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ABSTRACT 

The objective of this study was to determine the effects of buoyancy on the absolute 

instability of low-density gas jets injected into high-density gas mediums. Most of the 

existing analyses of low-density gas jets injected into a high-density ambient have been 

carried out neglecting effects of gravity. In order to investigate the influence of gravity on 

the near-injector development of the flow, a spatio-temporal stability analysis of a low-

density round jet injected into a high-density ambient gas was performed. The flow was 

assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. 

The variables were represented as the sum of the mean value and a normal-mode small 

disturbance. An ordinary differential equation governing the amplitude of the pressure 

disturbance was derived.  The velocity and density profiles in the shear layer, and the 

Froude number (signifying the effects of gravity) were the three important parameters in 

this equation. Together with the boundary conditions, an eigenvalue problem was 

formulated. Assuming that the velocity and density profiles in the shear layer to be 

represented by hyperbolic tangent functions, the eigenvalue problem was solved for 

various values of Froude number. The Briggs-Bers criterion was combined with the 

spatio-temporal stability analysis to determine the nature of the absolute instability of the 

jet – whether absolutely or convectively unstable. The roles of the density ratio, Froude 

number, Schmidt number, and the lateral shift between the density and velocity profiles 

on the absolute instability of the jet were determined. Comparisons of the results with 

previous experimental studies show good agreement when the effects of these variables 

are combined together. Thus, the combination of these variables determines how 

absolutely unstable the jet will be.  



 

 

 

NOMENCLATURE 

English Symbols 

C1  constant of integration of equation (15) 

C2  constant of integration of equation (16) 

d  nozzle diameter in Cetegen (1997-2) 

D  jet diameter 

Db  binary diffusivity coefficient 

Fr  Froude number; 
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g  acceleration due to gravity 

G  non-dimensional coefficient of the buoyancy term in the pressure disturbance 

equation; 
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i  1�  

k  wavenumber 

�k  step-size of the real and imaginary parts of the wavenumber 

m  azimuthal wavenumber 

N  parameter that controlled the jet mixing layer thickness in Monkewitz and Sohn 

(1988) 

P  Prandtl number 

p  pressure 

r  radial coordinate 



 

 

ro  low-density jet exit radius 

�r  lateral shift between the inflexion points of velocity and density profiles 

R  radius of the jet shear layer 

Re  radius of the jet exit 

Ri  Richardson number; 
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Ri1  Richardson number; 1
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S  Density ratio 

Sc  Schmidt number; 
b
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D
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t  time 

T  temperature 

u  jet axial velocity component 

U  jet base velocity 

Uc  jet base centerline velocity 

v  jet radial velocity component  

w  jet azimuthal velocity component 

x  axial coordinate 

Yj  local mass fraction of injected gas 

Greek Symbols 

�ij  Kronecker delta 

�  del operator�

�  azimuthal coordinate 



 

 

	  wavelength 


  velocity ratio in Monkewitz and Sohn (1988); j
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�  fluid viscosity 

�  fluid kinematic viscosity 

�  fluid mass density 

�j  fluid mass density of low-density gas 

�f  fluid mass density of high-density ambient gas 

�  shear layer momentum thickness 

�  angular frequency 

Superscripts 

( )'  fluctuations 

(¯  )  averaged variable 

(^)  amplitude of variable 

(˜)  dimensional variable 

Subscripts 


  ambient gas property 

j  low-density gas property 



 

 

 

1. Introduction 

 Plumes of diffusion flames, fuel leaks, engine and industry exhaust, propulsion in 

space, materials processing, and natural phenomena such as fires and volcanic eruptions 

are a few examples of low-density gas jets injected into higher density ambient gases 

encountered in many engineering and technical applications. A number of experimental 

studies1-4 indicate that at certain conditions, low-density gas jets injected into high-

density gases may sustain an absolute instability leading to highly periodic oscillations. A 

similar phenomenon is observed in the flickering of diffusion flames that is attributed to 

buoyancy5,6.   Recent experimental studies in drop-towers7,8 also indicate that the 

observed periodic oscillations vanish when effects of gravity are removed.  This served as 

the motivation for the present investigation to study the influence of gravity on the 

disturbances in the near-injector region of low-density jets.  This study aims to highlight 

and improve our understanding of the nature of flow instability in low-density round gas 

jets injected into high-density gases.  

