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——

TECHENICAL MEMORANDUM NO. 1067

THE MINIMUM ENERGY LOSS PROPELLER?

By N. Poliakhov

SUMMARY

Various cases are presented of the solution of the
problem of the most efficient propeller, more general
cases being considered than the one by Betz in 1919:
namely, that of a propeller under a limiting light load.
The problem is solved directly and also with the aid of
the Ritz method which became readily applicable after
the author proposed a method for the solution of the
propeller problem, in general, with the aid of trigono-—
metric series. The design of a propeller with the aid
of this method is given and an analysis is made of the
effect of the fuselage and of the viscosity coefficient
m on the character of the solution of the variational
problem,

SYMBOLS
P total power of propeller (nondimensional)
Fp useful power of propeller (nondimensional)
1l nondimensional circulation (1£T/4an2y
k nunber of blades
w angular velocity of propeller
R radius of propeller
T nondimensional tangential and axial veloci-

ties induced in the plane of the pro—
peller disk by the free helical vortices
on the line of the bound vortex

*Report No. 455, of the Central Aero—Hydrodynamical
Institute, Moscow, 1939.
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nondimensional radius of propeller; symboi is also

r
used for wr the nondimensional rotational
velocity

v axial velocity (nondimensional)

W JT2+(wT)® , resultant of V and oF.

Wn1 resultant induced (nondimensional) velocity

Dilsgr W pressure and resultant velocity at infinity
ahead of the propeller

Py s ¥, = ‘/(wrz - vtg)2 + (V + v $iP , pressure and

2 a2

velocity at infinity behind the propeller

Ap = P — P,

Vo vtk axial and tangential induced velocities at
infinity btehind propeller

Bl Sasaal 8 v s = Wan R

T nropeller thrust

Ene induced velocity at infinity behind propeller

@ blade setting

h nropeller—fuselaze interference coefficient

;'i interference velocity of propeller—fuselage systen

O THE BETZ SOLUTION CF THE VARIATIONAL PROBLEM OF

THE AIRPLANE PROPELLER

As is known, the credit belongs to A, Betz for giviag

an approximate solution of the problem of the propeller
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of minimum energy loss for the case of a finite number

of - blades. (See reference 1l.) In general, the problem
of the variable propeller in an ideal fluid may be stated
thus: It is required to find the condition under which
the integral expressing the total power of the propeller
(in nondimensional units):

f:ff(—v_+;a1);d; = minimum &y

4

while the integral

1
§D=V§=VIT‘(E—Vt1)d?= constant (2)

4

where P, is the useful nondimensional power of the

propeller. In the integrals (1) and (2) T is the
nondimensional circulation equal to kI'/4nwR2.

where

k number of propeller blades

w angular velocity of the propeller
R propeller radius

The magnitudes V4, and V,, are the nondimen—

sional tangential and axial velocities induced in the
plane of the propeller disk by the free helical vortices
on the line of the bound vortex, These velocities are
unknown functions of I' the character the change of
which with the nondimensional radius T is likewise un—
known. An added condition imposed on the function

T (T) for a finite number of blades with free tips is:

T (o) =T(1) = o.

It follows immediately from what was said in the
foregoing, that the losses of the screw propeller are
expressed as follows:

<l
o e B

k|
]
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|
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It is not difficult to see that the expression in paren—

thesis 1s no other than the modulus of the vector product:

i “> = —>
i’——>——> ; s
W: —nl -’-‘[(.UI‘, V’ 0
- ' i
|
fLo s
|~ Vt1, Vai, 0

- —= S
in which 7T°, a° and r® are unit vectors in the
tangential, axial, and radial directions, respectively,
and therefore

/“ \\
S
Vo eln( W wy,)

—_—— e r

Wr vagy *t Vg, =0

where

7 =/¥2+F2

—

—_—> ] >
If it is assumed that wp, _L W, then

S i ==
WL Vgqy ¥ Vg, W Wn,
and
il

He f’fﬁwnld‘f

o

To compute the true angle between the velocities

— n

W and wp, use is made of the Bernoulli equation

which is written down for a streamline through the pro—
peller blade. If the pressure and velocity at infinity
ahead of the propeller are p and W while at infinity
behind the propeller they are P, and W,

= «/(wr2- vtz)2 + (V + v,,)® the Bernoulli equation

gives immediately:

Vaz\ V{2 s AD
T e (oo e
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where Ap = p — p_: Denoting for bdriefness vaale and
vy,/2, respectively, by v',, and v'y, thus

(F + vtg,) vipay ~ (wr — v'y,) vlgy = %—%? ¢ Oa)

The magnitude Ap/p at infinity behind the pro—
peller is constant along the same streamline but changes
in passing from one streamline to another and is a
periodic function of the polar angle o on which the
fluid particles of the streamline considered are dis—
placed relative to a certain initial helical surface
which may be taken as one of the vortex surfaces origi-
nating at the propeller blades. The same can be said
with regard to the induced velocities vy, and vgo-

The period of all these magnitudes is equal to 2n/k
where k is the number of blades, For heavily loaded
propellers the magnitude Ap/p may reach large values
For lightly loaded propellers this magnitude is small
in comparison with the values Vvgp and wr vg,. For

a propeller with an infinite number of blades Ap/p is

given by
R

. 2
v
P X r
Ta
In most of the present day theories of the lightly
=

>
loaded propeller it is assumed that w'y, W (Betz,

Prandtl, Kawada, etc.) to which the relations as follows
correspond:

-—

Vg = w'y, cosB, v, = w'y, sinp
hence (fig. 1) it follows that

Vv'a1 - wrv't1 = (0]

Itls nobt difficult to see that .the assumption of the
perpendicularity of w*nl to W 1is equivalent to
neglecting in formula (a) the magnitudes 7i%,’ and
v'2;, ~ Ap/2p, that is, to the linearization of the

problem., Such linearization is possible only for the
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case of lightly loaded propellers when the magnitude
v!,, 1is actually small by comparison with V and

via, - Ap/2p is small by comparison with wr. More—

over, the foregoing theories assume also that:

v
t2
L0 LU
¥ t - 2 Vi

1 X

<
Y

v! -

.

