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Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle 
accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the 
Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main 
emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a 
Green’s function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple 
solutions can be found for the high charge and energy (HZE) by ignoring nuclear energy downshifts and dispersion. Such solutions 
were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the 
prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we 
have found global solutions including these effects providing a broader class of HZE ion solutions. 
0 2004 COSPAR. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

In space radiation transport, the energy lost through 
atomic collisions is treated as averaged processes over 
the many events which occur over even relatively small 
dimensions of most materials 
continuous slowing down appr 
that the few percent energy fluc 
little meaning for ions of broa 
pecially in comparison to the m ear events for 
which uncertainties relatively large. In contrast, 
the laboratory testi otatial shielding materials 
uses nearly mono ion beams in which the 
interpretation of t n with shield materials 
requires a detailed description of the interaction process 
for comparison to detector responses (Schimmerling 
et al., 1986). The development of a Green’s function 
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approach to ion transport facilitates the modeling of 
laboratory radiation environments and allows for the 
direct testing of transport approximations of material 
transmission properties. For a number of years, this 
approach has played a fundamental role in transport 
calculations for high-charge high-energy (HZE) ions 
and has been used to great effect by radiation investi- 
gators at the NASA, Langley Research Center. These 
earlier works have not, however, taken into account 
such effects as straggling or of the energy downshift with 
dispersion which occur whenever a nuclear event takes 
place. In addition to the validation of physical processes, 
a theoretical model of the role of straggling is essential 
to understanding of the radiobiology of ion beams as 
required in evaluation of astronaut risks which must be 
minimized at least to within some regulated level (Shinn 
et al., 1999). The present development is in the context 
of an asymptotic expansion of the 3D Boltzmann 
equation, for which, the lowest order term is along the 
forward ray. Additional asymptotic terms are discussed 
in an earlier work (Wilson et al., 1991) and a related 
paper (Wilson et al., 2002a). 
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2. The Boltzmann equation 

The specification of the interior environment of a 
spacecraft and evaluation of the effects on the astronaut 
is at the heart of the space radiation protection problem. 
For some time investigators at The NASA Langley 
Research Center have been developing techniques to 
address this problem and an in-depth presentation of 
their work is given by Wilson et al. (1991) although 
considerable progress has been made since that publi- 
cation (Cucinotta et al., 1998). The relevant transport 
equation is the h e a r  Boltzmann equation. The lowest 
order asymptotic term is the straightahead approxima- 
tion. With the target secondary fragments neglected, 
Wilson et al. (1991), this equation takes the following 
form: 

- o,(E)4,(Z,E), z 2 2’7 (1) 
where #J,(z,E) is the flux of ions of type j moving along 
the z-axis at energy E in units of MeVlamu and a,(E) 
and ojk (E, E‘) are the media macroscopic cross-sections. 
The c , ~ ( E , E ‘ )  represent all those processes by which 
type k particles moving in the z-direction with energy E’ 
produce a type j particle with energy E moving in the 
same direction. Note that there may be several reactions 
which produce a particular product, and the appropriate 
cross-sections for Eq. (1) are the inclusive ones. The 
total cross-section a,(E) with the medium for each 
particle type of energy E may be expanded as 

a,(E) = a,B‘(E) +a?(E) + a,’(E), 

where the first term refers to co 
electrons, the second term is for elastic 
ing, and the third term describes nuclea 
corresponding differential cross-sect 

allows flexibility in expanding solutions to the Boltz- 
mann equation as a sequence of physical perturbative 
approximations. 

We require to solve Eq. (1) subject to a boundary 
condition of the type +,(z’,E) = F,.(E). In the case of a 
unit source at the boundary, F,(E) takes the special form 

F,(E) = d,kd(E -E’ ) ,  (4) 
and the corresponding solution, which is called the 
Green’sfunction,isdenoted by thesymbol Gjk(z,z‘, E,,!?’). 
Once the Green’s function is known the solution for an 
arbitrary boundary condition $(Ej is then given by 

4,(z,E) = / Gj,(z,z’,E,EI‘)Fc(E’’)dE”. 
k 

(5) 

In the case of an accelerator beam, the boundary condi- 
tion consists of a narrow gaussian function in energy and 
is incorporated by addition to the straggling width on 
leaving the boundary. In the case of space radiations, the 
boundary condition is represented as a broad function of 
energy and direction for each ion type and is handled by 
ordinary numerical procedures. It should also be noted 

rovides a basis for multiple layers of mate- 
ing the solution at the boundary interface. 

