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1 Description of Research

The purpose of this research was to develop enhancement and multi-sensor fusion algorithms and

techniques to make it safer for the pilot to fly in what would normally be considered Instrument

F_--_, u.,1 /TWR_ on-_tlnns, where pilot visibili .ty is severely restricted due to fog, haze or other

weather phenomenon. We proposed to use the non-linear Multiscale Retinex[1, 2, 3, 4] (MSR) as

the basic driver for developing an integrated enhancement and fusion engine.

When we started this research, the MSR was being applied primarily to grayscale imagery such

as medical images, or to three-band color imagery, such as that produced in consumer photography:

it was not, however, being applied to other imagery such as that produced by infrared image

sources. Even for such imagery, the MSR processed images, because of the inherent sharpness

present in the computation, showed a discernible reduction in haziness. Additionally, because of

the dynamic range compression and lightness constancy properties, the MSR processing resulted

in an almost complete elimination of the problems due to low brightness, provided of course that

the low brightness level did not result in initial loss of data when the image was acquired. Figure 1

shows examples of these situations.

However, we felt that it was possible by using the MSR algorithm in conjunction with multiple

imaging modalities such as long-wave infrared (LWIR), short-wave infrared (SWIR), and visible

spectrum (VIS), we could substantially improve over the then state-of-the-art enhancement algo-

rithms, especially in poor visibility conditions. We proposed the following tasks:

1. Investigate the effects of applying the MSR to LWIR and S_VIR images. This consisted of

optimizing the algorithm in terms of surround scales, and weights for these spectral bands.

2. Fusing the LWIR and SWIR images with the VIS images using the MSR framework to

determine the best possible representation of the desired features.

3. Evaluating different mixes of LWIR, SWIR and VIS bands for maximum fog and haze reduc-

tion, and low light level compensation.

4. Modifying the existing algorithms to work with video sequences.

Over the course of the 3 year research period, we were able to accomplish these tasks and report

on them at various internal presentations at NASA Langley Research Center, and in presentations

and publications elsewhere. A description of the work performed under the tasks is provided

in Section 2. The complete list of relevant publications during the research periods is provided

in Section 5. This research also resulted in the generation of intellectual property (Section 5.1)



Fi,we 1: Left row: low brightness level image and the MSR processed image: the effects of low 
brightness levels have been eliminated with respect t o  the signal-to-noise ratio of the acquisition 
device. Right row: original effects of haze caused by fog have been reduced by 51SR processing. 
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referenced by LaRC Case Number LAR 16570-1. Though a patent has not yet been applied for,

NASA Langley has determined that this technology is of use and have retained the rights for future

filings.

2 Tasks

2.1 Multi-sensors

Investigate the effects of applying the MSR to LWIR and SWIR images. Optimize the algorithm in

terms of surround scales, and weights.

Multi-sensor data acquired during test flights on the 757-A_ries platform were used to examine

the issue of weights and scales for multi-sensors. The multi-sensor data in the present case consists

of data from three sensors: Long-wave infrared (LWIR), short-wave infrared (SWIR), and visible

band (VIS). Each sensor provides a different view of the same scene though with different spatial

resolution, field-of-view (FOV), and spectral sensitivity. Table 2.1 shows the characteristics of the

various sensors[5]. The main reason for using a sensor suite, rather than a single sensor, is because

features that are apparent in one modality, may or may not be apparent in another: theSWIR

image may contain features that are not apparent in the VIS band and vice versa; similarly for the

LWIR and VIS, and LWIR and SWIR bands.

LWIR SWIR VIS

Pixel Resolution (nominal) 320H × 240V 320H × 240V 542H × 497V (RGB)

Optics FOV 39°H × 29°V 34°H × 25°V 34°H x 25°V

Detector readout frame rate 60Hz 60Hz (typical) 30Hz (interlaced)

2.1.1 LWIR

The LWIR sensor provides the capability to see features that are at a temperature difference from

their surroundings even through imaging conditions that would usually render a VIS camera useless.

For example, an automobile would be clearly visible against a road through clouds or haze that

would make a VIS image useless. The LWIR images tend to have poor contrast resolution because

the image is really a depiction of the temperature variation in the scene. If there is not a significant

degree of temperature variating between objects in a scene, as is the case when there is fog present,

then the overall images also have less detail. Since the MSR enhances small variations in a region

with respect to its surround, the overall impact of the MSR is to provide an image with greater

contrast resolution and detail, Figure 2 (top-row). The default settings with which the MSR was

used for grayscale and consumer photography were insufficient for the task of enhancing details

in the LWIR image. By experimenting with the imagery that was acquired during several flights

tests, we were able to adjust the MSR parameters, primarily contrast and brightness controls, that



Fi,gre 2: The impact of MSR processing on imagery: toprow. LWIR; middle-row. SIVIR; bottom- 
row, VIS. The original (left) image has poor contrast making it d%cult to discern features of 
interest. The MSR processed image (right) enhances the features of interest with respect to their 
surroundings making them considerably more discernible. 

gave us a much better automatic enhancement. We should note. however. that  the process can be 
controlled manual should different contrast and brightness levels are requires. We should also note, 

that  for over 90% of the images, such adjustment does not need to be made. 

2.1.2 SWIR 

The SJI’IR imagery combines a bit of LJVIR imagery with VIS imagery. However. it is very evident 
from the data  that the SWIR imagery has very poor dynamic range in normal visibility conditions. 
We should note, though. that the settings used for this sensor were optimized for detecting runway 
lights in night-time lighting conditions. These settings made the sensor worthless for detecting any 
other features. Because of the poor dynamic range these settings produced. the resulting images 

also have very poor contrast. Application of the MSR increases the dynamic range and contrast 



of the SWIR imagery. Figure 2 (middle-row) shows the impact of the MSR on SWIR imagery:

several small features that are essentially buried in the original SWIR image become very visible

in the processed data. As in the case of LWIR, the default MSR processing was insufficient for

enhancing the SWIR data stream to the desired level so we had to optimize MSR parameters for

this operation by using the flight data.

2.1.3 VIS

Though the visible images are traditionally not thought to be of much use in poor visibility con-

.... 1_ _ • enhancement sc_hhemes that gTeat!y incree-_e their useful even inditions, we _'_'¢e ...... p_d Linage

dimly lit environments. This is discussed in more detail in Section 3. Figure 2 (bottom-row) shows

the impact of MSR processing on a VIS image. Again, much like in the case of LWIR and SWIR,

the MSR processed image shows details that is not discernible in the original image. Since we had

previously optimized the MSR for used with VIS imagery, we did not have to much optimization

to get desired results. We did note that there was much more information available in the visible

band, even under poor lighting and weather conditions, than we had previously conceived. In fact,

because of the fact that we are used to experiencing VIS imagery, there is no learning curve that

one has to master in order to interpret this data stream. So, if processed properly, the VIS data

may be as, if not more, useful as the other two sources. We do, however, present a fused data

stream to the pilot, so the individual benefits and eccentricities of the different data streams get

combined into a single data stream that contains the salient information from all the data streams.

More on this in Section 2.2.

2.2 Fusion

Fusing the LWIR and SWIR images with the VIS images using the MSR framework to determine

the best possible representation of the desired features.

Image fusion provides the mechanism to present the information that is available in the three

sensor modalities into a single image that contains all the salient features from the different modal-

ities. There are a number of different techniques to perform fusion. One can do simple arithmetic

averaging over the three modalities, or one can merge feature based upon a maximum response,

or something else altogether[6]. There is, however, one (major) underlying assumption for all of

these techniques: the images from the different sensors are rectified and co-registered. By rectifi-

cation we mean that regardless of the original FOVs and spatial resolutions, the rectified images

all have the same instantaneous FOV (IFOV), i.e., are mapped with respect to a common grid. By

co-registration we mean that the major features in the different images lie on the same rectified

grid location.

Co-registration of image features can be relatively straightforward, or tricky, depending upon

the characteristics of the sensors. As Table 2.1 shows clearly, the three sensor differ in spatial
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VIS Image R-egisttered VTS Tmage 
Fiewe 3: Co-registering VIS and SWIR bands. 

resolution and FOV. This means that IFOV is different for each sensor. The first order of business 
then is to  remap the data  from each sensor so that their IFOYs are the same. There are sex-eral 
constraints on how rectification is performed in the context of image fusion: 

1. Smallest FOV determines the FOV of the fused components. Hence the data  with the larger 
FOI’ needs to  be cropped so tha t  the FOVs of all the data  are the same. 

2. The coarsest IFOV determines the direction of adjustment. In other m-ords, if a sensor pos- 

sesses a finer IFOV than another sensor, its IFOV will have to  coarsened by resampling in 
order to  accommodate the larger grid size of the poorer sensor. 

The procedure for rectification is given in detail in i7]. 

If the sensors are perfectly bore-sighted, i.e., object from different sensors form on the same 
rectified grid point. then. disregarding the slight paralla.. difference because the sensors are not 

co-located. rectifying the data  automatically registers the data. If. however, the sensors are not 
bore-sighted, additional data  transforms are required to  register the data. Unfortunately, in the 
case of the multi-sensor pod that was used in flight tests. it is very exident from the acquired data, 

see Fi,pre 2. that  aside from the differences in physical characteristics. the cameras are also not 
bore-sighted. There are significant vertical and horizontal offsets, as well as some rotation and shear 

differences. All of these can be corrected for by applying a,fEne transforms to the data. However: 
this is not an easy problem for automation. We developed a set of tools that  can be used to register 
the da ta  manually by using control points in the various data  streams. Fi,pre 3 shows an example 
of this technique. Once a set of transforms has been obtained, it can be applied to  each frame of 
the data  stream because the relative ali ,ment of the sensors remains constant over a flight test. 
The material is presented in Hines. et ali71, a copy of which is attached. 

Once the data  has been co-registered. as &*as said above. various different techniques can be used 
to fuse the data. We addressed this problem in Rahman et a@]. The novel part of the approach 

presented in this paper was the use of the MSR as an integrated fusion and enhancement engine. 
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Eachsingledatastreamwasusedasa singlebandin theMSRprocesssoeachbandwasprocessed
usinga differentsurroundscaleanda differentweightingfunction. Theimpactof changingthe
surroundscaleis to createoutput imageryin whichdifferentfeaturesareenhanced.Forinstance
smallsurroundscalesproduceenhancementof finedetailswith relativelossof color,and large
surroundscalespreservelightnessandcolorat thecostofdetails[i,4].Further,sincethecontrast,
brightnessandsharpness,canbecontrolledbyappropriategain,andoffset,wewereableto convert
thepost-registrationenhancementandfusionintoa one-stepoperationwherethe MSRis usedto
enhanceandfusethedata.Figure4 showsanexampleof this fusion.

Additionally,it shouldbenotedthat differentimageapplicationsandimagingconditionscan
leadto adifferentsetof requirements on which images have the more important features. Though

the MSR is used to bring out salient features in all the data streams, one can control in what

amount the data mixtures are fused so as to give one data type priority over another. This was

also investigated in [6], where we looked at assigning different weights to the three different sensor

outputs and examining the fused data for best results.

We will be developing these techniques further in current and future research. Copies of relevant

publications accompany this report.

3 Intelligent Enhancement

As mentioned earlier, the parameters for the image are sensor dependent. This means that we

have to pre-set parameters for each image stream which may lead to sub-optimal results. We

have developed a new method that combines autonomous decision making with a suite of image

enhancement and sharpening algorithms and adds a level of autonomy and intelligence to image

enhancement and processing. This method is called the visual servo (VS) and is described in

NASA LaRC disclosure _ LAR 16570-1. A copy of the disclosure has not been attached but

is available from the NASA LaRC patent attorney's office. The VS derives its intelligence by

examining brightness, contrast and sharpness characteristics of each image[8, 9, 1]. Based upon

these computed values, the VS classifies the image as being of GOOD contrast and sharpness, GOOD

contrast, but POOR sharpness, and so on. Figure 5 shown an example of these classifications. Based

upon each combination of classifications, the images pass through a series of processing steps that

modify their contrast, brightness and sharpness until certain exit criteria are fulfilled. Figure 6

shows a block diagram that describes this process.

Figure 7 gives an example of this process for the VIS sensor. In addition to showing the servo

output, this figure also shows that with proper processing---servo for example--images taken in low

light levels can become quite useful.



~ 

Fieme 4: LWIR (topleft) ,  SUTR (topright), RGB (bottom-left), and fused (bottom-right). The 

fused image synergistically combines the information present in the LWIR, SWIR, and RGB data 
streams into a single representation. These data  streams have been enhanced prior to  fusion. 
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Excellent 

Good 

Poor 

Fi,me 5: (a) I’isual Measures for automating visual assessment: images are assigned to one of three 
global classes. {Excellent. Good, Poor}. The classes are bases on global and regional brightness 
and contrast measures. 

Excellent 
Contrast 

Good 
Contrast 

Good 
Lightness 

Poor 
Lightnessl 
Contrast 

Figure 5: (b) Visual map showing regional classes: the combination of the regional classes is used 
to derive the global classification. 
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Fig. 2 .  Seno system 

Figure 6: Block diagram showing the servo mechanism. 

Figure 7: Original image (left) taken under low light level conditions can be virtually useless. The 
servo (right) automatically set the parameters for the SISR process and additional processing steps 

to  produce an image that contains useful information. 

10 



4 Video processing

During the period when this research was performed, we did not have the capability to perform real-

time video processing. Since then we have been successful in implementing a single scale version

of the MSR that operates on monochrome images[10, 11]. We did, however, develop software

procedures to perform MSR enhancement on video streams:

1. Decompose the video stream into individual video frames.

2. Process these individual video frames with the MSR

3. Synthesize the processed individual frames into a video stream.

While straightforward in concept, several interesting issues arose when we performed this process-

ing. The MSR produces an output based upon image characteristics--whether there are sharp

shadows, whether the lighting conditions are varying, etc. V_hen used with video frames, we found

that the automatic mode of processing was resulting in visible '_ltashes" in the processed imagery.

These "flashes" seemed to occur in frames that were temporally close, where the MSR was compen-

sating for changes in light levels by automatically adjusting brightness and contrast parameters. :'_

Hence we had to modify the video processing scheme to make the adjustment of parameters static

for the whole video stream. Though this results in sub-optimal per frame performance, the overall

enhanced video is much more useful.

5 Publications

Publications are listed chronologically in each category.

Intellectual Property

"A Computational Visual Servo: Automatic Measurement and Control for Smart Image

Enhancement", D. J. Jobson. Z. Rahman, G. A. Woodell, LaRC patent disclosure #LAR

16570-1.

Summary:

Based upon the scientific insights gained from Retinex image processing (US patent 5,991,456,

pending US 09/88,701, and 09/888,816, Australian patent 713076) and the statistical con-

vergence of a large set of enhanced images, a set of absolute visual measures (VM) was

developed which consists of contrast, lightness, and sharpness measures for arbitrary digital

images. These measures, in turn, serve as a rudimentary form of visual intelligence which

provides the foundation for an automatic servo control system for image enhancement. Based

upon the VM scores and classifications, enhancement modules that include Retinex image

enhancement, autolevels, and sharpening are invoked. For any digital image, the servo will

11



cycle among the modules until the image is enhanced to acceptable VM scores, or until the

allowable degrees of enhancement have been exhausted. Further, as a special case of interest

to aviation safety, the servo contains a unique module for detecting turbid imaging conditions

(fog/smoke/haze) and applies a unique combination of enhancement processing to optimize

this class of image enhancement for maximum scene clarity.

Journal Article

Z. Rahman, D. J. Jobson, and G. A. WoodeU, "Retinex Processing for Automatic Image

Enhancement", Journal of Electronic _Jna_m_,..........vulum_'.... 13, _,_T"--_^_, i, Janua D" 2004.

Abstract:

There has been a revivification of interest in the Retinex computation in the last six or seven

years, especially in its use for image enhancement. In his last published concept (1986) for

a Retinex computation, Edwin Land introduced a center/surround spatial form which was

inspired by the receptive field structures of neurophysiology. With this as our starting point

we developed the Retinex concept into a full scale automatic image enhancement algorithm--

the Multi-Scale Retinex with Color Restoration (MSRCR)--which combined color constancy ,_

with local contrast/lightness enhancement to transform digital images into renditions that

approach the realism of direct scene observation. Recently we have been exploring the fun-

damental scientific questions raised by this form of image processing: namely, (i) is the linear

representation of digital images adequate in visual terms in capturing the wide scene dynamic

range? (ii) can visual quality measures using the MSRCR be developed? and (iii) is there a

canonical, i.e., statistically ideal, visual image? The answers to these questions can serve as

the basis for automating visual assessment schemes, which, in turn, are a primitive first step

in bringing visual intelligence to computers.

.

Conference Publications

Z. Rahman and D. J. Jobson, "Information Theoretic Analysis of Noise Sources in Image

Formation," Visual Information Processing XII, Proc. SPIE 5108, (2003).

Abstract:

When a linear image acquisition device captures an image, several noise sources impact the

quality of the final (digital) image. We have previously examined the impact of these noise

sources in terms of their impact on the total amount of information that is contained in the

image, and in terms of their impact on the restorability of the image data. In this paper, we

will examine the effect of each of the noise sources on final image quality.

G. D. Hines, Z. Rahman, D. J. Jobson and G. A. Woodell, "Multisensor Image Registration

For An Enhanced Vision System," Visual Information Processing XII, Proc. SPIE 5108,

(2003).
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Abstract:

An Enhanced Vision System (EVS) utilizing multi-sensor image fusion is currently under

development at the NASA Langley Research Center. The EVS will provide enhanced images

of the flight environment to assist pilots in poor visibility conditions. Multi-spectral images

obtained from a short wave infrared (SWIR), a long wave infrared (LWIR), and a color visible

band CCD camera, are enhanced and fused using the Retinex algorithm. The images from

the different sensors do not have a uniform data structure: the three sensors not only operate

at different wavelengths, but they also have different spatial resolutions, optical fields of view

(FOV), and bore- sighting inaccuracies. Thus, in order to perform image fusion, the images

must first be co-registered, image registration is the task of alig-,Jng images taken at different

times, from different sensors, or from different viewpoints, so that all corresponding points

in the images match. In this paper, we present two methods for registering multiple multi-

spectral images. The first method performs registration using sensor specifications to match

the FOVs and resolutions directly through image resampling. In the second method, regis-

tration is obtained through geometric correction based on a spatial transformation defined

by user selected control points and regression analysis.

3. D. J. Jobson, Z. Rahman, and G. A. Woodell, "Feature _@ibility limits in the non-linear ,:

enhancement of turbid images," Visual Information Processing XII, Proc. SPIE 5108, (2003)

Abstract:

The current X-ray systems used by airport security personnel for the detection of contraband,

and objects such as knives and guns that can impact the security of a flight, have limited

effect because of the limited display quality of the X-ray images. Since the displayed images

do not possess optimal contrast and sharpness, it is possible for the security personnel to

miss potentially hazardous objects. This problem is also common to other disciplines such

as medical Xrays, and can be mitigated, to a large extent, by the use of state-of-the-art

image processing techniques to enhance the contrast and sharpness of the displayed image.