 Round jets with homogeneous shear layers have been studied extensively in the past. 

The near-injector region of a round jet, as influenced by disturbances, has a direct 

influence on the flow development in the far-field of the jet. Several authors9-11 have 

shown that linear stability analysis models the large-scale structures of the near-injector 

region well. Batchelor and Gill12 studied the stability of steady unbounded 

axisymmetric single-phase jet flows of the wake-jet type with nearly parallel streamlines 

and obtained the critical Reynolds number of the jet.  Mollo-Christensen13 and Crow and 

Champagne14 found that the near-injector large-scale structure of jet turbulence was well 



 

 

modeled by linear stability theory.   Gaster et al.15 applied the inviscid stability theory to 

model the large-scale vortex structures that occurred in a forced mixing layer. The 

comparison between experimental data and computational models showed that the 

agreement in both amplitude and phase velocity of the disturbances across the various 

sections of the flow was excellent on a purely local basis. Michalke16 reviewed early 

studies of jet instability. These studies were carried out to understand the transition from 

laminar flow to turbulence and to describe the evolution of the large-scale coherent 

structures in the near-injector field. The analysis was based on the locally parallel flow 

assumption and the neglect of fluid viscosity, heat conduction and dissipation, and 

gravitational effects. Small disturbances in the form of normal modes were introduced in 

the equations of motion and the equations were linearized. The critical Reynolds number 

denoting the transition from laminar to turbulent flow was found. Also, the streak line 

patterns obtained using the results of the linear stability analysis were in good agreement 

with the first-stage of the vortex rolling-up process that was observed experimentally in 

the near-injector field. Cohen and Wygnanski17 concluded that the linear stability analysis 

was able to correctly predict the local distribution of amplitudes and phases in an 

axisymmetric jet that was excited by external means. The analysis was also capable of 

predicting the entire spectral distribution of velocity perturbations in an unexcited jet over 

a short distance in the streamwise direction. 

 Monkewitz and Sohn18 re-examined the linear inviscid stability analysis of 

compressible heated axisymmetric jets with particular attention to the impulse response 

of the flow.  Two different responses were identified based on the results. In one case, the 

flow was absolutely unstable, when a locally generated small disturbance grew 



 

 

exponentially at the site of the disturbance and eventually affected the entire flow region. 

In the other case termed convective instability, the disturbance was convected 

downstream leaving the mean flow undisturbed.  It was shown that heated (low-density) 

jets injected into ambient gas of high density developed an absolute instability and 

became self-excited when the jet density was less than 0.72 times the ambient gas 

density.  The critical density ratio (demarcating absolute and convective stability) was 

much lower, about 0.35, for the first azimuthal wavenumber mode than that for the 

axisymmetric wavenumber mode. This indicated the dominance of the axisymmetric 

mode during jet instability for high-density ratios.  Yu and Monkewitz19 carried out a 

similar analysis for two-dimensional inertial jets and wakes with non-uniform density and 

axial velocity profiles. Again, gravitational effects were neglected and the flow was 

assumed to be locally parallel. It was found that the absolute frequencies and 

wavenumbers of small disturbances in the near-injector region scaled with the jet/wake 

width and not on the thickness of the individual mixing layers, suggesting that the 

absolute instability was brought about by the interaction of the two mixing layers. 

Jendoubi and Strykowski20 considered the stability of axisymmetric jets with external co-

flow and counterflow using linear stability analysis. The boundaries between absolute 

and convective instability were distinguished for various parameters: jet-to-ambient 

velocity ratio, density ratio, jet Mach number, and the shear layer thickness in the 

absence of gravitational effects. Raynal et al.21 carried out experiments with variable-

density plane jets issuing into ambient air. A range of density ratios (0.14 to 1) and a 

range of Reynolds numbers based on the slot width and the jet fluid viscosity (250 to 

3000) were studied. It was found that when the jet to ambient fluid density ratio was less 



 

 

than 0.7, the jets exhibited self-excited oscillations. Theoretical results based on the 

analysis of Yu and Monkewitz19 indicated the presence of absolute instability for density 

ratios less than 0.94 for plane jets, which was different from the value of 0.7 observed in 

experiments. Raynal et al.21 attempted to explain this discrepancy by taking into account 

the differences in the location of the inflection points in the density and velocity profiles 

for the cases of heated jets injected into air and the isothermal helium-air jets injected 

into air.   

