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Abstract

When aircraft operate in stationary or low speed conditions, airflow

into the engine accelerates around the inlet lip and pockets of turbulence

that cause noise and vibration can be ingested. This problem has been

encountered with engines equipped with the scarf inlet, both in full scale

and in model tests, where the noise produced during the static test makes

it difficult to assess the noise reduction performance of the scarf inlet.

NASA Langley researchers have implemented boundary layer control in

an attempt to reduce the influence of the flow nonuniformity in a 12-in.

diameter model of a high bypass fan engine mounted in an anechoic

chamber. Static pressures and boundary layer profiles were measured in

the inlet and far field acoustic measurements were made to assess the

effectiveness of the blowing treatment. The blowing system was found to

lack the authority to overcome the inlet distortions. Methods to improve

the implementation of boundary layer control to reduce inlet distortion

are discussed.

Introduction

The scarf inlet, shown in figure 1(a), is one in which the inlet lip protrudes more at the lower lip (keel)

than at the upper lip (crown). This design has the potential to reduce inlet-radiated fan noise by redirect-

ing a part of the acoustic energy up and away from observers on the ground. A computational analysis of

the scarf inlet concept (ref. 1) demonstrated that the scarf inlet may also have a reduced tendency to ingest

foreign objects from the ground during takeoff and landing runs and that it can maintain attached internal

flow at higher angle of attack than axisymmetric inlets. The analysis included general design guidelines

for scarf inlets based on the parameters of inlet internal lip thickness, axial extent of the keel extension,

and circumferential extent of the transition from keel to crown. A critical parameter in reducing the

internal flow separation from the inlet upper lip is the area contraction ratio, which is expressed as

the square of the ratio of the diameter at the inlet leading edge (highlight) to the diameter of the throat

(fig. 1(a)). As this ratio increases, larger amounts of lower lip extension can be accommodated without

internal flow separation. As the forward speed of the aircraft increases, the dependence of internal flow

separation on area contraction ratio decreases, and the critical parameter becomes the scarf angle. Thus, a

relatively larger contraction ratio is required to control internal flow separation at static conditions than

that required for cruise. Increasing the area contraction ratio increases the thickness of the inlet wall,

which adds weight and drag (ref. 1).

Several prototype scarf inlets have been fabricated for model and for full scale engine testing. The

scarf inlet discussed in this paper was tested previously in forward flow in the 14- by 22-Foot Subsonic

Tunnel at Langley Research Center (ref. 2). The experiment showed that the model engine equipped with

a scarf inlet radiated less noise into the forward sector below the inlet than did the model when it was

equipped with a symmetric inlet. The difference is fairly broadband, extending over one-third octave

bands from 2000 to 15000 Hz. Although the difference is on the order of 0.5 dB (OASPL), the indication

is that the scarf inlet reflects a portion of the acoustic energy away from the ground. One conclusion from

the study is that a more aggressive scarf design may provide more noise reduction. Because of safety

issues and the high expense of flight testing, in situ validation of noise control technologies, such as the

scarf inlet, is often done on a static test stand. A common problem that exists in static engine noise tests is

that the engine is pulling air in from a quiescent medium and the turbulence that arises from the separated
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flow at the inlet lip is ingested, therefore causing spurious noise to be generated, particularly at the blade-

passage frequency. The turbulence intensity is generally less once the aircraft is moving; therefore, the

turbulence-generated noise is reduced. In order to simulate forward flight during static testing, an inflow

control device is used. The inflow control device is a large, hollow, removable sphere that can be rolled

into place surrounding the inlet. It is fabricated from honeycomb material with cells oriented along lines

of potential flow into the inlet. The effectiveness of the inflow control device has been demonstrated for

symmetric inlet designs (ref. 3). Despite the presence of the inflow control device, unexpectedly high

blade-passage frequency tones have been measured during acoustic tests on engines equipped with the

scarf inlet, in full scale and model tests alike. A tone is generated intermittently at the blade-passage

frequency, which indicates intermittent ingestion of turbulence. Low frequency noise occurs at high fan

speeds, indicating onset of rotor stall. While the expectation is that the inflow distortion causing these

tones will be decreased when the aircraft is in forward flight, the noise produced during the static test

makes it difficult to validate those noise reduction results representative of the full scale inlet in flight. In

addition, the noise and vibration induced by the inlet at low forward speed, such as during ground opera-

tion, could shorten the service life of the engine. Researchers at Langley Research Center have investi-

gated the cause of the inflow distortion and the development of a control system using boundary layer

control to reduce the influence of the flow nonuniformity.

