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MHD turbulence sheared in fixed
and rotating frames

By S. C. Kassinos{, B. Knaepeni AND A. Wray

We consider homogeneous turbulence in a conducting fluid that is exposed to a uni-
form external magnetic field while being sheared in fixed and rotating frames. We take
both the frame-rotation axis and the applied magnetic field to be aligned in the direction
normal to the plane of the mean shear. Here a systematic parametric study is carried
out in a series of Direct Numerical Simulations (DNS) in order to clarify the main effects
determining the structural anisotropy and stability of the low. When the time scale of
the mean shear is short compared to the Joule time (Tshear << Tm), we find that the tur-
bulence structures tend to align preferentially with the streamwise direction irrespective
of the magnetic Reynolds number, R,,. When Tghear >> T, we find that at low R, the
turbulent eddies become elongated and aligned with the magnetic field, but at moder-
ately high R,,, there is partial streamwise alignment of the eddies. When 7ghear & Ty,
we find that competing mechanisms tend to produce different structural anisotropies and
small variations in dimensionless parameters can have a strong effect on the structure of
the evolving flow. For example, for very low R,,, a preferential alignment of structures
in the direction of the magnetic field emerges as the flow evolves, consistent with the
predictions of the quasi-static approach. For R,, ~ 1, the structures are found to be
equally aligned in the streamwise and spanwise direction at large times. However, when
R, is moderately high (10 £ R,, £ 50) this strong spanwise alignment is replaced by a
preferential alignment of structures in the streamwise direction. Counter to intuition, we
found evidence that strong rotation in combination with a spanwise magnetic field tends
to promote a streamwise alignment of the eddies, at least when Tghear & 7Tpn- In some
cases with frame counter-rotation, we have observed a bifurcation that leads to 2D tur-
bulence consisting of vertical slabs parallel to the plane of the mean shear For sufficiently
high magnetic Reynolds numbers (R,, ~ 50) and strong frame counter-rotation, we find
that the magnetic energy exceeds the turbulent kinetic energy. In this regime the ratio
of production to dissipation exceeds unity (P/e > 1) even when the ratio of the frame
rotation rate to the shear rate is such that that in the hydrodynamic case suppression
of the turbulence (P/e < 1) is observed. Finally, we also examine the range of validity
of the Quasi-Linear approximation by comparing its predictions to those of ideal MHD.
The QL approximation is found to be in excellent agreement with full MHD for the entire
range of magnetic Reynolds numbers(R,,) that was examined (R,, < 50).

1. Introduction

1.1. Motivation and objectives
The combined effects of mean shear, frame rotation and an externally-applied magnetic
field on turbulence in a conducting fluid are relevant to the accretion of Keplerian disks,
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FIGURE 1. Configuration for shear in a rotating frame. Here B denotes the external magnetic
field (when applicable), Qf the frame rotation rate, and S the shear rate.

to magnetic stirring, fusion plasma, and to Magnetogasdynamic (MGD) applications,
involving advanced flow-control and propulsion schemes for hypersonic vehicles.

CFD codes used for the prediction of MHD and MGD flows rely on simple turbulence
models, like k-e models, with additional ad hoc modifications to account for the effects
of the magnetic field. Such closures neglect the important dynamical role that the struc-
ture of the turbulence plays in the interaction between the turbulence and the applied
magnetic field. As a result, they tend to be of limited applicability.

Structure-Based Models (SBM) are by construction able to account for the dynamical
effects of the energy-containing turbulence structure. Preliminary work in the case of
homogeneous unstrained MHD turbulence (Kassinos & Reynolds 1999), has shown that
SBM are well suited for use in the prediction of MHD and MGD applications. The task
of developing turbulence SBM or other closures for MHD and MGD applications can
be simplified by taking advantage of approximations to the governing equations that
are valid in flow regimes typically encountered in technological applications. In order to
proceed further towards the development of SBM for MHD turbulence it is important to
understand the combined effects of mean shear and frame rotation on MHD turbulence.