 Note that gravitational effects have been neglected in all of the analyses listed 

above. The neglect of gravitational effects has been justified by the authors because of 

the small magnitude of the Richardson number based on the jet velocity and jet diameter. 

However, within the shear layer where the density and velocity change from jet to 

ambient values, the gravitational effects may not be negligible.  The present study 

extends the work of Michalke and Hermann22to consider the effects of gravity on the 

instability of a low-density gas injected into a high-density ambient. The specific 

objectives of the study were: 

(a) to determine the effects of buoyancy on the absolute stability of low-density 

round jets injected into high-density ambient gases by performing a linear 

spatio-temporal stability analysis; and 

(b) to determine the nature of the instabilities, whether absolute or convective, and 

to demarcate the boundary separating the two modes of instability. 

 



 

 

2. Theory 

 A round low-density gas jet (radius R and density �j) is discharged into a high-

density ambient gas medium (density �f ) at atmospheric pressure. The basic jet flow is 

assumed to be a locally inviscid parallel flow with an axial velocity component varying 

radially. The flow is assumed to be isothermal to simplify the analysis. The radial 

velocity of the jet is considered small and, therefore, neglected. This corresponds to the 

"locally-parallel" assumption normally used in the linear stability analysis. 

 Representing the velocity components by � �, ,u v w� � � , in cylindrical coordinates 

� �, ,x r �� �  centered at the origin of the jet, the conservation equations governing the flow 

are : 

 
� � � � � �1 1

0
u r v w

t x r r r

� � ��

�

� � ��

 
 
 �

� � � �

� � �� � � ��

� � � �
     (1) 

 � � � �1i

v
v v p g u

t
� � � � �

f

�� 


 �� � �� 
 � 
�� �� ��� �

�
� � �

� �     (2) 

where g is the acceleration due to gravity and �i1 is the Kronecker delta function with i = 

1 representing the axial direction. The binary mass diffusion equation for the diffusion of 

the injected gas in the ambient gas medium is given in terms of the local mass fraction of 

the injected gas23: 
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 In the linear stability analysis, the variables are represented as the sum of the base 

state value and a fluctuation.  Substitution of these variables into equations (1) and (2), 

linearization,  and the neglect of  viscous and diffusive terms, yields 
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The density of the mixture is related to the mass fraction by 
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Substituting for Yj in equation (3), linearizing and neglecting the diffusive term, we 

obtain 
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Using equation (10), equation (5) reduces to  
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The fluctuations are assumed to be normal mode disturbances given by 
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Substituting the expressions (12) in equations (6), (7), (8), (9) and (10), we obtain the 

pressure disturbance equation:  
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Nondimensionalizing equation (12) using �f, Uj, and � (the momentum thickness of the 

jet boundary layer); and setting m = 0 gives the nondimensionalized pressure disturbance 

equation - for the varicose mode: 
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With no density gradient equation (14) reduces to the equation governing the instability 

of constant-density jets22. Also, as r �� , and if gravitational effects are neglected, 

equation (14) is identical to the equation used by Yu and Monkewitz19 and Raynal et al.21 

in the analysis of plane jets. Inclusion of buoyancy effects indicates that the stability 

characteristics are altered by the additional term present in equation (14).  Thus, an 

eigenvalue problem is posed, for specified mean velocity and density profiles, by 

equation (14) along with the boundary conditions:  
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 As 0ro  and r �� , 
dU

dr
 and 

d

dr

�
 equal zero and the pressure disturbance 

equation (13) reduces to the modified Bessel equation. The solutions of the modified 

Bessel equation satisfying the boundary conditions (14), as 0ro  and r �� , are 
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respectively, where the superscripts i and o represent the inner and outer solutions 

respectively. Im and Km are the modified Bessel functions of the order m and C1 and C2 

are arbitrary constants.  

