Jeagle: a JAVA Runtime Verification tool

Marcelo D'Amorim* ** and Klaus Havelund2

1 Department of Computer Science, University of Illinois Urbana-Champaign, USA
2 Kestrel Technology, NASA Ames Research Center, USA

Abstract. We introduce the temporal logic Jeagle and its supporting tool for runtime verification of Java programs. A monitor for an Jeagle formula checks if a finite trace of program events satisfies the formula. Jeagle is a programming oriented extension of the rule-based powerful Eagle logic that has been shown to be capable of defining and implementing a range of finite trace monitoring logics, including future and past time temporal logic, real-time and metric temporal logics, interval logics, forms of quantified temporal logics, and so on. Monitoring is achieved on a state-by-state basis avoiding any need to store the input trace. Jeagle extends Eagle with constructs for capturing parameterized program events such as method calls and method returns. Parameters can be the objects that methods are called upon, arguments to methods, and return values. Jeagle allows one to refer to these in formulas. The tool performs automated program instrumentation using AspectJ. We show the transformational semantics of Jeagle.

1 Introduction

Model Checking [6], Theorem Proving [14] and Static Analysis [16] are techniques aiming at static program verification. The first is concerned with checking if all possible traces derived from a program (or abstract model) satisfy a property of interest. The state-space explosion is known to be an issue when considering concurrency and unbounded types. Additional model abstraction, such as partial-order reduction, can reduce the model size considerably but scalability is still an issue when checking properties of programs in general. Theorem Proving relies on the language semantics and a proof system in order to come up with a proof that the system will behave correctly for all possible inputs. The proof system can be defined inductively on the syntax of the program. This technique requires user ingenuity to produce checkable predicates. For instance, there are valid properties which are non-inductive. That is, can not be proved valid using induction on the syntax. In practice, only reachable program states must satisfy stated properties. In order to cope with non-inductive properties, the user may start by specifying a high-level property and then providing more information to prune the set of possible transitions. This technique is thus not fully mechanizable. That is, it requires user intervention. As yet another technique, static analysis is concerned with analyzing the program offline and generating summarized information about its elements. The outcome of the analysis is usually imprecise but can be interpreted conservatively to produce program transformers that can, for example, optimize the code or simplify it with respect to some property that wants to be observed.

* CAPES grant# 15021917
** This author is grateful for the support received from MCT while participating in the Summer Student Research Program at the NASA Ames Research Center
In contrast to these techniques, this paper describes a logic and tool that employs dynamic analysis to detect bugs in software during its execution. Runtime Verification (RV) [1] is concerned with checking a single trace of the program against properties described in some logic. When a property is violated or validated the program can take actions to deal with it. The technique scales since just one model is considered. In addition, since the check is done during runtime only reachable states are touched. The technique can be used both for testing and monitoring. In the first case, one must come up with test cases [2] that might exercise a bug. In this setting RV is considered as an auxiliary tool to automate the creation of oracles that detect errors. An RV tool can also be used to monitor a program run so to take actions in response to the violation of a property. Under this perspective the RV tool may be used to define how the program reacts to bugs, possibly steering it to the correct behavior [8].

The paper describes a logic and its tools, named JEAGLE, for runtime verification of JAVA programs. By using a dialect of JAVA, the user can describe temporal properties relating different points in the program and their accessible objects, and verify the program against these properties during runtime. The logic is defined on top of EAGLE which is more expressive than several logics [3]. EAGLE not only allows one to state temporal, and interval properties but also to define new logics.

Instrumentation is acknowledged as an issue that runtime verification tools have to face in order to monitor programs [5,13,10]. Some tools provide no support for mechanical instrumentation, others use annotations in the source program to check against verification formulae. We understand that automated instrumentation is part of the problem we want to solve, and that a tight integration between the logic and the source language will not only simplify the task of writing and reasoning about properties but also give opportunity to mechanical instrumentation.