We rewrite Eq. (1) in operator notation by defining a 
vector array field function as 

@ = [4/(Z, Ell, (6) 
the drift operator 

D = [a,], 
the interaction operator 

(7) 

a,k(E,E‘) = C<:n(E’)d,,d(E - E‘ + with the understanding that I has three parts associated 

Eqs. (2) and (3). Eq. (1) is then rewritten as 
n with atomic, elastic, and reactive processes as given in 

D. @ = I .  Q = [Ia‘ +P’  +Ir] * @, (9) 
and one must look for solutions. In what follows, we 
will recall the solution of the atomic interactions by 
Payne (1969) and implemented by Wilson et al. (2002b). 
Effectively, we look at 

(3) 

where E, are the atomidmolecular excitation energy 
levels and where the collision energy downshift A,k and 
corresponding energy width Elk are approximated from 
the known momentum distributions observed in heavy 
ion reactions and represented by a gaussian model. 
Many atomic collisions (-lo6) occur in a centimeter of 
ordinary matter, whereas -10’ nuclear coulomb elastic 
collisions occur per centimeter, while nuclear reactions 
are separated by a fraction to many centimeters 

(10) D . Q = I”‘ * @, 

which must then be coupled to the remaining terms in 
Eq. (9). For analysis, it will be advantageous to make 
the following separations: 

[D - I”‘ - f’ + Or] . @ = [ aJk(E,E’)dE’] . Q, = 8‘ . Q,. 

depending on energy and particle type. This ordering (11) 
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142 3.1. Atomic processes 

143 The lowest order approximation to the Boltzmann 
144 equation is given in terms of the atomic collision pro- 
145 cesses as 

D .  @ =la', @, (12) 
147 with the boundary condition 

In the present work, we approximate the fragment en- 
ergy distribution by 
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where 2,k is the collision energy downshift (MeV/amu) 
2nd t J k  is the kkiac:isii e i i ~ g j  width (l"leVi'~iiiii). 1.Jk is 
related to the momentum downshift (MeVlc) 

149 The solution, which incorporates energy straggling, 
is0 takes the form 

ps = 3.64(9 +?),/E - 28, 

(14) via the equation 
152 where 

where Ak is the projectile mass (amu), A, is the fragment 
mass (amu), E is the fragment energy (MeV/amu), m is 
the energy equivalent of a proton mass and 

p(E)  = J n E ,  (24) 
is the fragment momentum (MeV/amu/c). The interac- 
tion energy width is similarly related to the momentum 
width OF (MeVlc) through the equation 

154 where &(E) is the usual range-energy relation and 
155 $(z - 2 )  is the rms deviation for incident k-type parti- 
156 cles of energy E' after a distance of penetration 2 - 2  
157 (Wilson et al., 2002b). 

158 3.2. Elastic scattering processes 

159 The addition of elastic scattering processes is given by 
D . @ = [la' + Z'l] . @. (16) 

161 Since we have approximated the elastic scattering dis- 
162 tribution by 

where uF is given as (Tripathi et al., 1994) 

(17) 
164 we find that 

We start with the solution of the equation 

[D - la' + u'] * @ = [ O ] ,  (27) 
for a unit source at the boundary. Note that d is di- 
agonal and takes the form 

[PI . 0 = [ O ] ,  

166 and thus 

D . @ x [la'] . @. 

168 Elastic scattering does not appear in the first asymptotic 
169 term evaluated herein. The first correction will contain 
170 elastic scattering as a dominant term for the propagation 
17 1 of the surviving primary beam ions and in some bound- 
172 ary problems involving collimators elastic scattering will 
173 play a role for higher order terms. The elastic scattering 
174 propagator is a focus of current research and will couple 
175 with the present formalism. In the past, this coupling was 
176 in terms of acceptance functions and provided good 
177 agreement with neon ion beams (Shavers et al., 1993). 

