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Summary
This final report will document the accomplishments of the work of this project.

1. The incremental-iterative (II) form of the reverse-mode (adjoint) method for computing first-
order (FO) aerodynamic sensitivity derivatives (SDs) has been successfully implemented
and tested in a 2D CFD code (called ANSERS) using the reverse-mode capability of
ADIFOR 3.0. These preceding results compared very well with similar SDs computed via a
black-box (BB) application of the reverse-mode capability of ADIFOR 3.0, and also with
similar SDs calculated via the method of finite differences. Detailed documentation of all of
the preceding is provided in Appendix A.

2. Second-order (SO) SDs have been implemented in the 2D ASNWERS code using the very
efficient strategy that was originally proposed (but not previously tested) of Reference 3,
Appendix A. Furthermore, these SO SOs have been validated for accuracy and computational
efficiency; detailed documentation of these SO SDs is provided in Appendix A.

3. Studies were conducted in Quasi-1D and 2D concerning the “smoothness” (or lack of
smoothness) of the FO and SO SD’s for flows with shock waves. The phenomenon is
documented in the publications of this study (listed subsequently), however, the specific
numerical mechanism which is responsible for this unsmoothness phenomenon was not
discovered.

4. The FO and SO derivatives for Quasi-1D and 2D flows were applied to predict aerodynamic
design uncertainties, and wefe also applied in robust design optimization studies. Detailed

Documentation of this is provided in Appendix B.
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Axn efficient incremental-iterative spnroach for differentiating advanced flow codes is successfully demonstrated
on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic-
differentiation software tool ADIFOR 3.0 and is provea to yield accurate first-order aerodynamic seasitivity
derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with
results from a straightforward, black-box reverse-mode application of ADIFOR 3.0 to the same flow code. An
ADIFOR-assisted procedure for accurate second-order acrodynamic sensitivity derivatives is successfully verified
on an inviscid transoaic lifting airfoil example problem. The method requires that first-order derivatives are
caiculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficieat noniterative
calculation of all second-order derivatives can be accomplished. Accurate second derivatives (Le., the complete
Hessian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respéct to geometric

shape, angle of attack, and freestream Mach number.

L Introduction

HIS paper revisits and focuses entirely on the computational

challenges that are associated with the efficient calculation of
aerodynamic sensitivity derivatives (SDs) from advanced computa-
tional fluid dynamics (CFD) codes. Of course, an accurate efficient
methodology for obtaining these derivatives is a critical prerequi-
site concern that must be addressed first by the aerodynamic design
engincer who chooses any gradient-based method(s) for design op-
timization and/or for estimating quantities related to aerodynamic
uncertainty. Thus computing SDs from high-fidelity nonlinear CFD
codes is an enabling technology for design of advanced concept
vehicles.

In recent years significant progress has been achieved in the ef-
ficient calculation of accurate SDs from these CFD codes.! The
automatic differentiation (AD) software tool ADIFOR (Automatic
Differentiation of FORTRAN) has been proven an effective tool for
extracting acrodynamic SDs from these modern CFD codes.? % The
foundation of the present work is found in Refs. 3 and 6; the present
study builds on these earlier studies in an effort to exploit the full
potential of the latest version of ADIFOR 3.0 (Ref. 7) for obtaining
SDs from CFD codes.

In Ref. 2 a strategy known as the ADII method was first pro-
posed and later successfully demonstrated in Ref. 3, whereby AD
was applied to a CFD code in incremental-iterative (I-1) form. The
ADII method is a hybrid (compromise) scheme, designed to main-

Received 5 September 2001; revision received 9 January 2003; accepted
for publication 24 January 2003. Copyright © 2003 by the American In-
stitute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of
this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; inclode the code 0001-1452/03
$10.00 in correspondence with the CCC.

*Professor, Department of Mechanical Engincering. Member AIAA.

tResearch Scientist, Multidisciplinary Optimization Branch. Senior
Member AIAA.

#Senior Research Scientist, Multidisciplinary Optimization Branch.