We claim that by augmenting the EAGLE language with a simple construct that allows one to bind data values from parameterized events of the program is a way of achieving this goal. This construct is the event expression and has been mainly influenced by aspect languages [12] and process algebras [15].

We present related work in the following section. In section 3 EAGLE is described. Section 4 presents JEAGLE as an extension to EAGLE. It first describes the tool; the language syntax and monitor examples are then given. Finally, a transformational semantics is defined and the implementation discussed. Section 5 concludes this work.

2 Related Work

EAGLE [3] is a language-independent runtime verification tool and logic. It requires the user to create a projection of the actual program state. User-defined formulae are evaluated with respect to this projected state. The EAGLE language essentially extends the μ-calculus with data parameterization. JEAGLE is defined on top of EAGLE and supports automated instrumentation and object reasoning in the expense of making the language specific to Java.

JAVA MAC [13] defines an event-based language to describe monitors. MAC is comprised of two specification languages, PEDL and MEDL. The first is tightly integrated to the programming language and defines events that might occur during the program execution. A MEDL specification, on the other hand, makes use of these events
in order to state high-level requirements. JEAGLE can define MAC conditions as rules
and local variables can be cast as formal parameters in these rules. In contrast to MAC
that allows user-defined high-level events to be described, JEAGLE event expressions
only concern method calls and returns currently. However, this construct is designed to
be extensible so to allow one to reason about other program events. In addition, JEAGLE
supports data binding and object reasoning which we believe to be an essential feature
of object-oriented program monitoring. To the best of our knowledge MAC does not
support them.

JASS [4] is a JAVA tool providing a trace-assertion checker in addition to a language
for describing pre and post conditions for methods, loop variants (used to assure loop
termination) and invariants, and class invariants which are predicates about the state of
objects of a particular class. These are defined in a similar fashion as in EIFFEL [19].
The language of trace-assertions is similar to CSP and interests us the most. Trace
assertions are defined as class invariants in the form of annotations in the class file. The
notation and semantics of the data-binding construct is similar to those used in modal
logics for process-algebras like CCS and µ-calculus [15]. These works influenced us
severely on the integration of program and logic as well as on the notation and semantics
of event expressions. We understand that the distinction between JASS and JEAGLE rely
mainly on the expressiveness of their language. For example, JEAGLE do not provide
built-in operators for parallel composition and hiding and this could make the set of
possible traces easier to define.

TEMPORAL ROVER [7] allows the user specify LTL requirements to be checked
during runtime. The programmer needs to manually instrument the program in order to
emit events to the checker. Similarly to Temporal Rover, JEAGLE supports LTL with
past and future combined. In contrast, JEAGLE provides automated program instrumen-
tation, can capture data via events of different points in the program, and allows one to
write specifications in different logics.

MOP [5] is a methodology and framework for building program monitors. In MOP
the craft of a monitoring tool is divided into building a logic engine and a logic plugin.
The first is concerned with generating a software artifact that will check the trace.
The latter is concerned with the integration of the target program and the logic engine.
Instrumentation and IDE integration are supported by the engine. Several plugins have
been created in this line already including those for ERE and LTL. We believe JEAGLE
can be defined in MOP as well.

3 The Eagle Logic

In this section, the EAGLE finite-trace monitoring logic is introduced. This section as
well as the Appendix A are modifications of part of [3] and serve to give background
on EAGLE.

EAGLE offers a succinct but powerful set of primitives, essentially supporting re-
cursive parameterized equations, with a minimal/maximal fix-point semantics together
with three temporal operators: next-time, previous-time, and concatenation. The next-
time and previous-time operators can be used for defining future and past time logics on
top of EAGLE. The concatenation operator can be used to define interval logics and ex-
tended regular expressions. Rules can be parameterized with formulas and data, which
allows the definition of new combinators and contexts to be captured in different points in time.