 The basic jet velocity profile, � �(r), is given by that used by Michalke and 

Hermann22, 
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where Uj is the injected jet uniform velocity and Uf is the uniform co-flow velocity.  For 

this study the co-flow velocity was set to zero for a quiescent ambient gas and R is the 

radius of the jet defined as the radial location corresponding to the center of the shear 

layer.  As shown by Crighton and Gaster24, 
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for no co-flow. The values of the jet parameter used in this study are 25, 10 and 5 

corresponding to 
� �2

x
R

�  = 0, 1 and 2.67. This is within the near-injector region of the jet 

and allows for the effects of buoyancy to manifest as the jet proceeds downstream. Figure 

1 illustrates the basic jet velocity profiles at these three locations. The shear layer widens 

as the jet proceeds downstream from R/� = 25 to R/� = 5 indicating the downstream 

development of the jet.  A hyperbolic tangent profile is also assumed for the basic density 

profile in the shear layer, 
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Figure 2 illustrates the density profiles at R/� = 10 for �j/�f = 1, 0.6, and 0.14. 

 The effects of buoyancy on the jet were studied by investigating the variation of 

the real and imaginary parts of both the complex wavenumber and frequency with the 

Froude number. The Froude number is the ratio of the inertia force to buoyancy force and 

is defined as 
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 To solve the disturbance equation (14), a fourth-order Runge-Kutta scheme with 

automatic step-size control is used to integrate the equation (14). The infinite integration 

domain, 0 < r < � is divided into two finite domains: an inner domain R � r � 0 and an 

outer domain rf � r � R, where R is the jet radius and rf is a specified large radius where 

the gradients of the velocity and density are small. A shooting method is used to 

determine �(k) such that both P and 
dP

dr
 are  continuous at r = R. A parabolic complex 

zero-search procedure was used to vary � for a specified k until the matching conditions 

were satisfied to a minimum accuracy within 10-10.  

 For the spatio-temporal linear stability analysis, both the frequency and wavenumber 

are considered complex.  The spatio-temporal linear stability along with the Briggs-Bers 

criterion25, 26 was used to determine the absolute stability and the nature of the absolute 

stability of the jet. The jet is said to be absolutely unstable when the complex frequency 

eigenvalue is a saddle point and its imaginary part is greater than zero. If its imaginary 

part is less than zero, the jet is convectively unstable.  Therefore, the saddle points in the 

complex (�, k) domain were determined and the satisfaction of the pinching 

requirements was verified using the mesh-searching technique described by Li and 



 

 

Shen27.  

   

3. Results and Discussion 

 Preliminary calculations confirmed the conclusion of Monkewitz and Sohn18 that the 

varicose mode (m = 0) is more absolutely unstable than the sinuous mode (m = 1) in the 

near-injector region of round jets. This is illustrated in Figure 3. Figure 3 depicts the 

variation of the absolute temporal growth rate �i
o with density ratio of an inviscid top-hat 

jet bounded by a cylindrical vortex sheet at m = 0 and m = 1. At all density ratios studied, 

�i
o values are higher for the varicose mode than for the sinuous mode. Also, the density 

ratio at which �i
o first becomes positive, as density ratio is reduced, is higher for the 

varicose mode (at a density ratio of 0.66) than for the sinuous mode (at a density ratio of 

0.35).  Therefore, the following results on the instability of a low-density round gas jet 

injected into a high-density ambient gas concentrate on the varicose mode (m = 0).  

Results of the temporal stability analysis of low-density jets injected into a high-

density ambient gas were first carried out28.  A non-dimensional parameter, G, was found 

to play an important role in the temporal instability:  
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G is a non-dimensional number that compares the acceleration of the large-scale 

structures of the jet due to buoyancy to that due to inertial forces. It was found that the 

effect of buoyancy at low Fr values was to cause the jet instabilities to increase 

exponentially. 