$LTC, U.S. Amy, and Ph.D. Candidate, Department of Mechanical

1224

tain as much as possible the computational efficiency of a hand-
differentiated (HD) approach and the case of implementation of
a straightforward black-box (BB) application of AD; at the same
time the accuracy of the SDs is not compromised. A comprehensive
overview of the development of the ADII scheme is given in Ref.
3. Also included in Ref. 3 is a comparison of the ADII scheme with
the HD and BB approaches; computational issues associated with
CPU time, computer memory, and SD accuracy are discussed. The
two-dimensional effort of Ref.-3 was later extended to the three-
dimensional code CFL3D, including “in-parallel” computation of
the derivatives.®® Appropriate references to the version of CFL3D
used can be found in Ref. 6.

The success reported in these previous works®#? could be con-
sidered limited, however, because all ADIFOR implementations
reported therein were forward-mode (direct) differentiations. It is

very difficult to make any forward-mode implementation of deriva- -

tive calculations computationally competitive with a reverse-mode
(adjoint) implementation whenever the number of design variables
(NDV) of interest is considerably larger than the number of out-
put functions (NOF) of interest, and NDV much greater than NOF
is more typical for aerodynamic design problems. In recent stud-
ies the new reverse-mode capability of ADIFOR 3.0 (not available
for the earlier referenced studies) has been successfully verified in
Ref. 6 by application to a parallel version of CFL3D and in Ref.
10 by application to a sequential linear aerodynamics code. These
applications resulted in accurate design SDs as well as stability and
control derivatives, respectively. The application reported in Ref. 6
involved BB AD of the entire CFD code, but iterative execution of
the reverse mode was required only over the last iteration of the
function evaluation.

In the present study it is proposed and demonstrated that the
reverse-mode capability of ADIFOR 3.0 can also be applied to CFD
codes in I-I form, resulting in a hybrid adjoint-variable (AV) scheme
(known herein as the ADII-AV method) that is analogous to the
forward-mode ADII scheme of Ref. 3 and elsewhere. The motiva-
tion of this new reverse-mode ADII-AV scheme is identical to that
of the earlier forward-mode ADI method: greater computational
efficiency is sought over a BB implementation of AD, without any
loss of accuracy in the calculated SDs and without unmanageable
complications upon implementation.
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Following development of the proposed new ADII-AV scheme,
the second focus of the present study is that of calculating second-
order (SO) aerodynamic SDs from CFD codes. The motivation for
calculating SO SDs is 0 advance the possibility of (or greater capa-
bility of ) 1) second-order gradient-based aerodynamic design op-
timization, 2) analysis and design involving vehicle stability and
control and 3) robust design [i.e., demgnunderunoenmnty where
a first-order, second-moment method requires SO SDs!!]. This sec-
ond part of the present study is another extension of Ref. 3, wherein
the computational issues associated with calculating these higher-
order derivatives were addressed, and sample calculations of SO
derivatives using AD were reported from a two-dimensional CFD
code.

In Ref. 3, four procedures for calculating SO CFD SDs were pro-
posed, but only one of the less efficient methods was actually tested;
ADIFOR 3.0 currently provides three forward-mode variations for
the calculation of SO SDs by similarly inefficient methods. The most
cﬁicnent(forlaxgeNDV)SOSDschemewasnotwstedmthcearlm
study® but has been successfully implemenied in the present study.
Rcvcrse-modc (adjoint-based) differentiation is required within this
efficient SO SD scheme, via either HD or AD. However, with the
availability of ADIFOR 3.0 and the new ADII-AV scheme the door
has been opened for AD implementation and testing of this SO SD

_ scheme for CFD codes. The results of this effort to date are reported
here. These efficiently computed SO SDs have been used to demon-
strate an approach for CFD input uncertainty propagation and robust
design optimization for a quasi-one-dimensional flow application in
Ref. 11.

II. Basic Equations and Theoretical Development

" The equations summarized subsequently are discussed in greater
detail in the references, in particnlar, Ref. 3. These concepts are
known in the mathematical optimization community,'? but the de-
tails developed here do not appear to be generally known throughout
the CFD community. The acrodynamic output functions of interest
F and the discretized conservation laws of steady compressible fluid
flow R, including boundary conditions, can be represented symbol-
ically as follows.