21 Yaz

where vy, and vgy; are the induced velocities in the

plane of the propeller. This second assumption is equiva—
lent to the assumption that the helical vortices lie on
the surfaces of circular cylinders and have a constant
axial pitch.! In what follows it is assumed in corre—
spondence with what has been said that

Yty T Wp, sin f
Vvgy = wrvg, = 0

The assumption of the foregoing relations involves
certain errors in the determination of the velocities
¥ay and vg,. The effect of these errors on the

values of the velocities wr — vy, and V + vgy; in the
expressions for the thrust and power is very small, how—
ever, because the velocities Vi, and Vg, for light

and moderate loads are small by comparison with wr and
V but nevertheless not so small that they can be neg
lected., Thus rejection of the component (w'2n1—~1—%§>

2
by comparison with Vv! ~wrv', . in formula (a) does

al
not at all mean that vy, should be neglected by com—

parison with wr and vg; Dby comparison with V in
the expressions for the thrust and power. Thus, for
example, an error even of 10 percent in the determina—
tion of v,; when taken equal to 0.1V gives in the

1 2 - .
In the linearized theory this assumption is a
simple consequence of neglecting v and vt Dby com—

parison with V and wr in the formulas of Biot—Savart
for determining v,; and vy,.
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cxpression for V + vy,; an error of less than 1 percent
as can easily be verified by computation, Check compu—
tations of propellers show that the forvgoing assumptions
with regard to vi, and v,, permit the obtaining of

values for P and T in very good agrecment with the
results of experiment.

THE PROBLEM OF BETZ AND ITS SOLUTION

It is quite evident that the problem of the pro-
peller of maximum efficiency is equivalent to the prob—
lem of the propeller with minimum ocnergy loss gsince
finding the minimum P for given P, is equivalent to
finding the mininmum of E = F — Fp. An exact solution
of this problem presents very great difficulties and
for this reason it is necessary to solve i% by making se
some simplifying as:umptions. Dopending on the charae~
ter of these assumptions various solutions are obtained,

The preliminary problem solved by Betz is the fol-
lowing: To find the conditions for whickh
1
T = 'Wwp, 4T = nininun (4)
if 2 1
Fy sz T rdr = constant (5)

Thus, in his initial solution Betz neglects the velocity

1.
-— 3 : - - i R =
¥y, by couparison with F and assumes that wpy L W.
The detailed solution of the problem for the case assumed

by Prandtl that Wn | was precsented in CAEI Report
No. 324. In view o% the importance of the Betz problenm
for further discussion, the method of its solution will
be briefly presented, particularly since the method pro—

sed by Betz himself is not very clear and at tinmes
raigses some doudt as to its rigor,

The vortex sheet formed by the helical vortices at
infinipy may be considered as a surface of discontinuity

of the potential ©@ of the flow which takes place out—
side this surface., The circulation corresponding to a



NACA TM No. 1067 8

propeller element at any radius r will be equal to the
potential difference between the points on the radius at
each side of the surface of discontinuity; that is, will

be equal to

Fz(bt _®b =®A

where the subscripts t and b denote that the poten—
tial ¢ is taken, respectively, at the "top" and "bottom"
sides of the helical surface, where by the "top" side is
meant that side which is in the direction of motion of the
propeller. Assume therefore that the helical vortices
have a constant axial pitch over their entire extent in
which case it may be verified that the induced velocity

in the plane of the propeller w,, 1is equal to half the

velocity wp, at a great distance behind the propeller.

: —— il .

It is assumed, moreover, that wnz_l_ﬁ> and may then be written
- 4o
Wi o an

that is, the derivative along the normal to the surface
of the potential ¢ the normal being in the direction
from top to bottom side of the surface. On the basis of
what has been said the expression for the losses may be
written as follows:

R
E l—{éEf(cbt @bé‘fdr=k9ff©t —Effsb——df
0

A
wherc k 1is the number of blades and d4f = N dr 4t 1s
the element of surface swept out in timet f by the
bound vortex of the blade so that Wdr =/P Wdrdt. This
o

surface is two—sided and therefore the difference between
the integrals in the formula for the losses may be written

in the form
f[@——df (6)

From the second formula of Green there is obtained
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e e R QIR0 it
i

=
where y 1is the Hamiltonian operator. Since the fluid
in the case considered is incompressibdle y=20= 0 and
therefore

SV IRIONONE) PR

where dT is the element ¢f volume of the fluid dis—
placed in time 4t by a surface element in the direction
of the normal, The magnitude pdT = dm 1is the mass of
fluid included within this volume and therefore the loss
E represonts the kinetic energy of the fluid at infinity
displaced in unit time by the prepeller blades, To solve
the problem of the most efficient propeller, again pass
to nondimensional notation and then obtain

*
?:/J P * Eg— df*; E =;4;[ ¢* cos p 4f*

Let two flows be given with corresponding potentials &*!

and O*'!, Now consider a third flow with potential
Q¥ ~ @*' and shall then have
— 1 4 7 ad *! adb*
TR U Gwrt . Owxt . af *
2 j ( )\\ dn dn
¥

= E!! + E! f[(@*t dag*t! + Oxry _@%;ll> af*

(8)

i
o
C\
g
L
r"”ﬁ
/\
(S
*
|
(<]
*
W
fo)
=
\Y
o
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The condition of equality of thrust is written in the form

JJ d*’ cos Bdf* = fj b+’ co§ Bass (9)

1 %

On the other hand for an incompressible fluid, on the basis
of the third formula of Green there is obtained

(e dD* L, dDY
* L SRS S T e ot
f f <<1> o — o )df 0
%

'E///:E/r +-E_,—ff(p"d;b;” df*>0. (lo)
1%

and therefore

Agsuming that the flow with potential ®*'' possesses the
property that

do,*"

73 = W, Ccos B,

where W, is a certain constant, and remembering the con-—

stancy of P, there is obtained immediately

and therefore
E” <E/ (ll)

It follows that the flow corresponding to the propeller with
the minimum loss of energy can be pictured as a solid vortex
sheet at infinity moving in the axial direction with velocity

wa.

