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Acoustic Source Modeling for High Speed Air Jets 

M.E. Goldstein and Abbas Khavaran 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

The far field acoustic spectra at 90° to the downstream axis of some typical high speed jets are calculated from 
two different forms of Lilley’s equation combined with some recent measurements of the relevant turbulent source 
function. These measurements, which were limited to a single point in a low Mach number flow, were extended to 
other conditions with the aid of a highly developed RANS calculation. The results are compared with experimental 
data over a range of Mach numbers. Both forms of the analogy lead to predictions that are in excellent agreement 
with the experimental data at subsonic Mach numbers. The agreement is also fairly good at supersonic speeds, but 
the data appears to be slightly contaminated by shock-associated noise in this case.  

I. Introduction 
 The acoustic analogy introduced by Lighthill1 over 50 years ago remains the principal tool for predicting the 
noise from high speed air jets. Its most general formulation amounts to rearranging the Navier-Stokes equations into 
a form that separates out the linear terms and associates them with propagation effects that can then be determined 
as part of the solution. The non-linear terms are treated as “known” source functions to be determined by modeling 
and, in more recent approaches, with some or all of the model parameters being determined from a steady RANS 
calculation. The “base” flow (about which the linearization is carried out) is usually assumed to be parallel and the 
resulting equation is usually referred to as a Lilley’s2 equation. 
 The major drawback with these approaches is that the unsteady effects, which actually generate the sound, must 
be included as part of the model. This clearly puts severe demands on the modeling aspects of the prediction, which 
usually amount to assuming a functional form for the two-point time-delayed velocity correlation spectra. These 
predictions should, however, be less sensitive to the details of the model when it is possible to neglect variations in 
retarded time across the source correlation volume. It is therefore fortunate that this seems to be a reasonable 
approximation when performed in an appropriate moving frame of reference,3 assuming, of course, that the Mach 
number is not too large. The source models are usually tested by comparing them with measurements of the far field 
acoustic spectrum at 90° to the downstream jet axis, which is believed to be uninfluenced by propagation effects. A 
major purpose of this paper is to show that this spectrum can be accurately predicted by using an appropriate 
acoustic analogy approach combined with some measurements of the source function that were recently carried out 
by Harper-Bourne.4 

II. The Acoustic Analogy Equation and its Far –Field Solution 
 Reference 5 shows that the Navier-Stokes equations can be rewritten (for an ideal gas) as the Navier-Stokes 
equations linearized about a fictitious “base” flow but with different (in general non-linear) dependent variables, 
with the heat flux vector replaced by a generalized enthalpy flux and with the viscous stresses replaced by a 
generalized Reynolds stress. This is a true acoustic analogy (in the Lighthill1 sense) in that it shows that there is an 
exact analogy between the flow fluctuations in any real flow and the linear fluctuations about a fictitious “base 
flow” due to an externally imposed stress tensor and energy flux vector. 

 When the “base” flow is taken to be the unidirectional transversely sheared mean flow  

 

 ( ) ( )1 2 3 2 3, , , , constanti iv U x x x x p p= δ ρ = ρ = =
 (1) 
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where x = { }1 2 3, ,x x x is a Cartesian coordinate system, v = { }1 2 3, ,v v v denotes the velocity, p the pressure and ρ 
the density, the general equations reduce to the modified Lilley’s1 equation 

 

 

i i ( ) ( )
2 2 2

2 2
12 2

1
2 1 1ij ij j

e i
i j i j j

e eD U D DLp c c e
Dt x x x x x xDt Dt

⎛⎛ ⎞′ ′ ′∂ ∂ ∂η⎞∂ ∂′ ′= − + γ − − γ −⎜⎜ ⎟ ⎟⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎠⎝ ⎠ ⎝  (2) 

 

where 

 

 

i i2
2 2

2
1

2
i i j j

D D UL c c
Dt x x x x xDt

⎛ ⎞∂ ∂ ∂ ∂ ∂≡ − −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠  (3) 

 

is the variable-density Pridmore-Brown17 operator, 

 

 i ( )2
2 3,c p x x≡ γ ρ  (4) 

 

is the square of the mean-flow sound speed, and 

 

 
1

D U
Dt t x

∂ ∂≡ +
∂ ∂

 (5) 