In the purely hydrodynamic case, frame rotation can act to either stabilize or destabi-
lize homogeneous shear flow. For example, in these flows the equilibrium state depends
on the ratio of the frame rotation rate Qf = 9{2 to the shear rate S = Uy 2 (see Fig. 1).
A limited range of values of A = Qf/S is marked by exponential growth of both the
turbulent kinetic energy, k, and the dissipation rate, e. This has been known for a while,
but details of the equilibrium state of the turbulence, such as the behavior of the ratio
of the turbulent kinetic energy production and dissipation rates, P/e, remained unclear.
Virtually all algebraic stress and Reynolds stress transport models using the standard e
equation predict that, within this range, equilibrium turbulence is marked by P/e being
constant and independent of A. This behavior has been reported in the literature and,
in the absence of DNS data that would have helped evaluate it, has been accepted as
reflecting the correct physics. Preliminary results from a DNS by Kassinos, Reynolds,
and Wray (see for example Kassinos & Reynolds (2003)) show that in fact the equilib-
rium value of P/e is a function of A, as shown in Figure 2. When A = Qf /S is close to
1/4 the turbulent kinetic energy grows exponentially, and the energy-containing struc-
tures tend to quickly fill the computational box and the simulation has to be terminated.
Thus obtaining reliable equilibrium values for P/e when A = Qf /S ~ 1/4 is challenging.
However, in the neighborhood of A & 0.55, the structures grow relatively slowly and
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FIGURE 2. The variation of the ratio of production to dissipation (P/e) of the turbulent kinetic
energy with the ratio of frame rotation to shear rate 7. Positive values of A correspond to a frame
counter-rotating relative to the intrinsic shear rotation sense: ¢ , DNS (Kassinos & Reynolds,
2002); Structure-based model; ———- model using standard

they are well contained within the computational box as equilibrium is approached. For
this reason, it is clear from these simulations that the turbulence is suppressed when the
frame counter-rotates at a rate of A\ & 0.55 or higher.

For vanishingly small magnetic Reynolds numbers (R,, < 1), the induced magnetic
fluctuations are much weaker than the applied field and their characteristic time scale,
based on their diffusion, is much shorter than the eddy turnover time. A classical approxi-
mation for decaying MHD turbulence at low R, is the Quasi-Static (QS) approximation.
In this approximation, the induced magnetic field fluctuations become a linear function
of the velocity field. Kassinos, Knaepen & Carati (2002) and Knaepen, Kassinos & Carati
(2004) considered the case of initially isotropic decaying MHD turbulence, and concluded
that the QS approximation was reasonably accurate for R,,, < 1. For higher R,,,, where
the QS approximation fails, they proposed the use of the Quasi-Linear (QL) approxima-
tion, which amounts to retaining the unsteady term in the magnetic induction equation,
retaining the non-linear hydrodynamic terms in the fluctuating momentum equation, but
dropping all the nonlinear terms involving the magnetic fluctuations. They carried out a
series of DNS and concluded that in unstrained MHD turbulence the QL approximation
was valid for the entire range of magnetic Reynolds numbers they examined (R, < 30).

Surprisingly, little work has been done to explore the structure of homogeneous MHD
turbulence under the influence of mean shear and frame rotation. The objective of this
work is to use DNS to probe the fundamental physics in sheared MHD turbulence.
Primarily, we are interested in understanding the effects of shear and rotation on the
dynamics of MHD turbulence, including the structural morphology and stability of these
flows. For example, it is important to establish how the bifurcation diagram of Fig. 2 is
modified in the MHD case. Stability modifications due to the presence of the magnetic
field can potentially have implications for the evolution of stellar accretion disks and is
an important element that must be built into a successful model for MHD turbulence.

We start by discussing the relevant dimensionless parameters that characterize MHD
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and MGD flows in the presence of mean shear and frame rotation. In section 3 we
introduce the governing equations for ideal MHD and the simplifications associated with
the QL approximation as introduced by Kassinos et al. (2002) and Kneapen et al. (2004).
The numerical code and associated initial conditions are described in section 4, while
section 5 is devoted to a discussion of the most important results. A concluding summary
is given in section 6.

2. Dimensionless parameters

The effects of a uniform magnetic field applied to unstrained homogeneous turbulence
in an electrically conductive fluid are characterized by three dimensionless parameters.
The first of these is the magnetic Reynolds number

oL v  L?
Ry =— =(=)(2), 2.1
=) (2.1)
where L is the integral length scale and v is the r.m.s. fluctuating velocity
v =+/Ri;/3, Rij = uuy . (2.2)

Here u; is the fluctuating velocity, and 7 is the magnetic diffusivity

n=1/(op") (2.3)

where o is the electric conductivity of the fluid, and p* is the fluid magnetic permeability
(here we use p* for the magnetic permeability and reserve u for the dynamic viscosity).
Thus the magnetic Reynolds number represents the ratio of the characteristic time scale
for diffusion of the magnetic field to the time scale of the turbulence. In the case of
vanishingly small R,,, the distortion of the magnetic field lines by the fluid turbulence is
sufficiently small that the induced magnetic fluctuations b around the mean (imposed)
magnetic field B are also small.