A computational study of the scarf inlet, verified by experiment, located the inlet separation on the

half of the inlet surrounding the crown. The analytical study further recommended boundary layer control

in the vicinity of the highlight. One such control feature, boundary layer suction, has been implemented

on the model inlet, evaluated experimentally, and reported in the open literature (ref. 4). Another recom-

mended modification is blowing into the boundary layer. This modification was implemented and evalu-

ated in terms of its effectiveness both aerodynamically and acoustically and is the subject of this report.

Acronyms

OASPL overall sound pressure level re 20  10 6 Pa

ADP Advanced Ducted Propeller

BPF blade-passage frequency

SPL sound pressure level re 20  10 6 Pa

Methods and Equipment

Experiment Facility and Model Fan

The control system was developed on a 12-in. diameter model of a high bypass fan engine mounted in

an anechoic chamber. The 12-in. Advanced Ducted Propeller (ADP) Demonstrator has 16 wide-chord

rotor blades with a hub-to-tip ratio of 0.445.  A row of 40 stator vanes is located 2 blade chords down-

stream of the rotors. This combination of blades and vanes is used in order that the lowest mode of rotor/

stator interaction noise is evanescent (ref. 5) and no tone at the blade passage frequency is expected to

radiate. Figure 1(b) shows the 12-in. ADP Demonstrator with the scarf inlet in place. A 4-stage turbine

driven by compressed air powers the model. The model is based on high bypass ratio, high subsonic tip

speed engines. The rotor tip speed at 100 percent is subsonic at 905 ft/s. The blade angle setting is fixed at

the takeoff condition and the fan pressure ratio is 1.27 at 100-percent speed (ref. 6). The model scarf inlet

is equipped with two rows of static pressure taps extending from the inlet highlight to the rotor plane, as
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indicated in figure 1(b). One row is located at the crown of the scarf inlet, where the axial distance from

the highlight to the rotor plane is minimum, and the other row is at the midpoint between the crown and

the keel. Two boundary layer rakes are mounted near the rotor plane of the inlet, one at the keel and the

other at the midpoint opposite the static array. These boundary layer rakes can be seen in figure 1(b)

although they are removed during acoustic tests. Pressure data are collected on a Pressure Systems Incor-

porated model ESP 8400 multichannel pressure data acquisition system. In a typical data acquisition, all

data channels are sampled 32 times and the average computed. Thirty-two samples of the average pres-

sures are written to a file so that an average steady state pressure, as well as the standard deviation, can be

evaluated for each channel. The entire process of data acquisition of 1024 points per channel takes

approximately 8 s in real time.

All acoustic and aerodynamic testing of the model during this test were performed in the Anechoic

Noise Research Facility at Langley Research Center in Hampton, Virginia, although reference is made to

tests performed previously on the model in the Center’s 14- by 22-Foot Subsonic Tunnel. The anechoic

chamber is a static facility; however, it is ventilated such that adequate flow is available to the fan to

simulate an outdoor static test stand. The chamber’s dimensions are 27.5 ft  27.5 ft  24 ft inside the

acoustic wedges. The acoustic treatment is designed to absorb 99 percent of incident sound energy above

100 Hz.

Acoustic measurements are made using a 6-ft diameter hoop array on which 18 microphones are

mounted on equal spacing of 20°. The hoop can be rotated such that sound measurements are taken in the

azimuth with resolution of 4°, and the array can be translated to permit measurements on polar angles

from 15° from the engine axis to 75° (ref. 7). The microphones are Bruel & Kjaer model 4135, 0.25-in.

diameter laboratory quality condenser transducers. The microphone signals are conditioned first using

Bruel & Kjaer model 2811 multiplexers, then Precision Filters filter/amplifiers. The filters are set at

200 Hz high pass and 50 kHz low pass. The data are recorded using a NEFF Instruments 495 high-speed

multichannel data acquisition system. In a typical data collection, 19 channels (18 microphones plus

engine tachometer) of data are recorded for 4 s at a rate of 100000 samples/s. The microphone system is

calibrated daily using a Bruel & Kjaer model 4226 multifunction acoustic calibrator.

Modifications to Model Fan

Flow into the scarf inlet is distorted because of the nonsymmetry of the inlet shape. The inflow distor-

tion is most severe when the engine is at rest because the engine is pulling air from the quiescent medium.

The inflow distortion results in a circumferentially nonuniform boundary layer near the rotor. This

boundary layer is relatively thin in the region of the keel and thickens toward the crown. The flow in the

boundary layer is reversed in the crown half of the inlet. The flow reversal begins in the area of the mid-

point between the crown and the keel and becomes more severe as the crown is approached. Because the

flow is accelerated more rapidly around the highlight in the region of the crown, the inflow speed is

higher near the crown than it is near the keel. It is expected that the inflow distortion will decrease with

increasing forward speed. This reduced inflow distortion is evidenced by a tendency toward increasing

circumferential uniformity of the boundary layer profile, as well as uniform flow speed into the rotor.

