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ABSTRACT 
It has been observed in previous experimental studies that 

round helium jets injected into air display a repetitive structure 
for a long distance, somewhat similar to the buoyancy-induced 
flickering observed in diffusion flames.  In order to investigate 
the influence of gravity on the near-injector development of the 
flow, a linear temporal stability analysis of a round helium jet 
injected into air was performed.  The flow was assumed to be 
isothermal and locally parallel; viscous and diffusive effects 
were ignored. The variables were represented as the sum of the 
mean value and a normal-mode small disturbance. An ordinary 
differential equation governing the amplitude of the pressure 
disturbance was derived.  The velocity and density profiles in 
the shear layer, and the Froude number (signifying the effects 
of gravity) were the three important parameters in this 
equation. Together with the boundary conditions, an eigenvalue 
problem was formulated. Assuming that the velocity and 
density profiles in the shear layer to be represented by 
hyperbolic tangent functions, the eigenvalue problem was 
solved for various values of Froude number. The temporal 
growth rates and the phase velocity of the disturbances were 
obtained. The temporal growth rates of the disturbances 
increased as the Froude number was reduced (i.e. gravitational 
effects increased), indicating the destabilizing role played by 
gravity. 

 

NOMENCLATURE 

English Symbols 
d  jet diameter 
Db  binary diffusivity coefficient 

Fr  Froude number; 
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g  acceleration due to gravity 
G non-dimensional coefficient of the buoyancy 

term in the pressure disturbance equation; 
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i  1−  
k  wavenumber 
m  azimuthal wavenumber 
p  pressure 
r  radial coordinate 
ro  low-density jet exit radius 
R  radius of the jet shear layer 
S  Density ratio 

Sc  Schmidt number; 
b

Sc
D
υ

=  

t  time 
u  jet axial velocity component 
U  jet base velocity 
Uc  jet base centerline velocity 
v  jet radial velocity component  
w  jet azimuthal velocity component  
x  axial coordinate 
Yj  local mass fraction of injected gas 

Greek Symbols 
δij  Kronecker delta 
∇  del operator 
φ  azimuthal coordinate 
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λ  wavelength 
µ  fluid viscosity 
υ  fluid kinematic viscosity 
ρ  fluid mass density 
ρj  fluid mass density of low-density gas 
ρ∞ fluid mass density of high-density ambient 

gas 
θ  shear layer momentum thickness 
Ω  angular frequency 

Superscripts 
( )'  fluctuations 
(¯ )  averaged variable 
(^)  amplitude of variable 
(˜)  dimensional variable 
 

Subscripts 
∞  ambient gas property 
j  low-density gas property 
 

 
INTRODUCTION 

Low-density gas jets injected into higher density ambient 
gases are encountered in many engineering and technical 
applications such as plumes of diffusion flames, fuel leaks, 
engine and industry exhaust, and in natural phenomena such as 
fires and volcanic eruptions. Recent experimental studies 
(Monkewitz et al, 1990; Subbarao and Cantwell, 1992; Kyle 
and Sreenivasan, 1993; Cetegen and Kasper, 1996) indicate 
that at certain conditions, low-density gas jets injected into 
high-density gases may sustain an absolute instability leading 
to highly periodic oscillations.  This phenomenon is similar to 
the buoyancy-induced flickering observed in diffusion flames 
(Buckmaster and Peters, 1986; Chen et al., 1988; Cetegen and 
Dong, 2000). It is thus plausible that the periodicity observed 
in the oscillations of low-density gas jets injected into a high-
density medium is related to buoyancy effects. Therefore, an 
investigation of the influence of gravity on the disturbances in 
the near-injector region of low-density jets is necessary.  This 
study aims to highlight as well as improve the understanding of 
the nature of flow instability in low-density round gas jets 
injected into high-density gases.  

 Round jets with homogeneous shear layers have been 
studied extensively in the past.  The near-injector region of a 
round jet, as influenced by disturbances, has a direct influence 
on the flow development in the far-field of the jet. Early studies 
of jet instability were reviewed by Michalke (1984). These 
studies were carried out to understand the transition from 
laminar flow to turbulence and to describe the evolution of the 
large-scale coherent structures in the near-injector field.  The 
critical Reynolds number denoting the transition from laminar 
to turbulent flow was documented. Also, it was found that the 
streak line patterns obtained using the results of the linear 

stability analysis were in good agreement with the first-stage of 
the vortex rolling-up process that was observed experimentally. 
Cohen and Wygnanski (1987) concluded that the linear stability 
analysis was able to correctly predict the local distribution of 
amplitudes and phases in an axisymmetric jet that was excited 
by external means. 