The NASA Langley Research Centers Visual Information Processing Group has developed

an image enhancement technology that has direct applications to this problem of inadequate

display quality. Airport security X-ray imaging systems would benefit considerably by using

this novel technology, making the task of the personnel who have to interpret the X-ray images

considerably easier, faster, and more reliable. This improvement would translate into more

accurate screening as well as minimizing the screening time delays to airline passengers. This

technology, Retinex, has been optimized for consumer applications but has been applied to

medical X-rays on a very preliminary basis. The resultant technology could be incorporated

into a new breed of commercial x-ray imaging systems which would be transparent to the

screener yet allow them to see subtle detail much more easily, reducing the amount of time

needed for screening while greatly increasing the effectiveness of contraband detection and

thus public safety.

4. D. J. Jobson, Z. Rahman, and G. A. Woodell, "The statistics of visual representation," Visual
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Information Processing XI, Proc. SPIE 4736, (2002) (Invited paper)

Abstract:

The experience of retinex image processing has prompted us to reconsider fundamental as-

pects of imaging and image processing. Foremost is the idea that a good visual representation

requires a non-linear transformation of the recorded (approximately linear) image data. Fur-

ther, this transformation appears to converge on a specific distribution. Here we investigate

the connection between numerical and visual phenomena. Specifically the questions explored

are: (1) Is there a weU-defmed consistent statistical character associated with good visual

representations? (2) Does there exist an ideal visual image? And (3) what are its statistical

properties?

Z. Rahman, D. J. Jobson, G. A. Woodell, and G. D. Hines, "Multi-sensor fusion and enhance-

ment using the Retinex image enhancement algorithm ," Visual Information Processing XI,

Proc. SPIE 4736, (2002)

Abstract:

A new approach to sensor fusion and enhancement is presented. The retinex image enhance-

ment algorithm is used to jointly enhance and fuse data from long wave infrared, short wave

infrared and visible wavelength sensors. This joint optimization results in fused data which

contains more information than any of the individual data streams. This is especially true in

turbid weather conditions, where the long wave infrared sensor would conventionally be the

only source of usable information. However, the retinex algorithm can be used to pull out the

details from the other data streams as well, resulting in greater overall information. The fu-

sion uses the multiscale nature of the algorithm to both enhance and weight the contributions

of the different data streams forming a single output data stream.

D. J. Jobson, Z. Rahman, and G. A. Woodell, "Retinex processing for automatic image

enhancement," Human Vision and Electronic Imaging VII, SPIE Symposium on Electronic

Imaging, Proc. SPIE 4662, (2002)

Abstract:

In the last published concept (1986) for a Retinex computation, Edwin Land introduced a

center/surround spatial form, which was inspired by the receptive field structures of neuro-

physiology. With this as our starting point we have over the years developed this concept

into a full scale automatic image enhancement algorithm--the Multi-Scale Retinex with Color

Restoration (MSRCR) which combines color constancy with local contrast/lightness enhance-

ment to transform digital images into renditions that approach the realism of direct scene

observation. The MSRCR algorithm has proven to be quite general purpose, and very re-

silient to common forms of image pre-processing such as reasonable ranges of gamma and

contrast stretch transformations. More recently we have been exploring the fundamental sci-

entific implications of this form of image processing, namely: (i) the visual inadequacy of

the linear representation of digital images, (ii) the existence of a canonical or statistical ideal
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visual image, and (iii) new measures of visual quality based upon these insights derived from

our extensive experience with MSRCR enhanced images. The lattermost serves as the basis

for future schemes for automating visual assessment--a primitive first step in bringing visual

intelligence to computers.

D. J. Jobson, Z. Rahman, and G. A. WoodeU, "The Spatial Aspect of Color and Scientific

Implications of Retinex Image Processing," SPIE International Symposium on AeroSense,

Proceedings of the Conference on Visual Information Processing X, April 2001.

Abstract:

The hi._tory of the spatial aspect of color perception is reviewed in order to lay a foundation

for the discussion of retinex image processing. While retinex computations were originally

conceived as a model for color constancy in human vision, the impact on local contrast

and lightness is even more pronounced than the compensation for changes in the spectral

distribution of scene illuminants. In the multiscale retinex with color restoration (MSRCR),

the goal of the computation is fidelity to the direct observation of scenes. The primary visual

shortcoming of the recorded image is that dark zones such as shadow zones are perceived

with much lower contrast and lightness than for the direct viewing of scenes. Extensive

development and testing of the MSRCR led us to form several hypotheses about imaging:

which appear to be basic and general in nature. These are: (1) the linear representation of

the image is not usually a good visual representation, (2) retinex image enhancements tend

to approach a statistical ideal which suggests the existence of a canonical "visual image",

and (3) the mathematical form of the MSRCR suggests a deterministic definition of visual

information which is the log of the spectral and spatial context ratios for any given image.

These ideas imply that the imaging process should be thought of, not as a replication process

whose goal is minimal distortion, but rather as a profound non-linear transformation process

whose goal is a statistical ideal visual representation. These insights suggest new directions

for practical advances in bringing higher levels of visual intelligence to the world of computing.
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ABSTRACT

When a linear image acquisition device captures an image, several noise sources impact the quality of the final
(digital) image. We have previously examined the impact of these noise sources in terms of their impact on the

total amount of information that is contained in the image, and in terms of their impact on the restorability of
the image data. In this paper, we will examine the effect of each of the noise sources on final image quality.

1. INTRODUCTION

The digital image that is produced by the end-to-end imaging process which starts with the capture of light,
emitted or reflected by a scene, by a photosensitive device, and which ends with the reproduction of this scene in
digital form, contains several artifacts due to the nature of the imaging process. In several previous publications,

we have examined the end-to-end imaging system in terms of restorability of the image data acquired by the
imaging device, and also in terms of the total information that such a system is capable of transmitting. 1-3 In

this paper, we approach the problem from a slightly different perspective: how do these individual noise sources
affect the overall information that the system transmits, and how does this impact the quality of the restored
image? We provide graphical results to show the impact of noise sources on the total information and images

to show the impact of these noise sources on the final image quality. We, thus, correlate theoretical predictions
with actual results using a simulation environment.

noise
ne

S.^n _o ,m'-_ _ ima e fl.igi.tal [ [ hnage. ]_outuut

T- a
I I

continuous discrete continuous

Figure 1: End-to-end imaging system, from (continuous) image scene, to (discrete) signal, and (continuous) display.

For this paper, we are interested only in those artifacts that are part of the image-formation process. We
will not examine filters that minimize the impact of these artifacts on the final image. For a discussion of such
filters, see, for instance, Huck et al, 1,2 Fales et al, 3 and Park and Rahman. 4 Figure 1 shows the end-to-end

imaging process.

1. The light from the (continuous) scene, L, first passes through an optical lens characterized by a point
spread function _- to form the (continuous, blurred) representation Lb --'.=L * _'.

2. The blurred image Lb is acquired by the photosensitive CCD array, producing the spatially discrete,

N1 × N2 sampled image n' b = nb]]_, where ][_]_is the image sampling lattice given by

I =2)= - -
tr_l 1"¢2

$1 and $2 are the intersample distances in the xl and x2 directions respectively. Note that L'b[nl, n2] =

Lb[Xl, x2], VXl = hiS1 , x2 = n2S2- The sampling lattice, in conjunction with the imaging optics, inher-
ently causes aliasing, injecting artifacts into the end-to-end imaging process. 4,5



3. The (discrete) sampled image, L_ has continuous amplitude at the sampled nodes. This is converted to

digital values with an analog-to-digital (AID) converter, or quantizer, Q, that produces the digital signal,

L, = Q[L_] + nq, where nq represents the quantization error that is generated when the continuous sample

value is digitized. The quantization operator is given by

 E,1=I j
L_Tu= - _r_in

where rl is the number of bits used to represent each sample value and (a,,,= - amin) represents the

dynamic range of the original scene. If we assume that the dynamic range of the signal has been scaled

,_ _o+_h +_o d_m_c ran_ that ran _he_represe_nted by, _ bits, then Q[y] = Ly 4- 0.5/= y + nq.

4. In addition to the aliasing, and quantization artifacts, the CCD array also injects artifacts due to thermal

and electronic noise into the image. These effects are modeled as additive, Gaussian white noise, n_. The

noise corrupted signal is s = Ls + he.

5. The discrete, quantized, noisy signal s can be filtered by some operator f to form the discrete, quantized,

filtered signal, s I = s * S. Though this operation does not contribute directly to the input artifacts, it

may enhance the effects of the artifacts already in the signal. So it does affect the overall quality of the

displayed image.

6. The filtered signal sy is reconstructed by the image display device---monitor, print, or something else--to

form the displayed image d = s I * r, where r is the reconstruction filter. The reconstruction filter is

typically a low pass filter that blurs the (filtered) signal s I. For this reason, the filter S typically tends to

be a sharpening filter do that the combined response of the reconstruction function and the filter function

is (approximately) the ideal low-pass filter.

2. END-TO-END ANALYSIS

There are a total of five sources of artifacts, then, that affect the quality of the final image: optical blurring,

aliasing, quantization, thermoelectric noise, and reconstruction blurring. We make the simplifying assumption

that these sources are essentially independent of each other so that we can monitor the effect of any one noise

source by keeping the rest of them constant. It is difficult to perform this analysis using real images because

they already contain these artifacts. Hence, we will use a synthetic image with controllable mean-spatial detail

and known power spectral density (PSD) to perform this analysis. Taking a look at the end-end-process in toto,

the displayed image d can be written as:

d(.T1,.T2) -- { ((L(=I,.T2)* T(Xl, =2))[IA(=1, =2)"[-_q["1,"2] "_- "el"l, n2]) * Sin1, n2])* r('TI,-T2) (1)

/_(LO1, _02 ) = { ((L(/,O1, O)2)_'(Ldl,_O2)) * ]TA(_jJ1, W2) +/_trq[1/1, _2] -_- Ne[Vl,/s2]) Eli/l, b*2] ) R(_o1, _,_2) (2)

Notationally, the variables in ( ) are continuous variables, and those in [] are discrete. Equation 2 is the Fourier

domain representation of Equation 1, and the Fourier transformed variables have a" on top. The (wl,w2)

represent continuous frequencies and, thus, continuous Fourier transform, and the [Vl, v2] represent discrete

frequencies, and hence discrete Fourier transforms. The Fourier transform of the sampling lattice ][_!is given by

nl nl

The two representations given in Equations 1 and 2 are equivalent, however, the mathematics is much more

tractable in the Fourier domain.



Equation 2 can be rewritten to explicitly show all the noise terms that inject artifacts into the displayed
image d:

(3)
f[ ^1 ^

,Va (Wl, uJ2) R[Wl, co21, (4)

where L_ is the blurred component of the scene that is encompassed by the sampling passband as determined

by the Nyquist frequency, and/_/_ = Lb * I]_fo_,

--E E n1/s1, 2- 2/s2),nl--n2 0

Four of the five sources of artifacts are inherent to the image acquisition process and one, reconstruction blur,

is due to the characteristics of image display. Three of the four sources inherent to the image acquisition are

modeled as independent, additive noise sources. We will examine the impact of changing these noise terms on

the quality of the final image in the next section.

2.1. Metric

One of the measures commonly used to measure the quality of an image is the signal-to-noise ratio (SNR); ...

another is the mutual information, _f, between the discrete signal s and the continuous scene L. The mutual ;

information is a function of the SNR so in that sense the two metrics essentially present have the same meaning.

However, unlike the generally used definitions of SNR, this particular definition of SNR includes the effects of

aliasing in the noise.

The signal s is given as:

Assuming stationarity, the PSD of s, _, = I_[2 = _*, where -* represents complex conjugation. The assumption

that the noise sources are independent of each other and of the scene, ensures that all of the cross-product terms

in the computation of (_ are 0. Therefore,

,t,_ = @L,+@,,.+'I',_+@.. (6)

= &LI_I 2 + &,. + &,, + _,,,, (7)

= _lrl _+ &_ (8)

The right hand side of Equation 8 contains a signal term _LIT] 2 plus a noise term (_N = _,. + _,, + (_,.. One

can then compute the mutual information between the acquired siE_nal and the scene. From Huck et al, B-B we

see that the mutual information _ is determined by the ratio @s/(_N. Thus,

1

=

1

2

1

2

/ log 1+ _N(Wl,W2)J

// 10gs[ l+ _L------(031 ' g02 ) I"_(-.--_ 1'-----_2 )IZ d_l dco 2

_o(_1, _2) +&No[_, _2]+ _N.[_I, _2]

log2[ 1_ (_)L(C0------1 -_CO2)----_"r(.---_1' ('d2)'2 _._ _)N,_ [1._1, b,2] ] d/_l d_2 •

_L(_,','2)1+(_, _2)12*liol+ _'_,[_, _]

(9)

(I0)

(11)



Themutual information can be computed as a function of the blurring, aliasing, quantization, and thermo-

electric noise artifacts, as long as we know the PSD _L of the scene. Following Itakura et.al 9 and Kass and
Hughes,, l° we assume that the PSD of the radiance field L is

_L (_1, o J2) : 2r#2_

[,
(12)

which is circularly symmetric. In Equation 12, # is the mean spatial detail in the (stationary) scene, and aL is

the standard deviation. This power spectral density has shown to closely match the power spectral density of

natural scenes. 9 Additionally, we assume that the thermoelectric noise and the quantization are white Gaussian:
so that:

2
_N. = a_ (13)

_N, = aq 2 _ (2--bff.) 2, (14)

//_,,(_-,_,_,,_),_,__ II _,L(_,,_)l_-(,_,,,_)P_,_. (_5)
JJ JJ

The optical transfer function (OTF) of the combined lens and CCD optics can be (closely) modeled as a
Gaussian.1,11 For this reason, we assume that

e(,,.,,,,,.,_)=_ [ - (,4+J)/4],

where ar is the parameter that controls the width of the Gaussian, and hence directly determines the trade-off

between aliasing and blurring (see Section 3.2). Figure 2 shows the OTF for various values of aT. The sampling

passband is also shown for comparison.

3. INFORM_ATION AND SOURCES OF ARTIFACTS

Using the PSD defined in Equation 12 in conjunction with the definition of mutual information, T/, we can

examine he impact of the noise sources on the total information that the system acquires. In Section 4, we will

correlate these noise artifacts with image quality.

 :10
,., o II (',.-",,\i 0.30 ......
'.'-o71; ',,- _, 0.50......

II ',.",',,t", o.7o-_
o.6-{i _ ","1.:,\ 1.00_

÷ I I ', ',,!",,.\
04__l ", _] \ \

o.2-{i",,,l,,,\ \

0.0 0.5 1.0 1.5 2.0

_1(w2= 0)

Figure 2. The OTF _ of the imaging optics for various values of the control parameter a_. The sampling passband for

unit sampling interval, S1 = $2 = 1, is shown in dashed lines. As a, increases, the OTF blurs less, but more and more
of the (blurred) signal falls outside the sampling passband, giving rise to greater aliasing.
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Figure 3. The mutual information 9f as a function of the OTF ÷ of the imaging optics and aliasing. The information is
maximized when the imaging system can balance the increased noise due to aliasing against the loss of information due
to blurring. Top left: SNR = oo; top right: SNR = 16; bottom left: SNR = 64; bottom right: SNR = 256.

3.1. Optical blurring

The optical blurring due to the combined response of the lens and the image-acquisition lattice is modeled by
the OTF _. This is not an actual noise source, thought it is source of artifacts especially when a_ is very small.

In fact, it can be shown that in the absence of any noise, the effects of blurring can be completely removed by
applying an "inverse" filter to the blurred image. Mathematically, since _ = L_ in the absence of noise, then
if _P = (_)-1, then sl = _-# = (L_)(v) -1 = L. This would be true for all values of aT if the images are stored

with infinite precision. However, due to the A/D conversion, the inverse filter cannot undo the blurring for
those values where the signal has been quantized to 0. It was determined (experimentally) that for an 8-bit
A/D converter, signals blurred with a_ > 0.125 can be completely recovered; those blurred with a_ < 0.125

can be either recovered partially or not at all (Figure 7 bottom row). However, imaging systems are rarely, if
ever, noise free. In such cases, applying the inverse filter to the image can serve to actually enhance the noise
artifacts. 12 So while blurring does not contribute directly to the noise, its overall impact is to make the image
less contrasty and sharp. Figure 2 shows how the change in the aT parameter affects the OTF.

3.2. Aliasing

Where the effects of optical blurring contribute directly to noise is when sampling is introduced into the analysis.

The traditional trade-off in the design of the acquisition part of the imaging system is really a trade-off between
aliasing and blurring in the presence of noise. Since we are assuming for this analysis that the thermoelectric and
quantization noise terms are constant, we can also assume, without loss of generality, that they are identically
0. Hence the only noise contribution is due to aliasing which, in turn, depends completely on the OTF of

the combined responses of the optics and image_gathering lattice. Figure 3 shows the impact of varying the
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Figure 4. The mutual information _ as a function of the thermoelectric signal-to-noise. Right column: mu = 1;X1 = 4;
left column: _ = 1; X1 = 1.

OTF and intersample distance X1 on the total information. The figure shows that as the OTF gets wider, the
amount of aliasing increases causing the total information to decrease. Conversely, when the blurring increases,
aliasing decreases, leading to increased information. However, past a certain threshold, blurring further reduces
the total amount of information. The solid line represents the case when there is no aliasing or noise and the

only limiting factor is the image blur. Additional results are shown for the cases where there is aliasing and
thermoelectric noise in the system.

3.3. Thermoelectric noise

The thermoelectricnoiseismodeled as white,Gaussian. Since the PSD of a white Gaussian functionisa

constant,any increaseinthe noiseterm leadsdirectlyto a decreaseinthe totalinformation7_.Figure4 shows

the impact of changing the SNR on the total information. For the left column, the intersample distance is set

to 4 so there is aliasing as well as thermoelectric noise. The right column shows the same thing except in the
absence of aliasing. The top-left graph can be used to derive the aT parameter that maximizes information for

a given SNtL So given the imager's thermoelectric SNR, the lens can be designed so that the optics and the
sampling array combine to maximize information. As SNR decreases, more and more aliasing can be tolerated
since it does not affect the overall quality of the image more than the thermoelectric noise. The top-right graph
shows that if aliasing is not the limiting factor, then the information continues to increase as more and more

signal is passed through the lens unblurred. The bottom row shows the trend as a function of the SNR for given
aliasing parameters 0-T. Information increases monotonically with increasing SNR. However, at low SNRs, the
signals with higher aliasing contain more information because they are sharper. At high SNR, the signals with
less aliasing contain more information because the aliasing becomes the major noise source.
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3.4. Qumatization

The quantization process is an interesting one. Since the idea is to represent the dynamic range of the (contin-
uous) phenomenon being observed as a bounded (discrete) set, there are a couple of trade-offs that need to be
understood. If we want to capture the fifll dynamic range of the phenomenon, then unless the range is bounded,

i.e. beyond a given upper and lower limit, the values axe essentially zero, it is difficult to eetablish the upper
and lower limits that are needed to define the quantizer. If an incorrect model is used, then the quantization
error can be significant. If however we do assume a bounded source, as is the case here since we axe measuring
the amount of light that is passing through the lens and then falling on the CCD array, we can assume different
types of quantization models and use the one that provides the least error. We can show that if we assume that

the light obeys a Gaussian distribution, then the quantization error obeys a uniform distribution with the error
given in Equation 15.1 We have previously examined the impact of quantization on sampling-limited systems, la
Figure 5 shows the impact of quantization on total information assuming all other sources remain constant.
Results are shown for five cases: the first two represent the situation when there is no thermoelectric noise: the

image quality is then restricted by the blurring function T and the quantization rate. The last three show the
cases for those designs that maximize information by matching the thermoelectric noise with the appropriate
blurring function parameter a_. The information increases with the quantization rate. However, beyond a
particular quantization rate T/l, increasing T}does not yield additional information. The value of T/t depends
upon the combination of the amount of thermoelectric noise and the blurring.