 

denotes the convective derivative based on U. The symbol t denotes the time, γ denotes the specific heat ratio, 

 

 
1

2e i ip p v vγ −′ ′ ′ ′≡ + ρ  (6) 

 

is a generalized pressure fluctuation, 

 

 21
2ij i j ij ije v v vγ −′ ′ ′ ′ ′≡ −ρ + δ ρ + σ  (7) 
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is the generalized stress tensor, and 

 0i i i ij jv h q v′ ′ ′ ′ ′η ≡ −ρ − + σ  (8) 

is the generalized stagnation enthalpy flux. 
Here, 
 
 1 ,i i iv v U′ ≡ − δ  (9) 

 

 21 ,
2oh h v′ ′ ′≡ +  (10) 

 

and h′ denote fluctuating quantities, with h being the enthalpy ijσ  being the viscous stress, and ij′σ and iq ′ being 
the fluctuating viscous stress and heat flux vector respectively, which are believed to play a negligible role in the 
sound generation process and are therefore neglected in the following. 

 It is usually argued that the stagnation enthalpy flux i
′η , (which corresponds to the isentropic part of the 

pressure density source in the Lighthill approach1) is only important for hot jets2,6-8 except, perhaps, at small angles 
to the downstream jet axis.9 It is therefore neglected in the present analysis. The resulting source function not only 

contains the usual quadrupole type term, but also the dipole-like term 
i

U
x

∂
∂

( )
2

121 i
D e
Dt

′γ − , which could have a 

significant effect on the predicted acoustic spectrum. The present research was initially undertaken in order to 
determine the appropriateness of including such a term.  
 This generalized Lilley’s equation was solved in reference 10 in terms of the free space Green’s function18 

( ),G t τx y, , which satisfies 

 

 ( ) ( ) ( ), ,LG t tτ = δ − δ − τx y, x y  (11) 

 

and has outgoing wave behavior at infinity, to obtain the following expression 

 

 ( ) ( ) ( )2
0

ˆ, ; , ; ,M
o ijkl c o o ijkl o o

V

p t U τ t τ R τ d d dτ
∞

−∞

= γ +∫ ∫∫x x y y y ξξ + ξi  (12) 

 

for the pressure autocovariance20 (notice that ep ′  reduces to p′ in the far field) 

 

 ( ) ( ) ( )2 1, , , .
2

T

o e e o
T

p t p t p t t dt
T −

′ ′≡ +∫x x x  (13) 
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The symbol V denotes integration over all space; T denotes some large but finite time interval, 

 

 ˆ
c oU τ≡ −ξ η i  (14) 

 

denotes a moving frame coordinate system, 

 

 ( ) ( ) ( )0 0 1 1 1, , , , ,ijkl ij o o klt t t t dt
∞

−∞

γ + τ ≡ γ + + τ γ +∫x y;η x y x y η  (15) 

 

and the propagation factor ( ),kl tγ x y is defined in reference 10. ( ); ,M
ijkl 0R τy ξ  is a moving frame correlation 

tensor, which is defined in terms of the fixed frame density-weighted, fourth-order, two-point, and time-delayed 
fluctuating velocity correlation 

 

 ( ) ( ) ( )1; , , ,
2

T

ijkl o i j k l o
T

R τ v v τ v v τ τ dτ
T −

′ ′ ′ ′≡ ρ ρ + +∫y y yη η
 (16) 

 

and the second order fixed frame density weighted correlation 

 

 ( ) ( ) ( )1; , ,
2

T

ij o i j o
T

R v v d
T −

′ ′τ ≡ ρ τ ρ + τ + τ τ∫y y, yη η  (17) 

 

by 

 

 ( ) ( ) ( ) ( )ˆ ˆ; , ; , ; ,0 ; ,0 .M
ijkl 0 ijkl c o o ij kl c oR τ R U τ τ R R U τ≡ −y y y y +i 0 i 0ξ ξ + ξ +  (18) 

 

The indicated arguments refer to all three terms preceding the parentheses. 
 Our interest is in the far field spectrum 
 

 ( ) ( )21 , ,
2

oi t
o oI e p t dt

∞
ω

ω
−∞

≡
π ∫x x  (19) 