Aerodynamic output functions:
F =FI[Q(b), X(b), b] @
Nonlinear state equations:
R= R[Q(b).x b).b5]=0 @

where Q is the vector of state (ficld) variables, X is the vector of
computational grid coordinates, and b is the vector of input (design)
variables.

A. First-Order Sensitivity Derivatives
Subject to the following definitions, index (summation) notation
~ is now introduced:

pr = 98 (dF) L (dR)
= e = [ R =T ==
"7 ab;  \ab ), 7" db; \db ),

Ql =dQ.l= d_Q_ X' =&—- ix;
™ " db; a /.’ P db; T\ ),

(This notation will be necessary to avoid subsequent ambiguity when
the SO SD methods are presented.) The forward-mode (direct) ap-
proach for calculating first-order (FO) SDs is developed by differ-
entiation of Egs. (1) and (2) with respect to the design variables; the
result is

dF; dF, F i dF,
Fi,j = EE: = an Qm] 5 + Eb—;- (3)
, dR, 3R, aR, , o OR
RU 55; 0. an X 3bj =0y “@

In the preceding equations 7, j, and / are “free” indices, and re-
peated indices m and p are (by convention) “summation” indices.
The reverse-mode (adjoint) approach for the FO SDs is developed
starting with an application of the chain rule:

oF; 3R, - aF;

R 30 3Qm
in order to show that the conventional adjoint variable is indeed a
derivative. With Eq. (5) it then follows from Eq. (4) that Eq. (3) can
be written as

dF, R ., AR\ K aF ., . aF,
Fy=Sio 20 9%y PR LI
b, (ax, + ab,) ax, it a5 ©

&)

A more conventional derivation of the adjoint-variable method (i.e.,
the Lagrange-multiplier method) gives

, _ 4F; 3R, 3R\ aF, _, OF
=%, A(axx 1+, ) Tax, Pt e, @
aR; aF; g
Gm A'llan + an im ( )

where 4, is called the adjoint variable. Comparison of Eqgs. (6) and
(5) with Egs. (7) and (8), respectively, reveals the identity

aF;
T 3R, = Au )

One objective of this particular development of the AV method for
aerodynamic SDs is to ensure that the relationship given by Eg. (9)
is clearly understood; that is, A;; is the derivative of the output F;
with respect to the intermediate variable R; and is accumulated in
the reverse-mode AD.

The I-I strategies for solving the preceding equations for Q,,;
and/orl,,requnedforF, are reviewed here; addmanaldetmlxs
found in Refs. 3 and 13 and elsewhere. The I-I method for solving
the nonlinear flow of Eq. (2) is

QN+l =0of - PNRY (10)
where the superscript N is the iteration (pseudo-time step) index
and the operator

=N\ -1
ETo Ry )
Phl=—c=|— 11
= 3RV (aQ,. b

represents the solution algorithm of the particular CFD code of
choice. The tilde in Eq. (11) serves toindicate that P, can be viewed
as any computationally efficient approximation (often a very crude
approximation) of the exact operator associated with true Newton—
Raphson iteration. Thus the CFD solution algorithm is simply quasi-
Newton iteration.

The I-I method for solving the forward mode FO SD equation (4)
is

Ontt=0'n — PuRY (12
where superscript M is the FO SD iteration index and
IR, R, oOR;
RY = — 13
i =30, Q""+8XX +8b,~ (13

With the I-I methodology the CFD flow solution operator Py is
also used to solve the SD equations; this operator in Eq. (12) is
evaluated and fixed using the steady-state solution for the nonlinear
flow. The requisite terms of Eq. (13) are constructed either by hand
differentiation (i.c., the HDH method, which is very tedious and time
consuming to complete with accuracy for advanced CFD codes) or
by AD, which is the forward-mode ADII method of previous studies.
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In contrast with the ADH method, a straightforward BB appli-
cation of AD to the CFD code, which is the ADBB method, is
represented symbolically as

I:j+l - Q,:j — P:IR’Z - P!:UR:V (14)
Clearly ADH [Egs. (12) and (13)] and ADBB [Eq. (14)] yield the
same result at steady-state convergence of each {recall Eq. (2)];
however, ADII is potentially more efficient than ADBB because of
user intervention in the application of AD. With ADII the following
is true:

1) The operator PN, can be evaluated only once [hence denoted
Py in Eq. (12)] using the steady-state field variables @ and then
reused for all M iterations and for all j =NDV design variables in
obtaining the O, ;.