4. IMAGE QUALITY AND SOURCES OF ARTIFACTS

In Section 3 we described the (theoretical) metric of mutual information 7/with the hypothesis that maximizing
the metric gives the best image quality. In this section we are going to examine the actual effects of the artifacts
on the overall (visual) image quality. We do this by varying the different parameters that are used to characterize

the various sources of artifacts, the best to way to examine the the effects of the artifacts on image quality, is
to use a synthetic image with known characteristics, such as PSD and mean spatial detail. We use a computer
generated scene of random polygons following the procedure by Modestino and Fries. 14 This target has definable
mean spatial detail, and its PSD closely matches that given in Equation 12. Since this is a computer generated

image it is free from image formation artifacts. Note that we say '_image formation" artifacts only; the generated
images is not free from a/l imaging artifacts because of any artifacts that are particular to the display device.
For instance, reconstruction and interpolation artifacts are always going to be present when we display the
synthetic image, and it always has to be displayed: otherwise it is just a matrix of integers. Figure 6 shows the
synthetic target for mean spatial detail p = 1, but with varying zoom factors.



Figure 6. Synthetic target with p = 1. The left image is at full resolution, the middle at a zoom factor of 4: and the 
right at a mom factor of 8. The zoom factors represent the effective sampling density 

4.1. Blurring 
The blurring artifacts are easiest to x-isildize, and display. In order to show oniy blurring, we assume that 
the image is sufficiently sampled, Le., the PSD of the image lies completely wit,hin the Xyquist sampling 
passband. We can do this in the synthetic simulation environment but t,his assumption is not valid for any 
real imaging system. One of the impacts of sufficiently sampling a signal is that the overall appearance of the 
reconstructed image is blurry: the image could be made sharper by allowing some aliasing (see Figure 8. The 
original scene can be completely recovered from this blurry representation by using an inverse filter, as long as 
i(w1, w2) > 0, V(wf + w ; ) ’ / ~  < 8, where 8 is the Nyquist sampling frequency. Figure 7 shows the impact of 
blurring on the original image and also the restored image when the appropriate inverse filter is applied. 

4.2. Aliasing 
Because we are examining the impact of artifacts in a simulation environment, we can examine the impact of 
aliasing wit.h and without a lens in the imaging system. The effect,s of aliasing are most easily visualized in the 
frequency domain. -4liasing is a direct consequence of sampling. The process of sampling in the spatial domain is 
equilalent to the process of replication in the frequency domain. As long t,here is sufficient distance between the 
replicas in the frequency domain, the image can be fully reconstruct.ed from its frequency domain representation. 
Since there is an inverse relationship between the intersample distance in the spatial and frequency domains, 
this implies that the image has to be sampled on a fine lattice in the spatial domain. When this is not the 
case, there is crossover energy between the neighboring replicas. This effect is known as aliasing. Since the 
lens applies a Gaussian blur to the scene, it,  in effect, at.tenuates the signal in a given profile determined by 
the shape of the OTF. The “blurrier” the OTF, the less aliasing there is in the final image. This is because 
blurry lenses attenuate the signal rapidly, causing most of the signal that passes through to fall within the 
Nyquist passband. Conversely, the less blurry the OTF, the greater the aliasing. Figure 8 shows the impact 
of aliasing with and without a lens in place. If the lens is designed so t,hat there is no ot.eral1 aliasing-the 
OTF is designed so that the PSD of the signal passing through the lens is coniined (almost) completely t,o the 
Nyquist passband-then the original signal can be recoTered with the application of an inverse filter. In such 
a case, there is no aliasing, only blurring. However, most real systems build in aliasing, because the overall 
image is then sharper. If the systems were designed with digital post-filtering, then they could be designed 
with considerable blurring with the OTF because the impact can be reversed with digital filtering. However, 
because of thermoelectric noise (Section 3.3) this filtering can be less than desirable. Therefore, the systems are 
designed with aliasing to produce as sharp an image as possible m-ithout obvious artifack This relat,es back to 
t.he trade-off between aliasing and blurring that  as mentioned in Section 3.2. 



Figure 7. The impact of blurring without aliasing in the  absence of noise on the overdl image quality. The original image 
can be completely recovered from the blurred image by applying the appropriate inverse filter as long as crT > 0.125-top 
row. For scenes acquired with lenses with u, < 0.125. information cannot be completely recovered-bottom row.. 

4.3. Thermoelectric noise 
Though the thermoelectric noise source is modeled as additive, white Gaussian, it poses one of the biggest 
challenges for image quality. In the absence of thermoelectric noise, an inverse filter can be used t.o recover from 
blurring and, to some ex%ent, aliasing artifacts. However, when there is additive t.hermoelectric noise present 
in the image, the rules for restoring the image change considerably. A typical inverse filt.er has low magnitude 
at high frequencies. The noise in the frequency domain has a constant magnitude at all frequencies. Hence, 
the inverse filter magnifies the impact of noise at high frequencies. Filters have to be designed carefully in 
order to minimize the impact of thermoelectric noise on the restored image..',' Figure 9 shows the impact of 
thermoelectric noise on the overall image quality in the absence of other noise sources. The PSD due t.o 
ne has to be quite high before its impact is clearly visible in the out,put, image, especially in the case of printed 
media where the signal is dithered-i.e., has random noise added to it-before reconstruction. 

4.4. Quantization 
As mentioned earlier, quantization impacts axe usually very small unless very coarse quantization is applied. 
In figure 10 we show the synthetic scene for several quantization levels. As the quant.ization grom~s coarser, 
the amount of information drops directly as a function of the quantization rate: (Section 3.4). This holds true 
for the visual quality as well, though the visual system is quite tolerant to fairly large quantization error. For 
most printed images, a quantization rate of 71 = 5 gives satisfactory performance depending upon the type of 
print media-plain or photographic quality paper, or transparency-, printing process-inkjet, thermal dye 
sublimat,ion, etc.--, and the printing medium-ink, ribbon, et,c. For most CRT displays, a quantization rate 



Figure 8. The impact of aliasing-with and without a (blurring) lens. When the lens attenuates the signal so that it 
is (almost) zero outside the Nyquist passband, the acquired signal can be recovered with an inverse filter. Othemise, 
aliasing causes the image to appear sharper, but also introduces artifacts that are most noticeable in scenes with high 
low mean spatial detail, i.e. scenes with large areas of constant intensity. These effects are most noticeable as edge 
replication-r ringing-near edges or large changes in intensity. 

Figure 9. The impact of thermoelectric noise: high noise (left), medium noise (middle), low noise (right). The PSD 
&,,, due to  ne has to  be considerable before the impact on visual quality is visible. 



Figure 10. The impact of quantization on image quality. Results are s h a m  for 7 = 8: bottom right; 7 = 6: bottom 
left; q = 4: top right; and r] = 2: top left. As the quantization gets coarser, the artifacts such as false contouring become 
more obvious. However, there is little discernible difference between 7 = 4,6, and 8. 

of r ]  = 6 or 7 = 7 is sufficient. Since most digital display device quantize data at TJ = 8, quantization artifacts 
rarely have an impact on the ox-erall quality of the image, but should be considered for completeness. 

5. CONCLUSIONS 
We have examined image acquisition artifacts with respect to their impact on the amount of mutual infor- 
mation that the device can transmit and the overall image quality. We examined four noise sources: optical 
blurring,aliasing, thermoelectric noise and quantization. Though we examined the sources individually, we 
showed that they do have an impact on each other. For instance, the effects of aliasing and blurring are inti- 
mately intertwined, as are the effects of thermoelectric noise and blurring. We showed that there is a strong 
correlation between the hypothesis that best results are obtained when information is maximized and the overall 
image quality. 

We have not really addressed the question of how these various observations can be combined to design the 
very best imaging system. However, we have shown the performance bounds due to the larious noise sources, 
and also, to some ex%ent, the interrelationships between the noise sources. These can be used as a recipe to 
design a system that can be used to maximize both the information and image quality. 
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ABSTRACT

An Enhanced VisionSystem (EVS) utilizingmulti-sensorimage fusioniscurrentlyunder development atthe

NASA Langley Research Center. The EVS will provide enhanced images of the flight environment to assist pilots

in poor visibility conditions. Multi-spectral images obtained from a short wave infrared (SWIR), a long wave
infrared (LWIR), and a color visible band CCD camera, are enhanced and fused using the Retinex algorithm.
The images from the different sensors do not have a uniform data structure: the three sensors not only operate
at different wavelengths, but they also have different spatial resolutions, optical fields of view (FOV), and bore-

sighting inaccuracies. Thus, in order to perform image fusion, the images must first be co-registered. Image
registration is the task of aligning images taken at different times, from different sensors, or from different
viewpoints, so that all corresponding points in the images match. In this paper, we present two methods for
registering multiple mnlti-spectral images. The first method performs registration using sensor specifications
to match the FOVs and resolutions directly through image resamphng. In the second method, registration is

obtained through geometric correction based on a spatial transformation defined by user selected control points
and regression analysis.

Keywords: image registration, control points, resamphng

1. INTRODUCTION

Improving aviation safety is a primary mission of the National Aeronautics and Space Administration (NASA).
Synthetic Vision Systems (SVS) is an initiative at the NASA Langley Research Center (LaRC) to improve the
level of aviation safety. One component of the SVS is the Enhanced Vision Systems (EVS) project where several
sensor technologies are being utilized to provide vision-enabling information to commercial and general aviation
pilots to assist them in poor visibility conditions.

Infrared sensors are routinely used in remote sensing applications. Coupling an infrared sensor with a visible
band sensor -- for frame of reference or for additional spectral information -- and properly processing the two

information streams has the potential to provide _aluable information in night and/or poor visibility conditions.
A multi-spectral infrared and visible EVS 1 was developed at LaRC to test this concept. This system contains a
short wave infrared (SWIR) camera, a long wave infrared (LWIR) camera, a color, visible band, charge coupled

device (CCD) camera, and the hardware and software to process the data streams from the cameras. The
system has been deployed and flown on the NASA LaRC B757 ARIES research aircraft.

The digitized images obtained from the data streams of the visible and infrared cameras are processed us-

ing the Multi-scale Retinex (MSR) algorithm. The MSR is a general-purpose image enhancement algorithm
for producing good visual representations of scenes. It performs a non-linear spatial/spectral transform that
synthesizes strong local contrast enhancement and color constancy. 2,s Though it was developed for color CCD
images, the MSR has been applied to infrared data from the Airborne Visible Infrared Imaging Spectrometer

(AVIRIS) and the LANDSAT thematic mapper to pre-process the images for better classification. 4,s The dy-
namic range compression, color constancy and sharpening provided by the MSR makes it an ideal algorithm
to use for image enhancement in poor weather conditions. Since the MSR is used to enhance infrared as well
as visible spectral bands, different features in different bands can be accentuated. From this a composite or
fused image can be created that contains more information than any individual spectral band. For the EVS,
the MSR serves as both an enhancement processor and fusion engine. 6, _ A set of images consisting of an image

from each of the cameras taken during one time-aligned frame is fused into a single image. This process is then
repeated for all the image frames making up a video sequence.



To properly perform fusion it is critical to ensure that the information from each sensor refers to the same

features in the environment, s,9 The different sensors of the EVS have different acquisition lattices and optics,

therefore they capture information in data structures that are substantially different from each other. Thus,

the images must first be registered before any fusion is performed. Several authors 1°-12 have addressed image

registration problems with innovative, but often complex, general solutions. In this paper we describe two

_raightfor_-ard solutions for registering the EVS images.

The first solution is a registration algorithm based on simply correcting camera sensor specification differences

through cropping, scaling and image resampling, assuming that the cameras are bore-sighted and hence share

a common center. We will show and discuss an example of registration with this algorithm. Tests based

upon this method of registration showed that the assumption that the cameras were perfectly bore-sighted was

invalid and adjustments had to be made to correct for the differences in sensor orientation and alignment. A

second algorithm was implemented that factored in these obvious distortions and gave better results than the

original algorithm. However, whereas the first algorithm was completely automatic -- the only inputs were

the characteristics of the different sensors and which sensor provided the baseline -- the second algorithm does

require a manual selection of control points. It should be pointed out, though, that if this correction was to

be performed on a video sequence, then only one frame is needed for manual selection of control points. The

coefficients that are obtained from this correction can be used to correct all the other frames, assuming that

the nature of the distortion does not change. We will also show and discuss examples of this algorithm.

2. BACKGROUND

2.1. Image registration

Image registration is the task of aligning images taken at different times, from different sensors, or from different

viewpoints so that all corresponding points in the images match. A transform must be defined that relates the

points in one image to their corresponding points in another. This transform depends upon the characteristics

of the differences between the images being registered, and is computed with respect to a reference or baseline

image. The images that are to be matched to the reference are called the sensed, or, distorted image.

More particularly, image registration is defined as a mapping between two or more images both spatially

(geometrically) and with respect to intensity. Expressed mathematically we have:

I2 = 9(I1(f(_1, _2))),

where/1 and/2 are two-dimensional images (indexed by xl,x2), f : (xl,x_) _ (x_,x_) maps the indices of

the distorted frame to match those of the reference frame, and g is a one-dimensional intensity or radiometric

transform, is In this paper, we assume that we do not need to make any radiometric adjustments, so g = I,

the identity transform. Hence we are concerned only with the spatial transformation, f. In generating a spatial

transform for the EVS, our primary difficulty is the lack of fiducial markers within the images generated by the

EVS sensors. The cameras are, however, assumed to be bore-sighted so they are expected to have a common

center of alignment. The spatial transform should, then, properly align the images, but should not affect any

characteristic differences that should be exposed by registration.

Spatial transforms may take on different forms depending upon the application. Simple, common transforms

specified by analytic expressions include rigid-body, affme, projective or perspective, and polynomial. 14, is The

distortions between the images of the EVS in general seem constrained to those correctable by affine transforms.

They also appear to be characterizable by a global (versus local 16) transform where a single transform correctly

maps all the points on the distorted image to match the corresponding points on the reference image. An affme

transform fulfills the requirements for the needed transform.

An affme transform can perform rotation, translation, scaling and shearing operations. It offers six degrees

of freedom when selecting six unknown coefficients and solving a system of six linear equations. In general, it can



performtriangie-to-triangle mappings. A general representation of an affme transform is [yl, y2, 1] = [Xl, x2,1]T
where

T = a21 a22 0 ,

a31 a32 1

Xl and x2 reference the input coordinate system, Yl and Y2 reference the output coordinate system, and a_j are
transform coefficients. 17

The forward mapping functions are

and

Geometric, image-to-image registration can be summarized in three general steps:

1. Feature identification and matching is performed to establish a correspondence between features in the

distorted image to those in the reference image;

2. A spatial transformation is selected and the transformation coefficients are computed based upon the
feature matching criteria;

3. The distorted image is inverse-mapped using the computed transformation and resampled to register it

with the reference image.

Feature identification and matching are often performed by selecting pixel locations called control points. Iden-

tification of control points can be accomplished in several different ways. 16,1s Manual identification of control

points is commonly performed. The images are displayed, normally side-by-side, and corresponding points

usually based on features such as lines, edges, or contours are selected from both images.

The spatial transform coefficients that represent the unknown image distortions are determined from the

control points. A minimum of three non-collinear control points are required to determine the six unknown

coefficients of an affme transformation. Wolberg and Jensen 17,19 describe several techniques to solve for unknown

coefficients including pseudo-inverse solutions, least squares with ordinary and orthogonal polynomials, and
weighted least squares with orthogonal polynomials.

Image resampling is the process of transforming a sampled image from one (input pixel grid) coordinate

system to another (output pixel grid), where a sampled image is the digitization of the spatial coordinates of

an image function f(yl,Y2) -- a two-dimensional intensity function. 17,2°,21 The two coordinate systems are

related to each other by the mapping function of a spatial transformation.

To perform image resampling, initially, the output pixels are inverse mapped using the transformation

function to a new grid which (usually) doesn't correspond to the input grid. Thus an interpolation (image

reconstruction) procedure is used to generate a continuous surface through the samples of the new grid. Then

the input image is sampled (digitized) at these points to provide the discrete output pixel values of the process.

Three common methods of interpolation are nearest neighbor, bilinear, and parametric cubic convolution. 17, 22

2.2. Sensor specifications

The cameras chosen for the EVS are commercial-off-the-shelf (COTS) devices. The SWlR camera sensor

captures wavelengths between 1-3/an. The LWIR (thermal) camera sensor captures wavelengths between

8-12 ]_m. And, the color visible band CCD camera operates between 0.4-0.7 p_n. Table 1 shows the relevant

manufacturer characteristics of the sensors.1 The images from the three sensors obviously need to be be registered

because of the differences in these characteristics. The solutions developed to resolve these differences are
discussed in Section 3.



SWIR LWIR CCD

Image Dimensions (pixels) 320H x 240V 320H x 240V 542H x 497V

Optics FOV 34°H x 25°V 39°H x 29°V 34°H x 25°V

Detector Readout Frame'Rate 60Hz (typical) 60Hz 30Hz (interlaced)

2Xable 1: Sensor Specifications

The chaxacteristics of the actual images obtained for registration differ from the initial manufacturer speci-

fications b_..,_._,'_e of data acq,ais_ition and storage to tape. Fir_, all images have a nominal image size of 640 x

480 pixels correstmnding to the NTSC format of the recorded images. However, the actual size of the images

is quite different after the images are cropped so that the FOVs match the "visible" part of the images (see

Section 3). Second, ground test measurements of the cameras' FOVs differed from the manufacturer provided

values. These updated characteristics are shown in Table 2, and need to be included in the computations for

proper registration of the data streams.