A previous attempt was made to reduce the inflow distortion when the engine is at rest on a test stand

by introducing suction just downstream of the highlight (ref. 4). Eighty suction tubes were mounted on

the inlet spanning ±90° from the engine crown. The tubes were mounted on the outside of the inlet and

bored through to the inside surface. The suction was found to reduce the variability of engine speed and to

improve stall margin; however, the suction system did not meet the design goal of producing the inflow

uniformity associated with forward flight. It was also found that the tubes mounted on the outside of the
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inlet disturbed the reverse flow near the highlight to the extent that it was difficult to determine the impact

of suction on engine performance apart from the impact of the presence of the tubes themselves.

The second phase of the project involves the use of blowing to reduce inflow distortion. Air is intro-

duced on the exterior surface of the inlet near the highlight in a range spanning ±90° from the crown. This

auxiliary flow is intended to counteract the reversed flow that occurs in the region of the crown.

The air is injected from 80 tubes that are mounted parallel to the fan axis and that discharge near the

inlet highlight. The blowing tube insertion points are indicated in the scarf inlet sketch (fig. 1(a)). Three

locations of discharge were evaluated: 0.125 in. downstream of the inlet highlight, 0.500 in. downstream,

and 0.875 in. downstream. The 0.125-in. location is chosen to put the point of air injection as close as

possible to the highlight. The 0.875-in. dimension corresponds to the location of the inlet throat and was

the penetration point of the suction tubes in the companion suction experiment (ref. 4). The 0.5-in. loca-

tion is selected as the midpoint between the two extremes. Figure 2 shows the scarf inlet with the tube

array mounted in the 0.125-in. location. The tubes are each 0.060-in. OD and 0.040-in. ID. Airflow to

each of the 80 blowing ports can be controlled individually because air is supplied to each port via a

proportional control valve. Two air injection configurations are reported here. The first is one in which all

valves are open the same amount so that flow into the inlet is uniform from all ports; the other is one in

which the valves are opened proportionally around the circumference. In this latter configuration, desig-

nated “shaped blowing” in subsequent figures, flow from ports near the crown is maximum and it

decreases to zero toward the midpoints between the crown and the keel. The supply pressure is approxi-

mately 125 psi and it was found that the maximum flow rate with all valves fully open is 14.5 ft3/min.

This flow rate corresponds to ª0.10 percent of the flow rate through the bypass duct of the ADP

Demonstrator. The maximum flow rate is limited by the choked flow in the 0.040-in. tubes.

The engine is operated at four speeds: 70, 80, 90, and 100 percent of maximum speed, where

100 percent is 17500 rpm. Pressure measurements are taken at each speed setting with the air supply

turned off, with all the valves open uniformly, and with the shaped blowing configuration. The boundary

layer rakes are removed and acoustic surveys of inlet-radiated noise are made at the same four speed

settings with the air supply turned off, the valves all open uniformly, and the shaped blowing configura-

tion.  Because the test’s purpose is to achieve flight conditions with the air injection system, the inflow

control device is not installed during these runs of the ADP Demonstrator. However, a separate acoustic

data survey was made with the air injection tubes removed and the inflow control device in place.

Results

Boundary Layer at Midpoint Between Keel and Crown

The boundary layer profile at this location is strongly influenced by the inflow distortion. Figures 3

through 5 show the boundary layer profile at the midpoint between the crown and the keel for engine

speeds at 70, 80, and 100 percent. The curve identified as “unmodified” is based on data that were mea-

sured before any modifications to the inlet were made. Because it is reasonable to expect that boundary

layer thickness can be related to the shapes of these curves, the shape desired is one in which the profile

knee is close to zero radial location. The curve shifts to the right, indicating a thicker boundary layer, as

the speed is increased. This shift was accompanied by an increasing inability to hold speed constant in the

ADP Demonstrator at higher speeds and a tendency of the rotor to go into stall. Thus, the desired outcome

of the air injection is to shift the pressure profile curves toward the left, indicating reduced boundary layer

thickness.
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The data shown in figures 3 through 5 are for the tubes located 0.125 in. downstream of the highlight.

The boundary layer profiles shift to the left dramatically at all speeds when the blowing tubes are in place,

even with the blowing off. Such a shift is indicative of boundary layer thinning. Turning blowing on

uniformly to all tubes has a small impact on the boundary layer profile in comparison to the blowing off

case. Figures 6 and 7 show the effect of the shaped blowing at two engine speeds, 70 and 100 percent.

