Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft

Concha Reid
NASA Glenn Research Center
21000 Brookpark Road
MS 309-1
Cleveland, OH 44135

A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 lander is undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their low specific energy, low energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.

This paper discusses the performance of the 28 volt, 25 ampere-hour battery through 6000 LEO cycles, which corresponds to one year on LEO orbit. Testing is being performed at 0 °C and 40% depth-of-discharge. Individual cell behaviors and their effect on the performance of the battery are described. Capacity, impedance, energy efficiency and end-of-discharge voltage at 1000 cycle intervals are reported. Results from this life-testing will help contribute to the database on battery-level performance of aerospace Li-ion batteries and low temperature cycling under LEO conditions.
Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft

Concha Reid
NASA GLENN RESEARCH CENTER
CLEVELAND, OHIO

2004 NASA Aerospace Battery Workshop

Marriott - Huntsville
Huntsville, AL

November 16-18, 2004

Background

- Life cycle data of lithium-ion cell chemistry is critical to continue to establish life and validate technology for flight programs
- Battery level testing is required in addition to individual cell level testing
- The test battery was designed, built and flight-qualified for the Mars 2001 Surveyor Program Lander
- The current NASA goal for lithium-ion technology for LEO is 30,000 cycles, the equivalent of about five years on orbit
- 5 flight-qualified batteries became available for testing after the cancellation of the flight program
- Provided a unique opportunity to perform laboratory life-cycle testing on flight hardware

Glenn Research Center at Lewis Field
Background (cont.)

- Battery Characteristics
 - Lithium-Ion Chemistry
 - 25 ampere-hours
 - 28 Volts
 - 8 Cells

- Four test organizations
 - GRC - LEO testing at 0 °C
 - JPL - LEO testing at 20 °C, Mission Simulation testing
 - AFRL - LEO testing at 23 °C
 - NRL - GEO testing

-- Glenn Research Center at Lewis Field --

--- LEO Cycling at 0 °C ---

Charge at C/2 (12.5 A) to 32 V
Taper for the remainder of the 55 minute charge period
Discharge at 17.14 A (40% DOD) for 35 minutes

--- Glenn Research Center at Lewis Field ---
Temperature Profile during LEO Cycling

Chamber is set at 0 °C

- Warmest cell = Cell 4 (lower middle of stack)
- Coldest cell = Cell 1 (lowest cell in the stack)

End-of-Discharge Voltage

- 27.95 V at end of cycle 5
- 27.4 V at end of cycle 6000
Cell Voltages During LEO Cycling

Cell Voltage Dispersion Trends

Glenn Research Center
at Lewis Field

NASA
Energy Efficiency
(during LEO cycling at 40% DOD)

Efficiency = 93% at cycle 10
Efficiency = 92% at cycle 3000
Efficiency = 91% at cycle 6000

Specific Energy at 40% and 100% DOD

100% DOD at C/2 Rate
LEO at 40% DOD

Glenn Research Center at Lewis Field

NASA
100% DOD Capacity Test Results at 0 °C

- Charge at C/2 to 32 V or until the first cell reaches 4.05V, allow current to taper to C/50
- Discharge at 0.7C (40% DOD rate) to 24.0 V or until the first cell reaches 2.5 V

<table>
<thead>
<tr>
<th>Interval (after X cycles)</th>
<th>Capacity (Ah)</th>
<th>% of Initial Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>25.7</td>
<td>100</td>
</tr>
<tr>
<td>1000</td>
<td>25.0</td>
<td>97</td>
</tr>
<tr>
<td>2000</td>
<td>24.9</td>
<td>97</td>
</tr>
<tr>
<td>3000</td>
<td>24.6</td>
<td>96</td>
</tr>
<tr>
<td>4000</td>
<td>24.5</td>
<td>95</td>
</tr>
<tr>
<td>5000</td>
<td>24.5</td>
<td>95</td>
</tr>
<tr>
<td>6000</td>
<td>24.2</td>
<td>94</td>
</tr>
</tbody>
</table>

Glenn Research Center

at Lewis Field

Capacity Remaining in Battery after LEO Cycling

Glenn Research Center

at Lewis Field
Effect of Capacity Checks on Cell Voltage Dispersion on Charge

Effect of Capacity Checks on Cell Voltage Dispersion on Discharge
Current-Interrupt Impedance Test at 0 °C

Charged at 5 A (C/5) to 32.4 V, Discharged at 25 A for 10 seconds
Rested 2 hours before and after each pulse
Discharged at 2.5 A for 2 hours (removed 5 Ahr) between pulses

Battery Impedance at 0 °C at Different Intervals (calculated 1 hour after pulse)
Conclusions

- Battery has delivered greater than 6000 cycles (equivalent to over 1 year in low Earth-orbit).
- Battery delivered 94% of the initial capacity after 6000 cycles (measured using 100% DOD at 0 °C).
- Through 6000 cycles, cell voltage dispersion measured 95 mV on charge and 36 mV on discharge. Cell balancing is projected to be necessary after 7000 cycles.
- The battery end-of-discharge voltage decreased 550 mV over 6000 cycles.

Glenn Research Center

at Lewis Field
Future Testing

- LEO cycling at 40% DOD at 0 °C will continue.
- Capacity at 100% DOD will be measured at 0 °C every 1000 cycles.
- Current interrupt-impedance tests at 0 °C will be repeated every 1000 cycles. Changes in impedances as a function of cycle life will be observed.
- Cells will be rebalanced when cell voltage dispersion exceeds 100 mV on charge and 80 mV on discharge.