SWm LWIR CCD

Image Dimensions (pixels) 640H x 480V 640H x 480V 640H x 480V

Optics FOV 31.5°H x 23.5°V 41°H x 30.75°V 33.5°H x 25°V

Detector Readout Frame Rate 60Hz (typical) 60Hz 30Hz (interlaced)

Table 2: Updated Sensor Specifications

2.3. Algorithm overview

The algorithms operate on a set of three, time-aligned images where each image is acquired by an individual
camera of the EVS. Each of the video streams is recorded, or post-processed, with video timecode information

in each frame. The frames are time-aligned simply by finding the frames with matching time codes. This set of

time-aligned frames is then used to obtain the registration parameters with respect to the baseline frame. All

other frames of the video sequence can be processed with the same parameters. Each frame, including the ones

from the color CCD sensor, is converted to grayscale before registration and further processing.

3. P_GISTRATION ALGORITHMS

Our first solution for image registration algorithm is based solely on camera sensor specifications. The cameras

were assumed to be properly bore-sighted at installation thus the only distortion parameters to account for in

registration are the differences in FOVs and resolutions. This algorithm, called the SS (sensor specifications)

algorithm, performs registration by first equalizing the FOVs and then resampling the distorted image to

match reference resolutions. Based upon the lessons learned from the SS algorithm, a geometric image-to-

image registration algorithm was implemented. Both of these algorithms are discussed below. For each of the

algorithms, we use the SWIR image as the baseline since it has the "worst" image parameters (the smallest

FOV and poorest spatial resolution). The size of an image can be modified through interpolation but we cannot
increase the FOV.

3.1. SS algorithm

The first step of the SS algorithm is to equalize the instantaneous FOVs (IFOV)s of the sensors. The FOV is

the angular extent of the hill image on the sensor and the IFOV is the angular extent on an individual detector

element, i.e., the solid angle through which a detector element is sensitive to radiation.

From Figures 1, 2, and 3, we observe that the visible portion of the images is actually smaller than the

filll image capture window. The FOVs listed in Table 2 are assumed to correspond to the visible portion and



not the capture window. Thus, the first stage of processing is to crop the images to the visible portions. The

second stage of processing is to ensure that the two images are representing the same portion of the scene.

Since the FOVs of the SWIR and the LWIR sensors differ -- LWIR has the greater FOV and hence captures a
wider swath of the scene -- the LWIR image needs to be cropped so that it encompasses the same FOV as that

encompassed in the SWIR image. The dimensions of the cropped LWIR images -- the number of columns and

rows -- are determined by a simple scaling operation. The horizontal and vertical IFOVs of the LWIR image

are obtained using

FDV-LWIR-HORIZONTAL
IFOV-LWIR-HORIZONTAL =

LWIR-COLS

and
FOV-LWIR-VERTICAL

IFOV-LWIR-VERTICAL =
LWIR-RDWS

respectively. The number of cropped columns and rows for the LWIR image is then determined by

FOV-SWIR-HOKIZONTAL
columns =

IFOV-LWIR-HORIZONTAL

FOV-SWIR-VERTICAL
rows -_

IFDV-LWIR-VERTICAL

After cropping, the SV_q_R.and LV¢IR FOVs are equal, but since the dimensions of the cropped LV_IR are

differentfrom the dimensions of the SV¢IR, the IFOVs of the LWIR and the SWIR images are stilldifferent.

To make the IFOVs the same we must resample the cropped LWIR image so that it is the same size as the

SWIR image. This entails: (1) computing an expansion factor that will make the dimensions of the cropped

LWIR image greater than the dimensions of the SWIR (2) pixel replicating the cropped LWIR based on the

expansion factor and (3) downsampling the expanded LWIR image to the SWIR dimensions. We use the

bi-linear interpolation method. 2a Nearest neighbor interpolation can also be selected if desired but bilinear

interpolation is more spatially accurate and results in images that are slightly smoother.

A similar sequence of operations is performed between the SWIR image and the visible image. If the FOVs

are the same, as in Table 1 then the visible image is simply downsampled to match the SWIR resolution.

The initial results from the SS algorithm clearly indicated that the distortions present in the images were not

excessive, but they also were not limited to FOV and resolution differences.

3.2. 1VILR algorithm

Based on the results obtained from the SS algorithm a more general, geometric image to image registration

algorithm is implemented. The distortions between the images seem to be due to sensor translation, (slight)

rotation, scale change, and, possibly, shear. An affine transform is, thus, used to model the spatial transfor-

mation. Control points are manually selected for identifying and matching corresponding features between the

reference and distorted images. Since we assume that the sensors do not change alignment over time, we only

need to register one baseline set of images that can subsequently be used for the rest of the image frames.

We use point mapping without feedback 13 to approximate the global affme transformation. The first stage

of the MLR algorithm is to select a minimum of three non-collinear control points from two input images. More

points can be chosen to make the coefficients more representative of the distortions throughout the overall image

if the points are well distributed. Global distortion representation is also improved by choosing pixels on the

perimeter if possible. The control points are then analyzed using multiple linear regression 24,25 to approximate

the coefficients of the affme transform. Residuals to determine the accuracy of the regression model obtained

are calculated. The defined aifme transform provides a mapping between the baseline and distorted images.

The distorted image is then resampled using the transform parameters to create the registered image. Bilinear

interpolation is used for resampling.



Figure 2: Original LWIR 

4. RESULTS 

Figure 3: Original Visible 

To demonstrate the performance of the algorithms n-e processed a set of videos taken by the EVS cameras 
during a flight test at Patrick Henry airport in Newport News, Virginia. The video sequence was of the B757 
aircraft approach to a runway, and was digitized using a Canopus Video Board. Three images (one from each 
camera) time-aligned at 00:26:14:18 were used for registration. As stated earlier, the S W R  image is used as 
the baseline for registration since it has the poorest spatial resolution and FOV. The SWIR, L W R  and visible 
images are shown in Figures 1, 2 and 3 respectively. 

To provide a similarity metric to validate the performance of the regstration algorithms we take the absolute 
difference of the reference and corrected images. This provides a visible validation of the registration process 
since features such as runway edges should align if registration is performed correctly. 

4.1. S S  algorithm 
,4pplying the SS algorithm with the SU?R image as the baseline, and the LIVIR and visible images as distorted 
images yields the “registered” SWR, L\lipR and visible images shown in Figures 4, 5 and 6 respectively. The 
FOV of the Lu?R image has been made smaller to match the FOV of the S W R  image. This change in FOV 
can clearly be seen in the horizontal direction of Fi,me 5, by observing that the blurred artifact (which is an 
antenna in the FOV of the camera) in the upper left corner of the original LWIR is now almost completely 
removed in the registered image. In the vertical direction, the decrease in FOV is noted by the missing timecode 
at the top and the missing ground features at the bottom of Figure 5 that are in the original image. The IFOVs 
have also been matched though resampling. The general effects of resampling can be seen by observing the 
expansion of image features from Figure 2 to Figure 5. The FOV of the original visible image in Figure 3 has 
been made slightly smaller, again to match the FOV of the SWR, in Fiewe 6. Since the FOVs nearly match 
and the image dimensions are the same, there is only a small expansion to match IFOVs, hence the registered 
image features are only slightly increased from the original. 

Fi,-e 7 is the differenced SWIR and SS regstered LWFt, and Figure 8 is the differenced SS registered 
LWIR and SS registered visible image. The misalignment between the images after registration can clearly be 
seen in Figure 7 by observing the difFerence in the outline of the runway from the L’llrIR component of the 
image, and the runway lights from the S W R  image. There is at least a large translation and a small rotation 
difference between the SIVIR and registered LWIR. Similarly, the misalignment betureen the registered LXVIR 
and visible images differenced in Figure 8 can also be seen by noting the difference in the outline of the runway 
from the LWFt image, and the runway lights from the visible image. Again, there is an ob\rious translation 
between the images. Figures 7 and 8 clearly display the misali,gment between the images thus indicating that 
differences in sensor design characteristics are not the only cause of distortion between the images. 

4.2. MLR algorithm 
We first applied the hlLR algorithm to the original (uncropped) S W R  and visible images, again using the 
S W R  as the baseline. Due to  the lack of features around the perimeter of the SIVIR image we used the runway 
lights as control points. Note that we are only using three control points for demonstration purposes. Figure 9 



Figure 4: Cropped S W i  Figure 5:  SS Reg. LWIR F i m r e  6: SS Ree. visible 

Figure 7: SWIR and SS Registered LWIR Figure 8: SS Registered LLI'IR and visible 

repeats the original SV?R image for reference. Figure 10 shows the registered visible image and Figure 11 is 
t,he differenced SWIFt and registered visible image. The coefficients obtained are given in Table 3. 

bo b l  62 
X' -0.546156 1.021212 -0.004578 
y' -20.440557 -0.007477 0.972837 

Table 3: Visible to SWIR MLR Coefficients 

A close look at the runway and the runway lights in the two images shows that they are now registered. In 
particular, in the lower right comer of the SWIR image there are four runway lights lined up horizontally. In 
the visible image there are three runway lights in the same position, except the second light from the left is not 
visible. Figure 11 shows the four lights differenced in a horizontal line with the missing xlsible light filled in 
from the SI%m image. It is clear t o  see the warp performed during registration by observing the timecode size 
and location differences in the differenced images. The timecodes are the same size and at the same location in 
the original images. Figure 9 and Figure 10 could now be equally cropped to remove disjoint pixels around the 
perimeter to obtain the h a 1  images to be fused. 

Next we applied the MLR algorithm to the registered visible and LWIR images using the visible image as 
the baseline. Since the runway lights are not visible in the LWIR image. we use the intersecting lines at the 
bottom and top of the runway, and a stripe at the beginning of the runway towards the right in the LWIR 
image as control points. Figure 12 repeats the XfLR registered visible image for reference. Figure 13 is the 
registered LWIR image and Figure 14 is the differenced registered iisible and the just registered L\VIFt, images. 
The coefficients obtained are given in Table 4. 



Figure 9: Repeated SWIR Figure 10: MLR Reg. visible Figure 11. SWIR and MLR Reg. 
visible 

si 
9.637629 -0.012015 0.779082 

Table 4: LWIR to visible SWIR h4LR Coefficients 

As is evident in Figure 14 the runv.*ay portion of the LWIR Image is aligned r.<th the runway portion of the 
registered visible image. Also, the runway lights from the visible image border the perimeter of the LWIR 
runway. The one runway stripe selected as a control point is aligned. The taxiways on the right side of the 
image and the horizon across the image are also aligned. Again, any disjoint pixels around the perimeter could 
be removed by cropping. At this point all three original images are registered. 

As a final test of the MLR algorithm we applied the same control point coefficiexts to a later frame in the 
video sequence. Figures 15, 16 and 17 are the SWR, LWTR and visible images at time 00:26:14:28, 10 seconds 
later in the sequence. Figure 18 shows the MLR registered visible image. Figure 19 is the differenced S\\m 
and AELR registered visible images. Figure 20 is the hlLR registered LWTR image. F i p e  21 is the differenced 
MLR registered visible and MLR registered LWIR image. As in the previous set of images, the registration can 
be observed by noting the alignment of the runway and runway lights in Figures 19 and 21. 

4.3. Discussion 
The registration images shown visually demonstrate the performance of the two algorithms on typical image 
data horn the EVS. The registration inaccuracies of the SS algorithm are obvious. The differing FOV and 
resolution specifications given do not take into account the other distortions within the images. With this 
much discrepancy there seems to be either a fundamental problem in the bore-sighting or alignment of the 
cameras, or the alignment is changing during flight. If the sensors were actually bore-sighted and aligned, the 

. . . I . ” -  

Figure 12. Repeated MLR Regis 
tered visible 

Figure 13: MLR Reg. LWIR Figure 14. MLR Reg. visible and 
LJt’IR 



Figure 15. Orig. S\m at Time 
26: 1428 

Figure 16. Orig. LWIR at Time 
261428 

Figure 17. Orig. visible at Time 
26:1428 

Figure 18. MLR Registered visible at Time 262438 Figure 19: S%TR and MLR Registered visible 

Figure 20. MLR Registered LWIR at Time 26:14:18 Figure 21: MLR Registered visible and LWIR 



SS algorithm should be able to match the performance of the MLR. algorithm and in addition, not require any

manual intervention like selection of control points. True FOV values could be obtained from a thorough ground

calibration, and non-interpolated pixels of the actual image dimensions could be obtained from raw digital data
streams from the cameras.

The MLR. algorithm provides better registration of the images than the SS algorithm configured with the

current set of specifications and with the current EVS alignment. In our examples the runway and runway

lights are clearly aligned. The coefficients obtained with only three points indicates that there are rotation,

translation, scale and possibly shear distortion components found between the images. These distortions can

be seen by viewing the timecode warps at the top of the differenced images. The application of the same MLR.

control points to a set of time-ali_gned images later in the same video _x_2mnce produced the same !_;e! of

registration. This indicates that we could successhtlly use the registration coefficients obtained from one set of

time-aligned images to apply to, at least, a group of frames from the video sequence. If the alignment is not

changing substantially during flight then all frames could be processed with the same transform.

5. CONCLUSIONS

Image registration is an essential prerequisite to_ subsequent image fusion. This research effort produced two

algorithms to perform multi-image registration for the EVS. The SS algorithm uses EVS camera specifications

and performs registration based solely on these parameters. The performance of this algorithm indicates that
there is a severe inaccuracy in the boresighting or alignment of the cameras. Correction of these issues should

improve the performance of the algorithm and allow it to be used to automatically register all images across
the cameras, or as validation of the MLR algorithm.

The MLR. algorithm uses control point selection and linear regression to compute the coefficients of an affine

spatial transformation. This transformation is then used to register the LWIR and visible images to the SWIR

image. In addition, the MLR registration algorithm provides a means to generate a base set of coefficients

for post processing of the full video stream across all cameras. We have subsequently used a set of baseline

coefficients to process an entire 20 second video clip from each of the three cameras.

In addition, the coefficients obtained could also be used to back out the actual distortion values (translation

amount, rotation angle, etc.) for feedback to the EVS designers. Improvements could also be made in the

computation of the coefficients by using point selection with feedback or other more robust feature selection

mechanisms. Manual control point selection can be improved by MSR enhancement of the images to emphasize

and sharpen features prior to registration. This was done for another EVS data set and greatly improved the

ability to select corresponding points. Most importantly, the actual boresighting and alignment can be checked

against the values obtained from MLR and SS registration, and adjusted appropriately. This procedure could

be performed both before, and after, EVS flight opportunities and used to verify and validate system alignment.
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ABSTRACT

The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led

us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement

and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear

computational scheme, we have identified that feature visibility limits in the post-enhancement image now

simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference

is greater than the R_MS noise level. In other words, a signal-to-noise limit of approximately unity constitutes

a lower limit on feature visibility.

1. INTRODUCTION

In the previous development of non-linear image enhancement methods, 1-3 our goal was to enhance the visual

realism of the recorded digital image to more closely approach the generally much better visibility of direct

scene perception by the human observer. For images acquired under turbid--fog, smoke, haze, snow, rain--

imaging conditions, there is already a close parity between the recorded image and the direct observation. So

the goal of enhancement now becomes fundamentally different: we wish to greatly exceed the performance

of the human observer. This is of particular interest for enhancing imagery acquired under turbid aviation

conditions. A generic automatic computation that does this provides the enabling technology for real-time image

enhancement that can be projected to the pilot's heads-up display (HUD). This type of imagery is especially

important in commercial aviation during runway approach and landing and in general aviation during the entire

flight sequence from take-off to landing.

Our interest in enhancing images acquired under turbid imaging conditions, coupled with the scientific

insights 4 gained from previous purely passive retinex processing led us to formulate a more comprehensive

framework of active measurement and control of the image enhancement process: the Visual Servo (VS).

The major lesson learned from these scientific insights was that the good visual representations produced by

retinex processing all converged uniquely to an ideal statistical characterization. This, together with additional

constraints, led to the formulation of an entirely new set of visual measures for image contrast, lightness and

sharpness. These measures form the basis for VS controls that affect the level of image enhancement and,

hence, image quality. The VS additionally contains a special module for detecting turbid imaging conditions

and invokes special processing to produce maximal scene feature clarity.

This framework represents a form of visual intelligence: the software quantitatively assesses visual quality

before and after each enhancement step, and guided by these measurements, strives to achieve a standard high

level of visual quality. The VS controls still rely on non-linear image processing elements, so conventional end-

to-end systems analyses 5-s cannot be employed to characterize the imaging and computing scheme as a whole.

Therefore we seek to understand how to characterize performance in lieu of having linear systems analysis as a

tool. In this paper we describe the Visual Servo concept, present results for diverse turbid imaging conditions

to indicate its generic performance as an automatic computation, and examine the critical issue of defining a

figure of merit for the post-enhancement feature visibility limit in turbid imaging conditions.

Contact: D J J: d. j. j obson©larc, nasa. gov; ZR: zrahman_as, win. edu; GAW: g. a. woodell©larc, nasa. gov;



2. THE VISUAL SERVO (VS) CONCEPT

Our extensive previous experience with retinex image enhancement, 3,9 led us to conclude that further improve-

ments in enhancement were possible in terms of contrast and image sharpness and that the extreme narrow

dynamic range case of turbid imaging could be also be encompassed by a fundamental shift in approach away
from purely passive retinex processing to an active measurement, and control _,stem. The scientffic insights 4
gained from the experience of retinex processing of very large numbers of highly diverse images provided the

foundations for constructing entirely new visual measures for image contrast, lightness, and sharpness. Under-
lying this effort is the core idea that there is an ideal visual representation with consistent statistics for recorded

images 3,4 and that the enhancement process is one of trying to make any image approach this ideal as closely as
possible. This core idea also relates to the visual inadequacy of the llne_ representation of recorded image data.

The idea rejects the notion of imaging as a replication process with quality defined by minimizing artifacts, and
shifts to the notion of imaging being a (highly non-linear) transformation process that seeks to achieve a good

visual representation whose statistics depart sharply from those of the linear representation.

With this background, the study of the overall global statistics of good visual representations revealed that

global statistics alone could not support the definition of visual measures. 4 There was insufficient capture of the
visual sense of contrast and lightness. However, regional spatial ensembles did provide a basis for quantifying

visual contrast and lightness. These were augmented by the development of a new sharpness measure which
together capture the most comprehensive and key visual elements of images. The measures have been extensively
tested, but are not yet ready for full technical exposition, so here we will discuss them and the resulting VS at
the conceptual and schematic level.

The Visual Servo is shown in Figure 1. The reason for calling the computation a "servo" stems from the
fact that it is based upon similar ideas to electro-mechanical servo systems of active measurement and control.
The basic flow for enhancing an image is as follows:

1. measure a key visual parameter

2. based upon the measured value, activate an enhancement control to improve the overall brightness, con-
trast and sharpness of the image

3. recompute the visual measure

4. if the measured value of the parameter achieves the high visual standard then terminate the process

5. otherwise, iterate until either the visual standard has been achieved or the VS has determined internally
that all reasonable enhancement processing has been exhausted

Feedback Control.

Incoming image __
data stream --

Good AND Sharp

(pa._sthrour#)

data stream

Figure 1: The automatic visual servo.

Images acquired under turbid imaging conditions represent a special case for detection and processing due

to their extremely narrow, but unpredictable, dynamic range. For these images, the VS determines when this



very low contrast is occurring, and then invokes custom processing to achieve a very powerful enhancement.
This enhancement, from the results to be sho_ in Figure 2, appears to produce maximum feature contrast
that is limited only by the noise inherent to the imaging process.