2) Al derivatives except Q,,; can be computed once outside the
iteration loop and frozea for reuse inside the loop.

3) Evaluation of the terms P'y;, in Eq. (14) can be avoided com-
pletely for all iterations and all design variables.

The I-I method for solving the reverse-mode AV, FO SD Eq. (9)
is

Mt =2 - PuGly, (15)
where
R, aF;
GM =) _— 4+ L 16
im il an + 8Q'n ( )

The requisite terms of Eq. (16) are constructed either by hand (i.e.,
the HDII-AV method, having the same drawbacks as the forward-
mode HDII method) or by AD, which is the proposed new ADII-AV
scheme. The BB AD in reverse mode (the ADBB-AV method) has
been verified in Ref. 6. The objective of the proposed ADII-AV
scheme is improved computational efficiency over the ADBB-AV
approach without resulting loss of accuracy or significant loss in
the ease of implementation. The mechanisms from which improved
computational efficiency can be expected are analogous to those
explained before when the forward-mode ADII and ADBB methods
were contrasted. Furthermore, the ADII-AV scheme should lend
itself to more permancnt generalized coding implementations than
the ADBB-AV approach. This is because with the ADII-AV method
the manner in which AD is applied is independent of, yet valid for,
all of the particular acrodynamic inputs and outputs of interest.

The forward-mode application of ADIFOR produces FORTRAN
source code for very efficient calculation of the vector (or ma-
trix) product that results from the postmultiplication of a large
Jacobian matrix by a known input vector (or matrix). This at-
tribute of forward-mode AD is exactly what was required to con-
struct the ADII method; specifically, the terms (3R;/80m)Q’~; and
(OR;/3X )X’ ,; of Eq. (13) are of this type. In contrast, however,
the forward-mode application of ADIFOR produces source code
that is prohibitively inefficient for calculating the premultiplication
of alarge Jacobian matrix by a known input vector (or matrix). This
weakness of the forward-mode application of ADIFOR is exactly
the strength of the reverse-mode option now available in ADIFOR
3.0. Thus, the proposed new efficient ADII-AV scheme has become
possible with this reverse-mode capability. That is, through reverse-
mode application of ADIFOR 3.0 it is now feasible to produce (au-
tomatically) the source code required for efficient evaluation of the
term A} (3R;/3Qm) in Eq. (16), that is, the premultiplication of a
large Jacobian matrix by a vector.

B. Second-Order Sensitivity Derivatives
The SO SD methods are presented in index notation subject to
the following definitions:

. EF d&’F . _ &R &R
Fa=sa—-=51 Rjyy=—7—={—3
db; db; d» it db, db; dn? Lk

Q" =£fg_"'____-(ig) x”,_—_=_dz.£’;=(ﬂ)
mjk = dbk dbj dp? ajk, pjk dbk dbj db? ik

oS (Y ¥R o, dGiw (4G
“Tdby \db), bR’ T \db),,

The following differential operator is also introduced for subsequent
notational compactness:

DO _ 50
Db a0,

90 ., 30
Q.+ ax,X¢*+ 35, an

where repeated indices n and g are summation indices.
Differentiation of the FO forward-mode equations (3) and (4)
with respect to the design variables yields SO method 1:

&F, 3F, aF; DF;;

”=-———-=-—-— ”. ..._l " R 18
U= Gorab; — 30, 2mt T ax, Xent oy, U9
d&’R, aR, aRr, DR;,
Rjy = Fedb, E—Q:an + B—i:xzjk + D_b: =05 (19)

The terms of DF;;/Db; and DR}, /Db, are many and very com-
plicated; detailed expansion of these terms is provided in the Ap-
pendix. Using symmetry of the Hessian Q,,;, = Q,;, SO method 1
requires (NDV?2 4 N DV)/2 solutions of the large lincar systems
of Eq. (19) for Q;"j,‘; in addition, the method requires NDV solu-
tions of Eq. (4) for the FO SDs Q:,'j. SO method 1 was verified for
a two-dimensional CFD code in Ref. 3 by ADBB differentiation of
the code’s existing HDH scheme {Egs. (12) and (13)] for the FO
SDs.