The induced velocities in the plane of the propeller
disks are obtained by the formulas:

= ML o w, Vr
Vo = Wn Smﬁ=§zm )

_ (12)
= — w2 r!

Yoy — W COSP— T——F’—{— >y
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From the proof given in the feregoing it is evident that
the theorem holds for a propeller with any number of

blades and in particular for a propeller with an infinitely
large number of blades. In order to show that the fore—
going limiting transition does not affect the character

of the solution the expression is written for the losses

in the case of the propeller with infinite number of blades.
Therefore

i il L8
E ff- Rdr o ne Y
= w = s 3
. o r V
) 0
— ;| —>>
since for wpy 1l W
b va1 th 5 ?W
wnlz - - = e
cos P sin B AV

etting up the equation of Euler for the function

S
1 ¥*x = § — A1§P (where Al is a constant:), write,

according to the rules of the calculus of variation,

OF * - W? L2y
——5—2F:n—=-A Vir= 0
ol rV 1
hence
2 y=2 = v ==
—_ 3 v ']
R AT e S T (12)
7 Wg 2 r2+ Vb
where
AIV =
v and therefore
: Lot R R
L S
oy = f i T"? e
S M e s el n
v 2 re g e
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wvhich accurately agrees with formulas (12).

The circulation distribution giving the required
velocity distribution changes of course with the number
of blades since the form of the functions th (I') and
;al (T) wvaries with this number.

If the useful power of the blade is expreéssed in
the forml

1
- F =fo‘r'c1? (14)
as 1s done by Betz and the total power in the form

1
:JFE(V»rGal)'fd? GLa)

|
e

v

the expression for the losses must then be written as

1
Ez/‘f;?ald} (16)
£

To obtain the minimum of the integral (16) under the con—
dition that the integral (14) remain constant is equiva—
lent to the problem of finding the minimum of the integral
(15) under the conditions:

1 1
By = 7 [TH(5—iry,)aw = 7 rG, e
and 5 i€ 1 £
e -t L g
JAEEEDR Y b STEARIPS (17)
d 2

that is, under the conditions of equal thrusts and equal
rotational losses for the propellers compared.

The foregoing problem is thus a variational problem
with stronger conditions imposed than the problem of Betz
and refers to the propeller with maximum axial efficiency
leading to the answer Vg, = constant .as was shown in CAHI
Report No. 324. Unfortunately in the latter report the

1 : : ; ;
That is, assuming the flow 1is irrotational.
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restrictions imposed on the problem were not brought out
with sufficient clearness and therefore on reading the
second section of the third part the impression may be
gathered that the solution v, ,; = constant was con—

trasted with the solution Ww, = constant (Betz solution);

that 1s, a distinction was made between a propeller with
minimum loss of energy and a propeller with maximum ef—
ficiency. Actually, it 1s not a question of such a con-—
trast but simply of two different problems: namely, the
propeller with minimum loss of energy and the propeller
with maximum axial efficieney. The solution of Betz ap—
proaches more nearly the true solution of the problem of
the propeller with maximum efficiency since there is
approximately taken into account the change in the rota—
tional losses in passing from one propeller to another
with the same useful power, It must be said, however,
that for propellers with the same diameters, angular
speeds, and useful power, the rotational losses consti—
tute almost a constant percent of the power P.

CASE OF THE MODERATELY LOADED PROPELLER

The problem of Betz was solved actually for the case
of a limiting light load on the propeller in which case
only may be written

1
(o)

In the present section consider the case of a lightly
and moderately loaded propeller for which is written

T
(o]

. (18)°
E:/"f (V+ %,, cos B) T4F -

0

Thus, in accordance with what was said in the fore—
going, the equation is not linearized for the total and
useful powers but use is made of the linearized theory only
in determining the velocities vg¢; and vgy.



NACA TM No. 1067 14

The foregoing expressions are satisfied, as check computa—
tions show, with sufficient accurdecy for the previously
mentioned class of propellers. The expressions (18) on the
basis of the considerations of the previous section may be
written in the form

1 1
ﬁ,:Vﬁ(?_;_.‘g’l_'smp)d?=vfm7_
0 0
1 Ldo*
_?jfd) dn dfl’
1 1
P=[r(v+iae cosp>rdr=vfrr‘ dF -+
0
+3 ff“”’——dfw

where ]
df,* = V sin Bdr dt* ,

df,* =7 cos pdrdt*
Now obtain the variations &§Pp and 8FP. For the first of
these there is obtained
1

g o A , 1 B+
B o [ for S o [ B
0 [ fi*

But from the third forﬁula of Green
(30 82" B2 e _ [ [[ o2 dr — deys s0%) dos
\ dn dn s ’
r #

which for an incompressible fluid gives

aso
f{&d’*-——dfl ffd)* dn af.*
and therefore

: | 1
i e e el g * Lo
P, — farrdr— ff Stb'——dfl*z f&l‘rdr—Vf&[‘%— sin Bdr
0 0
In the same way there is obtained
1
e e * =
ap=far<v+ ‘ff’ cosB)rdr
0

The condition of the minimum F for given ?p is expressed
as

3P — 3P, =fsf‘ [77(1 & A)+ % (rcos B+ AV sin B)] gr—1

Since the foregoing equation is true for any 8T the condi-
tion must be satisfied that
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vr(l— A)+‘f;l,:$ (rcosB4 A VsinB)=0,

hence, noting that

COSIR =

now obtain

hence

= 1 do* | w, V'r
My S'nﬂ_§1,:+7’l'
— 1 g w, Vv
where Va1 :77’TCOSB: 22 ;2+ V2 il

e A AT o — =
el N s V=YYV AE=VVESFT.