Shaping the flow into the inlet boundary layer results in a small but beneficial shift of the boundary layer

profile to the left at 70-percent speed (fig. 6), although no difference is seen between the blowing off and

blowing on cases at 100-percent speed (fig. 7).

Figures 8 and 9 show the effect of location of the tubes at 0.875 in. downstream of the highlight, the

farthest downstream location, when the ADP Demonstrator is operated at 70-percent speed. The boundary

layer profile is shifted farthest to the left when the tubes are in place and blowing is turned off. When

uniform blowing is turned on, the curves actually shift to the right, indicating a thicker boundary layer

and degraded performance, as is seen in figure 8. The impact of shaping the flow is quite small in com-

parison to no flow (fig. 9). Figures 10 and 11 are the boundary layer profiles measured with the tubes at

0.875 in. downstream and the ADP Demonstrator operated at 100 percent. The conclusions are similar to

those made for the 70-percent speed: the presence of the tubes has the greatest effect, uniform blowing

actually shifts the profiles to the right, and shaped blowing does not change the profiles.

Figures 12 through 15 show the effect of blowing tube placement on the boundary layer profile at the

midpoint for speeds at 70, 80, 90, and 100 percent, respectively. The figures show that, even with blowing

turned off, the profiles shift toward the left uniformly as the tubes are moved forward toward the

highlight.

Boundary Layer at Keel

Because the control is located nearer the inlet crown, it is not expected that the boundary layer at the

keel will be influenced by disturbances to the boundary layer in the crown’s vicinity. This is borne out in

figures 16 through 19 for speeds of 70 through 100 percent. The presence of the blowing tubes has negli-

gible effect on the boundary layer profile on the keel except at the maximum speed (fig. 19). This figure

shows a slight shift of the profile to the left, and the shift is identical for all three tube placements. Fig-

ure 20 shows the effect of activating blowing on the boundary layer profile at the keel at 100-percent

speed. This curve shows that blowing has no effect on the boundary layer profile at the keel, and it is

typical of all results noted at other speeds and tube locations.

Boundary Layer Thickness and Inflow Mach Number Calculations

Boundary layer thickness is calculated by estimating from boundary layer profiles the point at which

the pressure is 99 percent of the free-stream pressure. These calculated values are summarized in table 1

on the keel and table 2 at the midpoint between the keel and the crown. In each table the boundary layer

thickness is shown at each engine speed for each of the air injection tube locations without air injection

and with air injection uniform and shaped. The calculated boundary layer thickness based on data col-

lected during runs with the 12-in. ADP Demonstrator installed in the 14- by 22-Foot Subsonic Tunnel is

also shown (ref. 2). Those data were collected with the tunnel speed at Mach 0.15. The calculated thick-

ness based on measurements with the 12-in. ADP Demonstrator installed in the Anechoic Noise Research

Facility and operated before any modifications were made to the inlet is shown under the column heading

“unmodified.”
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Comparison of the boundary layer thickness at the keel (table 1) and at the midpoint (table 2) from the

wind tunnel tests with wind on at Mach 0.15 (last column) shows that the boundary layer thickness at the

keel is 0.027 in. greater than it is at the midpoint at 70-percent fan speed, is the same at 90-percent speed,

is 0.009 in. greater at 100-percent fan speed, and the boundary layer thickness is on the order of 0.10 in.

or less. The next column to the left shows that when the wind is turned off and the 12-in. ADP

Demonstrator is run, the boundary layer thickness is never less than 0.125 in. and exceeds 0.500 in. at

100-percent speed. The boundary layer thickness varies significantly between the keel and the midpoint.

The relatively smaller variation of boundary layer thickness at the two points in the inlet in the presence

of external flow is not proof, but it is suggestive of circumferential uniformity of the boundary layer in

forward flight. This is the expected result of forward flight with the added expectation that uniform inflow

reduces the inflow distortion that generates noise at blade-passage frequency (BPF) in the inlet. The

relatively larger variation of boundary layer thickness with the inlet in the quiescent environment suggests

a greater inflow nonuniformity and subsequent noise production.

Blowing air into the external boundary layer surrounding the inlet generally has very little effect on

the boundary layer at the keel, as is shown in table 1. The results are similar whether air is on or there is

no blowing. This result is expected because the air injection occurs on the crown of the inlet. There also

does not appear to be any clear difference associated with location of the injection tubes relative to the

highlight. Except at the highest fan speed, the boundary layer thickness on the keel is the same before and

after modification of the inlet.