Atomic propositions are boolean expressions over a *user-defined object* denoting the current state of the program. This design decision allows one to monitor programs written in different languages with reduced effort. That is, one needs to define such state object in JAVA, which is the EAGLE implementation language, and send events to it in order to keep it updated. The logic is first introduced informally by means of two examples. Syntax and semantics are given in Appendix A.

3.1 EAGLE by example

Assume we want to state a property about a program P, which contains the declaration of two integer variables x and y. We want to state that whenever x is positive then eventually y becomes positive. The property can be written as follows in classical future time LTL: $[x > 0 \rightarrow \diamond y > 0]$. The formulas $\square F$ (meaning "always F") and $\diamond F$ (meaning "eventually F"), for some property F, usually satisfy the following congruences [14], where the temporal operator OF stands for $nxz F$:

$$\square F \equiv F \land \Box(\square F) \quad \diamond F \equiv F \lor \Box(\diamond F)$$

One can, for example, show that $\square F$ is a solution to the recursive equation $X = F \land \Box X$; in fact it is the maximal solution. A fundamental idea in EAGLE is to support this kind of recursive definition, and to enable users to define their own temporal combinators using equations similar to those above. In this framework one can write the following definitions for the combinators Always and Eventually, and the formula to be monitored (M_1):

$$\begin{align*}
\text{max } \text{Always}(\text{Form } F) &= F \land \Box \text{Always}(F) \\
\text{min } \text{Eventually}(\text{Form } F) &= F \lor \Box \text{Eventually}(F) \\
\text{mon } M_1 &= \text{Always}(x > 0 \rightarrow \text{Eventually}(y > 0))
\end{align*}$$

The Always operator is defined as having a maximal fix-point interpretation. That is, if by the end of the trace the property was not yet violated it is assumed to be validated. On the other hand, the Eventually operator is defined as having a minimal interpretation. If by the end of the trace the formula was not yet validated the eventuality is considered violated. Maximal rules define safety properties (nothing bad ever happens), while minimal rules define liveness properties (something good eventually happens). In EAGLE, the difference only becomes important when evaluating formulas at the boundaries of a trace. To understand how this works it suffices to say here that monitored rules evolve as new states appear in the trace. Assume that the end of the trace has been reached (we are beyond the last state) and a monitored formula F has evolved to F'. Then all rule applications in F' of maximal fix-point interpretation will evaluate to true, since they represent safety properties that apparently have been satisfied throughout the trace, while applications of minimal fix-point rules will evaluate to false, indicating that some event did not happen. Assume for example that we evaluate the formula M_1 in a state where $x > 0$ and $y \leq 0$, then as a liveness obligation for the

3 Similarly, $\diamond F$ is a minimal solution to the recursive equation $X = F \lor \Box X$.
future we will have the expression:

$$\text{Eventually}(y > 0) \land \text{Always}(x > 0 \rightarrow \text{Eventually}(y > 0))$$

Assume that, at this point, we detect the end of the trace. That is, we are beyond the last state. The outstanding liveness obligation $\text{Eventually}(y > 0)$ has not yet been fulfilled, which is an error. This is captured by the evaluation of the minimal fix-point combinator Eventually being false at this point. The obligation corresponding to the right-hand side of the \land, namely, $\text{Always}(x > 0 \rightarrow \text{Eventually}(y > 0))$, is a safety property and evaluates to true.

For completeness we provide remaining definitions of the future time LTL operators \mathcal{U} (until) and \mathcal{W} (unless) below, and also the past-time operator \mathcal{S} (since) used in an example later on. Note how Unless is defined in terms of other operators. However, it could have been defined recursively.

$$\begin{align*}
\text{min Until}(\text{Form } F_1, \text{Form } F_2) &= F_1 \lor (F_1 \land \mathcal{O} \text{Until}(F_1, F_2)) \\
\text{max Unless}(\text{Form } F_1, \text{Form } F_2) &= \text{Until}(F_1, F_2) \lor \text{Always}(F_1) \\
\text{min Since}(\text{Form } F_1, \text{Form } F_2) &= F_2 \lor (F_1 \land \mathcal{O} \text{Since}(F_1, F_2))
\end{align*}$$