From the foregoing two formulas there is obtained

Vo = V(N 1)

and therefore VT

hence : v

and

V/=§2z_i'/<—7”;—_’_\)——ﬂ|_“;_:—+v +<—;)_2,

15

where the positive sign corresponds to the physical meaning
of the problem. For small values of the ratio w_/2V

equation may be written approximately

VO:TZ%EQ_
and therefore
PR
’ P+ V4w
L LA ;2
T -

" (VL)

9

the
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where W, denotes w,/2. These formulas were proposed

by Prandtl in 1919 without any proof for the case of mod—
erately loaded-propellers. In 1927, in volume VII of the
Handbuch der Physik and also in 1932 in Ingenieur—Archiv,
Heft 1, A. Betz gave a proof that formulas (19) are a
solution of the variational problem of the screw propeller.
His proof, however, was based on the so—called method of
displacements and cannot be called entirely convincing.!?

In concluding this section the equation is derived
which must be satisfied by the potential & of the flow
outside the vortex sheet, For this purpose now write
the equation of continuity of the flow v2d = 0 in

cylindrical coordinates. Therefore
i e e N S T N 20
s \r or ) t e 082 dz® e

In order to reduce this equation to a simpler form
in the case of flow about a helical surface the new
variables are introduced

b mag i g
then
L B el B B B T ol
oz v o3t 7 de 3t ' dr w Op

and the equation of continuity assumes the form

29

2

S
g Bz P73

(o7

6 N (21)

bﬁ\ it
P

H 8

e

This is the required equation fer the potential O
in terms of the independent variables { and o

The gdditional conditions which must be satisfied
by the funectdion are the following: <for p = p,, where

1At present a rigorous solution has been obtained of
the variational problem for the case of the nonlinearized
theory.
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Py - is the value of p at the tip of the blade ® must

be a single value and continuous function of p and ;3
moreover, ® must be an o0dd periodic function of ¢ and
become zero for p = ®, For p< p,d must undergo a

discontinuity equal to I' on the vortex surfaces.

On the surface of the vortex sheet for whlch § =50
the condition holds:

ad 3 od wRer2+V=< 1
dn Ta 205 R Moot B ol VoEcteye VP (z)

wvhere f(r) 1is a given continuous function of r, For
the case of a rigid helical surface this function is of
the form

T

f(r) = w, cos B = w,

[ ——————

7 \/r2+V2

where w; 1is a constant magnitude,

Equation (21) was first obtained by Goldstein in
1929 int inviestigating the flow ofta solidifiecd vortex
sheet of constant axial pitch.
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SOLUTION OF THE PROBLEM OF THE MOST EFFICIENT PROPELLER

WITH TEE AID OF THE RITZ METHOD

As was shown earlier the problems of the propeller
with finite number of blades are well solved with the aid
of trigonometric series. Then assume that the circulation

fx is such that it can be expressed by the series
1—“,=2Ansinn0, €))
n=1

the total induced velocity ;n1 is expressed by the

formula (see reference 2)
— b 1 .
Rul ™= F D4, [n-sinn04C,(0)], 2

where Cp are known values depending on O and on V

and k as parameters, and L and 6 ar( connected with
the radii of the elements of the propelle by the equations

r=t-+L —Lcos®; dr=L sinbdb,

wvhere L ig half the effective part of the blade and ¢
corresponds to its noneffective part. Since it is assumed

> -
that wp, | W it is clear that

601 26’” Ccos ﬁ == Eﬂl V___;—*_ > (3)
&

Uy =W,y sin p = W, '__V_— - *)
r2 v2

Bearing in mind formulas (1), (2), (3), and (4) then
write equations (18), section 3, in the form

A, 0 m cos =
]Z sinn <V—}— e EA,,a,l r L sin 646, (5)
Si -
——P Pm—V[VA smnﬂ( Z s"’ifz A,,a,,)L sin 06, (6)
where
r=t+L—Lcosb, a,—n sinnb-4C,. )

Removing the parentheses formula (5) is readily reduced

Pl:ZVEAnfsinne(E+Z—ZcosS)Zsin6d6+
0

—FfEA,ﬁinrzencosﬁ(5+z—zcosﬁ)2Anand6 (8)
0
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Then denote the first integral of this formula dby I'p

and moreover, set
xcosPsinnb (4L —Lcosb)=¢, )

Formula (8) may then be written as

ﬁlzzAnln’+f2AnbnEAnande’ (10)
0

where

EA,,I,,’ =V EA,J sinn 8 (4L — L cos 0)L sin 6d6 =
0
=75 A, — L2
=V 5L IA(E—f—L)A]—LT].

The expressions under the integral signs may be written

in the form
EA,,b,, 2A,,a,,=
=Ab,(Aja,+Aa,+ . . . FAa,)+
+ A0, (Aja,+Aa,+ ...+ A8)+
T R R LR HIR R R +
+ A, (Aya,+ At .. .+ Al)=
=2 24,400, = 33440, (11

Substituting this result in formula (10) there is obtained

13] = zAnln/—f‘ EEAVAZ I, (12)
where
= Ve le. 2SS T
I, =[G,as. (13)
0
Pagsing to the expression for the useful power then
find
P,=V/[ XA,sinnb(t+4 L — L cos6)L sin 048 —
0
— Vf EA,,R sin n8 sin B 3, A,,a,,db. (14)
0
The first integral is computed and gives
N\ L e = _— T _
ZAnln N V’:(E+L)-41 —L 72_:}?1,, (15)
Setting
n VsinndsinB=1, (16)

there is obtained

Py AT - SN A I, (17)
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where
I, =fa i d8. (18)
0

Thus there is finally obtained

Pi=2Ad + ZZAAL, (19)
Py=2Ad; — X ZAAL, (20)

Now proceed to the solution of the variational problem
of interest: namely, to find the circulation distribu—
tion which renders the power P, a minimum while main-—

taining the useful power of the propeller constant. It
is assumed that the propellers having their circulation
about the blades expressed by the trigonometric poly-—
nomial are being dealt with.

m
= EA, sin n6.

n=1

Thus the problem reduces to finding the coefficients Ap.
The LaGrange function will be of the form

F*=P, — AP,,= 2;4. () — AL+ iiﬁ./‘, (Tt AE)~

=(1—A4) E""" + 2 DA A, (I, 4AL).