 Monkewitz and Sohn (1988) re-examined the linear 
inviscid stability analysis of compressible heated axisymmetric 
jets with particular attention to the impulse response of the 
flow, using assumed forms of the velocity and density profiles 
in the shear layer.  Two different responses were identified 
based on the results. In one case, the flow was absolutely 
unstable, when a locally generated small disturbance grew 
exponentially at the site of the disturbance and eventually 
affected the entire flow region. In the other case termed 
convective instability, the disturbance was convected 
downstream leaving the mean flow undisturbed. Monkewitz 
and Sohn (1988) documented the boundaries between the 
absolute and convective instability assuming locally parallel 
flow, infinite Froude number, and zero Eckert number. It was 
shown that heated (low-density) jets injected into ambient gas 
of high density developed an absolute instability and became 
self-excited when the jet density was less than 0.72 times the 
ambient gas density.  Yu (1990) carried out a similar analysis 
for two-dimensional inertial jets and wakes with non-uniform 
density and axial velocity profiles neglecting gravitational 
effects.  It was found that the absolute frequencies and 
wavenumbers of small disturbances in the near-injector region 
scaled with the jet/wake width. Jendoubi and Strykowski 
(1994) considered the stability of axisymmetric jets with 
external co-flow and counterflow. The boundaries between 
absolute and convective instability were distinguished for 
various parameters: jet-to-ambient velocity ratio, density ratio, 
jet Mach number, and the shear layer thickness. The onset of 
global self-excitation identified in laboratory jets agreed 
reasonably well with the predictions. 

 Kyle and Sreenivasan (1993) performed experiments 
at low Richardson numbers to study the instability and 
breakdown of axisymmetric helium/air mixtures emerging into 
ambient air using high-speed photography and velocity 
measurements. An intense oscillating instability was observed 
when the ratio of the jet exit density to the ambient fluid 
density was less than 0.6.  Raynal et al. (1996) carried out 
experiments with variable-density plane jets issuing into 
ambient air for a range of density ratios (0.14 to 1) and a range 
of Reynolds numbers (250 to 3000). It was found that when the 
jet to ambient fluid density ratio was less than 0.7, the jets 
exhibited self-excited oscillations. Richards et al. (1996) used 
Mie scattering to visualize helium-air jets injected into air. 
Intense mixing and vortex interactions characterized the self-
excited helium jets at a density ratio of 0.14. 

Note that gravitational effects have been neglected in 
all of the analyses listed above. The neglect of gravitational 
effects has been justified by the authors because of the small 
magnitude of the Richardson number based on the jet velocity 
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and jet diameter. However, within the shear layer where the 
density and velocity change from jet to ambient values, the 
gravitational effects may not be negligible. Literature on the 
effects of gravity and/or buoyancy on the stability 
characteristics of low-density gas jets injected in higher density 
ambient gases is limited.  

 Hamins et al. (1992) used a shadowgraph technique to 
observe the near-field behavior of a non-reacting buoyant 
helium plume discharged from a round tube into air and 
obtained a complex relation between the Strouhal number and 
the Froude number.  Subbarao and Cantwell (1992) performed 
experiments on a co-flowing buoyant jet to study the scaling 
properties and effects of Richardson number and Reynolds 
number, independently, on the natural frequency of the jet. The 
Strouhal number was plotted as a function of the square root of 
the Richardson number and was separated into three regimes. 
At low Richardson numbers, the flow Strouhal number scaled 
with an inertial timescale, while at high Richardson numbers 
the Strouhal number scaled with a buoyancy timescale. 
Between the Richardson numbers of 0.7 and 1, a transition 
regime occurred. Cetegen and Kasper (1996) performed 
experiments on the oscillatory behavior of axisymmetric 
buoyant plumes of helium and helium-air mixtures. The effects 
of varying nozzle diameters, source velocities and plume 
densities were investigated. Cetegen (1997-1) investigated the 
effect of sinusoidal forcing on an axisymmetric buoyant plume 
of helium and helium-air mixtures. Mushroom-shaped small-
scale vortex pairs were observed in the early part of the forced 
plumes that were not observed in unforced plumes.  Cetegen 
(1997-2) used digital particle image velocimetry to measure the 
velocity field of a naturally pulsating plume of helium-air 
mixture in the presence of co-flowing air. The oscillation 
frequency of the plume, observed using a movie camera at a 
frame rate of 30 fps, was between 3 and 4.5 Hz.  Pasumarthi 
(2000) conducted experiments to investigate the flow structure 
of a pulsating helium jet injected into air using quantitative 
rainbow schlieren deflectometry.  It was found that the 
Richardson number had a more significant effect on the flow 
structure than the jet exit Reynolds number.  