178 3.3. Nuclear reactive processes 

where the nuclear attenuation is described by the func- 
tion 

E u ~ ( E ' )  
sk (E') 

pk(E) = exp [ - 1 - dE'] , (29) 

and Sk(E) is the change in E per unit path length per 
nucleon. Eq. (28) and the reactive integral operator are 
all that is required to develop the solution under the 179 Following the above analysis, we are left with 
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21 1 
212 
213 
214 
215 
216 
217 
218 

straightahead approximation. The lateral spread of the 
beam is beyond the scope of the present development. 
So far all of the operators have had only diagonal ele- 
ments. Off-diagonal elements enter through the reactive 
regeneration terms $k which appear on the right side of 
Eq. (20). The challenge is to further develop the solution 
of Eq. (20) and this will be accomplished as follows. The 
integral form of Eq. (20) can be written as 

@ = [D-lat +.']-I ' @B + [D-P '  + d - '  *s ' @&I 

(30) 
l 

= c p ,  + Q. C P .  3 .  &, 

220 where aB is the appropriate boundary condition. Eq. 
221 (30) is a Volterra integral equation and is easily solved in 
222 a Neumann series as 

@ = [ @ + Q . @ . E r . @ + Q . @ . Z . Q . @ . E r  

.e .@ + . . * I  ' @B 

= [G" -I- G' + G2 + . . .] . @B, (31) 
224 with the elements of the leading term given as Eq. (28). 
225 The above formalism lends the following interpretation 
226 of the solution. The operator @ propagates the particles 
227 with attenuation processes. The first term Go. @B 
228 propagates the ions at the boundary to the interior. 
229 3' . G" ' QB is the production density of first generation 
230 secondaries at depth 21. These are propagated to the 
231 interior by G" . Z .  @B. Lastly, GI . @B = Q 
232 @ .B . @ . @B represents the sum of all the first gen- 
233 eration secondaries being propagated from the interval 
234 [ z ' , ~ ]  and so on. We have already identified the propa- 
235 gator G". We now need to identify the remaining terms 
236 in the Neumann series and we begin n 
237 are related via the recurrence formula 

G"+l = [Q . GO . E'] . G", n 2 0. 

240 3.4. First collision term 

241 The second term in Eq. (31) is thefirst collision term 

x e , + ( z , i , E , E ' ) e i  dEz&i. (33) 

243 The physical interpretation is that E' .  G" is the volume 
244 source of ions from collisions at z1 of a unit ion source at 
245 z' of energy E' The ions present at z with energy E are the 
246 result of propagation from the all the ions through out 
247 the volume. The first task is to evaluate the volume 
248 source term 

1 

(34) 

Note that a sharp maximum occurs at El = (EL(z - i)), 
E2 = E l  - Ajk and the cross-sections and attenuation 
functions are siowiy varying funcuons of energy so that 
Eq. (34) can be accurately approximated as 

250 
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252 
253 

[." . @I,&, 7 i, E2, E') 

The next step is to construct the term 

(35) 

255 

where (Ey(z - zI))  = R;'[Rj(E2) - ( z  - .I)] and 257 
sy(z - zI) is the corresponding spread. The integral has a 258 
sharp maximum at E2 = (Ei(z1 - z ' ) ) A j k  (E l ) ,  E = 259 
(Ey(z - ZI)) (E j ( z ) ) ,  where the cross-sections,attenua- 260 
tion functions, and straggling widths are evaluated. We 261 
expand (E;(. - zI)) about the maximal value of E2 to 262 
obtain 263 

z(E;(z -z1)) x (Ej(2)) + rj~(E2 - ( ( E ~ ( z I  - 2) )  - J j k ) ] ,  

(37) 

where 265 

Substituting Eq. (37) into the integral (36), making 
the change of variables x = rjk[E2 - ((Ek(z1 - 2 ) )  - A j k ) ]  

and integrating with respect to x results in 

267 
268 
269 
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Lastly, we need to evaluate the integral 

Gjk(z,z’, E,E’)  = [Q . e . E* . @ l j k ( ~ , ~ ,  ,z’, E ,  E’) 

[@.3. @ ] j k ( ~ , ~ l , i , E , E ’ ) ~ l .  =l 
(42) 

For a given set of parameters z, E, z‘, E’, there is a value 
z,,, of ZI at which the integrand of (42) achieves a max- 
imum and at which slowly varying factors entering the 
integrand may be computed. Thus 

The point z,,, at which the integrand of (43) adieves its 
maximum is given by the equation 

and is easily obtained by the routine root finding tech- 
niques. It is not difficult to show that 

f i (zm) = E,  (44) 

Therefore, in (43) we may use the substitution 
x = [E - f i ( z l ) ] / [ f i s j k ( z m ) ]  and then integrate to get 

(46) 

where sjk(zI) is given by (41). 