Data Parameters

We have seen how rules can be parameterized with formulas. Let us modify the above example to include data parameters. Suppose we want to state the property: "whenever at some point $(x = k) > 0$ for some k, then eventually $y = k$". This can be expressed as follows in quantified LTL: $\Box(x > 0) \rightarrow \exists k.(x = k \land \Box y = k)$. We use a parameterized rule to state this property, capturing the value of x when $x > 0$ as a rule parameter.

$$\text{min } R(\text{int } k) = \text{Eventually}(y = k) \quad \text{mon } M_2 = \text{Always}(x > 0 \rightarrow R(x))$$

Rule R is parameterized with an integer k, and is instantiated in M_2 when $x > 0$, hence capturing the value of x at that moment. Rule R replaces the existential quantifier. The logic also provides a previous-time operator, which allows us to define past time operators. Data parameterization is also used to elegantly model real-time logics. The syntax and semantics of EAGLE is defined in Appendix A. See [3] for more details on EAGLE and how to encode LTL, MTL in the language. The textual notations for \Box and \mathcal{O} in EAGLE are respectively $@$ and $#$.

3.2 The EAGLE tool

EAGLE monitors and rules are specified in a text file. In order to verify the program against the stated properties, the programmer must instrument the application in points affecting any formula in the specification. In the example above, at any place where x and y are updated. In these points, the EAGLE state must be updated and then the formula verified as figure 1 shows. Straight lines denote events sent from the instrumented program.

When an instrumentation point is hit, the EAGLE state is updated (1). Then, the observer corresponding to the specified properties (spec) is notified (2). In response, the observer evaluates the formulae in the current state (3) and derive new obligations for the future which are stored in its internal state.
JEAGLE is a logic and tool for runtime verification of Java programs. It is built on top of EAGLE. That is, monitors defined in this language are translated to EAGLE monitors. Because of this, we claim that JEAGLE is not more expressive than EAGLE. On the one hand, the logic JEAGLE aims at providing a more concise syntax for writing object-oriented temporal specifications. On the other hand, the tool automates program instrumentation and the generation of EAGLE monitors therefore reducing errors and programming effort.

In the previous examples x and y are fields declared in the EAGLE state. In EAGLE, this state is all the observer class can access (see figure 1). In EAGLE it is not possible to write, directly in the specification file, properties about program objects and how they interact. In order to achieve this, one needs to insert (or update) such objects in the EAGLE state whenever an event of interest takes place; and create rules denoting the scope of these objects, as R in M_2. These tasks are time-consuming and error-prone.

The JEAGLE language allows the user to reason about program objects rather than this artificial state. That is, the user is able to refer to the program state directly not through a possibly inaccurate projection of it. This is realized through events. In practice, the user is able to declare interest in program events and these can carry references to objects that are subject to reasoning.

JEAGLE extends the EAGLE language with Java expressions and with a construct hereafter called event expression. This construct has been mainly inspired by modal logic and aspect languages.

JEAGLE in runtime

During program execution the state contains information about the most recent event emitted which is also declared in the specification. We create AspectJ aspects [12] to track events that occur in the formulae and update the state.

Some methods declared in the state check if an event has occurred. These methods are called from the observer to decide if the state satisfies the (event) guard of an event expression. In practice, whenever a program point of interest is hit, the EAGLE state gets updated and the formulae are checked by the observer.
4.1 Syntax and Informal Semantics

The syntax of JEAGLE is defined in figure 2. This is a simplification of a grammar defined in a JLEWJAVA CUP [11] specification.

Event expressions take the form: \([\text{event}]\) assertion and \((\text{event})\) assertion, and extend the language of boolean propositions. So far events correspond to a method being called or returning from and may bind variables in the scope of an JEAGLE assertion. Question marks are used within the event description for this purpose. In addition, the construct \([\ldots]\) has an impliciative semantics, and \((\ldots)\) a conjunctive semantics. Therefore, \([e]\)false means that \(e\) must not occur while \((e)\)true means that \(e\) must occur.