»*
Now obtain the derivative ar: and equate it to zero;

Ay

Lft-a a1, +2‘,A [L+f —A (L +1)] =0

%, n=v=l,2,3. o o

There should be such derivatives which will give m
equations with m + 1 unknowns where the (m + 1 the
unknown will be A. Adding to these m equations the
expression for the thrust there is obtained m + 1 equa—
tions. The solution of this system of equations for a
practical computation of the propeller is very laborious
and for this reason before practically applying the ob—
tained results it is first necegsary to do some prelimi-
nary work: namely, with given ¥V and A to find A and
P,. Taking a series of values of A there is obtained

a series of values for each A and for ?1. Plotting

the graphs of Aj and ?1 against A for the parameter

¥V the propellers may then be readily designed with the
aid of interpolation. Now note that the abdbove integrals
are readily computed graphically once and for all for
g€iven n.
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As computations have shown, a restriction to three
coefficients A3 is sometimes sufficient. The velocity
distribution corresponding to the problem just solved
will be the same as that given by the formulas (19), sec—
tion 3., The circulation distribution corresponding to
the foregoing formulas can more conveniently be obtained
by the method proposed by the author in CAHI Report No.
324. This method requires fewer computations than are re—
quired by the Ritz method,which is more of purely theoreti—
cal interest.

EFFECT OF THE FUSELAGE AND OF THE COEFFICIENT

Let 7;1 and V'y, represent the axial and tan—

gential (rotational) velocity components at a certain
point of the propeller rotating in front of the fuse—
lage. If the airplane moves with velocity V relative
to the ground then the relative axial velocity of ap—
proach of the flow at the points of the propeller blade
will be

V — ?i"l'\_fal'

where v4' is the velocity arising from the effect of the

fuselage (retardation of the flow). This velocity for
a fuselage of arbitrary shape is a function of the rela—
tive radius T of the elements of the propeller and
also of the polar angle o referred to a certain fixed
direction in the plane of the propeller disk. In the
case where the fuselage is a body of revolution the
velocity v,' is a function only of e

Now assume that the propeller blades are replaced
by rectilinear lifting vortices on the basis of the
theorem of Joukowskij then for m = 0 the following ex—
pression for the elementary power of the propeller:

dP = T'F (V = ¥3' + F,,') dF = (1 — h') TIF (V+v,,)4F

where i
Vil

h': S

V + v
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and the primes denote that all magnitudes are referred
to the system propeller—fuselage.

The total power absorbed by the propeller will be
equal to

1
E:f?! i SEwe - [y (V+‘i‘r‘al)?d-§

(o]

The propeller does not impart the entire power P
to the airplane but only a part since losses occur at
the propeller. The magnitude of these losses will be

given. The induced velocity vél according to the

theorem of Joukowski gives rise to a force T:Vald? G g

rected at right angles to the propeller radius opposite
to the direction of rotation of the propeller. Since

an element of the propeller rotates with velocity _wr

the elementary losses corresponding to thé forcec I''¥,,dr
will cqual

dE, = F'Vai’?d'f

In the same way the induced velocity 7%1 gives rise to
the elementary force I''¥i,' 4T parallel to the propeller

axlis opposite to the direction of forward motion of the
propeller, The losses corresponding to this force will be

dﬁg - V'I:"x?tl'di

Thus the induced losses of the propeller will be equal to

1
5= [T (T9,! + ¥¥a,') aF
o
It follows that the useful power which may be taken from
the propeller blade is equal to
1 1
e P iffr' <;-;ht)a;.—f T 15,17 aF

(0] o]

The magnitude fp is the power which is disposable by the
propeller—fuselage system since at the propeller blades only
the losses E are developed for pu = O, At light loads when
the values of V'tl are not large and for not very thick
fuselagzes when E'i is small by comparison with V the
expression for Pp nay be approximately written as:
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1
~ T e e ot | o
Pp~v/ Pl = 3t )dr th)dr
0
where vy
T L e
v
The magnitudes h' and - h'' +taken in the system propeller—

fuselage depend on I'y a condition which renders difficult
the solution of the variationsl oroblem, especially since
the finding of h' and h'' is very complicated. If,
however, in remaining within the limits of the linearized
theory and assuming that

hieh!i= b = %./} = flr o)

where v3 1is the velocity produced in the fluid by the

isolated fuselage the fundamental equation of the vari-—
ational problem (the Euler equation) will be

(1—-h)-§?_' if'f?(l*l&)-i- R A +?¥r'a1')} =0

hence it follows that the solution of this problem will
be the sam¢ as for the case of the isolated propeller
gince, as before,

od*

on.

LRG0 s agy ®

It is notied also that within the limits of the
linearized theory the effect of pu is likewise excluded
since the effect of u on the total and useful powers
of the propeller is expressed through the terms:

1 3
fé“)zvz/"ufd*=i72fcpir%d?
(o}

0
1

1 Fad;=/CD

o} 0

b T?4T

]
=|

E’uz

B P

The magnitude OCp at the below critical angles of attack
is almost constant with respect to _Cg (or what amounts
to the same thing with respect to I'). This magnitude

may be expressed, for example, by the empirical formula
of Toussaint

Ly C
%CDz 0.00612 (We) °‘15( 1+1.116) <1 +0.1 —2E> +0.0768°+0.018f (a)
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where

W numerical value of the velocity in m/sec;
c numerical value of the chord

8 relative thickness of the profile

f relative maximum camber

From the foregoing formula it may be seen that the ef—
fect of C; on Cp 1is very small and for this reason the

value of pul! cannot change the character of the solution
of the variational problem. In making use of formula (a)
this effect may moreover, easily be taken into account, the
functions &(T) and f(T) being given:

DESIGN OF PROPELLER FOR THE CASE ;;1 = const

In the general case the expression for the power may be
written in the form:

ﬁ:!f"(vﬁL :z—)al)—f—P'(;_:{)rl) };d;

O
or assuming that the induced velocity wy, | W and replace—

ing u by u, there is odbtained for V + Va, = constant®:
1 1
Pk (Vo) |7t o |7, (7 — Lo Va7,
r
£ 3
Agssuming that the circulation Y is expressed in the
form of a trigonometric series:

with

1If the effect of C; and Cp 1is neglected.