The present study extends the work of Buckmaster and 
Peters (1986) to consider the effects of gravity on the instability 
of a low-density gas injected into a high-density ambient. The 
specific objectives of the study were to perform a linear 
temporal stability analysis of low-density round jets injected 
into high-density ambient gases, and to determine the effects of 
buoyancy on the instabilities of the jet. 

 

THEORY 
 The present analysis considers a round jet of low-

density gas discharged into a high-density ambient gas 
medium. The basic jet flow is assumed to be a locally inviscid 
parallel flow with an axial velocity component varying radially. 
In order to simplify the analysis, the flow is assumed to be 
isothermal. The radial velocity of the jet is considered small 

and, therefore, neglected. An analysis considering the effects of 
buoyancy, along the lines of Buckmaster and Peters (1986) is 
performed. The analysis differs from that of Buckmaster and 
Peters (1986) in several ways. First, the near-injector velocity 
and density profiles are used in the analysis. Second, an 
axisymmetric configuration is studied.  

Linear stability analysis  
 Consider a round jet (radius R) of a low-density gas 

(density ρj) injected vertically upward with velocity Uj into an 
ambient quiescent gas of density ρ∞ at atmospheric pressure as 
illustrated in the schematic diagram of Figure 1. Representing 
the velocity components by ( ), ,u v w% % % , in cylindrical coordinates 

( ), ,x r φ% %  centered at the origin of the jet, and the pressure by p 
the conservation equations governing the flow are: 

( ) ( ) ( )1 1 0
u r v w

t x r r r
ρ ρ ρρ

φ
∂ ∂ ∂∂

+ + + =
∂ ∂ ∂ ∂

% % %% % % %%

% % % %
 (1) 

( ) ( )1i
v v v p g v
t

ρ ρ ρ δ µ∞

∂ + • ∇ = −∇ + − + ∇ • ∇ ∂ 

r
r r r

% %  (2) 

where g is the acceleration due to gravity and δi1 is the 
Kronecker delta function with i = 1 representing the axial 
direction. The binary mass diffusion equation for the diffusion 
of the injected gas in the ambient gas medium is given in terms 
of the local mass fraction of the injected gas, Yj (Gebhart, 
1993): 

j
j b j

Y
v Y D Y

t
ρ ρ

∂ 
 + • ∇ = ∇ • ∇   ∂ 

r
% %    (3) 

where Db is the binary diffusivity coefficient. 
 The flow is assumed to be locally parallel, and the 

variables are represented as the sum of the base state value and 
a fluctuation: 

 

( )

( )

u u r u
v v
w w
p p
p p r p

′= +

′=
′=
′=

′= +

% %

%

%

%

% %

    (4)  

Substitution of equations (4) into equations (1) and (2), 
linearization,  and the neglect of  viscous and diffusive terms 
yields 

( )1 0
r vu wu

t x x r r r
ρρ ρ ρρ

φ
′∂′ ′ ′ ′∂ ∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂ ∂

%

% % % % %
      (5) 

u u du pu v g
t x dr x

ρ ρ
′ ′ ′∂ ∂ ∂ ′ ′+ + = − − ∂ ∂ ∂ % % %

  (6) 

v v pu
t x r

ρ
′ ′ ′∂ ∂ ∂ + = − ∂ ∂ ∂ % %

    (7) 

1w w pu
t x r

ρ
φ

′ ′ ′∂ ∂ ∂ + = − ∂ ∂ ∂ % %
   (8) 
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The density of the mixture is related to the mass fraction 
by 

( )1
j

j jY Y S
ρ

ρ =
+ −

%    (9) 

where ρj is the density of the injected gas and S is the 
density ratio ρj/ρ∞ (ρ∞ is the density of the ambient gas 
medium). Rewriting Yj in terms of ρ, we have 

