985
0.9988
0.9992
0.9994
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.Oooo
1,0000
1.0000
1●0000

w
I.23264
1.1328
1.0345
0.9386
0.8463
0.7583
0.6751
o*5973
0.5251
0.4586
0.3980
0.3431
0.2937
0.2498
0.2109
0.1769
0.1473
0.1218
0.0999
0,0814
0.0658
0.0528
0.0420
0.0332
0.0260
0.0202
0.0156
0.0119
0.0091
0.0068
0.0052
0.0036.
0.0027
0.0023
0.0019
0.0014
0.0010
0.0008
0.0004
0.0003
0.0002
0.0001
0.0001
0
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TABLEII. -TBEFONCTION f OF TBEBOUNDARYIAYEROK THE FLAT PLATE

IN LONGTI’UDIWALFLOW (ACOORDR?GTO BIASIUS(REFEREKCE8));TO

mGuRE30 q=
r

%. k . f’l(q)
Vx‘ U.

7 f .pl *I1

o 0 0.33206
0.2 Lo&4 0.06641 0.33199
0.4 0.02656 0.13277 0.33147
0.6 0.05974 0.19894 0.33008
0.8 0.106IJ 0.264TL 0.32739
1.0 0.16557 0.32979 0.32301
1.2 0.23795 0.39378 0.31659
1.4 0.32298 0.45627 0.30787
1.6 0.k2032 0.51676 0.29917
1.8 0.52952 0.57477 0.28293
2.0 0.6m3 0.62977 0.26675
2.2 0.78120 0.68132 0.24835
2.4 0.92230 0.72899 0.22809
2.6 1.07252 0.77246 0.20646
2.8 1.23099 0.8u52 0.18401
3.0 1.39682 0.84605 0.16136
3.2 1.56911 0.87609 0.13913
3.4 1.74696 0.90177 0.11788
;.; 1.92954 0.92333 o.098@

2.11605 0.gkl12 o. 0%13
4:0 2.30576 0.95~2 0.06424
4.2 Q.49806 0.96696 0.05052

2.69238 0.97587 0.03897
::: 2.88826 0.98269 0.02948
4.8 3● 08534 0.98779 0.0Z187
5.0 3.28329 0.99155 0.01591

%
5.2 3. 189 0.99425 0.01134
5.4 3. k 0.99616 0.00793
5.6 3.88031 0.99748 0.00543
7.8 4.07990 0.99838 0.00365
6.0 4.27964 0.99898 0.00240
6.2 4.47948 0.99937 0.00155
6.4 4.67938 0.99961 0.00098
6.6 4.87931 0.99977 0.00061
6.8 5.07928 0.99987 0.00037
7.0 5.27926 0.99992 0.00022
7.2 ~.k7923 0.99996 0.00013
7.4 y. 67924 0.99998 0.00007
7.6 5.87924 0.99999 0.00004
7.8 6.07923 1.00000 0.00002
8.0 6.27923 1.00000 0.00001

6.47923 1.00000 0.000o1
::: 6.67923 1.00000 0
8.6 6.87923 1.oOooo 0
8.8 7.07923 1.00000 0

1
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n

o
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
:.;
.

i::
4.1

$:!
.

NACA TM

TABLEIII . -THE FUNOJ!IOI’JSf,g MD h
35

OF TEE B4XINDKSYL&ES
5

oNTEEoYmmER(SYIMWRIOALCAER) AOO03DILVGTO EOh’ARTE

(~ CE 15)AND~&~G (~
f-c’Ei6).~=y ~

f=

o
0.0035
0.0132
0.0282
0.0476
o.o’7@
0.0962
0.1240
0.1534
0.1838
0.2149
0.2462
0.2776
0.3088
0.3397
0.3702
0.4002
0.4297
0.4587
0.4871
0.5151
0.5426
0.5698
0.5966
0.6230
0.6492
0.6752
0.7010
0.7266
0.7520
0.7774
0.8027
0.8279
0.8531
0.8782
0.9033
o.928k
o.953k
0.9785
1.0035
1.0285
1.0535
1.0785
1.1035
1.1285

f.:

o
0.0675
o.1~1
0.1734
o.21.2g
0.2MA
0.2688
0.2869
0.2997
0.3080
0.3125
0.3tio
0.3132
0.3107
0.3070
0.3025
0.2947
0.!+12s
0.2871
0.2822
0.277s
0.2TSS
o.-
0.2(%2
0.2632
0.26U7
0.2586
0.2568
0.2554
0.2542
0.2533
o.~~
0.2519
0.2515
o.~~
0.2508
0.2506
o.~ok
0.2~s
0.2502
o.!@2
o.*O1
o.2jol
o.~
0.2500

f“9
0.7244
o.62k9
0.5286
0.4375
0.3539
0.2780
0.211.2
0.1530
0.1037
0.0626
0.0292
0.0028
4.0173
4.0320
4.042Q
-o*0482
-0.0513
-0.0518
4.0506
-0.0480
4.0444
-0.0402
-0.0358
-0.0314
-0.0271
a. 0230
-0.0194
-0.0160
-0.0131
-0.0105
-0.0085
-0.0067
-0.0052
-0.0041
-0.0032
-0.0024
-0.0019
-0.0014
-0.00IJ.
4*0008
-0.CKJ06
-0.IX)04
-0.0003
-o*c002
-0.0001

o
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

:::
3.8
4.0

:::

o
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

;::
3.6
3.8
4.0

:::

‘5.. ..—
0
0.o114
0.0405
0.0806
0. i264
0.1742
0.2218
0.2676
0.3112
0.3526
0.3918
0.4293
0.4655
0.5007
0.5352
:.%&

0:6365
0.6700
0.7034
0.7368
0. ~ol
o. &35

h=

o
0.0017
0.0045
0.0057
0.0039
-0.001.2
-0.0090
-0.0185
-0.0286
4.0384
-O.04’j’2
-0.0546
-0.0604
-0.CW9
-0.0691
4.0703
-0.0717
4.0726
-0.0732
4.0735
-0.0737
+3.0738
-0.0738

gt
5

0
0.1072
0.1ti8
o.2184
0.2367
0.23s9
0.2342
0.2239
0.2123
o.2Q12
0.1916
0.1839
0.1781
0.1740
0.173.2
0.144
0.1682
0.1676
0.1672
0.1669
0.1668
0.1667
0.1667

ht
5

0
0.o141
0.o1.17

4.0010
-0. ca76
4.0330
-0.0441
-0.0498
-0.0503
-0.0468
4.0406
-0.0331
-0.0257
-o. ol@
-o.o133
4.o@
-0.0058
aoo36
4.oo21
-0.0012
4.0006
-0.0(X)3
-0.0001

No. 1217

‘;
0.6348
0.4402
0.2717
0.1403
0.0483
4.0105
-0.0431
4.0567
-o.oy30
-0.0522
-0.0432
-0.0335
-0.0245
-0.0171
-0.0114
-0.0072
-o. m43
-0.0026
-0.0015
-O. CU)1O
-0.0004
4.0001
-0.0001

h“
5

o.U92
0.0249
a.0436
-0.0783
-0.0933
4.C@o
-0.0423
-0.0149
+0.0098
0.0256
0.0351
0.0380
0.0361
0.0312
0.0249
0.01.87
o.m32
0.CG99
0.0057
0.0036
0.0022
0.0012
0.0007

*
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!cABlaIv. - THE FUNCTIONS F(Y/~ ) ~d G(Y/~ ) F~ T= ~OC~

DISTRIBWI~ IN THE BOUND~Y LAYER ACCORDING TO PO_~

(~ CE 24) AND HOWARTH (REF=CE 15)

o
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0,9
1.0

F

o
0.1981
0.3856
0.5541
0.6976
0.8125
0.8976
0.9541
0.9856
0.9981
1

q

G

o
0. 012J-5
0.01725
:. ol~5

0:0104
0.0064
0.00315
0.00105
0.00015
0
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TAME V. - AIEI~ FONOI?IONSBCIRTHE BOuNTMRY IMER CALCULATION

AOOORDItlGTO EOLSEEDT (RET&m m 25)

h F(R) fl(K) = ~ ~~ Q TA
K f2(K) = -

UN

15 0.0885 -0.0657 2.279 0.345
14 0. C920 -0.0814 2.262 0.351
13 U&w -o. C913 2.s3 0.354
M o.og48 4.cg46 2.250 0.356
u 0.0941 -o. QxLl 2.253 o.35k
10 o.og20 -o. @06 2.260 0.351
9 0.0882 -0.0608 2.273
8 0.0831