2]t is noted that the design of the propeller for the
case Vg, = const mnecessarily requires f # O. Otherwise

for T —> 0 it should be V4, —> which does not corre—

spond to reality.
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there is obtained

] “ |
: [Trdr=3JA,sinn (t-L— Lcos6)L sin 6dd — [A ki %]
£ 3

2|

1
[T, ra ?:LEAfs:nnO(E+L—-Lcose)"smede__
€
e EA,,Z { ¢+ L) fsin n 6 sin 6d6+[’fsin nb cos? 0 sin 648 —

0 0

— 2 ¢+ L)L sin n8-cos B-sin ede} -
0

=Z{ ¢+ L) A, -’2‘—— (E—}—Z)ZA,%} +I3 A, ['sin 6 cos? 8 sin 86,

But
Ly H &) -
3 2 saes e
LEA,st!nnbcos 0 sin 629 = 5 zA,[smaO(l-}-cos‘.’O)sanda

A n L[} o A
=—2—A,—2—+-2-—2A,!slnu0cos 26 sin 0d0=—8—1t(A, +A4,).
Finally
1 =
Vaal,‘.rldF=[V;.l 2[.4, sin n9sin 048 =L Vv_,A, -;— .
£

The expression for P, assumes the form
=P =455 I[A(E+L) I%]+

o |LC+TF A F— G+ DDA E+,

+I5 (A, +A4)—LVo, 4 - |- l,.,,,T/G,.A,'%.
Since ¥,, = constant it may be written
_ Pi=(V+ %) Sy L[ ArC+D) — L%+
+ | LG TP A — DT A+ A0+ AD)] — v, 50 VX
or

B—o | ST [are+D—T4 ] v PIar )+

+ 9|5 IV 4/ G+D LA | o, 5 I[e + Ipa, —
—e+Da+(L)ar +A.')]} = B5. 4 Bt

25
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where

For the thrust T, there is obtained
MRl B Tl . R A - '
7',=Efr, [(r—*v,,)—p(V—{-v")]drzfr( __773.1_)4,_
3
1
—(V+9,)u,[ Tdr= —;—Z[A,(E-{-Z)—[i‘é—']—
€

1 e
—(V_i_'val) szt_; Al vk ‘_/aalfrl % »

But by the mean value theorem

] — 1
.

= dr = pdr - P b
£I,Tf_lpfsj_;:_::r'l*m—g_<rm“lnz,
where TI'* 4is a certain intermediate value of T, Thus

’T,:%Z[AI(HFZ);L !

A, g TSI n ST
2|~ tm(V+2)LA 5 — Vo, " In .

Now redesign the propeller 3CMB-~1 with ¢ = 340, _leaving
the shape of the blades and camber the same. For V then
take the value V = 0.4, for the mean value of the inter—
ference coefficient hy = 0.04' so that V3 = 0.384. For

By now take 0.025. The power of this propeller from a
preliminary computation was equal to P = 0,00129 and there-—
fore P, = 0.00043. Now find A,', A_.', and A;'. TFor
this purpose now make use of the formula (CAHI Report No.
324).

a oallaT. ol =
i o Ta Vi
) cos f L sinf

[A, (sin 8+ C,) - A, (2 sin 20+ C;) -4, (3 sin 30 4 C,)],

1The propeller 3CMB-1 was located ahead of a body of
revolution the ratio of which midsection to the area swept
out by the effective part of the blade was equal to 0,18,
The coefficient h, was taken for the half body characterised

by the same ratio, It may be noted that the problem was solved
also with variable h and it was found from the.mean value
theorem that h(¢) = 0,045 and therefore 1 — h = 0,955,
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writing it for three sections © = 0.4, 0.6, 0.8 in the
form: :

(5) PRSP et
+ A (ﬁ >+A Cye

il Y 0,4*+0,6° L »
(h=g)i LPEEOBL (14 C+ACut AL (84Cr

0,6
(= n)s YORFOELVE 4 (P1c)+
+a/(—v3+catarc,
where A{:aﬂl
v

1]
-

The values of Cj) are taken from the curves (fig. 2),

no account being taken of the effect of the so~called loga—
g rithmic term (see reference 3), because in obtaining OCjix

the charts of T. Moriya were used in which this term was
11kewis§ not taken into account near the singular point
(F = 7').

. After subsvituting Cj)r now the following system of
equations is obtained:

1,0554,’ + 1,764, +0,014,” = 0,156
1,214, 40,1A4," — 3,04A4," = 0,153
1,0254,' — 1,74, — 0,164,” — 0,123

Solving this system there is obtained-

Al' = 0,1346, A_,' = 0,0087, A ' = 0,00357.

. We further find B, and B, Setting{ = 0.2, then I = 0.4,
t + = 0,6 and

(tE+ T) = 0.1346 0.6 = 0,08076

I i;— = 0.2 0.0087 = 0.00174

1The computations are approximate.
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Subtracting the lower frem the upper equation there is
ebtained 0.07902, PFurther

By V A;' = 0,625 X0.4 X0,1346 = 0,00134¢6

Subtracting the latter figure from 0,07902 there is ob-
tained ©,07777. Multiplying the latter by —— 0.4 = 0,628
there is obtained B; = 0.0489. Ncw nroceed "to the con—
putation of 3B

2
(¢ + T) V4 = 0.6 x0.384 = 0,2304
r o 7w N2
by i (¢ + T)° + L2} | = 0,025 (0,36 + 0,04)
w \2/ -
= 0,025X0,4 = 0,01
The coefficient before A;' is equal to 0.2404.

A,'X0,2404 = 0,0325
1/2 V3 = 0.192

By (E + IT) = 0,025X 0.6 = 0,015

. ; + pp (€ + L) | A_' = — 0.207 X 0.4 X 0,0087=~C,00072
- .
ke ;
W - Az' = 0.025X 0,04 X0,00357 = 0,00000357
S T
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hence
B, —0,0201.
There is obtained:
0,04897%, , + 0,0201v, , — 0,00043 — 0
or
v?,, 40,4120, , — 0,0088 — 0,
hence, the positive root will be

v, , =~ 0,0204
and therefore A, =0,00275

A, = 0,0001775

A, =0,00007275.