 

which can be calculated by taking the Fourier transform of equation (12) and using the convolution theorem21 to 
obtain 
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 ( ) ( ) ( ) ( )* ˆ2 ; ; , , ,oi τ M
ij kl c o ijkl o o

V

I U τ e R τ d dτ
∞

− ω
ω

−∞

= π Γ ω Γ + + ω∫ ∫x y x y x y i yξ ξ ξ  (20) 

where 

 

 ( ) ( ) ( )1 ,
2

i t
ij ije t d tω −τ

−∞

Γ ≡ γ − τ − τ
π ∫ x y  (21) 

 

is the Fourier transform of ijγ (we use capital letters to denote Fourier transform of the corresponding lower case 

quantity) and we introduced ( )Iω |x y , the acoustic spectrum at x due to a unit volume of turbulence at y, i.e., 

 

 ( ) ( )
V

I I dω ω= ∫x x y y,  (22) 

 

in order to simplify the formulas. The relevant far field expansion of ijΓ  is given in reference 10. The only 
approximation made up to this point is the neglect of the enthalpy and viscous source terms, but equation (20) will 
depend on the turbulent source correlations only through 

 

 ( ) ( ), , ,M
ijkl o ijkl o

V

R dτ ≡ τ∫y y ξξR  (23) 

 

if variations in retarded time across the correlation volume are neglected, i.e., if ( )ˆ ;kl cU∗Γ + + τ ωx y iV  is 

assumed to be constant over the correlation volume.3 However, the definitions (14) and (18) imply that the 
integration variable in equation (23) can be changed back to η , which means that 

 

 ( ) ( ) ( ) ( ), , , ; ,0 ; ,0ijkl o ijkl o ij kl
V

R R R d⎡ ⎤τ ≡ τ −⎣ ⎦∫y y y y + η0 0R O O  (24) 

 

 Equation (20) can now be rearranged into the simpler form 
 

 ( ) ( ) ( ) ( )( )
22 2 sin * , 1 cos   ,as ,ij kl ijkl cI M x

x c
∗

ω ⊥ ⊥
∞

π πω⎛ ⎞→ θ Γ Γ Φ − θ ω → ∞⎜ ⎟
⎝ ⎠

x y x y x y y   (25) 

 



NASA/TM—2005-213416 6 

where 
 

 ( ) ( )1, ,
2

oi
ijkl ijkl o oe d

∞
ωτ

−∞

Φ ω ≡ τ τ
π ∫y yR  (26) 

 

is the spectral tensor of the source correlation and  

 

 c
c

UM c∞
≡  (27) 

 

is the convective Mach number of the turbulence. This result shows that it is only necessary to model the overall 
spectral tensor itself and not the detailed two-point time-delayed correlations of the turbulence. However, the 
radiated sound should still be relatively insensitive to the detailed turbulence structure even when the latter 
quantities are modeled (as is at least partially done below). This would not be the case if the moving frame had not 
been introduced before neglecting the retarded time variations.3 

 Our interest here is in the spectrum at 90° to the jet axis where cosθ = 0. Reference 10 shows that 
 

 

( ) ( )
( )

( )

( ) ( )

4
1

2 2 2

1

11 1
2 24

1
for = 2,

ijkl

i j i k l
ij kl

j

k
l

x xc i x xUI
yx xx

i U
y

∞
ω

∗

⎤ω γ − δ⎡ γ − ∂ γ −⎡= − δ + − δ⎥⎢ ⎢ω ∂ ⎣π ⎥⎣ ⎦
γ − ⎤∂− δ Φ ω θ π⎥ω ∂ ⎦

x y

y;

 (28) 

 

when i2 2
0 c  =c = c o  nstant∞ , i.e., in the isothermal case. 

 

III. The Quasi-Normal and Axisymmetric Turbulence Approximations 
 To proceed further, we need to know something about the source spectral tensor Φijkl. The usual approach3,12,13 

 
is to begin by assuming that the turbulence is quasi-normal16 (see ref. 10) in order to obtain some relations among its 
components. It then follows that  

 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
, , ; ,0 ; ,0 ; , ; ,

; , ; , .
ijkl o ij kl ik o jl o

il o jk o

R R R R R

R R

τ − = τ τ

+ τ τ

y y y + η y y

y y

0 0 η η

η η

O
 (29)  

 