A transformation system is formally defined in the next section. The semantics of JEAGLE can be inferred by interpreting the rules of this system. However, the semantics is very detailed. Therefore, we understand it is still worth showing the informal semantics of the event expression. We use a functional pseudo-language in this attempt.

Informal semantics of an event expression

In what follows we show the semantics of an event expression whose event is associated to a method call. Note that other events are possible to be defined:

\[[\text{eaglepp.method.expression: ev}] \text{ eaglepp.expr: epp } \] = \[
\text{ if ev, then }
\text{ let } \{(x,y) \mid y \in \text{FV}(ev) \land x \not\in \text{FV}(epp)\} \text{ in }
\text{ epp } [x/\overline{y}]
\text{ else true }
\]\n
\(ev\) is a predicate that is valid when an event associated to the method call \(\text{eaglepp.method.expression}\) occurs, and \([x/\overline{y}]\) denotes the sequence of substitutions \([x_1/y_1] \ldots [x_n/y_n]\) over the pairs \((x_1,y_1)\ldots(x_n,y_n)\) in the binding set. Note that \(y\) is an identifier occurring free in \(ev\) and labeled with a question mark, and \(x\) does not occur free in \(epp\). That is, it is a fresh name.

Expressions defined inside brackets are not evaluated. The program will be instrumented to track the events associated to them. When the event triggers, the expression that follows the bracket \((epp)\) is evaluated in the extended environment. The other forms of event expression have similar semantics with identifiers labeled with question marks possibly binding the calling thread or the result of a method.
annotation ::= def block monitor seq
monitor_seq ::= monitor_seq monitor | monitor
monitor ::= mon Id = eaglepp_expr .
define blk ::= var Id Id ; define block | ε
eaglepp_expr ::= [eaglepp_event.expression] eaglepp_expr
 | < eaglepp_event.expression > eaglepp_expr
 | java boolean expr
 | Id (eaglepp_expr seq)
 | eaglepp_expr prop bop eaglepp_expr
 | (eaglepp_expr)
 | " eaglepp_expr | # eaglepp_expr | @ eaglepp_expr
eaglepp_expr_seq ::= eaglepp_expr , eaglepp_expr_seq | ε
eaglepp_event.expression ::= eaglepp_event.expression_thread
 | eaglepp_event.expression_nothread
eaglepp_event.expression_thread ::= Id?? : eaglepp_event.expression_nothread
eaglepp_event.expression_nothread ::= eaglepp_method.expression returns
 | eaglepp_method.expression returns Id??
 | eaglepp_method.expression

eaglepp_method.expression ::= Id?? ; Id (param_list)
param_list ::= Id?? , param_list | ε
eaglepp_event.expression ::= java boolean expr rop java boolean expr
 | java boolean expr && java boolean expr
 | java boolean expr || java boolean expr
 | a Java method expression
 | ! java boolean expr | (java boolean_expr) | Id
prop bop ::= v | ∧ | ¬
rop ::= <= | < | > | >= | ==
Id?? ::= Id? | Id
Id ::= a Java identifier
Id? ::= Id?
4.2 JEAGLE by Example

Temporal Buffer Requirements

```java
observer BufferMonitor {
    ...
    var Buffer b;
    var Object o;

    mon M0 =
        Always ( b?.put(o?) ) Eventually ( <b.get() returns k? k == o> ) .

    mon M1 =
        Always ( b?.put(o?) ) & ( Always ( b?.put(o?):false ) ) .
}
```

Monitor M0 states a property that all buffers must be empty by the end of the trace, while monitor M1 states that an object cannot be added to any buffer more than once. The eventuality of M0 can also be expressed as: `<b.get() returns o>true.`

Note that we assume events to be disjoint. That is, two events do not occur simultaneously. In other words, events have an interleaving semantics. In addition, recall that formulæ are interpreted as data unless they have to be evaluated in the current state.