The effect of air injection is seen at the midpoint between the keel and the crown (see table 2). The

calculations show that the closer to the highlight the air injection ports are installed, the thinner is the

boundary layer. When the air injection ports are installed at 0.125 in. from the highlight, the shaped

blowing, which concentrates air in the region of the crown, produces a thinner boundary layer than does

uniform blowing. Generally, however, the results with blowing on are not significantly different from

those with blowing off. This suggests that the greatest part of the beneficial effect of the boundary layer

control system is due to the disturbance caused by the presence of the air injection tubes themselves.

The inflow Mach numbers are calculated at the throat based on the static pressure measurements from

taps on the inlet inner surface. These static taps are located at the crown of the inlet and at the midpoint

between the crown and the keel. The resultant calculations are summarized in tables 3 and 4. When the

12-in. ADP Demonstrator is operated with external flow of Mach 0.15, the circumferential variation in

inflow Mach number between the two measurement points is relatively small, as expected. The two

inflow Mach numbers are different by 8 to 11 percent over the range of operating speeds. In contrast,

when the 12-in. ADP Demonstrator is run in the quiescent atmosphere, the difference of inflow Mach

number is on the order of 40 percent between the two measurement locations. In both cases, the rate of

change of inflow Mach number with engine operating speed is similar with the Mach number higher in

the quiescent atmosphere. The installation of the air injection tubes does not seem to have any effect to

reduce either the overall inflow Mach number or the variability of the Mach number between the two

measurement locations.

Acoustic Survey

Figure 21 shows the 12-in. ADP Demonstrator in the anechoic chamber configured for acoustic test-

ing. An acoustically treated baffle that eliminates flanking of duct discharge-radiated noise into the inlet

region surrounds the inlet. The microphone hoop array is also shown in the photograph. Acoustic surveys

were taken as described previously. The data were digitally fast Fourier transformed in order to produce

spectra. The BPF tone and its 1st harmonic were extracted from the data and plotted to produce contours
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of sound pressure level. The plots show sound pressure level (SPL re 20  10 6  Pa) on a cylinder encom-

passing azimuthal angles extending from 0° (directly below the inlet) to 180° (directly above the inlet) on

the port side and to –180° on the starboard side. Axial locations are from 1.09 fan diameter upstream of

the stacking point of the rotor to 11.2 fan diameter upstream. This range of axial locations covers the

polar angle range from 70° to 15° from the axis of the fan.

Figures 22 through 24 are the contours of inlet-radiated SPL at BPF for the scarf inlet with the air

injection tubes at 0.125 in. from the highlight for engine operating at 70-percent speed. Figure 22 is for

blowing turned off. The effectiveness of the scarf inlet to redirect the inlet-radiated sound is seen. The

sound level directly below the inlet is in the range of 107 dB; directly above the inlet the sound level is in

the range of 112 dB. The zone of relative quiet in the shadow of the scarf inlet is small. A strong lobe of

magnitude 113 dB radiates at 35° azimuth (starboard side) and 41.3 in. in front of the inlet. This corre-

sponds to a polar angle of 41° down from the axis of the inlet. Turning on the blowing, either shaped as

shown in figure 23 or uniformly as shown in figure 24, does not eliminate the sound radiation into the

zone below the scarf inlet. In fact, it moves the peak toward 0° azimuth and, in the case of uniform blow-

ing, increases the sound level by 1 or 2 dB. Figure 24 shows a rectangle of very low radiated sound at 30°

azimuth and 52.2 in. axial (34.6° polar). This corresponds to a microphone in the hoop array that failed

temporarily at one axial station.

Figures 25 and 26 show the contours at 80-percent engine speed. When the air injection is turned off,

the sound radiated into the zone below the inlet is characterized by two lobes, one at 15° azimuth and

32.6 in. axial (48° polar) and a larger lobe at 85° azimuth and 21.7 in. axial (58.9° polar) (see fig. 25).

When the shaped blowing is activated, the sound level in these two lobes increases by 2 dB, and the peak

of the lobe closer to the inlet axis moves toward the axis. This is shown in figure 26. No data were

obtained at 80-percent speed with uniform blowing.

Figures 27 through 29 show the contours of SPL at 90-percent speed with blowing off, shaped blow-

ing on, and uniform blowing on, respectively. When the engine speed goes from 80 to 90 percent, the lobe

of radiated sound that was directed off to the port side now moves inward to 60° azimuth, while the lobe

at 15° azimuth moves to 0°. Turning the blowing on, whether uniform or shaped, intensifies these two

lobes and also causes generation of a third lobe between these two at 32° azimuth.

It was not possible to gather reliable sound data at 100-percent speed because of the variability of

engine speed at this setting due to inflow distortion.