 To further reduce the number of independent components it is usual to assume some kinematically possible 
symmetric form for the second order correlations. Early studies23 assumed the turbulence to be isotropic, but that 
turns out to be incompatible with the Harper-Bourne17 measurements that will be introduced below. The simplest 
assumption compatible with his results is the one introduced in references 12 and 13, namely that the turbulence is 
axisymmetric which implies that16 
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 ( ) ( )0 0 0 1 1 0 1 1; ,ij o i j ij i j j j j iR A B C Dτ = η η + δ + δ δ + δ η + δ ηy η  (30) 

 

where the symbols A0, B0, C0, and D0 denote functions of y, 0τ , and 2 2
2 3⊥η ≡ η + η ; A0, B0 and C0 denote even 

functions of the latter quantity whileD0 denotes an odd function. This model is chosen because it is the most general 
of those whose mathematical properties have been studied in the literature and because it reflects the fact that the 
cross flow velocity components tend to be much more similar to one another than to the stream-wise component 
(even for non-axysymmetric flows).  
 Inserting equation (30) into equation (29) and inserting the result into equation (25) via equations (24) and (26) 
yields (after a straightforward but tedious calculation that follows along the lines of the one in appendix A of ref. 12) 
 

 

( )( )

( ) ( )

2

4 22

1 2 3 4

4

12 1 1 ,
2

I x

M
c c

ω

∞ ∞

⎜ π

⎡ ⎤⎛ ⎞ ⎡ ⎤ω γ − ω⎛ ⎞= Φ − γ − Φ + Φ + γ − ∇ Φ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥ ⎣ ⎦⎣ ⎦

x y

 (31) 

 

where 

 

 ( )2
1 22

1 , , ,
2

oi
o o

V

e R d d
∞

− ωτ

−∞

Φ ≡ τ τ
π ∫ ∫ y η η  (32a) 

 

 ( )2 2 2
2 23 12 22

1 ,
2

oi
o

V

e R R R d d
∞

− ωτ

−∞

Φ ≡ + + τ
π ∫ ∫ η  (32b) 

 

 ( )2 2 2 2
3 12 23 11 22

1 4 2 2 ,
2

oi
o

V

e R R R R d d
∞

− ωτ

−∞

Φ ≡ + + + τ
π ∫ ∫ η  (32c) 

 

and 

 

 ( )2
4 12 11 22

1
2

oi
o

V

e R R R d d
∞

− ωτ

−∞

Φ ≡ + τ
π ∫ ∫ η  (32d) 

 

are seemingly independent spectral functions. However, the coefficients A, B, C, and D are not all independent and, 
when compressibility effects are neglected (i.e., when ρ is treated as a constant), these turbulence correlations can be 
expressed in terms of two independent scalar functions of y, 0τ , ⊥η , and 1η , say a and b,14,15,24 which scale like 
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k ( )2 2, / 21 1B Lb u= ρ η η⊥ ⊥� �  (33) 

 

and 

 

 
k ( )2 ,2 11 1

Dg a b u≡ − = ρ η ηη η ⊥� �  ( )34  

 

where 

 

 1 1 1/ Lη ≡ η�  (35) 

 

 / L⊥ ⊥ ⊥η ≡ η�  (36) 

 
1L and L⊥ denote characteristic stream-wise and transverse length scales of the turbulence, B and G are O(1) 

functions of the indicated arguments. 
 Turbulence measurements suggest that 
 

 
14

L
L
⊥ε ≡  ( )37  

 
ought to be small. In fact, Harper-Bourne’s17 measurements (to be discussed below) suggest that 22.7 10−ε ×� . 
Reference 10 shows that 

 

 
( )

k( ) k( )
0

2
1 22

1 02 2
2 2 2 2 0

1 1 1 1

4
3

2 2

i Dr e d d d
L L u L L u

∞ ∞ ∞
− ωτ

⊥ ⊥ ⊥
⊥−∞ −∞

⊥ ⊥

Φ ⎛ ⎞Φ ∂= = η η η η τ⎜ ⎟∂η⎝ ⎠π ρ π ρ
∫ ∫ ∫ � � � �

�
 (38a, b) 