3. VISUAL SERVO RESULTS FOR TURBID IMAGING

Turbid imaging covers a very wide range of imaging conditions where there is obscuration between the scene

and the imaging sensor due to particle scattering in the imaging medium. For atmospheric turbidity, the veiling
can be due to fog, smoke, haze, dust, rain, or snow, or some combination of these, such as smog. For underwater
imaging the turbidity is most often due to suspended cellular plant life, sediment particles, or some combination

thereof. In order to validate the generality of the computation for turbid imaging conditions, we have tested
the VS on images with very varied types and degrees of turbidity, as well as highly diverse scene content. The

result is an automatic, general purpose computation that is as applicable to aerial imagery as it is to underwater
imagery. All of the results shown in Figure 2 (right column) were obtained in the hilly automatic mode, without
any additional tweaking of parameters or post-processing. Figure 2 (middle column) shows the performance of

the default MSRCR on the same images. It is evident from comparing the two columns why we moved away
from the passive MSRCR to the active VS for enhancing images acquired in turbid imaging conditions.

The turbidity detection and custom processing of the VS has worked extremely well in (almost) all the
cases that we have tested thus far. For lightly turbid conditions, the VS transitions smoothly to the non-turbid
enhancement processing, invoking different servo modules that provide "weaker" enhancements. The VS has

been tested with many hundreds of still color images, as well as with color and long, and short wave infrared _
(1R) video imagery. The IR imagery was acquired from aviation sensors during test flights, or from sensors

mounted on a 250 feet high gantry to simulate flight conditions such as long throw views of landing approaches.

The performance of the VS has been outstanding for still and video imagery.* Additionally, it does not seem
to be sensitive to th_ type of particulate scattering involved. Good clarity--visibility distance improvement--
was achieved for moderate fog, severe haze, moderately thick smokes, heavy rain and snow as well as for

moderately thick underwater turbidities. Some clarity was possible for heavy fog conditions (see Figure 4).
This latter performance limitation in dense fog was true for all imagery types tested--color, short wave I_ and
long wave IR. For all but the dense fog case, sufficient clarity was achieved so that often all traces of obscuration

were removed. For cases of thicker turbidity, visibility as an increase in feature distance visibility was greatly
improved. For the cases where we acquired the image data ourselves, we could compare the performance of the
VS to what we had observed at the time of acquisition. In all cases, except severe fog, the VS result was far
better than our observed visibility.

A reasonable baseline for performance comparison is to compare servo results with those for the conven-

tional automatic histogram modification method--autolevels. Autolevels is a moderately powerful automatic

image enhancement technique which is quite useful for images with low contrast that do not contain regions
of saturation. It is a histogram stretch technique that adjusts the dynamic range of the displayed image based
upon a fixed parameter that determines the significant dynamic range of the input image. The dynamic range

compression adjustment of the Autolevels process is very different from the intrinsic dynamic range compres-
sion that the non-linear processing embedded in the VS provides. So the primary performance differences to be

expected are the result of the non-linear dynamic range compression. Figure 3 shows examples of a comparison
between the performance of Autolevels and the VS. It is clear from the figure that the VS has much better

performance than Autolevels. This implies that even for very narrow dynamic range imaging, the non-linear
dynamic range compression is still quite advantageous. The reason for this is that the very narrow dynamic

range is not stable regionally across the image. There is still lot of "shading" variation due to spatial lighting
effects within the narrow dynamic range of the turbid image. Of course there can be cooperative cases where

the lighting happens to be spatially uniform, and for these cases, the Autolevels performance will approach
that of the VS. The servo performance though should be much more all encompassing of the full complexity of

real turbid imaging conditions where shadows, and other lighting variations, as well as highly spatially variable
degrees of turbidity are going to be encountered within a particular image frame.

*Further examples of VS enhancements can be found on htl_p://dragon, larc. nasa. gov/retinex.
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Figure 2. The performance of the VS and the default MSRCR on images acquired under turbid imaging conditions. The 
left column shows the original images; the middle column the default hISRCR processed images; and the right column, 
images that have been processed using the 1%. 
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Figure 3. A comparison of automatic visual servo with autolevels. The left column shows the original images; the center 
column shows the Autolevels enhanced images; and the right column shows the enhancements produced by the Visual 
Servo. 



Figure 4: Feature visibiiity limit of the visual servo 

4. THE POST-ENHANCEMENT FEATURE VISIBILITY LIMIT 
The deme fog case provides an instructive example for defining feature visibihty limits since we encounter post- 
enhancement opacity immediately and can readily track feature visibility deterioration within short distances. 
This is shown in Fiewe 4 where the visibility deterioration occurs for a feature signal-difference approximately 
equal to the root-mean-square (FtMS) noise in the post enhancement image. For slightly closer distances or 
slightly less turbidity, feature visibility improves rapidly. Even for very low RMS feature signal-difference-to- 
noise ratios (% 3, the visibility is remarkably good as shown in Figure 4). This result appears consistently 
in a number of other highly turbid test images. so we conclude that post-enhancement feature visibility can 
be defined by this very simple figure of merit. Unlike more complex figures of merit which must account for 
both feature signal level as well as feature signal difference, the post enhancement image domain is governed by 
this noise limit alone. For sensors with lower noise, there will be a consequent improvement in visibility. and 
ultimately the visibility limit should be set by the signal photon noise, or other scene noises (such as random 
variations in scattering particle densities) for extremely high sensitivity sensors. This latter case assumes that 
distization is done at sufficiently high bit levels so that quantization noise is made lower than any scene noise 
sources. 



5. CONCLUSIONS

An outgrowth of previous developments in non-linear image enhancement was the realization that further

improvements in visual contrast and sharpness were needed and that the case of turbid imaging needed to be
addressed especially as a significant case for aviation imaging. For this case, a computation was needed which is

automatic _ that it can be implemented in real-tLme hardware for enhanced pilot _sion during poor _fisibility

flight conditions. These issues together with new scientific insights gained from retinex image processing, led
us to develop the VS which is more comprehensive than the previous passive retinex image processing. A set
of measures of visual contrast, lightness and sharpness were defined and tested which serve as the basis of

the active measurement and control VS system. The system does use non-linear image enhancement for the

...._,,_vcont _,_1m_,,l_ and therefore _'_'_v_not ,_.__....... _-_-_-,-_-_,_r_..... *_-*_,,_is _,_._,_,,_'_'_,,,,_r_ ,_^_ usual _near _stems
analysis. Therefore we have extensively tested the VS of wide ranging types and degrees of image turbidity as
well as in general purpose imaging.

The servo computation performs well in all turbid imaging condition short of dense fog, and greatly exceeds
the human observer's direct perception in all but the dense fog case. The servo handles all manner of moderate
fogs, severe hazes, heavy rain, smoke, and heavy snow conditions quite well. It has been tested on color still

images as well as color and FLIR video from aviation sensors in varied flight conditions--in and out of clouds,
severe haze, twilight-haze, moderate fogs and smoke among others.

Given the use of non-linear image processing, a major issue is how to define a fig_are of merit for feature

visibility limits. An experimental study of post-enhancement image data revealed that feature visibility was
limited solely by a very simple figure of merit compared to those used for unenhanced imagery. This figure of

merit is that features are visible post-enhancement as long as the feature/background signal-to-noise ratio is
greater than unity. Feature visibility increases rapidly for higher signal-to-noise ratios such that a S/N of _ 3
has quite good visibility for example.

While our primary interest for the VS is clarifying aviation imagery during poor visibility flight conditions,

the servo performs well on underwater turbid images, and in poor visibility road conditions during driving.
Therefore we expect that computation has applications to a variety of turbid imaging conditions where a
human observer needs to be augmented visually to improve safety and visual performance.

Acknowledgments

Dr. Rahman's work was supported with the NASA cooperative agreement NCC-1-01030. The Visual Servo

research was supported by the Synthetic Vision Sensors element of the NASA Aviation Safety Program.

REFERENCES

1. D. J. Jobson, Z. Rahman, and G. A. Woodell, "Properties and performance of a center/surround retinex,"
IEEE Trans. on Image Processing 6, pp. 451-462, March 1997.

2. D. J. Jobson, Z. Rahman, and G. A. Woodell, "A multi-scale Retinex for bridging the gap between color

images and the human observation of scenes," IEEE Transactions on Image Processing: Special Issue on
Color Processing 6, pp. 965-976, July 1997.

3. Z. Rahman, D. Jobson, and G. A. Woodell, "Retinex processing for automatic image enhancement," in

Human Vision and Electronic Imaging VII, B. E. Rogowitz and T. N. Pappas, eds., pp. 390-401, Proc.
SPIE 4662, 2002.

4. D. Jobson, Z. Rahraan, and G. A. Woodell, "The statistics of visual representation," in Visual Information

Processing XI, Z. Rahman, R. A. Schowengerdt, and S. E. Reichenbach, eds., pp. 25-35, Proc. SPIE 4736,
2002.

5. F. O. Huck, C. L. Fales, R. E. Davis, and R. Alter-Gartenberg, "Visual communication with Retinex
processing," Applied Optics, Apt 2000.

6. F. O. Huck, C. L. Fales, and Z. Rahman, "Information theory of visual communication," Philosophical
Transactions of the Royal Society of London A 354, pp. 2193-2248, Oct. 1996.



7. C. L. Fales, F. O. Huck, 1% Alter-Gartenberg, and Z. Rahman, "Image gathering and digital restoration,"
Philosophical Transactions of the Royal Society of London A 354, pp. 2249-2287, Oct. 1996.

8. J. A. McCormick, R. Alter-Gartenberg, and F. O. Huck, "Image gathering and restoration: Information and

visual quality," Journal of the Optical Society of America A 6(7), pp. 987-1005, 1989.

9. B. D. Thompson, Z. Rahman, and S. K. Park, "A multi-scale retinex for improved performance in multi-

spectral image classification," in Visual In.formation Processing L¥, Proc. SPIE 4041, 2000.



Statistics of visual representation

D. J. Jobson, Z. Rahman, and G. A. Woodell,

SPIE International Symposium on AeroSense

Visual Information Processing XI

Proceedings SPIE 4736, pp. 25-35

Orlando, FL (2002) (Invited paper)



The Statistics of Visual Representation
Daniel J. Jobson', Zia-ur Rahman =, Glenn A. Woodell"

"NASA Langley Research Center, Hampton, Virginia 23681

"Colege of William & Mary, Williamsburg, Virginia 23187

ABSTRACT

The experience ofretinex image processing has prompted us to reconsider fundamental aspects of imaging and image
processing. Foremost is the idea that a good _m.ta! representation requires a nendinear transformation of the recorded
(approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we
investigate the eonueetion between numerical and visual phenomena. Specifically the questions explored are: (1) Is there
a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal
visual image? And (3) what are its statistical properties?

INTRODUCTION

The process of testing, developing, and extensively using the Multiscale Retinex with Color Restoration j-3 (MSRCR)
algorithm for image enhancement has brought forth several fundamental questions about the visual image. The MSRCR"
is a non-linear spatial and spectral transform that produces images that have a high degree of visual fidelity to the
observed scene. In a previous paper, 4,swe showed that the image of a scene formed using linear representation does not
usually provide a good visual representation compared with the direct viewing of the scene. Given that a non-linear
transform appears to be essential to the realization ofgond visual image rendition, we felt a need to further explore the
connection between the numerical and the visual representations, i.e. between the numbers that are the digital image, and
the visual image that they represent_ With the MSRCR we felt we possessed an effective tool for large-scale
experimentation and testing on highly diverse images (Figure I). We asked questions such as: "Is there a statistical ideal
visual imageT' and "Do all good visual renderings share a convergent statistical character?" These questions, if
answered in the affirmative, yield quantitative insights into visual phenomena and lay a general foundation for new
definitions of absolute measures of visual quality, which can be used to automatically assess the quality of arbitrary
images. Finally, these statistics point to hypotheses concerning the basic mathematical principles of visual
representation, which define the general goal of image enhancement in a concise form.

THE INITIAL HYPOTHESIS AND ITS MODIFICATION

As a starting point, we explored the idea that good visual representations seem to be based upon some combination of
high regional visual lightness and contrast. To compute the regional parameters, we divide the image into non-
overlapping blocks that are 50×50 pixels. For each block, a mean, I, and a standard deviation, of, are computed. A frrst
approach was to postulate that for visually good rendition the contrastxlightness product should be above a minimum
value, with the additional constraint that each component cannot fall below an absolute minimum value (Figure 2). This
regional scale is sufficiently granular to capture the visual sense of regional contrast. Both the contrast and the lightness
can be measured in terms of the regional parameters. The overall lightness is measuredby the image mean,/t =/', which

is also the ensemble measure for regional lightuess. The overall contrast, _'/, is measured by taking the mean of

regional standard deviations, o_ and it provides a gross measure of the regional contrast variations. The global standard
deviation of the image did not relate, except very weakly, to the overall visual sense of contrast- Image frame sizes
ranged _om 512×512 to 1024×1024 pixels. The coupling of the constraints of minimum contrast-lightness product with
minimum contrast and lightness as separate entities defines the zone in Figure 2 labeled "visual good". Further, this
figure suggests that there may exist a contour of much higher contrast-lightness, which can be considered a 'Msual
ideal".

DJJ: d.j.jobson_larc.nasa.gov; co-authors: ZI_ mrahman@cs.wm.edu: GAW: g.a.woodell@Jare_nasa.gov



Figure 1. Examples of original and optimized images 
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To test this hypothesis, we performed some preliminary experiments. The first was to visually optimize a small sample
of images using the MSRCR and any other more conventional processing, such as contrast stretch and sharpening. Even
this small data set demonstrates that the initialhypothesis is not entirely satisfactory. Though the data exhibit a trend of
clustering about a fairly stable mean with quite variable values for the standard deviation, these did not follow any of the
particular contours for minimum contrast-lightness product.

For the second experiment we used a larger number of samples (24 images), but otherwise the experiment was identical
to the first. The image samples were selected to be as diverse as possible so that the results would be as general as
possible. While the MSRCR performs a visually dramatic transformation in most images, the output image can
sometimes be further visually optimized, especially by the application of a sharpening filter. This can _he_expected as a
re_!t of w_gari_ in pre-}_,RCR image preconditioning, and the blur introduced in the original images by the optics of
the image acquisition devices. While the MSRCR is robust with respect to image pre-conditioning, it cannot be
completely immune. 6 The post-MSRCR fine-tuning was confined to modest adjustments in brightness and contrast, and
sharpening. The results (Figure 3) are shown in stages to make clear the migration (selected points counected by dotted
lines) of the data points from the original image data to the MSRCR values then to the visually optimized final
destinations. In general, the primary migration is to higher contrast values with relatively smaller increases in lightness.
This confirms and quantifies the visual judgment that most images need contrast improvement to be better visual
renderings. The visually optimized outputs do converge to a range of approximately 40-80 for global mean of regional
standard deviation and global means of 100-200. Again the data do not follow any specific contours for minimum
contrast-lightness, but rather appear to be gravitating to a box (Figure 4). So we revise our initial hypothesis accordingly.

There is a sense of increasing visual quality within this box from left to right. To that extent, we can say that the extreme
right edge of the box could be regarded as an ideal, but not an ideal that can be realized by all images. Rather it is an
ideal that can be approached by some enhanced images. The extreme left of the box is problematic in thefollowing way.
The data points here are associated with feature impoverished images--those with large stretches of uniform space--
e.g., a small object against a large blank background. Therefore the placement of the left boundary requires a semantic
decision and demands a judgment be made about the minimum amount of feature information that an image must
contain in order to be considered to be visually good. At the extreme we can certainly agree that the null image cannot be
visually good, so at some point we should be able to say an image is intrinsically bad if there is just too much blank
space. For a photographer this would correspond to needing to zoom in and have the subject fill more of the blank space
in order to have a satisfactory picture. Perhaps in a more informational sense, blank space in images conveys little
semantic information except about the relative size of this nullity. This seems intuitively less informative than the world
of features, which conveys information about objects arid textures.

The issue of convergence for the visually optimized rendition versus original image data requires more experimentation
with an even larger more diverse sample. Results exhibit two primary trends summarized schematically in Figure 5(0).
Figure 5(a) (for ~100 images) shows the clustering of actual data points. These data support the idea that the visually
optimized representations compared to original data do converge in two senses: (1) mean values cluster and do so
reasonably tightly around an average of about 165 whereas original image distributions exhibit mean values that scatter
rather more evenly across a wider range, and (2) the frame average of regional standard deviations for the visually
optimized images all shit_ to significantly higher values, but do not necessarily converge to any particular value. Further,
these same frame averages do shift above a minimum of about 35. Figure 5(0) summarizes these trends for a still larger
set of images (---300). So we conclude that these data support the idea that there are distinctive statistical characteristics
for good visual representation and that the distinctiveness is sufficiently sixong that it can serve as a partial basis for
defining new visual measures that automatically assess visual quality. The partial overlap in the two classes in Figure 5
indicates that these two parameters alone are not completely distinguishing. Overall the visually good representation
possesses a mean of _165 and a frame average standard deviation above 35--40. These large samples support the
modified hypothesis of Figure 4. A renmant of the initial contour hypothesis (Figure 2) appears possible in Figure 5(a)
and is more definite in the actual plots summarized in Figure 5(0). However this statistical tendency is largely
overwhelmed by the confines of the box in Figure 4.;)_t the most it appears to be a secondary effect in the statistics of
visual representation.



Whenimagesaredisplayedonmonitors, their intensity profile is typically modified using the gamma-transformation

given by:. l,,(x,y) = fI_(x,y)f/r, where l_(x,y) is the input value, and I,(x,y) is the modified value. A value of 7 = 1 is the
linear transform. In order to gauge our results against a linear baseline for the original image data, we determined that
most digital images are super-linear and should be corrected to approximate linearity by gamma transforming the
processed image using y = 0.63. While this has negligible impact on standard deviation values, it does adjust the mean
downward frena about 165 to about 128. The implications of this are discussed next.
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IMPLICATIONS: DEFINING UNDERLYING MATHEMATICAL PRINCIPLES

These data coupled with visual examinations of large numbers ofretinex visual optimizations led to the definition of two
mathematical principles that are being followed with the observed trends and results. If we view the digital image as a 3-
dimensional box (Figure 6), the visually optimal representation appears to jointly satisfy two mathematical conditions
for this box. These are:

|. For any spatial scale ranging from near local to near global, visual optimization centers the distributions of
regional means near the mid-level of the box (128 for the g-bit image) and spreads the signal excursions (as
quantified by mean of regional standard deviations) out to fdl the box as much as poss_le.

2. Visual optimization spatially minimizes any over- or -.md_=shoots of the box. This is a statement that
both clipping to zero and saturation are spatially limited to small zones of infrequent occurrence.