The second parameter is the magnetic Prandtl number representing the ratio of R,,
to the hydrodynamic Reynolds number Rer,
R,, vL

_ ftm v 2.4
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The magnetic-interaction number (or Stuart number) is

2 ext)2
n=BL _(BY)L_ T (2.5)
pv N v T

where B is the magnitude of the magnetic field, B®* = B/./u*p is the magnetic field ex-
pressed in Alfven units, and p is the fluid density. N represents the ratio of the large-eddy
turnover time 7 to the Joule time 7,,, i.e. the characteristic time scale for dissipation of
turbulent kinetic energy by the action of the Lorentz force. N parametrizes the ability of
an imposed magnetic field to drive the turbulence to a two-dimensional three-component
state. In the absence of mean shear and frame rotation, the continuous action of the
Lorentz force tends to concentrate energy in modes independent of the coordinate direc-
tion aligned with B. As a two-dimensional state is approached, Joule dissipation decreases
because fewer and fewer modes with gradients in the direction of B are left available.
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In addition, the tendency towards two-dimensionality and anisotropy is continuously op-
posed by non-linear angular energy transfer from modes perpendicular to B to other
modes, which tends to restore isotropy. If N is larger than some critical value N, the
Lorentz force is able to drive the turbulence to a state of complete two-dimensionality.
For smaller N, the Joule dissipation is balanced by non-linear transfer before a complete
two-dimensionality is reached. For very small N (N < 1), the anisotropy induced by the
Joule dissipation is negligible. Here we consider N in the range 1 — 20.

In the presence of mean shear and frame rotation, two additional parameters become
important. The first of these is the ratio of the time scale of the mean shear to the Joule
time 7,

Bext 2 R
R (26)
m

where S is the mean shear rate. The second is the ratio of the frame rotation rate Qf to
shear rate S,

Of
A= — 2.7
- (27)
where Qf = —Q{z so that positive values of A correspond to a frame counter-rotating

relative to the sense of rotation associated with the mean shear.

3. Governing Equations

Transport in homogeneous MHD shear flow is described by the incompressible MHD
equations

G;,; =0  b;,; =0 (3.1)

o 1 . + = .
Optl; + Uslly s = —;R, + bimbm + Vil g5 (3.2)
61551' + ﬂsgi,s = Esai,s + ngi,ss (33)

where P* is the total pressure including magnetic contributions, b; is the magnetic field in
Alfven units, and @; are the velocity components. Next, the flow variables are transformed
into a rotating frame, where they are explicitly decomposed into a mean and a fluctuating
part. We solve the resulting governing equations for the fluctuation fields in a coordinate
system that deforms with the mean flow so that Fourier decomposition methods can be
employed. In this deforming coordinate system, the transformed equations become

v Amk + 2Q{k'vk = _lﬁAmi

m P3 m

OBt ob; ob; v
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+Ho brA bt g B Ame + 5= bedmi + v Aup Ay (3.4)

ov;
owv; + Gipop + :
or




52 S. C. Kassinos, B. Knaepen & A. Wray
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Here, v; abd b; are the components of velocity and magnetic fluctuation fields transformed
in the rotating frame, z; are deforming coordinates, G;; = U; ; is the mean velocity
gradient tensor, and A;; is the (Rogallo) transformation matrix satisfying

Aiz + 4G, =0. (3.6)

In the hydrodynamic case, one can impose any mean strain tensor, but once the mean
strain is specified, the homogeneity requirement imposes constraints on the evolution of
the mean rotation tensor. In the MHD case, these constraints involve gradients of the
mean magnetic field as well. However, when the frame rotation axis and the uniform
mean magnetic field vector are perpendicular to the plane of shear, these constraints
leave the mean rotation unmodified and need not be considered.

3.1. The Quasi-Linear (QL) approzimation

The Quasi-Linear (QL) approximation was introduced by Kassinos, Knaepen & Carati
(2002) and Knaepen, Kassinos & Carati (2004) as a moderate-R,,, replacement to the
classical Quasi-Static approximation Roberts (1967). The QL approximation amounts to
neglecting the nonlinear terms involving the fluctuating magnetic field in (3.4) and (3.5),

; 1
ow; + Gyup + _a'l} Ak + 2Q{k1}k = ___6]9 A
O0xm P 0%m
OBt ob; 8%v;
— biA, L BSxtA,, — ' A A .
+ O%m b Ami + Oy F Bt V@azké’mz pikp (3.7)
and
OBS*t Ov; 9%b;
b; — Gipbp = —vp——Ap, + B —2A,, — ' A, A, . ;
Oy Girby Vg, B, Amk + B;, Bz, Amk + nawk&rz pAkp (3.8)

Note that the nonlinear convective term in the fluctuating momentum equation and the
unsteady term 9;b; in the fluctuating induction equation are both retained. Of course, if
the later is also neglected one recovers the QS approximation.