Now proceed to the determination of the thrust. Aec-—
cording to the general formula then find

™ —

T, = 5 L (0,00275-0,6 —0,2-0,0001775) — 0,025-0,4204 - 0,628 -0,00275 —

—-0,4-0,0204T,* In 5
or

T, = 0,628 (0,00165 — 0,0000355) — 0,00001815 — 0,0131T*,
hence
7,=10,000997 — 0,0131T,*.
The value of [ ,* 1is evidently less than (F1)m,, which
on account of the smallness of A, and A; may be assumed
equal to A, = 0.00275 and this gives
T, =0,000997 — 0,000036 = 0,000961
and theretfore

_0,384-0,000961
Nef = 0’00043 ~ 0,86.

Now compute the values of the circulation at the dif-
ferent radii making use of the formula

F,==28Anﬁnn&

There is obtained
TABLE I

7 110:25 0.3 0.4 0.5 0.6 0.7 0.8 09 0.95

T, [0.00156| 0.00207 | 0.00253 | 0.00269 | 0.00267 000252 | 0.00222 | 0.00171 | 0.00126
In a check computation of the propeller 3CMB-1 for

?1 = 0.384 there is obtained a propeller efficiency equal

to 0.818 wnich result agreed with the experiment. It may

be expected that the foregoing propeller computation should

give good agreement with the experiment.
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TABLE I1I
7 0.3 0.4 0.5 06 0.7 0.8 0.9
T 0.00207 | 0.00253 | 0,00269 | 000267 | 0.00252 | 0.00222 | 0.00171
e(V+9,1) 0.01055
oo
Uty =V = 0.0272 | 00204 | 0.0163 | 0.0136 | 0.01165 | 00104 | 0.00906
r— U 0.2728 | 03796 | 0.4737 | 0.5864 | 0.6884 | 0.7896 | 089
(r—vp)—p(V+ug) | 02622 | 0369 | 04631 | 05758 | 06778 | 0.779 0.8894
1—h 0.818 0.9036 | 0.9443 | 09656 | 09774 | 09843 | 09887
Ti'et 0.000445] 0.000844| 0.00118 | 0,001485 000167 | 0.0017 | 000148
Ty of = 0.000922
_ 0.000925-0.4 _
Koo 7 i

It is noted that it is possible to replace K Dy K,

under the integral signs of the power and thrust since, as
computations have shown, the values of K; are very near

the values which are obtained for K* in applying the mean-—
value theorem. In determining the true angles of attack of
the blade elements it is necessary to make use of the true
values of #, In table II there is given the computation

of the value of the effective propeller thrust for a given
circulation with variable K, As may be seen from this com—
putation the value of the effective efficiency of the pro—
peller rotating in front of the fuselage was the same as in
the case of the computation with ¥ replaced by Ky o Pig—

ure 3 shows the curves of the distribution of *T,'gs along
the propeller radius for the case vy, = constan?t and for

the preliminary computation of the propeller 3CME-1 ( curves
11 and 1),

Now there will be shown in what sense the term "dig—
tribution® of the effective thrust over the propeller radius
must be understood. The elementary propeller thrust, as is
known, 1s expressed by the formula
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The elementary useful power imparted by the propeller to
the airplane is equal to (see sec. 4):

where ¥3i' 1is the change in velocity of the flow due to

the fuselage at radius r. The useful power of the en—
tire propeller will be equal tao

pl
iff(l ~ W IDP (F~ Fypidw
¢

In correspondence with the foregoing formula it is con—

venient to speak of an effective thrust determined by
the formula

Y 1
B
Tef = tﬁ = /\
v l

8 {2y T (F ~Fy,) dF

?
and also of an elementary cffective thrust, The magni-—
tude K! = L— h' should be thought of as taken in the
propeller—fuselage system. Since the effect of Kk is
not large then take for k! its value for the dgolated
fuselage. In the process of computing the propeller by
the element method it is necessary to determine the dis—
tribution of the effective thrust over the blades so that
by planimetering the magnitude of Tgr may then dbe found.

DES IGN OF PROPELLER FOR THE CASE Ww, = const

It has been shown that the veloeity induced by the
helical vortices at the propeller blades is expressed by

/ \
W, = —=t—r > & An n sin n 6 + An Cn (9)) (a)
sin 8

N

L
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where Cn(6) are the coefficients expreising the effect
of the helical vortices. For the case w; = constant
the foregoing formula may be written as

L 1 Sﬂ (Ap' n sin nb + Ap' Cp) = cos B (b)
L sind L
n
where
Wi
For the sections r_, = 0.4, ¥, = 0.6, ¥, = 0.8 to which

correspond the values 6, = n/83, 0z= o R g-n the

following system of equations is obtained (the values of
Cix are taken from the curves of fig. 2 for V = 0.4):

1.055 At * 1.76 AV A4 Q0L &Yy = 0,078

1,21 A'; + 0.1 A'_, —~ 3,04 A3 0.106

1]

0., 0985

1,025 A'y; — 1.7 A', — 0.16 A';

The solution of this system gives approximately
Al, = 0.08495

At = -0,006568

Al; = -0.00125

= T
The values of I * = =l are found by the formula
Wy

Fl* = ST Al'y sin n 9
s g

and are given in table III.
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TABLE III

|

0.2 0.3 lo.4 0.5 0.6 0.7 0.8 0.9

g% 0 0.04867 f0.0678 0.08({0.08625| 0.0864 | 0.0792 | 0,06167
|

There is no need to set up and solve the system of
equations each time for various values of V since such
systems may be set up and solved once for all and tables
and charts set up for T,* (fig. 4). The latter figure

gives the curves drawn from the values of Cjx taken for
two—blade propellers. Since the effect of Cjir 18 not

large (especially at large values of V) and the chief
component in formula (b) is the first term, not depending
on the number of blades, these curves may be used, as com—
putations have shown, also for three—blade propellers.