Since the data presented here are all for one spatial scale (the 50x50 pixel region), these two mathematical principles are
postulated as working hypotheses concerning the underpinnings of the visual optimization process. Scale changes will
not affect the statement about optimization forcing the mean to the midpoint of the dynamic range, but clearly can affect
the statement about standard deviation. The statement regarding under- and over-shoots is not scale dependent and
appears to be general as long as the original image data prior to optimization is not strongly clipped or saturated over
large spatial zones.

These principles suggest that the visually optimal, in more vernacular terms, is centering data on the middle of the box,
and spreading the contrast out vertically in the box to the maximum extent possible while minimizing excursions outside
the box. This certainly seems to be a pre-conditioning of image signals to most efficiently occupy the box space.

DISCUSSION: THE IDEAL VISUAL REPRESENTATION

The mainstream of the data presented here is associated with optimization to the point of producing a good visual
representation. But it is interesting to consider what might be an ideal visual representation. In preceding discussion we
noted that feature-impoverished images are debatable cases, and that there seems to be a minimum of feature occurrence
necessary just to achieve a "good" visual image. At _e opposite extreme, an ideal visual representation fundamentally
needs to be feature-rich and the optimization needs to achieve a strong sense of visual contrast approaching that found in
the graphics world of illustration. Clearly this is not possible, as already noted, for all images. So only a restricted class
of images are even candidates for an optimization that approaches some ideal. In numerical terms, we can see that the
mean value of about 165 should not be affected by "good" versus "ideal," but that the "ideal" will exhibit much larger
values of contrast (standard deviation) in the range of 60-90. Images, which can be enhanced to this level, are ones for
which there is a high degree of reflectance diversity in the scene, rich feature densities, and successful retinex dynamic
range compression for scenes, which have strong lighting variations. An extreme ease, which does not have the visual
sense of being "ideal" is the printed text image. While text images do have high standard deviations (--x)0), they do not
represent natural scenes, and can be compressed to binm'y data (not needing g or morebits). Further we think that the act
of reading is far more of a local raster scanning process than the more global visual sense of comprehending pictures.
The visual judgment applied to pictures is therefore not likely to be involved in the reading of text.

The "ideal" should however be associated with a near-perfect sense of clarity and sharp features so sharpness is
important component of"ideal" which we do not specifically address here. We did however make frequent use ofpost-

retinex sharpening to reach the visual optimizations. These considerations of "ideal" cannot be related to aesthetics,
where often the diffuse or impressionistic or murky are the most beautiful and may be "ideal" in that strictly aesthetic
sense.
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CONCLUSIONS

Guided by the extensive experience of enhancing images using retinex methods, we find that good visual representations
require a non-linear spatial and spectral transform of raw digital image data, which results in consistent statistical trends.
These trends provide a new quantitative understanding of the goals of image processing for visual rendition and a partial
foundation for eonslraeting visual measures for automatically assessing the quality of visual representation. In general,
visually optimized images are more tightly clustered about a single mean value and have much higher standard
deviations. Further the results support the idea that visual optimization centers the data mean on the mid-point of the
image dymunic range and spreads the signal excursions out across the dynamic range to a maximal extent while at the
same time limiting any over- and under-shoots spatially. This overall trend relates to most efficiently occupying the data
space with the actual image data. In general visually optimized images are improved in terms of both regional lightness
and contrast with the !a___rbe_ng the most strongly affected.

REFERENCES

1.

.

.

D. J. Jobson, Z. Rahman, and G. A. Woodell, "A Multi-Scale Retinex For Bridging the Gap Between Color Images
and the Human Observation of Scenes," 1EEE Transactions on linage Processing." Special lssue on Color
Processing 6, pp. 965-976, July 1997.

D. J. Jobson, Z. Rahman, and G. A. Woodell, "Properties and Performance of a Center/Surround Retinex," IEEE
Transactions on Image Processing 6, pp. 451-462, March 1997.

Z. Rahman, D. J. Jobson, and G. A. Woodell, "Multiscale Retinex for Color Rendition and Dynamic Range
Compression," in Applications of Digital Image ProcessingX/X, A. G. Tescher, ed., Prec. SPIE 2847, 1997.

4. D.J. Jobson, Z. Rahman, and G. A. Woodell, "'Spatial Aspect of Color and Scientific Implications of Retinex Image

Processing," in lra'ual Information Processing X, S. IC Park, Z. Rahman, and IL A. Schowengerdt, eds., pp. 117-
128, Prec. SPIE 4388, 2001.

5. Z. Rahman, D. J. Jobson, and G. A. Wocdell, "Retinex processing for automatic image enhancement," in Human
Vision and Electronic lmaging 1Ill, B. E. Rogowitz and T. N. Pappas, eds., Prec. SPIE 4662, 2002.

6. Z. Rahman, D. J. Jobson, and G. A. Woodell, "Resiliency of the Multiscale Retinex Image Enhancement
Algorithm," in Proceedings of the 1S&T Sixth Annual Color Conference: Color Science, Systems, and Application_
pp. 129-134, IS&T, 1998.



Multi-sensor fusion and enhancement
using the Retinex image enhancement

algorithm

Z. Rahman, D. J. Jobsou, G. A. Woodell, and G. D. Hines,

SPIE International Symposium on AeroSense

Visual Information Processing XI

Proceedings SPIE 4736, pp. 36-44

Orlando, FL (2002)



Multi-sensor fusion and enhancement using the Retinex

image enhancement algorithm

Zia-ur Rahmant, Daniel J. Jobson$, Glenn A. Woodell$, Glenn D. Hinest

tCollege of William & Mary, Department of Computer Science, Williamsburg, VA 23187.

¢NASA Langley Research Center, Hampton, Virginia 23681.

A_BSTRACT

A new approach to sensor fusion and enhancement is presented. The retinex image enhancement algorithm
is used to jointly enhance and fuse data from long wave infrared, short wave infrared and visible wavelength

sensors. This joint optimization results in fused data which contains more information than any of the individual
data streams. This is especially true in turbid weather conditions, where the long wave infrared sensor would

conventionally be the only source of usable information. However, the retinex algorithm can be used to pull out
the details from the other data streams as well, resulting in greater overall information. The fusion uses the

multiscale nature of the algorithm to both enhance and weight the contributions of the different data streams
forming a single output data stream.

1. INTRODUCTION

The Multiscale Retinex (MSR) was developed as a general-purpose image enhancement algorithm that provided

simultaneous dynamic range compression and color constancy. Aside from the obvious applications to the
correction of color and grayscale digital images, this algorithm can also be applied to enhance infrared and
near-infrared spectral bands. In addition, due to the inherent multiscale structure, it can be used to emphasize

different features in different spectral bands, yet provide a composite image that contains more information

than any individual spectral band. It is the combination of these properties that led us to investigate the MSR
as a possible fusion engine. In this paper we will present the results of two different approaches for using the

MSR as a fusion engine. The primary driving force for developing these fusion strategies was to provide an
image that could be used to "see" in poor visibility conditions such as dusk, and fog.

The Retinex (retina+cortex) was developed as a model of the human color vision system by Edwin Land. 1-a
The MSR was developed by Jobson, et al4, 5 to address the problems due to changing lighting and atmospheric

conditions that were inherent to the process of acquiring images of Earth from space. The MSR provides the

dynamic range compression, color constancy and sharpening that are required to alleviate these problems. It has
been shown that applying the MSR to remotely-sensed images improves the overall classification accuracy. 6,7 In
addition, the MSR processed images allow a greater number of features to be detected than would be possible

with un-enhanced data. Both of these results are also of importance in the context of sensor fusion because
they provide more accurate registration points between the data streams that need to be fused.

The MSR belongs to the class of center-surround operators and can be succinctly expressed as

K

7_i(xl,x2) = EW_(log[Zi(xl,x2)l- log[Z,(xl,x2) * Sk(Xl,X2)]), i = 1,... ,Af, (1)

where _ and Zi are, respectively, the ith spectral band of the MSR output and the input, 14;k and Sk are,

respectively, the weight and the surround function associated with the kth scale, K is the number of scales, and
Af is the number of spectral bands. The kth surround hmction is given by

_k (x l, x2) = a exp[- (x 2 + y2)/0.21,

ZR: zx_©cs.wm, edu; D JJ: d.j.jobson@laxc.nasa.gov; GAW: g.a.woodell¢larc.nasa,gov; GDH:
g.d. hines@larc.nasa.gov



Figure 1: Example of color constancy and feature sharpening. 

where crk is the scale factor that controls the width of the I;th surround function. and cy = (E,,,,, &(2] ,  Q))-' 
is the normalization factor. The color constancy of the MSR is a direct result of the center-surround nature of 
the algorithm. Equation 1 can be rewritten as: 

The intensity values in each spectral band at location (q , z2) can be written as the product of two components: 
p(s1. s ~ ) ,  the reflectance component, which represents the light reflected or emtted from all the objects in the 
scene, and 4x1, z z )  which represents the illumination component. That is, 

1, (XI 1 x2) = L, (El, 4 P ( ~ l 1 4 .  

Since the illumination component varies very slowly across the scene. ~(z1, TZ) = I,, and Z ( q .  ZZ) ;= Z,p(z~, Q). 
Thus, 

which is independent of the illuminant. An example of this is shown in Figure 1 where the top row shows 
an image acquired under three different illumination conditions* and the bottom row shows the MSR outputs. 
Aside from the color constancy, the features in each of the processed images are much sharper. providing the 
common re-htration points that are necessary for image fusion. 

'Unfortunately, the illumination effects are not readily visible in the grayscale rendition of the coior images 



2. SENSORFUSION

The particular problem that we are trying to address is to fuse data from three different ima_ng sources:
long-wave infrared (LWIR), short-wave infrared (SWIR), and visible color (RGB). In addition to imaging at a
different wavelen_h, these sensors also differ in resolution, and field of view (FOV). Thus, the first processing

step is to perform a multi-modal registration of the images from the three different sensors. Table 1 shows the
characteristics of the various sensors, s Image registration can generally be defined as a mapping between two

Pixel Resolution (nominal)

LWIR

320H x 240V

Optics FOV 39°H x 29°V

! Detector readout frame rate 60Hz

Swllt CCD

320H x 240V 542H x 497V (RGB)

34OH x 25°V 34OH x 25°V

60H_ (typical) 30Hz (interlaced)

Table 1: Selected sensor characteristics

or more images both spatially and with respect to intensity. Mathematically/2 -- g(Ii(f(x,y))) where/1 and

/2 are two-dimensional images (indexed by x and y), f is a transformation of spatial coordinates and g is a
one-dimeusional intensity or radiometric transformation. 9

For the spatial transformation our primary complication is that there are no fiducial markers within the

images. The cameras are, however, bore-sighted so they all have a common center of alignment. Thus we simply
calculate an affine transformation performing the operations of scaling, translation and rotation globally on the

images matching them to a common grid. A radiometric transformation could also be performed at this stage
since _ayscale characteristics, in particular polarity reversal between visible and IR images, may differ locally.

Instead, as will be discussed in the next section, we utilize the MSR transformation. Further details regarding
the rectification process are not discussed in this paper. We will assume, however, that appropriate rectification

has been performed on each of the data streams with the resultant registration of features and correction of

FOV and pixel resolution.

2.1. The first approach

Our first approach is relatively straightforward. Using the MSR as the enhancement engine, each of the data
streams is individually enhanced to bring out the desired features. The MSR has previously been optimized

for the RGB images but not for the LWIR, and SWIR images. So the first task was to analyze the data and
determine the optimal parameters that were needed to achieve the desired enhancement in the LWIR and SWIR.
This was done experimentally by applying the MSR given in Equation 1 to the LWIR and SWIR images, and

observing the output images. The optimization, in this case, is simply the observer's judgment that a given

image has more "useful" information than any others observed.

Once the optimized, MSR enhanced images were obtained, the RGB image was converted to grayscale (GS)

by using the standard RGB to GS transform:

GS = 0.299R + 0.587G + 0.114B (3)

where R, G, and B are the red, green, and blue color components of the RGB image respectively. Consistent with

the contrast sensitivity of the human visual system, 1° the green channel is weighted most heavily when forming
the GS image. After the conversion from RGB to GS, we have three remaining bands of data--GS, LWIR,
SWIR--that we need to fuse. A quick way to do this is to use Equation 3 and use the three data bands in place

of the R, G, and B components. The obvious question that arises is which data band should be substituted for

which color component. Using the contrast sensitivity analogy, the data band which replaces the G component
will have the most weight, so the fused image will be most sensitive to changes in this component. It is difficult
to determine beforehand, which of the three bands contains the most relevant information and hence should

be weighted most heavily. However, since the thrust for the sensor fusion is to provide better visibility in poor
visibility conditions, we cannot, in general, rely on the GS band to provide the primary information. This task

will typically fall to the LWIR band, especially under foggy conditions. The GS band does have the potential to



Figure 2. Original (left column) and MSR enhanced images (right column) are shona for RGB (fist row). LMTR 
(second row). and SWIR (third row) images. The bottom row shows the composite images obtained by giving the 
strongest weight to  the GS band: the left column s h o w  the image obtained when the LXTR band is given the next 
heaviest weight and the right column shows the image when the SWIR band is given the next heaviest weight. 



Figure 3. First column: MSR with D = 5; middle column: MSR with D = 20; last column: hlSR with D = 240. Top 
row: LXfIR; middle row: SWIR; bottom row: GS. The narrow swround, D = 5 .  acts as a high-pass filter. capturing all 
the fine details in the image but at a severe loss of tonal information. The wide surromd, D = 240, captures all the fine 
tonal information but at the cost of dynamic range. The medium surround, D = 20, captures both dynamic range and 
tonal information. 

provide the relevant information under low light conditions, such as dusk. The fused image. If;. is then obtained 
by: 

though other combinations are also possible. 

Figure 2 shows the original and MSR enhanced LWIR, SWR, and GS images, as well as the fused data I F  
for images that were taken in a laboratory with lights dimmed to simulate lighting conditions similar to  those 
at  dusk. In this situation, the original GS has the most information but suffers from lack of information in 
certain regions in the image such as the topleft where the light from the fluorescent source saturates the image. 
Both the SWIR, and the Lu7TR images have information in this region. The MSR enhanced data provides more 
\<sua1 information in each of the bands-see the first three rows in the left column in Figure 2. However, the 
data from the SM-IR and LXIR sensors is difficult to interpret on its own. The bottom row of Fi,we 2 shows 
two fused images obtained by: 

IF  = 0.299S\fTR T 0.567ISfTR + 0.114GS, (-1) 

Ip1 = 0.299LXIR T 0.587GS -+ 0.lldSVvTR 
 IF^ = 0.299SWR 0.567GS + 0.114L11TR 

where  IF^ is the image shown in the bottom-left of Figure 2 and IF, is show in bottom-right. Xote in particular 
the additional information in the fused image around the two light sources: this information was missing in the 
GS image. Both of the fused images provide more information than any of the three data bands can individually. 



Figure 4. The fused images: (UL, US, UG) represents the scale d u e s  with which the LWIR, SWIR, and GS bands are 
processed for the SSR. Top row: (5,5,5), (5,5,20), (5 5,240). Middle row: (5.20.5), (5.20,20), (5.20,240). Bottom 
row: (5.240,5), (5,240,20), (5,240,240). 

.%dditionally, the compactness of the fused data, one image instead of three. also makes it more practical for 
the pilot in terms of ease of viewing and interpretation. 

2.2. The second approach 
Though the results from the first approach are quite encouraging, we wanted to test a second approach that uses 
the MSR in a different way. The first approach primarily relied 011 the dynamic range compression capabilities 
of the MSR to pull out features that were “difficult” to  see in the existing lighting conditions, and then used 
Equations 5, and 6 to  weight the contributions of the different data bands. In our second approach, we use a 
different mechanism. The MSR as shown in Equation 1 can be rewritten as 

where SSRk(Z,) is the single scale retinex (SSR) with the kth scale factor acting on the ith input band Z,. As 
stated above. the magnitude of the kth scale factor. “k. controls the width of the surround function. This, in turn, 
determines the type and amount of “enhancement” that takes place: a large ffk retains more color information 
at the cost of spatial detail, and a small ffk enhances the spatial detail at the cost of color information. The 
NSR approach was developed to  balance this tradeoff between color information and spatial detail by merging 
representations that brought out detail and color. Hence small details in the scene can be obtained by using 
using the MSR with -u = 1 and K = 1, and a small Talue of ffk This tradeoff between color information and 
spatial detail is shown in Figure 3. 



Figure 5. Top row: (20,5,5), (20,5,20), (20,5,240). Middle row: (20,20,5), (20,20,20). (20.20,240). Bottom row: 
(20,240,5), (20,240,20), (20,240,240). 

C‘sing this formulation. we used the SSR to pull out different details from the different data bands before 
fusing the data together. The fused images can be obtained by avera,&g the results of any three of these nine 
renditions that are shown in Figure 3. -5th the condition that one image from each of the STWX. LIf?R, and 
GS bands must be used. So. for example, the fused image can be obtained by 

IF = (SSRI(LT\TR) + SSRz(SM’IR) -t SSRs(GS))/3 (8) 

where SSRl was generated with crl = 5, SSRz was generated with u2 = 20, and SSR3 was generated with 01 = 80. 
However, with the three bands each processed at three different scales, there is a total of 27 combinations that are 
possible: Figures 4-6 show all of these various combinations. -4s is readily evident, some of these combinations 
are not very useful when used for visual interpretation. However, the fine details in the combinations using 
the small scales maybe ideal for projection on a heads up display (HXD). The best visual result is obtained 
when r~ = 240, us = 20, and UG = 240 (Figure 6). This makes intuitive sense as well because in this case, the 
GS scale image provides the tonal information for the rendition, and the LTVIR. and SWIR images provide the 
complementary features that are not visible in the GS band. A closer look at  Figure 3 shows the complementary 
features in the three data bands. The amount of visual information that can be obtained born the fused image, 
as  in the first experiment, is considerably more than the amount of visual information available in the indilidual 
data bands or in their SSR enhanced versions. This approach has the additional merit in that it allows extraction 
of fine features from the various data bands. hence malung the task of seeing objects, large and small, in poor 
risibility conditions considerably easier Interestingly the best result in the second approach is obtained when 
the second approach is, in essence. a single scale Lersion of the first approach. 



Figure 6. Top row: (240.5,5), (240,5,20): (240,5,240). Middle row: (240,20,5), (240: 20,20), (240,20,240). Bottom 
row: (240,240,5). (240,240,20), (240.240,240). 

3. CONCLUSIONS 
The task of landing an aircraft in poor visibility conditions is one of the most challenging that a pilot faces. 
Any technique which allows the pilot to alleviate the problems due to poor visibility will result in safer flights. 
The two methods we presented in this paper attempt to accomplish this task. Using data from three different 
sources. long-wave infrared. short-wave infrared, and color. we provide as an end-product. a single fused image 
that contains more visual information than do any of the data streams individually. The MSR and SSR 
algorithms are used to process the original data streams, providing enhanced data streams which contain data 
that is sharper, and has better contrast: i.e., data that provides better visibility. 