 1
1

j
jY S

S
ρ
ρ

 
= − −  %

 

where, S is the ratio of the density of the injected fluid to 
that of the ambient fluid. Substituting the above expression in 
equation (3), linearizing, and neglecting the diffusive term, we 
obtain 

 0du v
t x dr

ρ ρ ρ′ ′∂ ∂ ′+ + =
∂ ∂% %

    (10) 

Using equation (10), equation (5) reduces to  

 
( )1 1 0
rvu dw

x r x r d
ρ

φ
′∂ ′ ′∂

+ + = ∂ ∂ 

%

% % % %
   (11) 

Normal mode disturbances are assumed given by 
( ) ( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆ ˆ ˆ, , , , , , , , i kx t mu v w p u r v r w r p r r e φρ ρ −Ω +′ ′ ′ ′ ′ =   

% %%
% % % % % (12) 

where 1i = − ; ˆˆ ˆ ˆ ˆ, , , ,u v w p ρ  are the amplitudes of the 

disturbances; k%  is the wavenumber; Ω%  is the frequency, and m 
is the azimuthal wavenumber. For temporal linear stability 
analysis, the wavenumber, k% , is real while the frequency 

r iiΩ = Ω + Ω% % %  is complex. The real part rΩ%  is proportional to 

the disturbance frequency and the imaginary part iΩ%  is the 
temporal growth rate of the disturbance. The disturbance gets 
amplified if iΩ% is positive. The ratio of rΩ% to k represents the 
wave speed, cph of the disturbance. 

 Substituting the expressions (12) in equations (6), (7), 
(8), (10) and (11), and manipulating the expressions, we obtain 
the following equation for the pressure disturbance:  

2 2
2

22 2

2ˆ ˆ1 1 ˆ1 0

du
d p d ig dp mdr k p
dr r dr dr ru k uk k

ρ
ρ

  
  

   
+ − − + − + =   Ω    Ω  − −      

% %
%% % % % %%

%
% %

      (13) 

 
The variables are normalized using ρ∞ , Uj, and θ (the 

boundary layer momentum thickness).  The 
nondimensionalized pressure disturbance equation for the 
varicose mode (m = 0) is 

2
2

2 2
2

21 1 11 0
1

j

dU
d P d dPdr i k P
dr r dr drRU Fr k Uk k

ρ
ρ ρ

θ ρ
∞

  
  
  

+ − − + − =  Ω   Ω   − − −            

     (14) 

It should be noted that with no density gradient equation 
(14) reduces to the equation governing the instability of 

constant-density jets (Michalke, 1984). Also, as r → ∞ , and if 
gravitational effects are neglected, equation (25) is identical to 
the equation used by Yu and Monkewitz (1990) and Raynal et 
al. (1996) in the analysis of plane jets. Inclusion of buoyancy 
effects indicates that the stability characteristics are altered by 
the additional term present in equation (14).  

The pressure disturbance must vanish at large radial 
distances from the jet and the pressure disturbance is finite at 
the jet axis (r = 0) therefore  

 
( )
( )

( )

0

0  is finite

0
0    due to symmetry

P

P

dP
dr

∞ →

=

  (15) 

 An eigenvalue problem is posed, for specified mean 
velocity and density profiles, by equation (12) along with the 
boundary conditions (15). Following Monkewitz and Sohn 
(1988), the base axial velocity and the density profiles are 
specified as a function of the local jet radius. The basic jet 
velocity profile, U(r), is given by Michalke and Hermann 
(1982), 

( ) 0.5 1 tanh 0.25
j

u r U R r R
U U R rθ

∞

∞

 −   = − −   −    

% %

%
 (16) 

where Uj is the injected jet uniform velocity and U∞ is the 
uniform co-flow velocity.  For this study the co-flow velocity 
was set to zero for a quiescent ambient gas and R is the radial 
distance of the center of the shear layer.  R/θ is the jet 
parameter that characterizes the jet velocity profile at various 
axial positions.  The values of the jet parameter used in this 
study are 10 and 5 corresponding to ( )2

x
R

%  = 1 and 2.67, 

respectively. This is within the near-injector region of the jet 
and allows for the effects of buoyancy to manifest as the jet 
proceeds downstream (Subbarao and Cantwell, 1992). Figure 2 
illustrates the basic jet velocity profiles at these two locations. 
The shear layer widens as the jet proceeds downstream from 
R/θ = 10 to R/θ = 5 indicating the downstream development of 
the jet.  A hyperbolic tangent profile is also assumed for the 
basic density profile in the shear layer, 

( ) 1 1 0.5 1 tanh 0.25jr R r R
R r

ρρ
ρ ρ θ∞ ∞

       = + − − −             

%

%
   (17) 

Figure 3 illustrates the density profiles at R/θ = 10 for ρj/ρ∞ = 
1, 0.6, and 0.14. 