Alternatively, differentiation of the FO reverse-mode, Egs. (7-9),
with respect to the design variables, yields SO method 2:

2F.
Fro=3f (-?Eix;,+ak')

U= dbeab, ™\ 53X, ab;
aF; IR, DF};
—_— Ay— | X7+ —L 20
+(ax, + “ax,) eitt p, @0
dG; ;
Gime=—— =X Ok + 20 o i @D

db, k30, Db,

SO method 2 requires NDV x NOF solutions of the large linear sys-
tems of Eq. (21) for A},; in addition, the method requires NDV
solutions of the FO equation (4) for Q/, ; Plus NOF solutions of the
FO equation (9) for A;;. This SO method 2 is eliminated from further
consideration because it is unconditionally less computationally ef-
ficient than the remaining two SO SD methods.

Introduction of the AV approach within SO method 1 to eliminate

Q7 ; yiclds SO method 3:
aF; 3R, DF}; DR;;
ik (ax, +A,.BXP) wt oy T, P

SO method 4 is similar and computationally equivalent to SO
method 3 and is developed by introduction of the AV approach
within SO method 2 to eliminate 1}, ; the result is the identity

DR;, DG
Ag—2 = o, j___.‘ﬂ
Db, Db,

23)
where SO method 4 uses Eg. (23) to replace equivalent terms within
SO method 3. The equivalent SO SD methods 3 and 4 do not re-
quire solution of large systems of linear equations for higher-order
derivatives such as @, ., or A},. These two SO SD schemes do,
however, require solution of both forward-mode and reverse-mode
equations (4) and (8) for Q,,; and A, respectively. This is a total of
only NDV + NOF solutions of large systems of linear equations.
One significant conclusion of the preceding analysis is that SO
methods 3 or 4 should be computationally more efficient when-
ever NDV2 + NDV is greater than 2 x NOF. With typical design
problems in aerodynamics, NDV is often much larger than NOF;
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typically, NOF is three or less (often only one), whereas NDV is on
the order of tens to hundreds. The advantage in favor of method 3
or 4 for SO SDs is then overwhelming because of the NDV? term,
which dominates. Once both the forward-mode and reverse-mode
schemes are in place for calculating the FO SDs, then complete
SO SD information is available almost “for free,” that is, the SO
SD are obtained through an explicit, noniterative calculation. The
source code for implementation of method 3 or 4 is constructed
“automatically” via BB application of the forward-mode capability
of ADIFOR to appropriate pieces of the existing source code from
which the FO SDs are obtained. For example, the extremely com-
plex terms DF; /Db, , DR;; /Db, and/ot DG /Db, (see Appendix)
ofmethods3and/or4mcasxlyoonsu'uctedthhaforwardmode
application of AD.

In Ref. 3, SO methods 3 and 4 were proposed but not actually
tested. Consequently, one primary goal of the present study is suc-
cessful implementation and verification of the highly efficient SO
method 3 (or equivalently, method 4); method 3 is actually chosen
in this study.

III. Results and Discussion
A. First-Order Sesitivity
ADII-AV Method, Model Problem

The proposed ADII-AV method [Egs. (15) and (16)] has been
successfully implemented in 2 CFD code and verified for accuracy
on a simple two-dimensional inviscid intemal flow model problem.
This CFD code solves the two-dimensional Euler equations by a
conventional upwind finite volume approach on a very coarse grid
but one that is sufficient for computationally verifying SDs. As ex-
pected, when FO SDs computed by the new ADII-AV scheme are
compared with SDs computed by a hand-differentiated implemen-
tation of Egs. (15) and (16) (i.c., the HDII-AV approach), the results
are the same at convergence, as well as at each I-I step. In addition,
the accuracy of the computed SDs has been successfully verified by
a finite difference method.