3.5. Second collision term 292 

The third term in Eq. (31) is the second collision term 293 
G;k(Z,i,E,E’) = [e- @ .  9‘ * G’Ijk(z,z’,E,E’) 

x G , L ( z i , i , E i , g ) ~ i  1 a 2 h i .  (47) 

On making approximations similar to those used in the 
previous section, Eq. (47) is reduced to the form 

J 
295 
296 
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IS 

d 
600 

Fig. 1 .  Primary ion flux at various depths for Ne(20,IO) incident on 
aluminum at 600 MeVlamu. 

Obi- 

1 

‘ I  
a.4 I I 

I I 

600 do0 

Fig. 2. First generation 0(16,8) fragment flux at various depths com- 
pared with previous results (broken curve). 
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ions strikes an aluminum target at 600 MeV/amu. The 
results presented are similar to those obtained for other 

304 
305 

i P,[ElSj[El ions. 306 

P.[E.]S.[E.] 
G ; ~ ( ~ , ~ , E , E ’ )  = 1 J J J J a:, (Ej + Ajp)  

Fig. 1 shows the flux of the primary beam at various 
depths and exhibits the effects of energy straggling. In 
contrast to earlier works in which the primary beam 
appears as a propagating delta function, we see here that 
the primary beam attenuates and widens with depth. 
Note that the greatest depths in Fig. 1 are beyond the 
85% range where straggling propagators of the past 

x G;(zi,zI,Ej + ;ljp,E’)&l, (48) 
298 where 

Ej = R;’[R,.(E) + z - z ~ I ,  
300 and is then evaluated by numerical quadrature. 

(49) 

have failed. 
Figs. 2 ana 3 snow tine fiux of the first ana second 

Fig. 3. Second generation 0(16,8) fragment flux at various depths 
compared with previous results (broken curve). 

Inc 
02 

j _ /  , , , , , , ,  * 

0 

OO loo 

0.4 

Fig. 5. Second generation 0(16,8) fragment flux at various depths 
compared with the same flux for the case in which the collision energy 
downshift is zero (broken curve). 

I i  
11 
I I  

0.4 I 1  

Fig. 4. First generation 0(16,8) fragment flux at various depths com- 
pared with the same flux for the case in which the collision energy 
downshift is zero (broken curve). 

Fig. 6. First generation 0(16,8) fragment flux at various depths com- 
pared with the same flux for the case in which the interaction energy 
width is zero (broken curve). 
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319 perturbative expansion of the solution (Wilson et al., 
320 1991). The non-perturbative approximation lacks spec- 
321 tral details and assumes a broad near uniform distri- 
322 bution over the allowed energy domain (Wilson et al., 
323 1991). 
324 The effect of the collision energy downshift ,ljk is ex- 
325 hibited Figs. 4 and 5, where the flux of the first and 
326 second generation of gOI6 ions is compared with the 
327 corresponding results for the case in which the down- 
328 shift is zero. For the ions shown the shift is not great, 
329 contributing only a few MeWnucleon. The downshift of 
330 more massive projectiles is somewhat larger. 
331 Figs. 6 and 7 exhibit the effect of the interaction en- 
332 ergy width &$ by comparing the flux of the first and 

* 
os Q I 0 . 4 -  

100 200 300 400 500 600 
E, MeVmudcon 

Fig. 7. Second generation 0(16,8) fragment flux at various depths 
compared with the same flux for the case in which the interaction 
energy width is zero (broken curve). 

rm, 
0 1  

44 

Fig. 8. First generation 0(16,8) fragment flux at various depths com- 
pared with the same flux for the case in which there is no energy 
straggling (broken curve). 

Fig. 9. Second generation 0(16,8) fragment flux at various depths 
compared with the same flux for the case in which there is no energy 
straggling (broken curve). 

second generation of gOI6 ions with the corresponding 
results for the case in which the interaction energy width 
is zero. Significant widening occurs in the first genera- 
tion of secondaries but little effect is seen in the second 
and presumably higher generations. 