4. Numerical code and initial conditions

We have used a pseudo-spectral code with the ability to simulate either the full MHD
equations (3.4) and (3.5), or the reduced QL equations (3.7) and (3.8). The numerical
method used to solve the governing equations for homogeneous shear flows is similar to
that introduced by Rogallo (1981). The governing equations are transformed to a set
of coordinates which deform with the mean flow. This allows Fourier pseudo-spectral
methods, with periodic boundary conditions, to be used for the representation of the
spatial variation of the flow variables. Time advance is accomplished by a third-order
Runge-Kutta method. Since the mean imposed shear skews the computational grid with
time, periodic remeshing of the gird is needed in order to allow the simulation to progress
to large total shear, where a self-preserving regime might be expected to prevail. The
periodic remeshing introduces aliasing errors that are removed by a de-aliasing procedure
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Resolution 2563
Box size (€, x £y x £.) 2w X 27w X 27
Rms velocity (v) 3.099
Viscosity 0.006
Intergal length-scale (37/4 x ([ k™ 'E(k)dk/ [ E(k)dk)) 0.322
Re =uL/v 166
Dissipation (€) 47.876
Dissipation scale (y = (v>/e)1/9) 0.0082
kmax’)’ 1.82
Microscale Reynolds number (Rey = 1/15/(ve)u?) 69.40
Eddy turnover time (7 = (3/2)u/e) 0.097
TABLE 1. Turbulence characteristics of the initial velocity field. All quantities are in MKS
units.

included in the code. An MPI based version of the code has been implemented in the
Vectoral language and tested individually for accuracy, grid independence, and scalability.

All the runs presented here have a resolution of 256° Fourier modes in a (27)3 compu-
tational domain. The initial conditions for the velocity were common to all cases. They
were created starting with a pulse of energy at low wave numbers in Fourier space and
a random distribution of phases for the Fourier modes. In order to let the higher-order
statistics develop, the flow was evolved in the absence of mean shear or frame rotation
and without a mean magnetic field, while forcing was being applied to the low wave num-
ber region of the spectrum. This initial phase was continued until an equilibrium state
was reached and the skewness acquired its peak value. At that time, hereafter referred
to as tg, the external magnetic field, mean shear and frame rotation were switched on
while the artificial forcing was eliminated. The characteristics of the initial field at time
to are summarized in Table 1.

In the MHD runs, an initial condition for b; has to be chosen at ¢t = ty,. Here we have
made the choice b;(tg) = 0. In other words, our simulations describe the response of an
initially non-magnetized turbulent conductive fluid to the application of a mean magnetic
field. The corresponding completely-linearized problem in the absence of mean shear and
frame rotation has been described in detail in Moffatt (1967).

4.1. Parameters

In order to distinguish between our numerical runs, we will vary the magnetic Reynolds
number R,,, the magnetic interaction number N, the ratio of the timescale of the mean
shear to that for magnetic diffusion M, and the ratio of the frame rotation rate to
the mean shear rate A. Specification of R,, and N completely determines n and B
according to:

Nv? vL

Bext — — .
Rm ? 77 Rm

(4.1)

The values of these parameters for the different runs considered are summarized in
Table 2. The entries in Table 2 are grouped first according to the initial value of M,

then according to the value of the Magnetic Stuart number N, and last according to the
magnetic Reynolds number R,,. Thus, the identification number of run CX.Y.Z can be



54 S. C. Kassinos, B. Knaepen & A. Wray

# | Case n | B**| N(to) | Rm(to) A

1 C1.1.1 |207.75]3.11 1 0.1 0.0, 0.25
2 |Cl.1.5 | .387 |.696 1 2.0 0.0, 0.25
3 [C1.1.10 | .258 |.568 1 3.0 0.0, 0.25
4 |C1.1.20 | .155 | .440 1 5.0 0.0, 0.25
5 |C1.1.50| .0775 | .311 1 10.0 0.0, 0.25
6 |Cl2.1 | 7.75 |9.84| 10 0.1 0.0, 0.25
7 |Cl1.2.5 387 12.20 10 2.0 0.0, 0.25
8 |C1.2.10| .258 | 1.80| 10 3.0 0.0, 0.25
9 |C1.2.20| .155 |1.39| 10 5.0 0.0, 0.25
10| C1.2.50 | .0775 | .984 | 10 10.0 0.0, 0.25

11|C2.1.1 | 7.75 [22.0| 50 0.1
121C2.1.5 | .387 [4.92| 50 2.0
13|C2.1.10 | .258 [4.02| 50 3.0
14C2.1.20 | .155 |3.11| 50 5.0
15|C2.1.50 | .0775 | 2.20 | 50 10.0
16 (C2.2.1 | 7.75 [22.0| 50 0.1
17|1C2.25 | .387 [4.92| 50 2.0
18|C2.2.10 | .258 [4.02| 50 3.0
191C2.2.20| .155 [3.11| 50 5.0
20|C2.2.50 | .0775 [2.20 | 50 10.0