 

 

 The focus of this paper is the effects of the inhomogeneous shear-layer and 

buoyancy on the nature of the absolute instability. This was done by first studying the 

effect of varying the density ratio from 0.99 to 0.14, while varying the Froude number 

from infinity to 0.5.  The complex frequency � and the complex wavenumber k are 

normalized in the present results using the shear-layer momentum thickness � and the 

velocity difference �U = Uj - Uf.  First, the present results were compared with those of 

Monkewitz and Sohn19 and a favorable agreement was obtained28.  

Effect of density ratio 

The imaginary part �i
o of the complex absolute frequency, in this study, denotes 

the absolute temporal growth rate of the disturbances. When �i
o is positive (and the 

Briggs-Bers criterion is satisfied) the jet is absolutely unstable while for a negative �i
o 

the jet may be convectively unstable. A constant-density jet (such as an air-in-air jet) is 

convectively unstable; as the density ratio is reduced (a low-density jet injected into a 

high-density gas medium), the nature of instability of the jet is changed from convective 

instability to absolute instability.   This density ratio, at which the jet first becomes 

absolutely unstable, is referred to as the critical density ratio (Sc). In Figure 3, for 

example, this is the density ratio at which �i
o = 0. The real part �r

o of the absolute 

complex frequency is the frequency corresponding to the absolute temporal growth rate 

of the disturbance. The imaginary part ki
o of the complex wavenumber is the absolute 

spatial growth rate of the disturbances. Figure 4 depicts the variation of the absolute 

temporal growth rate of the disturbances with the density ratio at R/� = 10 and 5 with 

Froude number fixed at infinity (no buoyancy effects). At R/� = 10, the growth rate is 

increased by about 201%, as the density ratio is reduced from 0.99 to 0.14 . The critical 



 

 

density ratio, Sc, at this location is 0.525. The absolute growth rates of the jet disturbance 

are positive for density ratios below 0.525 indicating that  the jet is absolutely unstable. 

However, for density ratios above 0.525 the absolute growth rates are negative meaning 

the jet is convectively unstable.  

As the jet proceeds downstream from an axial location corresponding to R/� = 10 

to R/� = 5, the absolute temporal growth rates decrease for all density ratios. The absolute 

temporal growth rates are decreased by about 76% at a density ratio of 0.14 and by about 

316% at a density ratio of 0.99 (the other extreme of the range of density ratios studied). 

The percentage decrease in the growth rates for density ratios between 0.14 and 0.99 is 

increased from 76% to 316%. Trends  similar to those observed at R/� = 10 for the 

growth rates are also observed at R/� = 5, but the critical density ratio is decreased to 

0.17. Figure 4 illustrates the change in critical density ratio as the jet proceeds from R/� = 

10 to R/� = 5. 

 The variation of the real part of the absolute frequency �r
o as the density ratio is 

increased from 0.14 to 0.99 for R/� = 10 and 5 is illustrated in Figure 5. At R/� = 10 and 

5, �r
o is increased by about 107% and 62%, respectively, as the density ratio increased 

from 0.14 to 0.99. �r
o is increased as the flow proceeds from R/� = 10 to 5 at all density 

ratios. At extremes of the range of density ratios investigated (0.14 and 0.99) �r
o is 

increased by about 83% and 43%, respectively, as the flow proceeds from R/� = 10 to 5. 

 The absolute spatial growth rates -ki
o are plotted against density ratio for R/� = 10 

and 5 in Figure 6. At R/� = 10, the absolute spatial growth rate is increased by about 76% 

as the density ratio is increased from 0.14 to 0.99. At R/� = 5, the absolute spatial growth 



 

 

rate is increased by about 71% as the density ratio is increased from 0.14 to 0.99. And, as 

the jet proceeds downstream from R/� = 10 to R/� = 5, the absolute spatial growth rates 

are increased by about 65% at density ratio = 0.14 and by about 60% at density ratio = 

0.99. 

 Figure 7 illustrates the variation of the real part of the absolute wavenumber kr
o as 

the density ratio is increased from 0.14 to 0.99 for R/�  values of 10 and 5. At R/� = 10, 

kr
o is increased by about 47% as the density ratio is increased from 0.14 to 0.99 while at 

R/� = 5, kr
o is increased by about 27% as the density ratio is increased from 0.14 to 0.99. 