0.346
-0.0332 2.289 0.340

7.8 0.0820 4.0271 2.w3 0.338
7.6 0.0807 4.0203 2.297 0.337

0. 07gk 4.0132 2.301 0.335
;:: 0.0780 -0.0051 2.305 0.333

7.@2 0.0770 t) 2.308 0.332

7 0.0767 b.oosl 2.309
6.9 0.0760

0.331
0.00s1 2.312

6.8 . 0.0752
0.330

0.0102 2.314
6.7

0.330
0.0744 0.0144 2.316

6.6
0.329

0.0737 0. 0M6 2.W3
6.5

0.328
0.0729 0.0230 2.321

6.4 0.0721
0.327

0.0274 2.323 “: 0.326
0.0713 0.0319 2.326 0.3-25

2:2 0.0706 0.0365 2.328 0.324
6.1 0.0697 G.0412 2.331 0.322
6 0.W9 0.0459 2.333 0.321
5 o.o~ 0.0978 2. 36~ 0.310
4 0.0497 0.1579 2.392 0.29’7
3 0.0385 0.2255 2.427 0.283

-2 0.0264 o.3om 2.466 0.268
1 0.0135 0.3820 2.508 0.252

0 0 0.4698 2.554 0.235

-1 -0.01.40 0.5633 2.604 0.2J.7
-2 -0.0284 0.6616 2.658 O.lgg

-0.0429 0.7640 2.716 0.179
3 4.0575 0.8698 2.779 0.160
-5 -0.0720 0.9780 2.&7 0.140
-6 -0. 0%2 1.0853 2.921 - 0.119
-7 -o. oggg 1.1981 2.999 0.100
-8 -0. U.30 1.3078 3.08k 0.079
+ -o.1255 L4173 3.177 0. OH

-lo a. 1369 1.5231 3.276 0.039
-11 4.1474 1.6251 3.383 0.019

-12 -0.1567 1.7237 3*mf3 o

-13 4.1648 1.8159 3.627 4.019
-14 -0.1715 1.9020 3.765 . -0.037
-15 -0.1767 1.98!a 3.920 -0.054
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m
177.5
175
1.T2.5
170
165
160
19
140
136
130
120
Ilo
100

~ $.3

70
60

z
30
20
10

5
0

TABLE VI. - EXAMPLE IKIR !lTOlBOUBDARY IAXER CALCULATION MWIRDm

TO HOISCEIN (REKEWilOE ~). (PROFILE J 015;

:.o@g

0.0099
0.0148
0.0197
0.0308
0.0443
0.0787
0.123
0.145
0.178
0.241
0.313
0.390
0.473
0.483
O.*
0.648
0.733
008J.2
O*W
0.944
0.990
1.o18
1.025
1.0%

JL
U.

o
0.231
0.445
0.632
0.782
0.993
L1l.1
1.233

1.Z?70

l.q’l

1.267

L245
La.2

1.178

1.136

1..130
1.095

L053

1.o14

0.997

0*945
0.917

m99
0.889

0.8/?6

0.884

~ d%
——
UO M

51.7
49.0
@.2

2:;5
12.70
6.16
1.573
0.-
0

-0.2U9
-0.387
-Q.468
-0.485
4.4a7
-0.487
-0.487
-0.474
-0.458
-0.442
-0.420
-0.416
4.4J.4
-0.409
-0.409
-0A@

K

o. O?qo
0.0745
0.0708
0.0662
0.0631
0.0513
0.0389
o.020g
0.0057
0
JJ.olol
4).0317
a .(%16
.o.1o24
4.1510
-0.1567

19%r
C*. —Vt” k

!

0.00149
0.00192
0.00168
0. CXX!03

-0.-
0.00404
0.00632
0.01325
0.026’7
0.0340
0.0485
O.oml
0.1315
0*2U
0.310
0.324

7.Q52

6.70
6.24
5.64
7.32
4.15
3.03
1.57
0.41

:.Tl

2::
-7.I.8
-IJ..37
-12

C* = o)

r8*Uot
-
t T

0.089
0.0895
0.0957
o.m57
0.LL9
0.152
0.193
0.287
0.410
0.460
0.564
0.765
l.mj
1.383
1.910
l.$)go

ra-. Uot
—.

N02 v

o
3.90
7*O5
8.95
9.74
7*3J

5:57
3.81
3.43
2.58
1.69
1.05
0.49
0.049
0
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Figure l.- Simple shear flow.