0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0
0.0,0.25,0.5,0.75,1.0

MMMMMMMMMMPPF’PPPPPPF’g
Tl T T = S SO Sy oY

21|C3.1.1 | 7.75 [22.0| 50 0.1 20 0.0,0.25
22|C3.1.5 | .387 [4.92| 50 20 |20 0.0,0.25
23|C3.1.10| .258 [4.02| 50 3.0 120 0.0,0.25
24|C3.1.20| .155 [3.11| 50 5.0 |20 0.0,0.25
25|C3.1.50 | .0775 [2.20 | 50 10.0 |20 0.0,0.25
26|C3.2.1 | 7.75 [22.0| 50 0.1 20 0.0,0.25
27|C3.2.5 | .387 [4.92| 50 20 |20 0.0,0.25
28|C3.2.10| .258 [4.02| 50 3.0 120 0.0,0.25
29(1C3.2.20| .155 [3.11| 50 5.0 |20 0.0,0.25
30(C3.2.50| .0775 | 2.20 | 50 10.0 |20 0.0,0.25

TABLE 2. Summary of the parameters for the different runs performed

interpreted as follows:
X=1= M((t)=0.1 X =2= M(ty) =2 X =3= M((ty) =20
Y=1=N(t) =1 Y=2= N(t) =10
(4.2)

and where Z is such that R,,, = Z. Thus, for the first ten runs we have M = 0.1; for the
next ten M = 2 and finally, for runs 21-30 we have M = 20.

5. Results
In this section we discuss some of the more important results obtained by carrying out
the simulations described in the previous sections.
5.1. Eddy alignment

The effects of mean shear, frame rotation, and external magnetic fields on the turbulence
structure are well understood whenever these act independently. Mean shear tends to
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FIGURE 3. Structure anisotropy as measured by d;; (see 5.1) in homogeneous MHD turbulence
being sheared in a fixed frame (A = 0) for the case with M = Tghear/7m = 0.1): di1;
—=== da2; — — ds3; —-— di2. (a) Case C121 with R,, =1, N = 10; (b) Case C1230 with
R,, = 30, N = 10. The induced structural anisotropy is completely determined by the mean
shear and is independent of the magnetic Reynolds.

stretch and align the turbulent eddies in the streamwise direction, strong rotation tends
to induce columnar structures aligned with the rotation axis, while the action of the
Lorentz force tends, through Joule dissipation, to promote long structures aligned with
the mean magnetic field. Here, we examine eddy alignment under the combined action
of S, Q and B®**. We first looked at a series of simulations in a fixed frame (zero frame
rotation) in an effort to establish the effects of the simultaneous action of the mean shear
and the spanwise magnetic field on the turbulence structure. Then we look at these effects
in a spanwise rotating frame.

The diagnostic tool used to determine eddy alignment is the structure dimensionality
tensor (Kassinos, Reynolds & Rogers, 2001), which for homogeneous turbulence is defined
by

D;; = /E(k) k2j d’k dij = Dyj /Dy, Dy = qz =2k. (5.1)

Note that each diagonal component of d;; can attain values only between 0 and 1, and
that for turbulence in which the energy-containing structures are elongated in the x4,
direction, da,, — 0. On the other hand dy, — 1 corresponds to structures that are
narrow and have strong gradients in the z, direction.

Figure 3 shows the evolution of the structure dimensionality when M = Tghear/tm =
0.1. Two different values of the magnetic Reynolds number (R,, =1 and R,, = 30) are
considered. In both cases, the magnetic interaction number is N = 10. The evolution of
the dimensionality anisotropy is dominated by the mean shear and is independent of the
R,,. At large times, di; &~ 0, indicating a predominance of long streamwise eddies.

The evolution of the dimensionality anisotropy for M = 20 is shown in Figure 4.
As expected, in this case the external spanwise magnetic field has a strong influence
on the development of structure anisotropy. In the case when R,, = 1, the turbulence
is driven towards a two-dimensional (2D) state corresponding to almost axisymmetric
structures aligned with the direction of the magnetic field. Note however that when
R,, = 30, the magnetic field is less effective in imposing the spanwise eddy alignment. In
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FIGURE 4. Evolution of the normalized dimensionality tensor in homogeneous MHD turbulence
being sheared in a fixed frame (A = 0) with M = Tshear/Tm = 20: diiy———— da2;—-—
dsz; —--— d12. (a) Case C321 with R,, =1, N = 10; (b) Case C3230 with R,, = 30, N = 10. At
low magnetic Reynolds numbers (on the left) the eddies are aligned with the external magnetic
field in the spanwise direction. However, at moderately high magnetic Reynolds numbers (on
the right) the mean shear is able to induce partial streamwise alignment.

wave number, k wave number, k

FIGURE 5. Evolution of the normalized dimensionality tensor in homogeneous MHD turbulence
being sheared in a fixed frame (A = 0) with M = Tehear/tm = 2: di1; ———— doo; ——
dz3; —--— di2. (a) Case C221 with R, = 1, N = 10 (b) Case C2230 with R,, = 30, N = 10.
At low R,, (on the left) the turbulence structure is characterized by equal elongation in the
streamwise and spanwise direction (corresponding to the horizontal sheets of Figure 7a). Thus
the magnetic field and the mean shear are equally effective in inducing structural anisotropy.
When R, = 30 (on the right), the mean shear dominates and the turbulence is characterized
by long streamwise eddies.