 

 j

2

0
0

2
2i

0

D3 d d d
12

2 22 L L u
1 1

B
2r

8
e ⊥

⊥

∞ ∞ ∞
− ωτ

−∞ −∞

Φ ∂
= η η η η τ

⊥ ⊥∂η
π ρ

⊥

+
⎤⎡ ⎛ ⎞
⎥⎢ ⎜ ⎟

⎝ ⎠ ⎥⎣ ⎦⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫ ∫ � � � �
�  (38c) 

 

 
k( )

0 24
1 02

2 2 0
1 1

22

ir e B D d d d
L L u

∞ ∞ ∞
− ωτ

⊥ ⊥
⊥−∞ −∞

⊥

⎛ ⎞Φ ∂= η η η τ⎜ ⎟∂η⎝ ⎠π ρ
∫ ∫ ∫ � � �

�  (38d) 
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when ( )2O ε  terms are neglected. The ratio r is defined by 

 

 k k2 2
2 1 .r u u≡ ρ ρ  (39) 

 

 Lacking any specific data to the contrary, it seems reasonable to suppose that  

 

 ( ) ( )2 2 2 2
22 0 11

1 1, , ( ) ( ) , ,o oi i
o o o o

V V

e R d d r r e R d d
∞ ∞

− ωτ − ωτ

−∞ −∞

τ τ Γ Φ ≡ Γ τ τ
π π∫ ∫ ∫ ∫y yη η = η η  (40) 

 

where Γ  is a constant. Equation (31) then becomes 
 

 ( )( ) ( ) ( )
2

22 2 2
02 ,oI xc C U

cω ∞
∞

⎛ ⎞ω ⎡ ⎤⏐ π = Φ ω ω + κ ∇⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
yx y  (41) 

 
where 
 

 ( )
2 2

2 2
0

2 3 1 1 12 ( ) 1 2
3 4 2 2 2

C r
⎤γ − γ −⎡ ⎛ ⎞ ⎛ ⎞≡ Γ − γ − + +⎥⎜ ⎟ ⎜ ⎟⎢⎣ ⎝ ⎠ ⎝ ⎠⎥⎦

 (42) 

 

is a constant, i.e., independent of ω ,and 

 

 0

0

2
1 0

0

0 2
1 0

0

2
1 1

2

i

i

r e B D d d d

C
e B d d d

∞ ∞ ∞
− ωτ

⊥ ⊥
⊥−∞ −∞

∞ ∞ ∞
− ωτ

⊥ ⊥
−∞ −∞

κ ≡

⎛ ⎞∂ η η η τ⎜ ⎟∂ηγ −⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠

η η η τ

∫ ∫ ∫

∫ ∫ ∫

� � �
�

� � �

 (43) 

 

IV. The Harper-Bourne Spectrum 
 The results cannot be made more explicit without inputting more specific information about the turbulence 
structure. This is accomplished with the aid of some recent measurements17 of the two-point fourth-order stream-
wise velocity correlation spectra along the centerline of the mixing layer in a low Mach number jet, which would 
most closely correspond to 

 

 ( ) ( )2
11

1, , , ,oi
o o oH e R d

∞
− ωτ

−∞

ω ≡ τ τ
π ∫y yη η  (44) 
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with the quasi-normal approximation that is being used in the present analysis.  
Harper-Bourne17 divided 0H  into the three components (see his eqs. (2.5) and (2.7) on p. 2) 
 

 ( ) 1

1
, , , , , pi

o oH H R e
l l

ωτ⊥

⊥

⎛ ⎞η η= ω ω⎜ ⎟
⎝ ⎠

y y0  (45) 

 

where 1l , l⊥  are the spectral stream-wise and transverse length scales (not necessarily the same as the time domain 
length scales 1L  and L⊥  introduced above) and 

 

 1 .p
cU

ητ �  (46) 

 

No assumption is made about the decomposition of the correlations into products of their space and time 
components with this approach.  
 The first factor can be evaluated from his measurements of ( )1111 0, ,R τy 0 , which are reasonably well 

represented by the exponential oe−λ τ . But reference 19 shows that ( )1111 0, ,R τy 0 does not in reality have a sharp 

cusp at 0 0τ = . A better representation would therefore be 
 

 

( )
0 00 0

1111 0

erfc. + erfc.
2 2, , ,
2erfc.

e e
R

−λτ λτλτ λτ⎛ ⎞ ⎛ ⎞β − β +⎜ ⎟ ⎜ ⎟β β⎝ ⎠ ⎝ ⎠τ =
β

y 0
 (47) 

 

which behaves like oe−λ τ  for large 0τ and reduces to this quantity when 0β = , but smoothes out the cusp at 

0 0τ = . It therefore follows that20 

 

 ( )
k ( )2/4

1
2 2 2, , .