I

----- -- —-- -----

Figure 2.- IIagen-Poiseuille’ s pipe flow.

z

\

Figure 3.- The general stiess tensor.

. .
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Figure
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k

shearing stress (to fig. 3).

Figure 5.- The deformation of a pure elongation.

Figure6.- Pure angular deformation (e > O).
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Figure 7.- Pure angular deformation (f -> 0)0

Figure 8.- Analogy between heat boundary layer and flow boundary layer.

x
k

Rf- .,

t

Figure 9.- !I’ypes of solutions of the Navier-Stokes differential equations.
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FYgu.re 10. - Reynolds’ law of similari&.

Figure 11. - Laminar pipe flow.
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Figure 12. - Velocity profiles of the starting pipe flow T = ~ .
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Figure 13. - Velocity distribution on an oscillating surface.
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.

IHgure 14. -

u

I/////////////// / 777-+
o

Velocity distribution on a surface set suddenly in motion.

b

Figure 15. - The plane stagnation point flow.
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Figure 16. - The velocity profile of tie plane stagnation point flow.

Convergent
flow

Divergent
flow

Figure 17. - The convergent and divergent channel.

+=3
w

u..
o

Figure 18. - Velocity distribution in the convergent channel.
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Figure 19. - Velocity distribution in the
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divergent channel.

.—

Figure 20.- Separation in the divergent channel.

Id

Figure 21. - Viscous flow around a sphere.



HACA TM NO. 1217 135

Figure 22. - Streamline pattern of the viscous flow around a sphere
(according to Stokes).

.

Figure 23. - Streamline pattern of tie viscous flow around a sphere
(a~cording to Oseen).

u
u

U*

Figure 24. - Concern@ Prandtl’s boundary-layer
layer thickness 5 magnified.)

equation. (Boundary-

.—.-
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Figure 25.... Separation of the boundary layer. (A = point 
of separation.) 
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Figure 26. - Veloci& distribution in

decrease

Y Y

the boundary

(*< 0).
Y
A

layer for pressure
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Figure 27. - Velocity distribution in the boundary layer for pressure

increase (*> 0).

x

Figure 28. - Concerning the calculation of the friction drag.
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Figure 29. - The boundary layer on the flat :ylate in longitudinal flow. 
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Figure 30.- Velocity distribution u(x,y) in the boundary layer on the 

flat plate (according to Blasius). 
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Figure 31. - The transverse velocity v(x,y) in the boundary layer on
the flat plate.

●

x

Figure 32. - The boundary layer on a cylindrical body of arbitrary
cross section (symmetrical case).
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33. - The function f3’ of We Veloci&

boundary layer.

distribution in the

-

0

Figure

to 2,0 2/5

34. - The functions g5’ and h5’ of the

in the boundary layer.
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Circular cylinder

Arc length x

Figure 35. - Veloci& distribution of

flow for a wing profile.
the potential

--=&=&
Figure 36. - Concerning the calculation of the friction layer on the

. circular cylinder.

Y

.-..-C-Q-RA%
.. L- —1-+b ——.
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Figure 37. - Wake flow behind the flat plate in longitudinal flow.
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Concerning application of the momentum theorem for the
flat plate in longitudinalflow.
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Figure 39. - Asymptotic veloci~ distribution in the wake behind the
flat plate in longitudinal flow.
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. Figure 40.- Streamline
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pattern
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and velocity

I

distribution of the plane jet.

\

Figure 41. - The profile of the plane jet.
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Figure 41(a).- Boundsry+yer profiles for the potentialflow U(x) = Ulxm.
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Figure 42.- Application of the momentum theorem for the flat plate in
longitudinal flow.
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Figure 43. - Velocity distribution in the boundary layer on the flat plate
in longitudinal flow.

(a) Linear approximation.

(b) Cubic approximation for the veloci~ profile.

Figure 44.- Application of the momentum theorem to the boundary layer
with pressure gradient.
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Figure 45. -

veloci&

0,4

~ Y/6p

The universal functions F(y/@ and G(Y/5 ~) for fie
distribution in the boundary layer according to Pohlhausen.

7~~ ,~ .tagna~cmpoint

A‘//”! .,” Separation

.

Figure 46. - The one -parameter family of velocity profiles according
to Pohlhausen.
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.