fact, at this moderately high R,, the overall dimensionality anisotropy is suppressed as
compared to the R,, = 1 case. There is also evidence that at large times the mean shear
is contributing more effectively in the anisotropy development, and as a result dj; and
dss seem to decrease at the approximately the same rate. This suggests that initially the
structures become elongated in the spanwise direction under the action of the magnetic
field. However, as the structures elongate the Joule dissipation becomes less effective,
and this allows the shear to induce a streamwise elongation.

A more interesting anisotropy evolution is obtained in the case when M = 2, that is
when the mean shear time scale is comparable to the Joule time. Figure 5a shows the
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FIGURE 6. Evolution of the normalized dimensionality tensor in homogeneous MHD turbulence
being sheared in a rotating frame with M = Tshear/tm = 2: di1y ———— daz; —-— dss;
—--— d12. (a) Case C221 with R,, =1, N = 10, and A = 0 (no rotation); (b) Case C221 with
B = 0 and A = 0.25 (hydrodynamic case); (c) Case 221 with R,, = 1, N = 10, and A = 0.25.
In a fixed frame and at low R,, (on the left) the turbulence structure is equally elongated in
the streamwise and spanwise direction (corresponding to the horizontal sheets of Figure 7a). In
the case of hydrodynamic (B = 0) shear in a rotating frame (in the middle) there is preferential
alignment of the turbulence eddies with the streamwise direction. When the magnetic field
and the frame rotation act simultaneously (on the right), a bifurcation is observed where the
structure transitions from a tendency towards hirozontal sheets at short times, to vertical sheets
at large times (see Figure 7c).

- ,
30 0% 5

(b)

F1GURE 7. Velocity magnitude contours showing the structural anisotropy induced at large times
by the combined action of spanwise frame rotation and spanwise mean magnetic field: (a) Case
C221 (M = 2,N = 10, R,, = 1) with zero frame rotation. The structure is characterized by
horizontal slabs (equal elongation in the streamwise and spanwise direction; (b) Case C221 with
frame rotation rate A = 0.25 and zero magnetic field (hydrodynamic case). Structures are mostly
elongated and aligned with the streamwise direction. Some elongation is observed in the flow
normal direction within the plane of the mean shear; (c) Case C221 with both the frame rotation
(A =0.25) and the magnetic field being active. The structure is characterized by vertical slabs.

evolution of the dimensionality anisotropy when R,, = 1. In this case, d;; =~ d33 — 0
suggesting that the mean shear and the external field are equally effective in inducing
structural anisotropy. As result, at large times the turbulence is characterized by thin
(d22 — 1) horizontal sheets. However, when R, = 30 (Fig. 5b) the mean shear dominates,
inducing long, roughly axisymmetric, eddies aligned with the streamwise direction (dy; —
0).

So far we have considered the evolution of structure anisotropy in a fixed frame. Fig-
ure 6 shows the development of the normalized dimensionality tensor in the rotating
frame for the case M = 2, N = 10, and at R,, = 1. Figure 6a corresponds to 5a and
shows that in the fixed frame, the magnetic field and the mean shear are equally ef-
fective in inducing two-dimensionality, and as a result the structure evolves towards a
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20

F1GURE 8. Comparison of the predictions of the Quasi-Linear approximation with those of full
MHD for the evolution of the Reynolds stress components normalized by the tensor trace. Solid
lines are the predictions of the DNS using the QL approximation, and symbols are DNS results
fOI' full MHD; o 11, |:| T12, 0 T22, A T33. (a) Rm = 50, N = 10, M =2 X=0.75 and (b)
R, =50, N=10, M =2, A =0.25

state characterized by horizontal sheets (see also Fig. 7a). In a frame rotating about
the spanwise axis at a rate A = 0.25, and in the absence of an external magnetic field
(hydrodynamic case), the structure evolves towards a state characterized by elongated
streamwise eddies (di1 — 0), as shown in Fig. 6. Note however, that these eddies tend
to be somewhat elongated in the z» direction, that is in the flow-normal direction within
the frame of the mean shear (dss < ds3). This flattening of the eddies is also evident
in the structure visualization of Fig. 7b. An interesting bifurcation seems to take place
in the case when the frame rotation and the external magnetic field act concurrently
(Fig. 6¢). At short times, the evolution of the normalized dimensionality tensor is similar
to the one obtained in the non-rotating case, and reveals a balance between the effects
of the mean shear and the external magnetic field. At larger times, however (/7 2 5)
a sudden transition takes place leading eventually to a state characterized by vertical
slabs (di1 = daa — 0 and d3z3 — 1). This effect has also been observed in cases C225 and
C2210.