(exp. erfc. )( )o
u eH

− βω λλρω =
π β β λ + ω

y 0  (48) 

 
Inserting these into equation (46) and using the result in equations (41) and (42) shows that 
 

 ( )
k ( ) ( ) ( )2 2/4 2 3 2

1 1 12
0 2 4 2 2 2

2 ,
,

(exp. erfc. )( )

cu e U U l l R l
I C

x c

− βω λ
⊥

ω
∞

⎡ ⎤λρ ω + κ ∇⎢ ⎥⎣ ⎦⏐ =
β β λ + ω ω

y
x y  (49) 

 

where 
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 ( ) ( ) 2 11, 2 , , ,1 1 1
0

i l
R l R e d d

∞ ∞ − π η
≡ π η η η η η∫ ∫ ⊥ ⊥ ⊥

−∞
y y  ( )50  

 

and 1l  and l⊥  are defined by 

 

 1
1

c

l
l

2 U
ω

≡
π

 (51) 

 

and 

 

 .
2 c

ll
U
⊥

⊥
ω≡
π

 (52) 

 

 Harper-Bourne obtains the best fit to his data with the non-separable form 

 

 
2 4
1 ,R e ⊥− η +η=  (53) 

 

which can be inserted into equation (50) to obtain 

 

 

( )
3

2 2
1

.

2 1 2

R

l

π=
⎡ ⎤+ π⎢ ⎥⎣ ⎦

 (54) 

 

 Harper-Bourne’s figure 13 shows that while 1l and l⊥  are constant at relatively low frequencies, it is the scaled 

length scales il  and l⊥  that become constant as ω → ∞ . The data is well represented by the functions 
 
 ( )21 1 1

2 2
St

J

l e
U

−ω ≈ −
π

 (55) 

 

and  

 

 ( )0.50.15 1 ,
2

St

J

l e
U

−⊥ω ≈ −
π

 (56) 

 

where 
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 2
J

J
DSt U

ω≡ π  (57) 

 

and JD denotes the jet diameter. 

V. Extension of the Harper-Bourne Data 
 Unfortunately, all of Harper-Bourne’s data are taken at a single point in a very low Mach number jet, while 
practical interest is in much higher Mach number flows and the acoustic predictions require information about the 
turbulence over the entire noise producing region of the jet. We therefore attempt to extend his data by using some 
modeling assumptions along with the Wind code developed by NASA Glenn Research Center and the U.S.A.F. 
Arnold Engineering Development Center, which is a RANS code with a standard k − ε  turbulence model. To this 
end, we first assume that the time scale 1−λ that appears in equation (49) is proportional to the k − ε  time scale k

ε , 

i.e., we put 
 
 1 kC− τλ ≈ ε  (58) 

 

where Cτ  is an adjustable constant. 

 Equations (55) and (56) are extended by assuming that the time and velocity scales J
J

D
U and JU  are 

proportional to the k − ε time and length scales k
ε  and 

1
2k  respectively to obtain 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−≈

πε
ω

π
ω

2
exp1

2
2/11 kCkCl Sl  (59) 

 

and 

 1 20 3 1 0 25
2 2

l / Sl k. C k exp . C ,⊥ ⎡ ⎤ω ω⎛ ⎞≈ − −⎢ ⎥⎜ ⎟π πε⎝ ⎠⎣ ⎦
 (60) 

 

where lC and SC  are constants. Figure 1 shows the RANS (WIND code) solution for a 2 in. diameter cold jet at the 
jet exit Mach number of 0.18 for which Harper-Bourne carried out his measurements. The two constants lC  and 

SC are determined by requiring that equations (55) and (59) be in reasonable agreement with the data at the 
measurement point ( 1 4 0Jx / D . ,= 2 0 50Jx / D .= ). A reasonably good approximation is obtained by selecting 

lC ≈  3.0  and 0.50SC ≈ . We neglected the difference in exponents between (59) and (60) but plan to remedy 
this oversight in the near future. 