 A fourth-order Runge-Kutta scheme with automatic 
step-size control is used to integrate the equation (14). The 
infinite integration domain, 0 < r < ∞ is divided into two finite 
domains: an inner domain R ≥ r ≥ 0 and an outer domain r∞ ≥ r 
≥ R, where R is the jet radius and r∞ is a specified large radius 
where the gradients of the velocity and density are small. A 
shooting method is used to determine Ω(k) such that both P and 
dP
dr

 are  continuous at r = R. A parabolic complex zero-search 
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procedure was used to vary Ω for a specified k until the 
matching conditions were satisfied to a minimum accuracy 
within 10-10.  

RESULTS AND DISCUSSION 
 The near-injector region was investigated at axial 

locations along the jet represented by the jet parameter (R/θ) 

values of 10 corresponding to 1
2
x
R

 = 
 

 and 5 2.67
2
x
R

 = 
 

, 

the value of 10 being closer to the injector exit. The density 
ratio, S, was varied from 1 (homogeneous shear-layer) to 0.14 
(helium jet discharged into air), while varying the Froude 
number from infinity (no buoyancy) to 1. 

 The imaginary part of the complex frequency, Ωi, is 
the temporal growth rate of the amplitude of the disturbance 
wave. The wavenumber k is the reciprocal of the wavelength. 
The temporal growth rate, Ωi, the phase velocity, cph, and the 
wavenumber k were normalized using the shear-layer 
momentum thickness θ and the jet exit velocity Uj. 

Effect of density ratio 
 In order to investigate the effect of an inhomogeneous 

shear layer only on the evolution of the jet instabilities with 
time, the Froude number was fixed at infinity (negligible 
gravity effect) and the density ratio (S) was varied from 1 to 
0.14.  The variation of the normalized temporal growth rate of 
the instabilities with the normalized wavenumber at R/θ = 10 is 
presented in Figure 4.  As the density ratio is reduced from 1 to 
0.14, the range of unstable wavenumbers is increased by about 
20%. This implies that the range of unstable wavelengths 
decreases when the gas jet density is reduced relative to the 
ambient gas density. The values of the temporal growth rates 
are also increased. The maximum growth rate is increased by 
about 21%, as the density ratio is decreased from 1 to 0.14. A 
decrease in the jet density results in the steepening of the 
density gradient in the shear layer, which leads to additional 
generation of vorticity, thus causing an increase in the 
disturbance growth rate. Also, the maximum growth rate occurs 
at a higher wavenumber with a decrease in the density ratio. 
The disturbance wave with the maximum growth rate is usually 
assumed to dominate the flow and so will be the disturbance 
that is observed in experiments. Thus, the above results imply 
that the disturbance wavelength that is observed in experiments 
is reduced (by about 8%) in the presence of a higher density 
ambient gas.  Trends similar to those observed at R/θ = 10 were 
observed at other axial locations.   

Figure 5 depicts the variation of the phase velocity of the 
disturbances with wavenumber at R/θ = 10. The phase velocity 
of the disturbance decreases with increasing wavenumber, 
indicating that the disturbances move with a velocity less than 
the jet velocity. Also, as the density ratio is reduced, the phase 
velocity decreases at all unstable wavenumbers. This also 
implies that the range of unstable frequencies increases as the 

density ratio is reduced; i.e., the frequency spectrum of the 
fluctuations now contains additional frequencies.    