Figure 47(a). - Awdlkry functions ofthelxmndarylayercalculation
accordingtoHolstein(cf.table5);x and F(~) against R.
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Figure 47(b).- Auxiliaryfunctionsfortheboundarylayercalculation
accordingtoHolstein(cf.table5);fI(~) and f2(K) et ~.
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Figure 48. - Integrationof the differential equationof the boundarylayer
according ta PohlhausenandHolstein (profile J 015; ca = O).
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Figure 49. - Result of the boundary-layer calculation for the
according to figure 48 (profile J 015; Ca =-O).
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~ 7y7

~ Q8

I ---- Exact solution
a4

— Approximation; A=%05.z

7 2 3
a) Stagnation point profile ~ Y/J*

U=uq)c

u 10 —
‘o 08 7

t /
---- Exact solution

04 ‘
— Approximation; A =O

Figure

1 2
I & d

b) Plate profile ~ Y/&*

u-U.

50.- Comparison of the approximate calculation according
Pohlhausen with the exact solution.
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Figure 51. - Potential-theoretical velocity distribution on the elliptic
cylinders with axis ratio al /bl = 1, 2, 4, 8 for flow parallel to the

major axis (A = laminar separation point),t’= half the circumference.
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SeparationpointaccordingtoP4
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Figure52.- Resultoftheboundary-layercalculationfor
cylindersofaxisratioal/bl= 1,2,4,B.
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Figure 53.- Potentielflowand landnsrfrictionlayeron theelliptic
cylinderofaxleratio al/bl = q.
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i I I 1 , <

Figure 54. - Potential-theoretical velocity distribution for the Joukowsky
profile J 015 for Ca = O; 0.25; 0.50; 1.0.



156 NACATMIVO. X217

O& Suctionside

L------t
I I I I I

2 — ; .—. —-—-—-— -—.

r ?

/
s“ U.t

/

TT
/

/

/ ‘
/

I -

. “/

1
/‘

..””

0;. .

— S/”

o al G?2 173 04 05

Pressure side
d

1
2

i ,...””””””.I #t

//, ,1 “
,’. .,.”.

1--

0
0- 04 Q8 @

8

-8

-12

Figure 55.- Result of the boundary-layer calculation for the Joukowsky
I profile J 015 (t’ = half the profile perimeter).
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profilesof figure 58; suctionside.
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s Danger of separation

“.-

P

t

! i Pressure

Figure 61. - Pressure distribution and separation on

~+o -5

a wing.

Boundary layer with laminar sep~ation avoided.

u~o: A-o

Figure 62. -

t

+ometirnes no separation

Figure 63. - Potential flow with separatioru U’ e O; U“ < O;
sometimes without separation U’ e O; U“ > 0.
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0

Figure 64.- Divergent channel.

Figure 65. - Prevention of separation on wing by blowing.

Figure 66.- Prevention of separation by a slotted wing.

- #’

Figure 67. - NACA cowling for prevention of separation.
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PREFACE

TECH LIBRARY KAFE, NM _

lllllllllllp[~~pj~lnlll‘-==.-—

1 gave the lecture series “Boundary-Lqer Theoryw in the winter
semester lgQlfi2 for the metiers of my Jhstitute snd for a considerable

number of collaborators from the Hermenn G6ring kstitute for Atiation
Research. The series embraced a total of siiteen tw+hour lectures.

The aim of the lecture series was to give,a survey of the more
recent results of the theory of viscous fluids as far as they are of
importance for actual applications. Naturally the theory of the boundary
of frictional l~er takes up the greatest part. Jn view of the great
volume of material, a cou@ete treatment was out of the question.
However,.I took pains to make concepts everwhere stend out clearly.
Moreover, several important typical examples were treated in detail.

Dr. H. Hdmemann (LFA, Tnstitute for Motor Research) went to
considerable trouble in order to uerfect = elaboratim of this lecture
series which I examimed and sup~l~mented in a few
~mz participated in the illustration. To both I
thanks for this collaboration.

Aerodynamisches-Ihstiitut
der Technischen Hochschule, Braunschweig
October 1942.

placds. Miss lllldegard
owe my most sincere

Schlichting

i
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Prevention of separation

Y

on wing by suction.

L/.
Id

Figure

i$=comt.
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69. - Flat plate in longitudinal flow with suction.

~/
,/ _ With suction I

‘--- Without suction ~

Figure 70. -

flow with

4,0

Asymptotic velocity profile on flat plate

suction (1) 5* = ~/-vo ~) ~ x = 1.73
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in longitudinal ●
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