 The velocity ratio r  is typically close to ½ in. most cases and we shall use this value in our computations. The 
constant oC is related to the ratio rΓ (defined implicitly by eq. (40)) by eq. (43), which for 1.4γ = becomes 
 

 ( )22 0.43 0.01
3oC r≈ Γ +  (61) 
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Unfortunately, Harper- Bourne only measured the stream-wise and not the transverse velocity correlations so that Γ  

is essentially unknown. But if we assume, as in reference 10, that ( ) 2 2
1/ 2 , oB D a e ⊥−η= = η τ then this quantity 

is equal to 3  and it follows that 

 

 2 0.1472.oC ≈  (62) 

 

We treat , , and oC Cτ β as adjustable constants, whose determination is described in the next section. It is necessary 
to specify the square root in equation (43) in order to fix κ . Again, Harper- Bourne does not provide enough data to 
ascertain this quantity, but it becomes equal to ½ in. and equation (43), therefore, becomes 

 

 0.1
oCκ ≈  (63) 

 

when, as before, it is assumed that 1.4γ =  and ( ) 2 2
1/ 2 , oB D a e ⊥−η= = η τ . 

VI. Comparison with Measurements 
 The far-field spectra at 90° to the jet axis were calculated from equations (49) and (54) at 1 Jy  = 100D for Mach 
0.50, 0.90, and 1.5 cold jets. As in the JeNo code,15,21 the local result (49) was summed over all source points within 
the noise producing region of the jet in order to predict the actual sound field. RANS solutions for the relevant 
nozzles were obtained from the WIND code with upstream boundary conditions specified in terms of the stagnation 
pressure and temperature at the nozzle plenum entrance. The predicted turbulent kinetic energy distribution and the 
corresponding time-scale for the three jets are shown in figure 2. 

 The calculated 90° acoustic spectra are compared with the subsonic SHJAR data recently acquired at NASA 
Glenn Research Center and correctly expanded supersonic data obtained at Langley Research Center in figures 3 
through 5. Atmospheric attenuation was removed from all measurements in order to make a lossless comparison 

with predictions. We expect the parameters lC and SC , which were determined from the Mach 0.18 jet RANS 
solution, to be independent of both Reynolds number and Mach number. The adjustable constants , , and oC Cτ β  

were determined by obtaining the best fit with the Mach 0.5 data. The resulting values of Cτ  and β  turn out to be 

0.35 and 0.10 respectively. The scale factor oC turns out to be 2 0.133oC ≈ , which is in remarkably good 
agreement with the value calculated from equation (61).  
 The calculated spectra are in excellent agreement with the subsonic data over the entire frequency range. The 
agreement is not quite as good for the supersonic case, but it is likely that this data contains a small amount of shock 
associated noise that is not accounted for by the theory. 
 Equation (63) implies that 0 27.κ ≈  when 2 0.133oC ≈ . Figure 4 (with 0 9.κ ≈ ) shows that there is very little 
difference between the results obtained with κ given by this equation and those obtained with κ  = 0. Equation (49) 
shows that 4~ ωωI  as 0→ω in the latter case, which is consistent with the conventional wisdom that, at least 
for cold jets, the sideline noise is dominated by a quadrupole- type source as originally proposed by Lighthill. 
 

VII. Discussion 
 A simpler and, we believe, more elegant form of Lilley’s equation was derived in reference 19 by introducing 
the new dependent variable 
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 ( ) 1
1p

p
γπ ≡ −  (64) 

 
to obtain 
 

 
1

2 ,ji

i j

ffD UL
Dt x x x

∂∂ ∂π = −
∂ ∂ ∂

 (65) 

 
where 
 

 ( ) ( )1 1 .i i j
j i

f v v h
x x
∂ ∂π′ ′ ′≡ − + π − γ −

∂ ∂
 (66) 

 

L  is defined by equation (3) and iv′  is defined by equation (9). In this context it is usual to neglect the dipole-like 

term ( )1
i

h
x

∂π′γ −
∂

 rather than the dipole-like term ( )
2

21 j

j

D
xDt

′∂η
γ −

∂
 for cold air jets. It was also shown in 

reference 19 that this dipole-like term will not even appear in equation (66) if 2c is replaced by ( )2 2c c ′+ (where 