Effect of buoyancy 
 To study the effect of buoyancy on the jet temporal 

instability, the density ratio was fixed at 0.14 (corresponding to 
a helium jet injected into air), while the Froude number was 
varied from infinity (negligible buoyancy) to 1.  Figures 6 and 
7 display the variation of the temporal growth rates with 
wavenumber at R/θ = 10 and 5 respectively, as the Froude 
number (Fr) is reduced from infinity to 1. The temporal growth 
rates for the constant-density jet are included as a baseline for 
comparison. At all Froude numbers, the temporal growth rates 
exceed those of the constant-density jet at both R/θ = 10 and 5. 
Also, the wavenumber corresponding to the maximum growth 
rates exceed those of the constant-density jet, even though this 
appears to be due to the change in density ratio. When the 
effect of changing the Froude number alone is considered, no 
significant change in the wavenumber corresponding to the 
maximum growth rate is observed, except for Fr = 1 at R/θ =5. 
Thus, it seems that gravity does not have a “significant” effect 
on the wavenumber corresponding to the maximum growth rate 
at Fr ≥ 1. 

 In Figure 6, at R/θ = 10, as the Froude number is 
reduced from infinity to 5, no significant change is observed in 
the values of the temporal growth rates. The growth rates are 
increased, though, as the Froude number is reduced further. The 
maximum growth rate increases by about 4.4%, when the 
Froude number is reduced from infinity to 2, but the range of 
unstable wavenumbers is not altered. At a Froude number of 
unity, the maximum growth rate is increased by about 18%, 
while the range of unstable wavenumbers is increased by a 
mere 3.4%. Results for various Froude numbers at a 
downstream location, are given in Figures 7 and 9.  A 
comparison indicates that the temporal growth rates decrease 
for Froude numbers equal to infinity, 10, 5, and 2 as the jet 
proceeds downstream. The maximum growth rates decrease by 
about 7% for Fr = ∞ and 10, by about 6.4% for Fr = 5, and by 
about 2.3% for Fr =2. At Fr = 1, however, the maximum 
growth rate increases by about 14% while the wavenumber 
corresponding to the maximum growth rate is decreased by 
about 8%. As the Froude number is further reduced at this axial 
location, trends similar to those for R/θ = 10 are observed, 
except at Fr = 1 where there is a change in the wavenumber 
corresponding to the maximum growth rate. 

Figures 8 and 9 display the variation of the phase 
velocities of the disturbances at various Froude numbers for 
R/θ = 10 and 5 respectively.  At R/θ = 10, the influence of 
Froude number on the phase velocity, is to lower the phase 
velocities when compared to those of the constant density jet at 
most wavenumbers. But, at Fr = 1, for wavenumbers less than 
0.02 the phase velocities are increased, and are even greater 
than 1. This suggests that disturbances at these low 
wavenumbers move with a velocity faster than the jet. 
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Subbarao and Cantwell (1992) observed the formation of  
“secondary vortex-ring-like structures” at a Richardson number 
of 1.6 (equivalent to Fr = 1.12) that accelerated rapidly upward 
within the core fluid and increased the entrainment and 
breakdown of the jet. The increased phase velocities at low 
wavenumbers may be associated with these secondary vortex-
ring-like structures. As the jet moves downstream from R/θ = 
10 to R/θ = 5, the increased phase velocities are evident at Fr = 
2, with phase-velocities at Fr = 1 increasing further by about 
18% for these low wavenumbers. 

 In order to understand the effect of buoyancy on the 
jet instability, the Froude number was reduced further to 0.2 for 
R/θ = 10 in Figures 10 and 11. It is seen that the growth rates 
and range of unstable wavenumbers are further increased with 
a reduction in Froude number. When Fr is reduced from 
infinity to 0.5, the maximum growth rate is increased by about 
74% and the range of unstable wavenumbers is increased by 
about 14%, while the wavenumber corresponding to the 
maximum growth rate is decreased by about 8%. The 
maximum growth rate and range of unstable wavenumbers are 
increased by 187% and 31% respectively when Fr is reduced to 
0.3 from infinity, while the wavenumber corresponding to the 
maximum growth rate is increased by about 8%. Reducing Fr 
from infinity to 0.2 results in a 350% increase in the maximum 
growth rate, 55% increase in the range of unstable 
wavenumbers and a 46% increase in the wavenumber 
corresponding to the maximum growth rate. Thus for Fr < 1, 
the growth rates are dramatically increased, signifying that the 
jet becomes highly unstable for buoyancy-driven jet flows. This 
observation is in agreement with the experiments conducted by 
Cetegen and Kasper (1996). 