And, as the jet proceeds from R/�  = 10 to R/� = 5, kr
o is increased by about 70% and 

47% at density ratios of 0.14 and 0.99 respectively.  

The above trends of the real and imaginary parts of the saddle points (�o, ko) are 

similar to those presented by Monkewitz and Sohn19 in their study on the absolute 

instability of hot jets at an axial location of x/R = 2 (R/� = 10), with buoyancy effects 

neglected. Next, buoyancy effects are introduced and the influence of buoyancy on the jet 

instability is discussed.   

 

Effect of buoyancy 

 Figures 8 and 9 illustrate the variation of the absolute temporal growth rate of the 

disturbances with the density ratio for several Froude numbers at R/� = 10 and 5 

respectively. At both R/� = 10 and 5, as the Froude number is reduced from infinity the 

absolute temporal growth rate varies with the density ratio only, but below a Froude 

number of 2 the absolute temporal growth rate varies with both the density ratio and 

Froude number. For R/� = 10, the absolute temporal growth rate is increased as the 



 

 

density ratio is reduced for large Froude numbers. As the density ratio is  reduced from 

0.14 to 0.99, the absolute temporal growth rate is increased by about 200% at Fr = � and 

10. At Fr = 5, the absolute temporal growth rate is increased by about 188%. For Fr = 2, 

1.58, and 1, the absolute temporal growth rates are enhanced by about 131%, 99%, and 

20% respectively. Below a Froude number of unity, this trend is reversed.. At Fr = 0.75 

and 0.5, the absolute temporal growth rates are increased by about 28% and 76% 

respectively, as the density ratio is increased from 0.14 to 0.99. The absolute temporal 

growth rates are higher at each density ratio as the Froude number alone is decreased 

below Fr = 5. For Fr   5, there is no significant change in the absolute temporal growth 

rates due to changes in the Froude number, indicating that the jet is momentum-driven at 

Fr   5 and that effects of buoyancy are small. At R/� = 5, the trend is reversed at Froude 

numbers below 0.75 and the same trends observed at R/� = 10 are observed at this 

downstream location also.  

As noted earlier, the critical density ratio below which the jet is absolutely 

unstable for a given Froude number is of interest. Figures 10 and 11 depict the variation 

of the critical density ratio with Froude number at R/� = 10 and 5 respectively. At R/� = 

10, at large Froude numbers, the critical density ratio tends to 0.525, and the “critical 

Froude number” below which the jet is absolutely unstable for all density ratios studied is 

1.58. Thus, at density ratios less than 0.525 the jet is absolutely unstable at this location 

and for Fr < 1.58 any low-density gas jet injected into a high density ambient gas 

becomes absolutely unstable at R/� = 10. For R/� = 5, as the Froude number tends to a 

large value, the critical density ratio tends to 0.17 and the “critical Froude number” is 



 

 

1.015. Thus the critical density ratio and critical Froude number appear to be functions of 

the shear layer width and thus the axial location downstream of the jet. 

 The real part of frequencies corresponding to the absolute temporal growth rates 

of the saddle points discussed above are depicted in Figures 12 and 13 for R/� = 10 and 5 

respectively. Note that the real part of the normalized frequency �r
o might be interpreted 

as the Strouhal number expressed in terms of the shear-layer momentum thickness, �!!and 

the velocity difference, �U = Uj - Uf. At R/� = 10, �r
o is increased by about 105% at Fr 

  1.58 as the density ratio is increased from 0.14 to 0.99. Below the critical Fr = 1.58, at 

this axial location, �r
o is increased by about 102%, 105%, and 112% at Fr = 1, 0.75 and 

0.5 respectively as the density ratio is increased from 0.14 to 0.99. Above the critical 

Fr,��r
o does not change significantly with Fr, although it is a function of density ratio; 

whereas, below the critical Fr at this location �r
o depends on both the density ratio and 

Fr, suggesting that the critical Fr demarcates two jet flow regimes. For values less than 

the critical Fr, the flow is momentum-driven, while at values greater than the critical Fr 

the flow is within the buoyancy-driven regime.  The same trends are noticed at the axial 

location corresponding to R/� = 5, and again the dependence on Fr is noticed below the 

critical Fr, at this location, of 1.015. 