5.2. Validity of the Quasi-Linear Approximation

One of the questions that we wanted to answer concerns the range of validity of the
Quasi-Linear (QL) approximation (3.7) and (3.8) in the presence of frame rotation and
mean shear. Here, we recall that the QL approximation was originally proposed in the
context of initially isotropic MHD turbulence (no mean deformation).

We have found that the QL approximation remains in excellent agreement with the
full MHD predictions for all the magnetic Reynolds numbers that we have considered,
which cover the range 1 < Rjs < 50. For example, Figure 5.2 shows the evolution of the
components of the Reynolds stress tensor normalized by the tensor trace. The predictions
of the QL approximation are shown as solid lines and those of the full MHD are shown as
symbols. Two different values of A are considered, and in both cases the QL and the full
MHD predictions are in excellent agreement even though the magnetic Reynolds number
is relatively high (R, = 50).

5.3. Augmentation of Turbulence in the Counter-Rotating Case

One of the main aims of this work was to establish the effect that the combined action
of an external magnetic field, mean shear, and frame rotation can have on the stability
of MHD turbulence.
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FIGURE 9. Augmentation of shear turbulence in a rotating frame by the imposition of a spanwise
magnetic field for the case R, = 50, N = 10, M = 2: turbulent kinetic energy normalized
by its initial value k/ko; ———— magnetic energy normalized by initial turbulent kinetic energy
Ey/ko; —-— total energy normalized by initial turbulent kinetic energy (k + Eb)/ko; =
turbulent kinetic energy for the hydrodynamic (B = 0) case. (a) A = 0.75, and (b) A = 1.0.

For the hydrodynamic case, it is well known that frame rotation can act to either sup-
press or augment turbulence. The parameter that determines which of the two happens
is the ratio of the frame rotation rate to the mean shear rate A\ = Qf/S (see Figure
2). For moderate counter-rotation of the frame relative to the intrinsic shear rotation,
(=0.1 £ XA £ 0.51), the turbulence is augmented as a result of the frame rotation. This is
often referred to as the “unstable” regime.

Even though we are still analyzing some of the cases that were simulated during the
summer program, we have identified several cases where the presence of the external
magnetic field, combined with the rotation of the frame and the mean shear, leads to
expansion of the “unstable” regime. We have also identified conditions under which the
magnetic fields seems to have little if any effect on the stability of the rotating shear flow.

All the cases where the magnetic field was found to lead to augmentation of the turbu-
lence lie on the left of the bifurcation envelope. That is they correspond to cases where
the frame counter rotates at a rate that is equal or larger than the rotation rate associated
with the mean shear (see Figure 2). In all cases the external magnetic field was in the
spanwise direction. On the contrary, preliminary results of cases involving a streamwise
external magnetic field and spanwise frame rotation failed to show a strong effect on the
stability of turbulent shear flow.

The effect of an imposed spawise magnetic field on the time histories of the turbulent
magnetic and kinetic energies is shown in Figure 9 for two different values of A. Both
values of A are high enough, that in the hydrodynamic case a suppression of the turbulence
is observed as evidenced both by the decay of k in time, and also by the fact that P/e < 1.
In the magnetohydrodynamic cases, after an initial transient, both the turbulent kinetic
energy k and the turbulent magnetic energy Ej grow exponentially in time. In fact, at
larger times, the magnetic energy exceeds the kinetic energy: Ej > k.

The evolution of the ratio of the production of the turbulent kinetic energy to its
dissipation rate is shown in Figure 10. In the hydrodynamic case, P/e < 1 at large times
indicating that the turbulence is suppressed a result of the strong counter-rotation of the
frame. However, when the spanwise magnetic field is present, P/e > 1 at large times,
indicating that the turbulent kinetic energy is augmented as a result of the combined
effects of the Qf and B.
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FIGURE 10. Augmentation of shear turbulence in a rotating frame by the imposition of a spanwise
magnetic field for the case R, = 50, N =10, M = 2: production over dissipation (P/e)
for the MHD case; ———- production over dissipation (P/e) for the hydrodynamic (B = 0) case;
(a) A=0.75, and (b) A = 1.0.

5.4. Scale Dependence of Anisotropy

The scale dependence of anisotropy in incompressible MHD turbulence at moderate mag-
netic Reynolds numbers remains an open question. For compressible turbulence at high
magnetic Reynolds numbers, Cho and Lazarian (2003) have found that Alfven mode
velocity fluctuations show a strong scale dependence, with the small scales being more
anisotropic than the larger ones.