Preliminary timings were conducted on a Sun workstation to eval-
uate the potential for improved computational efficiency of the new
ADII-AV scheme with respect to the ADBB-AV approach of Ref. 6.
Computational timing comparisons are given in Table 1, which fo-
cuses exclusively on AD performance. Therefore, relative timings
are given as CPU time per iteration per grid point per differentiated-
acrodynamic-output function. Furthermore, each timing result has
been scaled by the comparable timing result obtained from the very
efficient hand-differentiated reverse-mode scheme (i.e., the HDII-
AV method). Table 1 illustrates that although the new ADII-AV
scheme is almost five times slower than the efficient HDII-AV
scheme it represents a substantial improvement over results obtained
from the straightforward black-box procedure (i.e., ADBB-AV is
about cight times slower than HDII-AV).

The improvement in computational efficiency achieved to date
is substantial when the reverse-mode application of ADIFOR 3.0
in incremental-iterative form is compared with the black-box ap-
proach. Furthenmore, the timing result for the ADII-AV scheme is
projected to improve by an additional 30% over that reported here.

Thus the relative timing given in Table 1 for ADI-AV/HDII-AV is -

projected to drop from 4.7 to about 3.3. This projection is based on
using a strategy where the forward-pass execution of the ADIFOR-
enhanced, reverse-mode code will be performed only once (instead
of during each iteration) in order to create the required ADIFOR log

Table1 Relative CPU timing

comparison, model problem
Reverse-mode Relative
method tested timing*
HDII-AV 1.0
ADII-AV 4.7
ADBB-AV 7.9

CPU  time/icration/grid-poin/
flmuim.A

files. Thereafier, by repeatedly reusing these fixed log files only re-
verse passes will be repeatedly executed during the iterative solution
process for all acrodynamic output functions of interest.

Another important computational concern mitigated by the new
ADII-AV method is computer memory, particularly the issue of large
disk files created during execution of reverse-mode derivative code
created by ADIFOR 3.0. With the black-box (ADBB-AV) approach
these large ADIFOR log files (which are created on a forward-pass
execution and are read during the reverse pass) will accumulate and
become larger with every iteration of the ADIFOR-enhanced flow
code. This file growth can rapidly deplete the available disk space,
even on the largest computers. In Ref. 6 this difficulty was addressed
by development of the iterated reverse-mode scheme, where only
the log files for the final forward-pass iteration are stored and used
during the subsequent iterative solution for the derivatives. With
the ADII-AV approach, however, the required disk space is not as
restrictive an issue because it remains fixed and does not accumulate
during the iterative solution process. In the present example the total
storage requirement for log files with the ADII-AV method is only
64% of that required for a single iteration of the ADBB-AV method.

In addition to the log-file disk memory, required only for the new
reverse-mode capability of ADIFOR, there are substantial additional
core memory requirements. For the forward mode the core memory
increase of the AD-enhanced code is approximately NDV times the
core memory requirement of the original (undifferentiated) code.
For the reverse mode the corresponding increase is NOF time that
of the original code.

B. Second-Order Sensitivity Derivatives,
SO Method 3, Airfoil Example

Results are presented subsequently from the successful verifica-
tion of the proposed efficient noniterative SO method 3 [Eg. (22)]
for computing SO SDs. The example problem is steady transonic in-
viscid flow over a NACA 0012 airfoil with freestream Mach number
M, 0.80 and angle of attack & 1 deg. The two-dimensional Enler
equations are solved on a Sun workstation in double precision using
aconventional finite volume upwind flux-vector-splitting scheme. A
C-mesh computational grid is used with dimensions 129 x 33 grid
points. High-quality lift-corrected boundary conditions are used at
the far-field boundary, which is placed approximately five chord
lengths from the surface of the airfoil.