The foregoing substitution may lead only to an insignifi-
cant change in the tip losses. For the case W, = constant
the expression for the power may be written as

E = (il dd . ELLh il o
Eizdn o T Wy ) Uty e kg L PN rdr
b o

or

i 1
Sl = Wlajf Ly (F=p¥) ;Ei§2+ ¥3 [ Ty *7(Vy+pT)aT=AW, 2 + B,
(%) 3
¢ 4

where Vj =V — ¥3. Replacing under the integral signs

Mm for u then compute the coefficients A and 3B.

The computations of these coefficients are given in table
V. After planimetering there are obtained for A and 3B
the values : :

A = 0,023807; B = 0,01289

and therefore



NACA TM No,

{fox  Fy
example).

tive root equal to

1067

(5]
o

W,2 + 0,559 W, = 0.,01865

then take the same value as in the preceding

Solving the obtained quadratic equation a posi-
w, = 0.0316 is obtained

TABLE IV.— VALUES OF T,* FOR k =2 AND &= 0.2

r=>
v 0.3 0.4 0.5 0.6 0.7 0.8 0.9
W

0.1 !0.03935 [0.0447 |0.04539 | 0.04546 |0.04539 | 0.0447 | 0,03935
29 054201 | -.06%76 | .OTEZ? Y .0762b |  .OWBE7 | 068 .05445
.3 | .05535 | .0726 | .082 .08562 | -.08396 | .0762 | .05932
.4 | .04867 | .0678 | .08 .08625 | .0864 .0792 | ,06167
.5 | .044823| .0636 | .0761 .0831 .08389 | .0775 | .06062
.6 | .0425 | .0806 | .0732 .079 .078 008 1. 065

The value of this root permits finding the value of
by the formula:

oE e - = - rar
T, = w [”* —uV)—w,= /}’* Vit pur) —=
3 1 d 11 (? u; ) wl y 1 ( 5 pﬂ ) "F2+v2
£ 4
The computation of A, and B,
V in which are also computed the values T!

putation gives

tdion Loxr

i

Nef =
the case

.88,

w, = constant

- EBw,—-Aw,

T,

is clear from table

1 ef,

The com—

It is seen that the computa—

is gsufficiently simple,

It may still further be simplified by computing in advance
as may be done by replacing

the values

i B higs BAR B
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K by K, under the integral signs. This substitution

practically has no effect on th% final results. It may be
noted also that the magnitude »* may also be computed

in advance and for it curves and tables may be set up. In
determining t;‘, now start from the Betz formula

AV 7
kP4 V’

where ¥ 4g the Prandtl correction or the Goldstein cor—
rection. In employing this formula it is necessary to as—

sume that § = 0. If a second approximation is desired, it
is necessary throughout to replace by V + w,?' and write

the expression for I';®* in the form V, = Y (1-1)

T —

TABLE V
r 03 0,4 0,5 0,6 0,7 0,8 09
™, 0,04867 |0,0678 | 0,08 - |0,08625 |0,0864 (00792 |0,06167
) 0,09 016 - |02 0.36 0,49 0,64 0,81
i 0,16 0,16 0,16 0,16 0,16 0,16 0,16
AR 0,25 0,32 0,41 0,52 0,65 0,80 0,97
7 (74 1) 1.2 1,25 1,22 1,154 [1,078 1,00 0,928
b V 0,01 0,01 0,01 0,01 0,01 0,01 0,01
T—pV 0,29 0,39 0,49 0,59 0,69 0,79 0,89
§ 0818  [0,9036 | 09443 | 09656 |0,9774 (09843 |0,9887
Va—n 0327 (03602 |0377 |038 (0,391 0,393 0,395
T 00075 | 0,01 00125 |[0015 [00175 (0,02 0,0225

|y ST T re o
T b V) -y 000507 (0,01323 | 00239 | 00351 |0045 0,05 0,0458
Vidor 03345 0,37 03895 | 0401 |04085 |0413 |04175
r(Vidwesr) | 000488 [0,01005 | 001558 | 0,027 [0,0247 0,022 |0,0232

w, Ty (r—p,n V) | 0000447 |0,000836 | 0,001239| 0,00161 |0,00188 |0,001975 |0.001735

wer, R | 000196] 0
R e 0000196 0,0000314| 0,000038 | 0,00004 | 0,0000376| 0,0000328|0,0000239
7, 0,0004274| 0,0008046| 0,001201 | 0,00157 |0,00184240,0019422(0,0017111

T,(1—h)? 0,00035 |0,000726 | 0,00113 | 0,001516 [0,0018 |0,00191 |[0,001695
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Fa R B LT R ) (a)
1 k 72 4+ (V + q:l)Z

where w,' is taken from the first approximation,

In conclusion it is pointed out that the advantage
of the method of trigonometric series as compared with
the methcd using formula (c) lies in the fact that with
the aid of the former before designing the propeller it
is possible to carry out a preliminery compubtation of
one of the series production propeliers available corre~
sponding to the given conditions and estimate to what
extent the theory deviates from experiment. After a pre—
liminary computation it is then pcssitle to proceed with
the design of the propeller with the aid of the method
presented in the foregoing. Present day series propellers
deviate from the optimum apparently to such a small ex=
tent that the preliminary computation and the design prap—
or will refer to almost the identical conditions and there
is little probability that the theory should in the final
design give a different degree of accuracy than in the
preliminary computation.

CONCLUS IONS

On the basis of the method of trigonometric series
a rational design of propellers was found possible making
use of the variation conditions the correctness of which
was shown in the paper, An illustrative computation showed
that (1) Propellers with w, = constant are suitable for

design and have high efficiency, as corresponds with the
theoretical assumptions, (2) Propellers with va, = con—
stant are also suitable for design and give good effi-
ciency which is, however, less than those under (1), (3)
The method of trigonometric series permits carrying out

a preliminary check computation of existing propellers
after which the design is improved. (4) The method of
Ritz may bec used in solving the variational problem but
it is not a rational method.

Tranglation by S. Reiss,
National Advisory Committee
for Aeronautics.
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