Two different approaches are presented, both for the same end-goal: better visibility in poor visibility con- 
ditions. The techniques differ in some basic ways such as how the different data streams are fused together and 
which data stream contains more useful features, but each fused data stream has more, and better, information 
than the original data streams. In addition, the fused data stream allows the data from different sensors to 
be presented compactly as a single image. This make the pilot’s task simpler in that a single image needs to 
be interpreted rather than three separate ones. If the pilot were required to interpret several data streams, it 
is extremely possible that one or more of these data streams. which may contain useful information. may be 
completely ignored, thus incurring errors that could have been avoided. 

An issue which has not been touched upon at all in this paper is that of noise enhancement. Xoise typically 
appears as fine detail in an image. and the MSR (and SSR) both will enhance it especially when small scale 
factors are used. Eventually, the acceptability of noise is observer and application dependent and reduces to 
this simple determination: Is more information wzth noise better than less information wzthout noise? As long 



as the noise does not contaminate the information in the signal, the authors prefer more information with noise

to less information without. However the choice, as was said earlier, is user and application dependent.
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ABSTRACT

In the last published concept (1986) for a Retinex computation, Edwin Land introduced a center/surround

spatial form, which was inspired by the receptive field structures of neurophysiology. With this as our starting
point we have over the years developed this concept into a full scale automatic image enhancement algorithm--

the Multi-Scale Retinex with Color Restoration (MSRCR) which combines color constancy with local con-
trast/lightness enhancement to transform digital images into renditions that approach the realism of direct

scene observation. The MSRCR algorithm has proven to be quite general purpose, and very resilient to com-
mon forms of image pre-processing such as reasonable ranges of gamma and contrast stretch transformations.
More recently we have been exploring the fundamental scientific implications of this form of image processing,

namely: (i) the visual inadequacy of the linear representation of digital images, (ii) the existence of a canonical
or statistical ideal visual image, and (iii) new measures of visual quality based upon these insights derived from

our extensive experience with MSRCR enhanced images. The lattermost serves as the basis for future schemes
for automating visual assessment--a primitive first step in bringing visual intelligence to computers.

I. INTRODUCTION

The idea of the retinex was conceived by Edwin Land 1 as a model of the lightness and color perception of

human vision. Through the years, Land 2,3 evolved the concept from a random walk computation to its last
form as a center/surround spatially opponent operation 3 which is related to the neurophysiological functions

of individual neurons in the primate retina, lateral geniculate nucleus, and cerebral cortex. Subsequently
Hurlbert 4-6 studied the properties of this form of retinex and other lightness theories and found a common

mathematical foundation which possesses some excellent properties but cannot actually compute reflectance for
arbitrary scenes. Certain scenes violate the "gray-world" assumption which requires that the average reflectances
in the surround be equal in the three spectral color bands. For example, scenes that are dominated by one

color--"monochromes'--clearly violate this assumption and are forced to be gray by the retinex computation.
Hurlbert further studied the lightness problem as a learning problem for artificial neural networks and found

that the solution produced was a center/surround spatial form, This suggests the possibility that the spatial
opponency of the center/surround is a general solution to estimating relative reflectances for arbitrary lighting

conditions. At the same time it is equally clear that human vision does not determine relative reflectance but
rather a context dependent relative reflectance since surfaces in shadow do not appear to be the same lightness
as the same surface when lit. Moore et al.v' s took up the retinex problem as a natural implementation for analog

VLSI resistive networks and found that color rendition was dependent on scene content. In each study, the

consistent theoretical viewpoint was to perform all spatial processing within each spectral band and prohibit
any interactions between spatial and spectral processing. This restriction provides very strong global color

constancy

In our research 9-16 we do not use the retinex theory as a model for human vision color constancy. Rather, we

use it as a platform for synthesizing local contrast improvement, color constancy, and lightness/color rench'tion
as a goal for digital image enhancement. The intent is to transform the visual characteristics of the recorded

digital image so that the rendition of the transformed image approaches that of the direct observation of scenes.
Special emphasis is placed on increasing the local contrast in dark zones of the recorded image so that it would

match our perception of wide dynamic range scenes, e.g., scenes which contain objects that are partly in sunlight

Zl_:zrahman_cs._m.edu;D JJ:d.j.jobson¢larc.nasa.gov;GAW: g.a.woodell_larc.nasa.gov



and partly in shadow. Basic study of the properties of the center/surround retinex led us in the direction of using

a Gaussian surround used by Hurlbert a-6 as opposed to the 1/r 2 surround originally proposed by Land 2'3 or
the exponential surround used by Moore _' s for analog VLSI resistive networks. Since the width of the surround

affects the rendition of the processed image, multiple scale surrounds were found to be necessary to provide a
visually acceptable balance between dynamic range compression and graceful tonal rendition. This is discussed
in more detail in Section 2.

The final visual defect in performance was the color "graying" due to global and regional violations of the

gray-world assumption intrinsic to retinex theory. A color restoration was essential for correcting this and took
the form of a log spectral operation similar to the log spatial operation of the center/surround. This produces an

interaction between spatial and spectral processing and results in a tradeoff between strength of color constancy
and color rendition. The color restoration yields a modest relaxation in color constancy perha_r__ comparable to

human color vision's perceptual performance. This is discussed in more detail in Section 3.

In the course of our experiments, we noted that the commonly accepted linear representation of a scene's

radiometric characteristics often fails to encompass its full dynamic range, resulting in images that either have
saturated bright regions to compensate for the dark regions, or clipped dark regions in order to compensate
for the bright regions. A nonlinear representation such as the MSRCR provides th e necessary dynamic range

compression needed to encompass the full dynamic range of the scene. Section 4 lays out these ideas in more
detail.

2. THE MULTI-SCALE RETINEX

The basic form of the Multi-scale retinex (MSR) is given by

K

Ri(Xl, 2;2) _- Z Wk (10g /i(2_1, :g2) -- lo_ [Fk(xl, x2) * Ii(xl, x2)]) i = 1,---, N (1)

k=l

where the sub-index i represents the z_h spectral band, N is the number of spectral bands--N = 1 for grayscale

images and N = 3 for typical color images. In the latter case, i E R, G, B--I is the input image, R is the output
of the MSR process, Fk represents the k_a surround function, Wk are the weights associated with Fk, K is the
number of surround functions, or scales, and • represents the convolution operator. The surround functions, Fk

are given as:
Fk(xl, x2) = _exp[-(x 2 + x_)/a_],

where ak are the scales that control the extent of the surround--smaller values of ak lead to narrower surrounds--

and _ = 1/(Zx, _=_ f(xl,x2)).

As mentioned in Section 1, we found that multiple surrounds were necessary in order to achieve a graceful

balance between dynamic range compression and tonal rendition. The number of scales used for the MSR
is, of course, application dependent. We have found empirically, however, that a combination of three scales

representing narrow, medium, and wide surrounds is sufficient to provide both dynamic range compression and
tonal rendition. Figure 1 shows the input image, the output of the MSR and the outputs when the different

surround functions are applied to the original image. These axe obtained by setting k = 1 and W_ -- 1.0 in
Equation 1. As is evident from Figure 1, none of the individual scales attains the goal that we are trying to

achieve: visual realism. The narrow and medium surround cases are serf-explanatory. The wide-surround case
deserves some discussion because it is a "nice" output image. However, the lack of dynamic range obscures the

features that were visible to the observer, hence it fails the test. The MSR processed image uses features from
all three scales to provide simultaneous dynamic range and tonal rendition.

3. MSR WITH COLOR RESTORATION

The general effect of retinex processing on images with regional or global gray-world violations is a "graying
out" of the image either in specific regions or globally. This desaturation of color can, in some cases, be severe
therefore we can consider the desired color computation as a color restoration, which should produce good color
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Figure 1. (a) The original input (b) Karrow surround (c) Medium surround id) \Vide surround (e) MSR output. 
The narrow-surround acts as a high-pass filter, capturing all the fine details in the image hut  at a severe loss of tona! 
information. The wide-surround captures all the fine tonal information but a t  the cost of dynamic range. The medium- 
surround captures both dynamic range and tonal infornation. The MSR is the average of the three renditions. 

rendition for images with any degree of graying. In addition we would like for the correction to preserve a 
reasonable degree of color constancy since that is one of the basic motivations for the retinex. Color constancy 
is known to be imperfect in human bisual perception, so some level of illuminant color dependency is acceptable 
provided it is much lower than the physical spectrophotometric 1-ariations. Cltimately this is a matter of image 
quality and color dependency is tolerable to the extent that the visual defect is not visually too strong. 

We consider the foundations of c~lorimetry’~ even though it is often considered to be in direct opposition 
to color constancy models and is felt to describe only the secalled ”aperture mode” of color perception, i.e. 
restricted to the perception of color lights rather than color surfaces.’8 The reason for this choice is simply that 
it serves as a foundation for creating a relative color space and in doing this uses ratios that are less dependent 
on illurninant spectral distributions than raw spectrophotometry. We compute a color restoration factor, Q 

based on the following transform: 

(2) ) 
AJ 

~ z ( 5 1 1 5 2 )  = j 1 , ( ~ 1 > ~ 2 ) / C 1 n ( l l r 2 2 )  . i n=l 

where cr,(zl,sz) is the color restoration coefficient in the z t h  spectral band, A’ is the number of spectral bands, 
I, is the z th  spectral band in the input image, and f (  ) is some mapping function. In a purely empirical fashion 
this was tested on several retinexed images to gain a sense of the visual impact. This proved to restore color 
rendition. encompassing both saturated and less saturated colors. Adding this to equation 1, the Multiscale 
Retinex TVith Color Restoration (MSRCR) is given by: 

K 

&(r].X2) =CYl(Xi . I2)~I~k(1Gg Iz(r~..T2) -log [Fk(lc1.Ic2) *1 , (51 .2~)] ) .  (3) 
k= 1 

The results of applying this transformation to the ’.monochrome” images are shon-n in Figure 2 .  
Khile we have called this additional color computation a “restoration” we have noticed in retrospect that 

depending upon the form of f ( ) .  this can be considered as a spectral analog to the spatial operation of the 
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Figure 2. (Top row) Scenes that violate the gray-world assumption; (Middle row) the MSR output; note the graying of
large areas of monochromes; (Bottom row) The MSRCR output; note that color constancy is diluted in order to achieve

correct tonal rendition. -

retinex itself. If we use

ai(xz, x2) = log Xl, x2) / Xl, _T2 ,

then the internal form of the Retinex process and the color restoration process is essentially the same. This

mathematical and philosophical symmetry is intriguing since it suggests that there may be a unifying principle

at work. Both computations are contextual in nature and highly relative and nonlinear. We can venture the

speculation that the visual representation of wide ranging scenes must be a compressed mesh of contextual

relationships even at the stage of lightness and color representation. This sort of information representation

would certainly be expected at more abstract levels of visual processing such as form information composed of

edges, links, and the like but is surprising for a representation so closely related to the raw image. Perhaps in

some way this front-end computation can serve later stages in a presumed hierarchy of machine vision operations

that would ultimately need to be capable of such elusive goals as resilient object recognition.

4. THE MSRCR AND DIRECT VIEWING OF SCENES

Our work with the retinex z2'z3 led us away from the world of color and into the world of contrast/lightness per-

ception of complex natural scenes. While the MSRCR synthesizes color constancy, dynamic range compression,

and the enhancement of contrast and lightness, the emphasis here is on the latter. We have used the MSRCR

on many tens of thousands of images and find that it brings the perception of dark zones in recorded images

up in local lightness and contrast to the degree needed to mimic direct scene viewing. Only images with very

modest dynamic ranges do not need such enhancement and for these the exposure must be very accurate to

achieve a good visual representation. Wide ranging reflectance values in a scene, and certainly, strong lighting

variations demand a rather strong enhancement to achieve anything like the visual realism of direct observation.

The dynamic range compression of the retinex computation is the basis for the contrast/lightness enhancement.

The generic character of the computation is the basis for using it as an automatic enhancement. A few examples

of retinex enhancements will serve to convey the degree to which images need to be improved and provide a

demonstration that the MSRCR does, in fact, perform this task with considerable agility (Figure 3) and without

human intervention. These examples highlight a major facet of retinex performance: intrinsically, the degree of

automatic enhancement matches the degree of visual deficit in the original acqlfired image.



Original Retinex 

Figure 3. Retinex examples to  illustrate that  the strength of the enhancement matches the degree of visual deficit in 
the original image. (a) Subtle enhancements 
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Figure 3: Continued: (b) hloderate enhancements 
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Figure 3: Continued: ( c )  Strong enhancements 



During the course of developing this computation _e were led to reexamining some of the most basic ideas
about the imaging process and found that some no longer appeared tenable. Assuming that the goal of imaging is

to produce a good visual representation that is comparable to the direct observation of the scene---or to provide

good visibility for non-visual images such as those formed with thermal Infrared--we had to discard the idea that
imaging is a replication process that produces minimal _listortion of measured signals or radiometry. Instead, we
had to accept the idea that imaging is a process of pro]pund transformation that intrinsically involves nonlinear

spatial processing. This shift arises entirely from consi_lering the image as a visual entity and the evident visual
shortcomings of the linear representation of image dat_ (Figure 4). In general the linear representation is not a

good visual representation. This is consistent with the _onclusion of a study of the data handling and processing
for color negative film scanning. 19 Thijn describes th_ correction for all transfer functions so that the image
data is linear, and then explains that this is often visu_y inadequate--weak in contrast and color. In order to

explore this further, we dmpiayed known linear data taken with a Nikon D1 camera in linear mode on linearized
color computer monitor (gamma correction of 1.6). _or a wide array of images, the displayed image is too

dark (Fig 4), and the retinex enhancement (also show_ for comparison) was required to produce a good visual

representation. The linear representation can approach a good _ual rendering for a very restricted class of
scenes--those with diffuse illumination and restricted r_nges of reflectances (or those where white surfaces which
can be saturated). Even so, for this cooperative class _ substantial degree of contrast stretching (gain/offset) is
required to achieve a good visual display/print.

While image data can be quite arbitrary in a stati
observe that the retinexed data were not. As noted ix

images tend toward a characteristic Gaussian-like shap
lightness) and standard deviations (vis_:u_l contrast) an

aggregates. This implies that a good visual representa _
sures for visual quality. In scientific terms, this implies
practical ideal. Such a defined ideal can then serve as

While this work is still underway, we can show some t

the general idea that the retinex brings regional mean

,_ical sense--the histograms of images vary widely--we

a previous paper, 13 histograms of MSRCR processed
.. More recently we have studied regional means (visual
J found that they tend to converge on consistent global
;ion can be associated with well-defined statistical mea-

the existence of a canonical visual image as a statistical

;he basis for the automatic assessment of visual quality.
reliminary results which are encouraging. By following

and standard deviations up to higher values and that

these approach an ideal goal, we have constructed _nt_tive visual measures and performed some testing. The
measures were set empirically on a small diverse test imp.ge set and then were applied to a broad array of images

of all sorts. Figure 5(a) shows a sample of the automatic visual quality assessment by classification into one of

three classes--poor, good, excellent. The classification _ _cheme is based upon the map shown in Figure 5(b).

While more study and development is necessary, th_ early results do support the idea of a canonical visual

image with well defined statistical properties. Further, _he investigation indicates that the MSRCR is a valuable
tool for research purposes--in this case, to define a ne_ statistical measure of visual quality.

5. A HYPOTHETICAL DETERMI
INFOR_

While the retinex experience provides new avenues for

gests deterministic pathways as well. The generic ch_
new quantitative definition of visual information may

with previous statistical ones based upon information
performing a log of the ratio of each pixel in each spe

suppression of spatial and spectral lighting variations is
of context dependency. Simply put, the MSRCR appe

lightness that are influenced by the visual setting in
lighting dependencies for spatio-spectral context effects
the MSRCR computation. While we do not have a clca

information as some subset of all information, the idee

The additional factor of a log function suggests a compa
representation--the symbol being the ultimate conciseI

_ISTIC DEFINITION OF VISUAL
IATION

the study for statistical image processing, it also sug-

xacter of the retinex computation suggests that some
be possible. A deterministic definition would contrast
,heory. 2°,21 Specifically the MSRCR is approximately

ctral band to both spatial and spectral averages. The

_chieved at the expense of accepting a significant degree
Lrs to mimic human perception in producing color and

hich they occur. The exchange of spatial and spectral
appears to be a very basic element of human vision and
definition of information in a semantic sense, or visual

that information is context-relationships is appealing.

:tness which may be leading in the direction of symbolic
_s and carrier of meaning.
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Figure 4: Visual inadequacy of the linear representation 
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Figure 5: Preliminary performance of Visual h4easures for automating visual assessment (a) Global classes 
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Figure 5: Continued: (b) Visual map showing regional classes 

The establishment of context relationships is central to at  least the senses of vision and hearing. Music seems 
to be based upon pitch relationships with certain ratios producing consonance or dissonance in varying degrees. 
Speech recognition must contend with the difficulties of speaker variations, the interdependencies of phonemes, 
and all manner of extraneous variations in loudness, temporal rates. degrees of clarity. and the like. For vision, 
the awesome task of transforming the signals of vision into the sense of vision must succeed in extracting 
information in the presence of all manner of extraneous variations as well as find some ver? concise ultima‘ely 
symbolic representation. Context must be a critical element of xision information as it is in speech and music 
where isolated acoustical events become perceived as a fluid temporal mesh of meaninem words or melody, 
harmony. and rhythm. Signals are not meaningful in isolation and for vision such contextual relationships as 
edge connectedness. textural uniformity, and color reflectances differences seem fundamental to building a some 
sort of “visual information”. Perhaps the retinex transformation move one step in this direction by reducing 
extraneous variations, increasing spatial and spectral differences. and providing a foundation for a structure of 
relatedness R-hich with subsequent processing can become symbolic. 

6. CONCLUSIONS 
The visual image remains an eni,-a full of surprises, some of which we have encountered in our experiences 
with retinex image processing. Though we do not understand the intricacies which allow the human vision to 
encompass very wide dynamic ranges, and provide color constancy. we have developed an approach that seems 
to mimic these behaviors. Because of this, our thinking about the imaging process has changed in basic ways: 

1. Imaging should be considered as a process of transformation rather than replication with minimal distor- 
tion. 

2 .  The statistical convergence of MSRCR image enhancements to a histogram which closely matches Gaussian 
distributions, leads us to postulate the existence of a canonical visual image with consistent statistical 
aggregate characteristics. Further, these can be used to construct entirely new visual measures which can 
be the basis for the automatic assessment of visual quality of arbitrary images by the computer. 

3. 4 new deterministic definition of visual information emerges from the computational form of the retinex- 
namely that visual information is in some sense the log of spatial and spectral context relationships within 
the image. 

A computation like the MSRCR appears to have tn-o very useful properties simultaneously: a diminishment in 
the dependence of the appearance of the image on extraneous variables such as spatial and spectral lighting, and 
the construction of compact context relationships. The former is inherently useful because it can lead to better 
image classifications, and the latter because it shovis very clearly that the appearance of a color is dependent 
not only on the spectral characteristics of a pixel, but also its surround. Together. these properties may be able 
to provide a basis for bringing more advanced levels of visual intelligence into computing. 