The radiated sound level was evaluated at the frequency corresponding to twice BPF and contours

were prepared. The data with the tubes in place at 0.125 in. from the highlight, but without any blowing

on, are shown in figures 30 through 32 for engine speeds of 70, 80, and 90 percent, respectively. The

ability of the scarf to redirect sound is not as clearly visible at twice BPF as it is at BPF. The difference

between the sound level directly below the inlet and directly above is 3 dB or less. There is an indication

of multiple lobes at 30.4 in. axial (polar angle 49.8°) on the port side of the inlet and at 21.7 in. axial

(58.9°) on the starboard side at 70-percent speed, as seen in figure 30. An interesting feature at the two

higher speeds, shown in figures 31 and 32, is that the lobes of higher sound level project farther upstream

directly under the inlet and tend toward downstream azimuthally above the inlet. The effect is not

symmetric; it tends to favor the port side of the inlet.

Figures 33 through 35 are the contours of BPF tone radiated from the scarf inlet with the air injection

tubes removed and the inflow control device installed. The plots record directivity of the tone at 70-, 80-,

and 90-percent fan speed, respectively. The contours are similar to those with the air injection tubes in
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place (figs. 22 at 70 percent, 25 at 80 percent, and 27 at 90 percent), but the peak levels are 3 to 4 dB

lower. The sound energy appears to be more uniformly distributed around the inlet with the inflow control

device in place. Thus, it is more difficult to see the scarf noise reduction. While the sound level above the

inlet is generally higher than anywhere else around the inlet, the shadow region below the inlet is not as

clear. The inflow control device appears to reduce the amplitude of the turbulence ingestion, thereby

reducing the turbulence-induced noise, more efficiently than any air injection configuration.

Figures 36 through 38 are contours of 1st harmonic of the BPF tone radiated from the scarf inlet with

the air injection tubes removed and the inflow control device installed. The plots record directivity of the

tone at 70-, 80-, and 90-percent fan speed, respectively. The sound level is less than the sound level mea-

sured with the air injection tubes in place and without the inflow control device. The peak sound level at

BPF is 5 dB or more greater than the peak at 2 BPF for any engine speed. This is not an expected result

because the model has been configured in such a way that the tone at BPF should not propagate, but the

tone at twice BPF should.

Discussion of Results

Inlet blowing does not produce the inflow uniformity required to eliminate noise-producing inflow

distortion. This is felt to be due to a lack of authority that arises from the design of the blowing hardware.

The diameter of individual injection tubes is too small and flow in the tubes chokes, limiting the flow rate

that the system is capable of producing. The presence of air injection tubes has a beneficial effect on

reducing inflow distortion. It is postulated that the tubes perform as microvortex generators and reduce

the acceleration of flow around the inlet lip on the crown half of the inlet by generating vortices in the

flow stream.

Whereas the results indicate that the scarf inlet does reduce some of the fan-radiated sound below the

inlet, inflow distortion causes turbulence that is ingested, thereby producing noise. Noise is radiated into a

single, broad lobe below and to the side of the inlet. The source of this noise is felt to be the interaction of

the rotor with ingested turbulence that is concentrated at the crown of the inlet. Because the noise source

is located near the wall of the inlet, noise is focused by the curvature of the wall to radiate predominantly

downward. The source wanders in the area of the crown as the turbulence bubble vascillates, thus the

radiation lobe peak varies azimuthally in angles around 0°.

Concluding Remarks

The purpose of the boundary layer control is to simulate forward flight in the scarf inlet. Forward

flight is expected to produce a circumferentially uniform boundary layer into the fan rotor. Although the

number of boundary layer measurement transducers is limited in this study, the data obtained indicate that

the boundary layer into the rotor is not uniform and that blowing into the boundary layer does not materi-

ally remedy this lack of uniformity. It is felt that the problem with the blowing is the design and an air

injection system that provides more uniform distribution and greater authority could perform as expected.

It is interesting to note that the air injection tubes themselves act as microvortex generators to reduce

inflow nonuniformity. The impact of the tubes is a function of proximity to the inlet lip. The closer they

are to the lip, the greater the effect. The tubes as microvortex generators did not achieve the desired result

of simulating forward flight; however, it is expected that properly designed microvortex generators could

be more successful.
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The effectiveness of the scarf inlet to redirect some of the radiated noise away from the ground is

demonstrated in these tests; however, the acoustic performance of the inlet is degraded by strong tones

generated at blade passage frequency and its first harmonic. Sound is generated by interaction of the

ingested turbulence and the fan rotor, and the generated sound radiates to the far field. The attempt to

reduce the nonuniform inflow by way of inlet blowing was not successful.
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Table 1. Boundary Layer Thickness at Keel of Scarf Inlet on 12-in. ADP Demonstrator