 From the discussions above it is clear that there is a critical Froude number, which 

depends on axial location, below which �r
o exhibits a dependence on the Froude number. 

This is also the Froude number below which the flow is absolutely unstable for all 

density ratios studied. 

 

 



 

 

Effect of co-flow 

 Figure 14 illustrates the effect of co-flow on the absolute temporal growth rates of 

the jet flow at R/� = 10 for �j/�f = 0.14 and Fr = �, 10, 5, 2, 1, 0.75 and 0.5. Results are 

presented for co-flow velocity ratios of Uf/�U = 0, 0.5 (corresponding to Uf = 0.33Uj), 

and 1 (corresponding to Uf = 0.5Uj). As the co-flow is increased (Uf/�U is increased 

from 0 to 1), it is observed that the absolute temporal growth rates of the disturbances 

decrease linearly at each Fr. An increase in co-flow leads to a decrease in the magnitude 

of mean shear that serves as the driving force for the instability, thus, resulting in a 

decrease in the growth rates. As Uf/�U is increased from 0 to 1, at this axial location, the 

absolute growth rates are reduced by about 414% for Fr " 2, and about 359%, 257%, 

204%, and 137% at Fr = 2, 1, 0.75 and 0.5 respectively. Though the effect of co-flow is 

felt less as Fr is decreased, it is obvious from Figure 14 that the presence of co-flow tends 

to make the previously absolutely unstable flow become convectively unstable. The 

variation of the real part of the complex absolute frequency �r
o at the saddle points with 

co-flow is illustrated in Figure 15 for �j/�f = 0.14 and Fr = �, 10, 5, 2, 1, 0.75 and 0.5 at 

an axial location corresponding to R/� = 10. An increase in co-flow causes �r
o to 

increase. As Uf/�U is increased from 0 to 1, �r
o is increased by about 53% at all Fr. 

Note again the reducing effect of co-flow as Fr decreased below 10. 

 

  

 

 

 



 

 

 

4.  Conclusions 

 In this study, the absolute stability characteristics of a low-density round gas jet 

injected into a high-density ambient gas were investigated. A linear spatio-temporal 

stability analysis was performed to solve for eigenvalues of the pressure disturbance 

equation obtained from the simultaneous solution of the continuity equations and the 

equations of motion. The equation was solved numerically and a mesh-searching 

technique was used to determine the saddle points. The limits of the k-plane for the mesh-

searching technique employed obtained from the results of a linear temporal analysis of a 

previous paper by the authors. The effects of buoyancy and density ratio on the absolute 

instability of the jet were investigated using the linear spatio-temporal stability analysis.

 Reducing the density ratio steepens the density gradient in the shear layer causing 

additional disturbance. At a Froude number value of Fr = �, as the density ratio reduces, 

the low-density jet injected into a high-density gas medium becomes absolutely unstable 

at a critical density ratio of 0.525 and 0.17 at axial locations corresponding to R/�  = 10 

and 5 respectively. Below this critical density ratio, reducing the density ratio further 

causes the jet to become more absolutely unstable. As the Froude number decreases to 

account for increasing effect of buoyancy, the critical density ratio of the jet increases. 

Thus, reducing the Froude number has the effect of causing the jet to become absolutely 

unstable at higher density ratios. At low Froude numbers, buoyancy causes the jet 

instabilities to increase exponentially which accounts for the abrupt breakdown of the jet 

large-scale structures observed in experiments at low Froude numbers. There is a critical 

Froude number below which the jet is absolutely unstable at all density ratios less than 



 

 

unity. This critical Froude number also demarcates the jet flow into the momentum-

driven regime and the buoyancy-driven regime similar to the experimentally-observed 

Strouhal number regimes.  Increasing the co-flow velocity reduces the shear layer 

thickness and thus the energy available for the growth of the instabilities in the jet. Thus 

increasing co-flow velocity makes the jet less absolutely unstable. causes the jet to be less 

absolutely unstable. At lower Froude number values decreasing the relative radial 

location (negative lateral shift) of the density profile with respect to the velocity profile 

causes the jet to be more absolutely unstable. 
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