Acknowledgments

Dr. Rahman's work was supported with the NASA co-operative agreement NCC-1-01030.

REFERENCES

1. E. Land, "An alternative technique for the computation of the designator in the retinex theory of color
vision," Proc. Nat. Acad. Sci. 83, pp. 30783080, 1986.

2. E. Land, "Recent advances in retinex theory and some implications for cortical computations," Proc. Nat.

Acad. ScL 80, pp. 5163-5169, 1983.

3. E. Land, "Recent advances in retinex theory," Vision Research 26(1), pp. 7-21, 1986.

4. A. C. Hurlbert, The Computation of Color. PhD thesis, Massachusetts Institute of Technology, September
1989.

5. A. C. Hurlbert, "Formal connections between lightness algorithms," Journal of the Optical Society of
America A 3, pp. 1684-1693, 1986.

6. A. C. Hurlbert and T. Poggio, "Synthesizing a color algorithm from examples," Science 239, pp. 482-485,
1988.

7. A. Moore, J. Allman, and R. M. Goodman, "A real-time neural system for color constancy," IEEE Trans-
actions on Neural Networks 2, pp. 237-247, March 1991.

8. A. Moore, G. Fox, J. AUman, and R. M. Goodman, "A VLSI neural network for color constancy," in

Advances in Neural Information Processing 3, D. S. Touretzky and R- Lippman, eds., pp. 370-376, Morgan
Kaufmann, San Mateo, CA, 1991.

9. Z. Rahman, D. Jobson, and G. A. Woodell, "Multiscale retinex for color image enhancement," in Proceedings

of the IEEE International Conference on Image Processing, IEEE, 1996.

10. Z. Rahman, D. Jobson, and G. A. WoodeU, "Multiscale retinex for color rendition and dynamic range

compression," in Applications of Digital Image Processing XIX, A. G. Tescher, ed., Proc. SPIE 2847, 1996.
11. D. Jobson, Z. Rahman, and G. A. Woodell, "Retinex image processing: Improved fidelity for direct visual

observation," in Proccedings of the IS_T Fourth color Imaging Conference: Color Science, Systems, and

Applications, pp. 124-126, IS&T, 1996.
12. D. J. Jobson, Z. Rahman, and G. A. Woodell, "Properties and performance of a center/surround retinex,"

IEEE Trans. on Image Processing 6, pp. 451-462, March 1997•

13. D. J. Jobson, Z. Rahman, and G. A. Woodel], "A multi-scale Retinex for bridging the gap between color
images and the human observation of scenes," IEEE Transactions on Image Processing: Special Issue on
Color Processing 6, pp. 965-976, July 1997.

14. Z. Rahman, G. A. Woodell, and D. Jobson, "A comparison of the multiscale retinex with other image

enhancement techniques," in Proceedings of the IS_T 50th Anniversary Conference, pp. 426-431, IS&T,
1997.

15. Z. Rahman, D. Jobson, and G. A. Woodell, "Resliency of the multiscale retinex image enhancement algo-

rithm," in Proceedings of the ISSCT Sixth color Imaging Conference: Color Science, Systems, and Applica-
tions, pp. 129-134, IS&T, 1998.

16. D. Jobson, Z. Rahman, and G. A. Woodell, "Spatial aspect of color and scientific implications of retinex

image processing," in Visual Information Processing X, S. K. Park, Z. Rahman, and R. A. Schowengerdt,
eds., pp. 117-128, Proc. SPIE 4388, 2001.

17. W. D. Wright, The Measurement of Colour, Hilger and Watts, London, second ed., 1958.

18. P. Lennie and M. D. D'Zmura, "Mechanisms of color vision," in CRC Critical Reviews of Neurobiology,
vol. 3, pp. 333-400, 1988.

19. C. _hijn, "Scanning color negatives," in Proceedings of the IS_T Fourth color Imaging Conference: Color

Science, Systems, and Applications, pp. 33-38, IS&T, 1996.
• " n "20. F. O. Huck, C. L. Fales, and Z. Rahman, "Information theory of visual commumcatlo , Philosophical

Transactions of the Royal Society of London A 354, pp. 2193-2248, Oct. 1996•

21. F. O. Huck, C. L. Fales, and Z. Rahman, Visual Communication: An Information Theory Approach, Kluwer

Academic Publishers, Boston, MA, 1997.



The Spatial Aspect of Color and
Scientific Implications of Retinex

Image Processing

D. J. Jobson, Z. Rahman, and G. A. Woodell

SPIE International Symposium on AeroSense

Proceedings SPIE 4388, pp. 118-128

Orlando, FL (2001)



The Spatial Aspect of Color and Scientific Implications of

Retinex Image Processing

Daniel J. Jobsont, Zia-ur Rahman$, Glenn A. Woodellt

iNASA Langley Research Center, Hampton, Virginia 23681.

_College of William & Mary, Department of Computer Science, Williamsburg, Virginia 23187.

.aBSTRACT

The history of the spatial aspect of color perception is reviewed in order to lay a foundation for the

discussion of retinex image processing. While retinex computations were originally conceived as a model

for color constancy in human vision, the impact on local contrast and lightness is even more pronounced

than the compensation for changes in the spectral distribution of scene illuminants. In the multiscale

retinex with color restoration (MSRCR), the goal of the computation is fidelity to the direct observation

of scenes. The primary visual shortcoming of the recorded image is that dark zones such as shadow zones

are perceived with much lower contrast and lightness than for the direct viewing of scenes. Extensive

development and testing of the MSRCR led us to form several hypotheses about imaging which appear to

be basic and general in nature. These are: (1) the linear representation of the image is not usually a good

visual representation, (2) retinex image enhancements tend to approach a statistical ideal which suggests

the existence of a canonical "visual image", and (3) the mathematical form of the MSRCR suggests a

deterministic definition of visual information which is the log of the spectral and spatial context ratios for

any given image. These ideas imply that the imaging process should be thought of, not as a replication

process whose goal is minimal distortion, but rather as a profound non-linear transformation process whose

goal is a statistical ideal visual representation. These insights suggest new directions for practical advances

in bringing higher levels of visual intelligence to the world of computing.

1. INTRODUCTION--THE SPATIAL ASPECT OF COLOR

Visual perception is replete with surprises. Among the most basic is that color perception has a strong

spatial dependency rather than being purely spectral in nature. This was demonstrated dramatically by

Edwin Land with color constancy experiments. By manipulating the color of light sources so that green

and red reflectance patches were spectrally identical, he showed that they are still seen as green and red.

In fact one would be hard pressed to define any explanation of human vision's color constancy which does

not demand an interaction between spectral and spatial processing of images.

Land postulated a number of variations 1-4 of his retinex theory which culminated in a last version s

taking the form of a non-linear center/surround. This form was the starting point for our MSRCR which

elaborates the concept to include multiple scales of surrounds and defines a color restoration which over-

comes the fundamental practical limitation of the gray-world assumption intrinsic to the retinex concept.

Multiple scales and the color restoration were required to produce an general purpose and automatic image

enhancement method with graceful tonal and color performance.

More recently, a striking new observation has arisen from a study of the color perception of the optical

spectra. Smeulders et al.5 noted discrepancies in the historical data of various key figures in color physics--

Newton, Young, and Helmholtz. These all centered of differing descriptions of the colors seen in spectra

projected from prisms and were traced to differences in the manner of demarcation used. A thorough

D J J: d.j. jobsonQlarc .nasa. gov; co-authors: Zl_: zrahmanQcs .irm.edu; GAW: 8- a. woodellQlar¢ .nasa. gov
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Figure 1. Perception of spectral color 

study of the perception of spectral color led to the conclusion that only three primary colors are seen in 
a spectrum without delineation (Figure 1). When lines are added to the spectrum, the full color gamut 
begins to emerge- more lines, more colors up to a saturation point where the addition of more lines brings 
about fewer and fewer additional hues. The implication like that of Land’s work is that there is a strong 
iduence of spatial processing in color perception. In this case, the conclusion is very basic-that spatial 
structure is essential for full color perception. 

2. RETINEX IMAGE PROCESSING-CONTRAST AND LIGHTNESS FIDELITY 
T O  DIRECT VIEWING OF SCENES 

Our own work with retinex image pro~essing~~’ leads us away fiom the world of color and into the world of 
contrast/lightness perception of complex natural scenes. While the MSRCR synthesizes color constancy, 
dynamic range compression, and the enhancement of contrast and lightness-the emphasis here is on the 
latter. We have used the MSRCR with many tens of thousands of test images and find it to be a generic 
image enhancement computation. SpecScally, it does bring the perception of dark zones in recorded images 
up in local lightness and contrast to the degree needed to mimic direct scene viewing. Only images with 
very modest dynamic ranges do not need enhancement and for these the exposure must be very accurate 
to achieve a good visual representation. Even wide ranging reflectance values in a scene, and certainly 
strong lighting variations demand a rather strong enhancement to achieve any thing like the visual realism 
of direct observation. The dynamic range compression of the retinex computation is the basis for the 
contrast/lightness enhancement. The generic character of the computation is the basis for using it as an 
automatic enhancement. A few examples of retinex enhancements will serve to convey the degree to which 
images need to be improves and provide a demonstration that the MSRCR does, in fact, perform this task 
with considerable agility (Figure 2) and without human intervention. These examples highlight a major 
facet of retinex performance: intrinsically, the degree of automatic enhancement matches the degree of 
visual deficit in the original acquired image. 
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Figure 2. Retinex examples to illustrate that the strength of the enhancement matches the degree of 
visual deficit in the original image. (a) Subtle enhancements 
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Figure 2. Continued: (b) Moderate enhancements 
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Figure 2. Continued: (b) Stong enhancements 



Thedesignof the MSRCR was defined by experiments whereby computational parameters were adjusted

until the processed image display or print compared well with the direct viewing of test scenes. This was

then tested successfully on a large very diverse battery of several thousand test images in order to ferret

out any quirks in performance or rare pathologies. Since most digital images do not come with any

knowledge of pre-processing which may have been applied at the camera or scanner software driver level or

by subsequent image processing tools, the impact of retinex performance on various commonplace forms

of preprocessing was studied. While distortions were observed, they were generally mild and the MSRCR

was reasonably resilient to a range of gamma and contrast stretch operations applied prior to the retinex

computation, s Ideally the retinex should be apphed to linear data with only dark offsets removed and

with no image compression or high quality levels of JPEG. The impact of preprocessing (either gamma or

contrast stretch} is to shi_ the optimum post-retinex g_.An/offset wdues. Should pi-eprocessing be consistent,

then a resetting of the post-retinex gain/offset can be used to produce best performance on preprocessed

image data.

While the MSRCR was developed with general purpose color imaging in mind, it solves such a fun-

damental problem of imaging--good visibility across a wide dynamic range of data--that it is useful for

scientific and other special purpose imaging applications such as medical, forensic, surveillance, and re-

mote sensing applications (Figure 3). It has been shown in previous studies 9,1° to improve multispectral

classification accuracies when used as as a front-end to supervised training classification schemes where

extensive ground truth was available. The practical value of retinex image processing is accompanied by

the emergence of new scientific insights into the visual image and the imaging process. These will be
outlined in the remainder of this text.

3. SCIENTIFIC IMPLICATIONS OF THE RETINEX EXPERIENCE

3.1. The visual inadequacy of the linear representation

During the course of developing this retinex computation and testing it experimentally on large numbers

of diverse images, we were forced to re-examine some of our most basic ideas about the imaging process

and found that some were no longer tenable. If we assume that the goal of imaging is a good visual

representation which compares to the direct observation of scenes for color imaging or simply provides

good visibility for imaging outside visual spectral range (IR, MRI, Xray, etc.), we had to discard the idea

that imaging is a replication process whose goal is minimal distortion of measured signals or radiometry.

In place of this long-standing tradition of much of signal and image processing, we had to move to the

idea that imaging is a process of profound transformation which intrinsically involves non-linear spatial

processing. This shift arises entirely from considering the image as a visual entity and the evident visual

shortcomings of the linear representation of image data (Figure 4). In general the linear representation is

not a good visual representation. This is consistent with the conclusion of a study of the data handling

and processing for color negative film scanning, n Tuijn describes the correction for all transfer functions

so that the image data is linear, and then explains that this is often visually inadequate---weak in contrast

and color. In order to explore this further, we displayed known linear data taken with a Nikon D1 camera

in linear mode on linearized color computer monitor (gamma correction of 1.6). For a wide array of images,

the displayed image is too dark (Fig 4), and the retinex enhancement (also shown for comparison) was

required to produce a good visual representation. The hnear representation can approach a good visual

rendering for a very restricted class of scenes--those with diffuse illumination and restricted ranges of

reflectances (or those where white surfaces which can be saturated). Even so, for this cooperative class a

substantial degree of contrast stretching (gain/offset) is required to achieve a good visual display/print.
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3.2. The existence of a canonical visual image and definition of visual measures for

automating visual assessment

While image data is quite arbitrary in a statistical sense, we observe that retinexed data were not. As noted

in a previous paper, T retinex histograms tend toward a characteristic Ganssian-like shape. More recently

we have studied regional means (visual lightness) and standard deviations (visual contrast) and found that

they tend to converge on consistent global aggregates. This implies that a good visual representation can

be associated with well-defined statistical measles for visual quality. In scientific terms, this implies the

existence of a canonical visual image as a statistical practical ideal. Such a defined ideal can then serve as

the basis for the automatic assessment of visual quality. While this work is still underway, we can show

some preliminary results which are encouraging. By following the general idea that the retinex brings

regional means and standard deviations up to higher values and that these approach an ideal goal, we have

constructed tentative visual measures and performed some testing. The measures were set empirically on

a small diverse test image set and then were applied to a broad array of images of all sorts. Figure 5(a)

shows a sample of the automatic Visual quality assessment by classification into one of three classes--poor,

good, excellent. The classification scheme is based upon the map shown in Figure 5(b).

While more study and development is necessary, the early results do support the idea of a canonical

visual image with well defined statistical properties. Further, the investigation indicates that the MSRCR

is a valuable tool for research purposes--in this case, to define a new statistical measure of visual quality.

Currently, computers have essentially no visual intelligence. Visual measures which can enable the

automatic assessment of digital images are a first step in visual intelligence. Such measures would allow

the computer to determine visual quality and automate image processing at a higher level and in a more

sophisticated manner than is now possible.

3.3. A Hypothetical Deterministic Definition of Visual Information

While the retinex experience provides new avenues for the study for statistical image processing, it also

suggests deterministic pathways a_ well. The generic character of the retinex computation suggests that

some new quantitative definition of visual information may be possible. A deterministic definition would

contrast with previous statistical ones based upon information theory. 12,13 Specifically the retinex is

approximately performing a log of the ratio of each pixel in each spectral band to both spatial and spectral

averages. The suppression of spatial and spectral lighting variations is achieved at the expense of accepting

a significant degree of context dependency. Simply put the retinex mimics human perception in producing

color and lightness which which are influenced by the visual setting in which they occur. The exchange

of spatial and spectral lighting dependencies for spatio-spectral context effects appears to be a very basic

element of human vision and the retinex computation. While we do not have a clear definition of information

in a semantic sense, or visual information as some subset of all information, the idea that information is

context relationships is appealing. The additional factor of a log function suggests a compactness which

may be leading in the direction of symbolic representation--the symbol being the ultimate conciseness and

carrier of meaning.

The establishment of context relationships is central to at least the senses of vision and hearing. Mu-

sic seems to be based upon pitch relationships with certain ratios producing consonance or dissonance in

varying degrees. Speech recognition must contend with the difficulties of speaker variations, the interde-

pendencies of phonemes, and all manner of extraneous variations in loudness, temporal rates, degrees of

clarity, and the like. For vision, the awesome task of transforming the signals of vision into the sense of

vision must succeed in extracting information in the presence of all manner of extraneous variations as

well as find some very concise ultimately symbolic representation. Context must be a critical element of

vision information as it is in speech and music where isolated acoustical events become perceived as a
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in isolation and for vision such contextual relationships as edge connectedness, textural uniformity, and

color reflectances differences seem fundamental to building a some sort of "visual information". Perhaps

the retinex transformation moves one step in this direction by reducing extraneous variations, increas-

ing spatial and spectral differences, and providing a foundation for a structure of relatedness which with

subsequent processing can become symbolic.

3.4. Impact of Retinex Processing on Sensor Design and End-to-End Processing

How should the retinex computation fit within the system of acquiring, processing, and displaying images?

How does it exert an influence, if any, on sensor design and other image processing? With respect to sensor

design the retinex from our practical experience, as well as from the consideration of scene radiometry,

impacts the sensor design by asking for wide dynamic range image data with high signal-to-noise ratios

(SNR). In order to minimize the visual distraction of emphatic noise in the retinex enhancement, wide

dynamic range scenes should be acquired with high sensitivity sensors. For visible color imaging, image

data dynamic ranges (at equivalent SNR) sho_d (ideally) be in the 10-12bits range in order to encompass
the scene radiometry of many everyday scenes and avoid noise visibility in the retinex enhancement of

images with large very dark regions.

Ideally the retinex computation should be performed immediately after image acquisition and prior to

other processing, especially data compression. Less ideally, the retinex can be applied with good results

after compression if high quality levels (low compression ratios) of JPEG, for example, are used. There

is, however a basic tension between the retinex computation and JPEG, in that/PEG hides artifacts in

imperceivable dark zones which the retinex enhances into visibility when higher compression ratios are
selected.

If the retinex is applied prior to compression by being embedded in a sensor chip or is applied to

uncompressed data, the enhancement makes full use of the sensor performance envelope to achieve results

that are limited only by the sensor performance itself--primarily SNR.

A front-end retinex has the advantage of bringing out the visual quality so that subsequent compression

is done on this improved starting point. This reduces the likelihood that significant visual features will be

distorted by JPEG or other coding artifacts.



4. CONCLUSION

The visual image remains an enigma full of surprises, some of which we encountered in our experience

with retinex image processing. Our thinking about the imaging process has been c]_anged in basic ways

outlined here. The new directions stimulated are summarized as:

1. Imaging should be considered as a process of transformation rather than replication with minimal

distortion. This idea arose from the visual inadequacy of the linear representation of image data.

2. The statistical convergence of retinex image enhancements led us to postulate the existence of a

canonical visual image with consistent statistical aggregate characteristics. Further these can be

used to construct entirely new visual measures which can be the basis for the automatic assessment

^t _-isual quality of arbitrary images by the computer.UL

3. A new deterministic definition of visual information emerges from the computational form of the

retinex--namely that visual information is in some sense the log of spatial and spectral context

relationships within the image.

4. The retinex should be applied ideally as a front-end computation prior to any data compression and

achieves its fullest visual quality when sensor SNR and digitization cover the 10-12bits dynamic

range required by the radiometric character of commonplace scenes.

A computation like the retinex appears to solve two problems simultaneously--the diminishing of extra-

neons variables such as spatial and spectral lighting and the construction of compact context relationships

which may provide a basis for bringing more a_.ranced levels of visual intelligence into computing.
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