In the present example derivatives of three aerodynamic out-
put functions are considered: C, Cp, and Cy (ie., coefficients of
lift, wave drag, and pitching moment, respectively). The computed
steady-state values of these acrodynamic force coefficients are given
in Table 2. Note that the number of digits shown in Table 2 (and also
Tables 3 and 4) is to illustrate consistency rather than accuracy. In
addition, derivatives with respect to three acrodynamic input vari-
ables are considered. They are g (a geometric-shape variable), a,and
M. The geometric-shape variable g is a single arbitrarily selected
y coordinate of the computational grid on the surface of the airfoil:
simple, but one that is sufficient for verifying geometric-shape SDs.

CalcuhﬁonofSOSDsbySOmethodS ires that all FO
SDs are calculated first using both the forward-mode [Egs. (3) and
(4)] and the reverse-mode [Egs. (7) and (8)] approaches. The cal-
culated FO SDs from a hand-differentiated incremental-iterative
(HDII) implementation of these two approaches are presented in
Table 3, where the results are seen to agree, as expected. The FO
SDs presented in Table 3 have been thoroughly verified for consis-
tency through a meticulous implementation of the method of central
finite differences, where agreement to six significant digits or greater
is noted in all comparisons.

Table2 Aerodynamic force

coefficients, airfoil example
Coeflicient Value
CL ~ +0.2830659E400
Cp +0.2070493E—01
Cu —0.2876639E 01
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Table 3 First-order sensitivity desivatives,

HDII method, airfoll example

Derivative by Forward mode Reverse mode
aCy g +0.1405406 E .00 +0.1405406 E+00
ab; o —0.1087323E-01 —~0.1087323E-01
Mo —0.4672729E-01 ~0.46T27T29E-01
daCp g +0.1761807E 402 +0.1761807E+02
&, a +0.1158625E 401 +0.1158625E+01
My —0.2382580E+01 ~0.2382580E+01
dCa g +0.3171492E+01 +0.3171492E+01
“db; a« +0.5955598E 401 +0.5955598E-+01
My —0.1603002F 401 —0.1603002E+01

Table 4 Secomd-order sensitivity derivatives,

SO method 3, airfoil example

Derivative b; /b, P a

Mo

&2cy g +0.248807TE+03 +0.250402E+03 +0.205825E+03
Byaby, @ FOZS0402E+03 +0.1B42TTE+0S +0.160858E-+05
Moo +0205825E+403 +0.160858E+05 +0.133087E+05

#Cp g +0TITTIE+02 +0.134379E+02 +0.101304E+02
Todr o  +0.134379E-+02 +0.959310E+03 +0.804021E+03
POk M, +0.101304E+02 +0.804021E+403 +0.662088E+03
&Cy g —0.663590E+02 —0.602441E-+02 —0.490399E+02
@ —0.6024415402 —0.449198E+04 —0.386943+04

dbjdbe  py  _0.490399E+02 —0.386943E-+04 —0.320512E404
Table 5 Relative CPU timings: complete SO
method 3, airfoil exsmple

Computational procedure % of total
Nonlinear flow, Egs. (1) and (2) 54
Forward-mode FO SDs, Egs. (3) and (4) 25.5
Reverse-mode FO SDs, Egs. (7) and (9) 69.0
SO SDs, Eq. (22) 0.1
Total 100.0

The SO method 3 is implemented by application (in the for-
ward mode) of ADIFOR to appropriate pieces of the FORTRAN
code used earlier for hand-differentiated forward-mode calculation
of the FO SDs. The calculated SO SDs from this implementation
of SO method 3 are_presented in Table 4. The SO SDs of Table
4 have been thoroughly verified for consistency through a meticu-
lous application of central finite differences applied to FO SDs ob-
tained by the hand-differentiated methods already described. Agree-
ment to five significant digits or better is noted in this verification
study for all SO SDs reposted in Table 4. This verification study
was not conducted using finite differences applied to the origi-
nal nonlinear flow code; that approach has been documented to
be vulnerable to severe numerical inaccuracy when SO SDs are
calculated.’ The symmetry of the calculated SO SDs shown in Ta-
ble 4 is expected and results from the computations performed,
that is, no derivative symmetry was explicitly imposed on the
problem.