 In Figure 11, the phase velocities are plotted as a 
function of wavenumber. As Fr is reduced below 1 to 0.2, the 
range of low wavenumbers corresponding to phase velocities 
greater than 1 is increased from 0.02 to 0.04. Also, the 
maximum phase velocity is almost doubled at Fr = 0.2. These 
results can be understood in light of the extra term in equation 
(14) due to the presence of gravity. The non-dimensional 
coefficient of the buoyancy term in this equation is 

 
( )2

2

1

/1 j

j

gG
R UFr ρ θ
θ ρ

∞

= =
 

−  
 

  (18) 

G is a non-dimensional number that compares the 
acceleration of the large-scale structures of the jet due to 
buoyancy to that due to inertial forces. The variation of G with 
Froude number for R/θ = 10 and 5 is indicated in Figure 12 at a 
density ratio of 0.14. At both R/θ = 10 and 5, for Froude 
numbers less than 1, G increases almost exponentially. Also, 
the values of G at R/θ = 5 are about double those at R/θ = 10. 
The increase in growth rates at Fr = 1 as the jet proceeds 
downstream from R/θ = 10 to R/θ = 5 is captured well by this 
variation in G.  Thus, the effect of buoyancy at low Fr values is 
to cause the jet instability to increase dramatically. This could 

explain the reason for the abrupt breakdown of the jet large-
scale structures noticed in helium-in-air experiments by 
Subbarao and Cantwell (1992) and Cetegen and Kasper (1996). 

 

CONCLUSIONS 
 In this study, the instability characteristics of a low-

density round gas jet injected into a high-density ambient gas 
were investigated. A linear temporal stability analysis was 
performed to solve for eigenvalues of the pressure disturbance 
equation obtained from the simultaneous solution of the 
equations of motion. The effects of buoyancy and density ratio 
on the evolution of the disturbances with time were determined.  

A reduction in the density ratio steepens the density 
gradient in the shear layer, causing additional disturbance. Thus 
the temporal growth rates of the disturbances increase as the 
density ratio is decreased and the range of unstable 
wavenumbers also increases. The wavenumbers corresponding 
to the maximum growth rates also increase with decreasing 
density ratio.  As the Froude number is reduced, the disturbance 
growth rates increase and the range of unstable wavenumbers 
also increase.  A new non-dimensional number that compares 
the acceleration of the large-scale structures of the jet due to 
buoyancy to that due to inertial forces was found to play a 
significant role in the instability characteristics.  At low Froude 
numbers, buoyancy causes the jet instabilities to increase 
exponentially which accounts for the abrupt breakdown of the 
jet large-scale structures observed in experiments. 
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Figure 1: Schematic of a low-density round gas jet 
injected vertically upwards into a high-density 

ambient gas 
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Figure 4: Temporal growth rate Ωi as a 
function of wavenumber k for m = 0, 
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Figure 3: Density profile vs r/R for R/θ = 10 
at S = 1, 0.6 and 0.14 
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Figure 6: Temporal growth rate Ωi as a 
function of wavenumber k for m = 0, R/θ = 10, 

S = 1 and 0.14, Fr = Infinity, 10, 5, 2, 1 

Figure 7: Temporal growth rate Ωi as a 
function of wavenumber k for m = 0, R/θ = 5, 

S = 1 and 0.14, Fr = Infinity, 10, 5, 2, 1 

Figure 8: Phase velocity cph as a function of 
wavenumber k for m = 0, R/θ = 10, S = 1 and 

0.14, Fr = Infinity, 10, 5, 2, 1 

Figure 5: Phase velocity cph as a function 
of wavenumber k for m = 0, R/θ = 10, 

Fr = infinity, S = 1, 0.7, 0.6, 0.5, 0.4, 0.3, 
0.2, 0.14 
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Figure 9: Phase velocity cph as a function of 
wavenumber k for m = 0, R/θ = 5, S = 1 and 

0.14, Fr = Infinity, 10, 5, 2, 1 

Figure 10: Temporal growth rate Ωi as a 
function of wavenumber k for m = 0, R/θ = 10, 

S = 0.14, Fr = Infinity, 0.5, 0.3, 0.2 

Figure 11: Phase velocity cph as a function of 
wavenumber k for m = 0, R/θ = 10, S = 0.14, 

Fr = Infinity, 0.5, 0.3, 0.2 

Figure 12: G vs Froude number for S = 
0.14 at R/θ = 10 and 5 