Ports at 0.125 in. Ports at 0.500 in. Ports at 0.875 in.Fan

speed,

percent
No

blowing

Uniform

blowing

Shaped

blowing

No

blowing

Uniform

blowing

Shaped

blowing

No

blowing

Uniform

blowing

Shaped

blowing

Unmodified

Wind

tunnel

M = 0.15

  70 0.123 0.127 0.130 0.114 0.113 0.115 0.119 0.124 0.125 0.129 0.086

  80 .131 .135 .135 .121 .120 .122 .125 .129 .130 .136

  90 .142 .141 .142 .128 .126 .128 .132 .135 .134 .143 .095

100 .151 .150 .151 .135 .136 .138 .140 .142 .144 .210 .106

Table 2. Boundary Layer Thickness at Midpoint of Scarf Inlet on 12-in. ADP Demonstrator

Ports at 0.125 in. Ports at 0.500 in. Ports at 0.875 in.Fan

speed,

percent
No

blowing

Uniform

blowing

Shaped

blowing

No

blowing

Uniform

blowing

Shaped

blowing

No

blowing

Uniform

blowing

Shaped

blowing

Unmodified

Wind

tunnel

M = 0.15

  70 0.150 0.152 0.127 0.153 0.197 0.172 0.171 0.297 0.157 0.298 0.059

  80 .159 .158 .137 .168 .234 .189 .215 .306 .176 .318

  90 .170 .177 .162 .243 .280 .255 .268 .318 .267 .380 .095

100 .227 .257 .207 .303 .350 .301 .310 .396 .310 >.5 .097

Table 3. Calculated Inflow Mach Number to Rotor at Crown of Scarf Inlet on 12-in. ADP Demonstrator

Ports at 0.125 in. Ports at 0.500 in. Ports at 0.875 in.Fan

speed,
percent

No
blowing

Uniform
blowing

Shaped
blowing

No
blowing

Uniform
blowing

Shaped
blowing

No
blowing

Uniform
blowing

Shaped
blowing

Unmodified
Wind

tunnel
M = 0.15

  70 0.437 0.449 0.454 0.422 0.431 0.459 0.438 0.423 0.423 0.447 0.351

  80 .514 .522 .524 .503 .512 .528 .517 .503 .509 .521

  90 .596 .605 .606 .596 .596 .606 .601 .594 .601 .597 .473

100 .686 .684 .690 .680 .684 .686 .687 .686 .689 .653 .549

Table 4. Calculated Inflow Mach Number to Rotor at Midpoint of Scarf Inlet on 12-in. ADP Demonstrator

Ports at 0.125 in. Ports at 0.500 in. Ports at 0.875 in.Fan

speed,
percent

No
blowing

Uniform
blowing

Shaped
blowing

No
blowing

Uniform
blowing

Shaped
blowing

No
blowing

Uniform
blowing

Shaped
blowing

Unmodified

Wind

tunnel
M = 0.15

  70 0.322 0.321 0.321 0.320 0.322 0.327 0.321 0.323 0.322 0.316 0.324

  80 .376 .372 .371 .377 .377 .377 .376 .380 .379 .370

  90 .435 .434 .431 .438 .436 .433 .436 .440 .438 .426 .429

100 .506 .498 .497 .502 .505 .497 .501 .506 .502 .467 .494
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(b) Image of 12-in. ADP Demonstrator with scarf inlet showing boundary layer rakes in place in front of fan rotor.

Figure 1.  Scarf inlet.
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Figure 2.  Closeup of 12-in. ADP Demonstrator scarf inlet with external blowing tubes attached at 0.125 in. from

inlet highlight.
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Figure 3.  Boundary layer profile at midpoint at 70-percent speed, ports at 0.125 in., uniform blowing.
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Figure 4.  Boundary layer profile at midpoint at 80-percent speed, ports at 0.125 in., uniform blowing.
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Figure 5.  Boundary layer profile at midpoint at 100-percent speed, ports at 0.125 in., uniform blowing.
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Figure 6.  Boundary layer profile at midpoint at 70-percent speed, ports at 0.125 in., shaped blowing.
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Figure 7.  Boundary layer profile at midpoint at 100-percent speed, ports at 0.125 in., shaped blowing.
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Figure 8. Boundary layer profile at midpoint at 70-percent speed, ports at 0.875 in., uniform blowing.