For the present airfoil example problem Table 5 illustrates (in
terms of percentages of the total) the breakdown of relative CPU
timings for the computational steps of SO method 3 procedure for
calculating the SO SDs. Not included in Table 5 is the CPU time
for the grid generation and the grid-sensitivity derivatives, negligi-
ble for this particular two-dimensional example. Table 5 illustrates
clearly the computational efficiency of the SO method 3 for SO SDs.
Recall that results of the present example are for three acrodynamic
output functions and three input (design) variables, where the com-
putational work of the forward-mode and reverse-mode procedures
for FO SDs should be approximately equal (in theory, for hand-
differentiated code, as used here). In this example, however, Table 5
reveals that the reverse mode was much more costly than the for-
ward mode; apparently the three linear systems for the reverse mode
are stiffer than the three for the forward mode. This characteristic
of the adjoint equations has been observed by others.” As expected,

Table 5 shows that using an ADIFOR-assisted second differentia-
tion SO SDs can be obtained extremely fast, if one already has both
the forward-mode and reverse-mode FO SDs.

IV. Conclusions

An efficient incremental-iterative approach for differentiating ad-
vanced CFD flow codes has been successfully demonstrated on a
two-dimensional inviscid model problem. The method employs the
reverse-mode capability of the automatic-differentiation software
tool ADIFOR 3.0 and has been shown to yield consistent first-order
aerodynamic sensitivity derivatives. A substantial reduction in CPU
time and computer memory has been demonstrated by comparison
with results from a straightforward, black-box reverse-mode appli-
cation of ADIFOR 3.0 to the same flow code.

A computationally efficient ADIFOR-assisted procedure for con-
sistent second-order acrodynamic sensitivity derivatives has been
successfully verified on an inviscid transonic lifting airfoil exam-
ple problem. Accurate second derivatives (i.e., the complete Hes-
sian matrices) of lift, wave drag, and pitching-moment cocfficients
with respect to geometric shape, angle of attack, and freestream
Mach number have been calculated. With the present procedure
second-order derivatives are now computationally feasible, at least
in two dimensions. The computation of second-order derivatives
in three dimensions appears to be within reach, but remains to be
investigated.

This second-order method requires that first-order derivatives be
calculated using both the forward (direct) and reverse (adjoint) pro-
cedures; then, second-order derivatives can be obtained in a noniter-
ative calculation that is computationally very efficient. An ADIFOR
differentiation is used to generate a number of required second-order
terms in this noniterative calculation. If one already has either for-
ward (NDV solutions) or reverse (NOF solutions) FO SDs, thea
upon obtaining the other FO SDs (NOF or NDV additional solu-
tions, respectively) one calculates all of the SO SDs (NOF x NDV?
derivatives) very efficiently.

Appendix: Expansion of Terms

lnthstppcndxxtheterms DF, /Dby, DR /Dby, and DG ;s /Dby
are expanded using the index notanon a.lmar‘y established. The ex-
pansion of DF};/Db; is

DF], aF} aFy; 3F};
—L =, + =X, + 2
Db, 30, ax * 95,
9*F; 3’F; 3*F;
— X'- ’ ’
30.90m 30,30, CmiCu t 30,0X, »iQat + 3Q,db; Que
3°F, 32F, a°F,
X! X 14 XI
+3%,90., Q"ix 3X,9X, »#Xa 5xca5, 3X,db;
3°F; 3F; aF, '
’ 14 Al
ab,,aQ,, O + 3bdxX, ut b, db; @an

In Egq. (A1), the indices i, j, and k are free and repeated indices n,

m.p,amiqaresummed.’lhctamsofDR, /Db are obtained from

Eq. (A1) by replacing everywhere F, ,thh Rj, and F; with R, (and

thus / replaces i asafreemdexmmemulungexpmslons)
Finally, the expansion of the terms for DG /Dby is

DGin _ 8Gim ) | Giny, , 9Cin
Dby 80, ™' 98X, " b
Ry 3F; 3R,
=X T+ "+ Agy————X'
50,00, 2+ 30,00, 2 T MR a0, ot
?F ?R,  #F
A2
+3%,90, ¢ M50, T mag, (A2
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In Eq. (A2) the indices i, m, and k are free, and repeated indices /,
n, and g are summed.
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