We have attempted to obtain a scale dependent measure of anisotropy using the spectra
of the turbulence structure dimensionality tensor (Kassinos, Reynolds & Rogers, 2001).
Thus we define

dij (k) = 3" B(k) k]i’jj ISER) dalk) =1, (5.2)

shell shell

where the summation in (5.2) is over shells in Fourier space. For turbulence that is
isotropic at the scale set by k£ we have d;;(k) = d;;/3. For turbulence that it is two-
dimensional (2D) independent of direction z4, daa(k) = 0.

Figure 11 shows the anisotropy levels obtained for two cases with frame rotation (C2250
with A = 0.75 and C2250 with A = 1.0). Variations at very low wavenmubers are spurious
and attributed to limited sample. On the other end of the spectrum, variations beyond
k = 128 are again contaminated by the progressive loss of modes that extend beyond the
limits of the computational box (for these 256 simulations). In the intermediate range
that lies between these limits, anisotropy as measured by d;;(k) seems to exhibit a weak
increase with wave number, especially in the flow-normal directions. This trend is sug-
gestive of the observations of Cho and Lazarian (2003) in compressible MHD turbulence
at hight R,,. Cases with low R,, did not seem to exhibit this increase of anisotropy with
decreasing scale, but a more careful analysis for our results is needed in order to establish
a possible Reynolds number dependence. Both cases correspond to M = 2, that is the
time scale associated with the mean shear is twice as large as the time scale associated
with the diffusion of the magnetic field. Yet, in both cases, d;1 (k) = 0 for the entire range
of wave numbers over which results are meaningful. Thus at these relatively high R,,,
the mean shear seems to determine the overall structural anisotropy when the two time
scales are comparable. Because of the limited size of the computational box, we were
unable to adequately answer the question of anisotropy at small scales. We plan to carry
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FIGURE 11. Scale dependence of anisotropy as measured by d;;(k) (see 5.2) in homogeneous
MHD turbulence being sheared in a rotating frame: di1(k); ———— doa2(k); — — das(k).
(a) Case C2250 (R =50, N =10, M = 2) with A = 0.75 and t/t,, = 31.7, and (b) Case C2250
(Rm =50, N =10, M = 2) with X = 1.0 and ¢/t = 38.0.

a series of 5122 simulations in order to address that question more thoroughly. We also
hope that these higher-resolution simulations will allow us to clarify the slight increase
of anisotropy that was observed in the cases discussed above.

6. Conclusions and future plans

We have used direct numerical simulations to examine the dynamics of homogeneous
MHD turbulence subjected to mean shear in fixed and rotating frames. We have found
that the most interesting dynamics is observed when the time scale of the mean shear
is comparable to that of the applied magnetic field. In this regime, the magnetic field
and the mean shear exert competing influences on the structure of the turbulence and
relatively small variations in the governing parameters seem to lead to markedly different
evolving states.

One particularly significant result concerns the combined effects of the mean magnetic
field and the frame rotation on the evolution of the turbulent kinetic energy. We have
found that at sufficiently high magnetic Reynolds numbers, R, 2 40, the application of
a spanwise magnetic field leads to augmentation of the turbulence even for cases where
in absence of the magnetic field the turbulence is suppressed as a result of the frame
rotation. We have observed this effect for cases where the frame is counter-rotating
relative to the intrinsic rotation associated with the shear, and for values of the ratio of
the frame rotation rate to the shear rate beyond n & 0.51, the limit which marks the onset
of suppression of the turbulence as 7 is increased. In these flows, it was found that the
magnetic field energy, which initially is zero, grows and quickly surpasses the turbulent
kinetic energy. No such augmentation of the turbulence was observed for cases where
the frame is co-rotating with the shear. Preliminary runs where the magnetic field was
aligned with the streamwise direction also failed to exhibit such a strong augmentation
of the turbulence as a result of the presence of the field.

We have also examined the range of validity of the Quasi-Linear (QL) approximation
that was introduced by Kassinos et al. in the 2002 CTR Summer Program. The QL
approximation was originally evaluated only in the absence of mean deformation. We
have found that the predictions of the QL approximation were in excellent agreement
with those of the full MHD, for all the magnetic Reynolds numbers we have considered
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(up to R,, = 50). Other dimensionless paremeters, such as the ratio of the shear time
scale to the time scale for magnetic diffusion, seem to have little effect on the validity of
the approximation.

During the summer program we have generated a substantial amount of data. In the
coming months, we plan to analyze this more carefully in order to identify mechanisms
and effects that we want to examine more closely. To understand such effects we plan a
series of higher resolution runs. We hope this work will lead to an improved fundamental
understanding of the combined effects of mean shear, frame rotation and magnetic fields
on MHD turbulence. We plan to use this understanding for the development of improved
structure-based models of MHD shear turbulence. A deeper understanding of the mecha-
nisms that lead to instability and anisotropy in these flows is also important in the study
of accretion in stellar disks and in engineering applications such as magnetogasdynamics.
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