.94

.95

.96

.97

.98

.99

1.00

1.01

0 .1 .2 .3 .4 .5 .6 .7 .8
Height  above wall-in

P
/P

at
m

Blowing on 10.1 ft3/min
Blowing off
Unmodified
Blowing on 5.3 ft3/min

Figure 9. Boundary layer profile at midpoint at 70-percent speed, ports at 0.875 in., shaped blowing.
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Figure 10.  Boundary layer profile at midpoint at 100-percent speed, ports at 0.875 in., uniform blowing.
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Figure 11.  Boundary layer profile at midpoint at 100-percent speed, ports at 0.875 in., shaped blowing.
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Figure 12.  Effect of blowing tube placement (blowing off) on boundary layer profile at midpoint at 70-percent

speed.
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Figure 13.  Effect of blowing tube placement (blowing off) on boundary layer profile at midpoint at 80-percent

speed.
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Figure 14.  Effect of blowing tube placement (blowing off) on boundary layer profile at midpoint at 90-percent

speed.
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Figure 15.  Effect of blowing tube placement (blowing off) on boundary layer profile at midpoint at 100-percent

speed.
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Figure 16.  Effect of blowing tube placement (blowing off) on boundary layer profile on keel at 70-percent speed.
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Figure 17.  Effect of blowing tube placement (blowing off) on boundary layer profile on keel at 80-percent speed.



20

.85

.90

.95

1.00

1.05

0 .1 .2 .3 .4 .5 .6 .7 .8

Height above wall-in

P
/P

at
m

Ports at .875 in.
Ports at .500 in.
Ports at .125 in.
Unmodified

Figure 18.  Effect of blowing tube placement (blowing off) on boundary layer profile on keel at 90-percent speed.
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Figure 19.  Effect of blowing tube placement (blowing off) on boundary layer profile on keel at 100-percent speed.
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Figure 20.  Boundary layer profile on keel at 100-percent speed, ports at 0.50 in., uniform blowing.

Figure 21.  Image of 12-in. ADP Demonstrator with scarf inlet, configured for inlet boundary layer control by

blowing, in the anechoic chamber.  Figure also shows microphone hoop array.
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Figure 22.  Contour of BPF tone, 70-percent fan speed, air injection tubes at 0.125 in. from highlight, air flow off.
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Figure 23.  Contour of BPF tone, 70-percent speed, air injection tubes at 0.125 in. from highlight, air flow on

shaped blowing.
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Figure 24.  Contour of BPF tone, 70-percent speed, air injection tubes at 0.125 in. from highlight, air flow on

uniform blowing.
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Figure 25.  Contour of BPF tone, 80-percent speed, air injection tubes at 0.125 in. from highlight, air flow off.
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Figure 26.  Contour of BPF tone, 80-percent speed, air injection tubes at 0.125 in. from highlight, air flow on

shaped blowing.
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Figure 27.  Contour of BPF tone, 90-percent speed, air injection tubes at 0.125 in. from highlight, air flow off.



25

150

150100
Microphone distance from model center, in.

500

100

50

0
A

zi
m

ut
ha

l d
ir

ec
tiv

ity
 a

ng
le

, d
eg

Po
rt

St
ar

bo
ar

d

SPL1
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100

Figure 28.  Contour of BPF tone, 90-percent speed, air injection tubes at 0.125 in. from highlight, air flow on shaped

blowing.
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Figure 29.  Contour of BPF tone, 90-percent speed, air injection tubes at 0.125 in. from highlight, air flow on

uniform blowing.
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Figure 30.  Contour of 2  BPF tone, 70-percent speed, air injection tubes at 0.125 in. from highlight, air flow off.
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Figure 31.  Contour of 2  BPF tone, 80-percent speed, air injection tubes at 0.125 in. from highlight, air flow off.
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Figure 32.  Contour of 2  BPF tone, 90-percent speed, air injection tubes at 0.125 in. from highlight, air flow off.
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Figure 33.  Contour of BPF tone, 70-percent speed, air injection tubes removed, ICD installed.
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Figure 34.  Contour of BPF tone, 80-percent speed, air injection tubes removed, ICD installed.
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Figure 35.  Contour of BPF tone, 90-percent speed, air injection tubes removed, ICD installed.
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Figure 36.  Contour of 2  BPF tone, 70-percent speed, air injection tubes removed, ICD installed.

150

150100
Microphone distance from model center, in.

500

100

50

0

A
zi

m
ut

ha
l d

ir
ec

tiv
ity

 a
ng

le
, d

eg

Po
rt

St
ar

bo
ar

d

SPL2
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88

Figure 37.  Contour of 2  BPF tone, 80-percent speed, air injection tubes removed, ICD installed.
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Figure 38.  Contour of 2  BPF tone, 90-percent speed, air injection tubes removed, ICD installed.
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