( ) ( )2 1c h′ ′= γ − denotes the fluctuation in the squared sound speed) in the operator L  defined by equation (3), so its 

neglect can also be interpreted to mean that the sound speed fluctuations have a negligible effect (relative to the 
mean) on the acoustic propagation. Since equations (2) and (65) are both exact, any differences in the predictions 
must be attributable to the neglect of these terms. 
 When the preceding analysis is applied to the present equations (i.e., equations (64) to (66) rather than 
equation (2)), the final result is still given by equation (41) but with 0κ = , a slightly different definition of the 
density weighted source correlations, and 
 

 ( )22 1 ,
4oC r= Γ  (67) 

 

which becomes 
 

 2 0.187,oC ≈  (68) 

 

when the values Γ  and r obtained in the previous section are inserted-a result that is fairly close to the previous 
value. The principal difference between these predictions is therefore due to the second term in the factor 

( )22 U⎡ ⎤ω + κ ∇⎢ ⎥⎣ ⎦
, which does not significantly affect the high frequency behavior of the solution but has the 

potential of causing Iω  to exhibit the dipole-like behavior 

 

 2 0I asω ω ω →∼  (69a) 

 

in the formulation discussed in this paper rather than the quadrupole-like behavior  
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 4 0I asω ω ω →∼  (69b) 

 

that always occurs when the predictions are based on equations (65) and (66). But the computations and data 
comparisons of the previous section show that the second term in this factor is relatively small for cold jets and that 
good agreement is achieved independently of whether that term is included. This is because the low frequency roll 
off of the acoustic spectrum is primarily determined by the peak frequency distribution of the local spectra and not 
by their low frequency asymptotes. We note, however, that the value of oC given by equation (62) is slightly closer 
to the “fitted” value than the one given by equation (68), but-given the uncertainty of the approximations used in the 
source modeling-this difference is not large enough to distinguish between these two forms of the acoustic analogy.  

 

VII. Concluding Remarks 
 The research was initially motivated by the need to distinguish between the two forms of the acoustic analogy 
described above. Unfortunately the results turned out to be inconclusive-with both forms of the analogy yielding 
excellent agreement with the data. Our hope is that similar comparisons for hot jets or jets with more complex flow 
fields will provide the required selectivity. But until this is done, our recommendation would be to base the jet noise 
predictions on the formulation (65) and (66), as was done in reference 21, since this leads to much simpler formulas-
especially at angles other than 90°.  

 Finally, it is worth noting that the adjustable constant β, which measures the curvature of the temporal 
autocovariance at 0τ = , is relatively small and is therefore consistent with experimentally observed turbulence 
spectra.20 It is, however, somewhat puzzling that the high frequency roll off of the predicted acoustic spectra turns 
out to be fairly sensitive to this parameter. It is also rather unfortunate, because this quantity is difficult to measure 
with any accuracy. 
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Figure 1.—Predicted turbulent kinetic energy (top), and frequency scale 

(bottom) in a Mach 0.18 cold jet. r .⊥≡ y  
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Figure 2a.—Predicted turbulent kinetic energy (top), and frequency scale 

(bottom) for a 2 in. diameter cold jet at Mach 0.50. r ⊥≡ y . 
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Figure 2b.—Predicted turbulent kinetic energy (top), and frequency scale (bottom) 

for a 2 in. diameter cold jet at Mach 0.90. r ⊥≡ y . 
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Figure 2c.—Predicted turbulent kinetic energy (top), and frequency scale (bottom) 

for a Mach 1.50 convergent-divergent nozzle 
with 1.68 in. exit diameter. r ⊥≡ y . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.—Spectrum at 90° and at R/DJ = 100 for a Mach 0.50 cold jet. 
Prediction (dashed line); data (solid line), 2f ω≡ π , R ≡ y . 
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Figure 4.—Spectrum at 90° and at R/DJ = 100 for a Mach 0.90 cold jet. 
Prediction with 0.0=κ (dashed line); 90.0=κ (dash-dot); 

data (solid line), 2f ω≡ π , R ≡ y . 

 
 

 
 

Figure 5.—Spectrum at 90° and at R/DJ = 100 for Mach 1.5 cold jet. 
Prediction (dash-dot); data (solid line), 2f ω≡ π , R ≡ y . 
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