The effect of energy straggling on the the first and 
second generation of gOI6 ions is exhibited Figs. 8 and 9, 
where the flux of of these ions is compared with the 
corresponding results for the case in which no energy 
straggling is present. In contrast with the results for the 
primary beam where straggling makes a significant 
contribution the effect on the first and second generation 
of secondaries appears to be relatively small. 

5. Concluding remarks 

The present formalism provides means of easy vali- 
dation of material transmission properties in conven- 
tional laboratory setups at least to the third 
perturbation term. Higher order terms can be easily 
added using non-perturbation theory and assuming the 
third term spectral distribution. The next step is the 
simulation of the detector responses so that “raw” ex- 
perimental data can be used to validate model predic- 
tions thereby simplyfying the validation process. Early 
versions of the Green’s function code, when coupled 
with multiple elastic scattering in terms of acceptance 
functions (Shavers et al., 1993), showed great promise in 
describing HZE ion transport. In those studies, the 
straggling, energy downshift, and dispersion were ne- 
glected. The present formalism corrects those last re- 
maining deficiencies. The recognition of the present 
formalism as the lowest order asymptotic term provides 
a systematic approach to more realistically treat a host 
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365 of ion beam related problems. The next step will be to 
366 couple the multiple scattering propagator to the for- 
367 malism and adding transverse momentum components 
368 to the first interaction term. 

369 6. Uncited references 

370 
371 (1968). 

Schimmerling et al. (1999); Tschalar and Maccabee 

372 References 

373 
374 
375 
376 
377 

378 
379 
380 
38 1 

I 

Cucinotta, F.A., Wilson, J.W., Shinn, J.L., et al. Computational 
procedures and data base development, in: Wilson, J.W., Miller, J., 
Cucinotta, F.A. (Eds.), Shielding Strategies for Human Space 
Exploration, pp. 151-212, 1998. 

Payne, M.G. Energy stragghng of heavy charged particles in thick 
absorbers. Phys. Rev. 185 (2), 61 1-623, 1969. 

Schimmerling, W., Rapkin, M., Wong, M., et al. The propagation of 
relativistic heavy ions in multi-element beam lines. Med. Phys. 13, 
217-228, 1986. 

Schimmerling, W., Wilson, J.W., Cucinotta, F.A., Kim, et al. Re- 
quirements for simulating space radiation with particle accelera- 
tors, in: Fujitaka, K., Majima, H., Ando, K., et al. (Eds.), Risk 
Evaluation of Cosmic-Ray Exposure in Long-Term Manned Space 
Mission. Kodansha Scientific Ltd, Tokyo, pp. 1-16, 1999. 

Shavers, M.R., Frankel, K., Miller, J., Schimmerling, W., Townsend, 
L.W., Wilson, J.W. The fragmentation of 670 A MeV Neon-20 as a 
function of depth in water. 111. Analytic multigeneration transport 
theory. Radiat. Res. 134 (I), 1-14, 1993. 

Shinn, J.L., Wilson, J.W., Singleterry, R.C.eta1 Implications of 
microdosimetry in estimation of radiation quality in space 
environments. Health Phys. 76, 510-515, 1999. 

Tripathi, R.P., Townsend, L.W., Khan, F. Role of intrinsic width in 
F.,,olt .rn.rnrt..rr A;d.4.,.+;Al- :- I.,,.,, &.- D L S r  .a Up.'"... .I.U.I.I.L*"... ".U..."U.I"..O ... "*"I J lull W..'.).Y...). 1 ..JY. 

Rev. C 48 (4), R1775-Rl777, 1994. 
Tschalar, C., Maccabee, H.D. Energy straggling measurements of 

heavy charged particles in thick absorbers. Phys. Rev. 165 (2), 

mmerling, W., et al. Transport 
ce Radiations. NASA RP-1257, 

nces in space radiation shielding codes. J. 

Tweed, J., Tai, H., et al. A simple model for straggling 
, Nucl. Instrum. Mater. B. 194, 389-392, 2002b (in 

2863-2869, 1968. 
Wilson, J.W., Townsend, 

Radiat. Res. 43 (Suppl.), S87S91, 2002a. 

382 
383 
384 
385 
386 
387 

388 
389 
390 
39 1 

392 
393 
394 

396 
397 
398 
399 
400 
40 1 
402 
403 
404 
405 
406 
407 

1 0 C  a/-, 