Strict Alternation in acquire and release of Locks

The monitors M2 and M3 below state that there should not be an acquire of a lock without a future release, and there should not be a release without a past acquire. The term "t? :" qualifies the event description with the thread from which the event was sent.

```java
observer FileSystemMonitor {
    ...
    var Thread t;
    var FileSystem fs;
    var int i;

    mon M2 =
        Always ( [t? : fs?.acquireLock(i?)] & {
            Until( [t?: fs.acquireLock(i?):false, t: fs.releaseLock(i?):true] )
        } ) .

    mon M3 =
        Always ( [t? : fs?.releaseLock(i?)] & {
            Since( [t: fs.releaseLock(i?):false, t: fs.acquireLock(i?):true] )
        } ) .
}
```

The first requirement detects a missing release that could lead to starvation and deadlock since other threads could depend on this lock. The second detects the release of a lock whose current thread does not own.
4.3 Transformation Rules

JEAGLE specifications are translated into EAGLE monitors and instrumentation artifacts. Three components need to be produced out of a JEAGLE specification: (1) An aspect in the ASPECTJ [12] language that will instrument the program to emit events associated to event expressions, (2) the EAGLE state (as described in section 3.2), and (3) standard EAGLE monitors and rules corresponding to the JEAGLE requirements.

We now describe a subset of the transformation semantics for JEAGLE as a set of axioms and rules over the relation \(\Gamma \subseteq \text{Config} \times \text{Config} \), where \(\text{Config} = \mathcal{N} \times \mathcal{B} \times \mathcal{R} \times \mathcal{A} \times \mathcal{S} \times \text{Term} \), defined as follows:

- \(\Gamma \) is the type environment that is carried over in order to type methods that will be generated.
- \(\mathcal{N} \) is the set of natural numbers. This item is used to generate fresh identifiers.
- \(\mathcal{B} \) denotes an environment qualifying names that occur in event expressions with attributes that we associate with some runtime abstraction, e.g. "the first argument of method \(m \)". \(\mathcal{B} \) denotes a function \(\text{Id} \rightarrow (\text{keywords} \cup \text{Id}) \). Keywords represent data values captured in the last event notified by the program run. For example, the event \(b? .\text{put}(o?) \) adds the pairs \([b \rightarrow \text{caller}] \) and \([o \rightarrow \text{arg1}] \) to the map. Note that the mappings above are only valid until the next event arrives. The mappings of \(b \) and \(o \) are replaced by the identity when a rule binding these names is created.
- \(\mathcal{R} \) denotes the set of rules to be added to the resulting EAGLE specification. Each rule has the form: \(R_n \rightarrow (\mathcal{P}, t) \), where \(R_n \) is a name identifying the rule, \(\mathcal{P} \) is a list of (name \times type) denoting the formals, and \(t \) is the rule body.
- \(\mathcal{A} \) is the set of aspect pointcuts and advices [12] for program instrumentation.
- \(\mathcal{S} \) is the set of methods that need to be defined in the EAGLE State class. This is the only way standard EAGLE can access data values from the formula.
- \(\text{Term} = \bigcup L(k) \), where \(k \) is a syntactic category in the grammar defined. \(\text{Term} \) corresponds to the union of the languages defined by each JEAGLE connected component.

Assume the following variables: \(\text{ev} \) denotes an eaglepp.event.expression, \(\text{epp} \) an eaglepp.expression, \(\text{eppseq} \) an eaglepp.exprseq. \(\text{t} \) denotes a Term, \(\text{tseq} \) a Term Sequence, \(\gamma \) a type environment, \(n \) a natural number, \(b \) a name environment, \(r \) a set of rules, \(a \) a set of aspects. \(s \) denotes a set of method declarations, and \(\text{id} \) an Id. These names denote different variables when appearing primed or with a number suffix.

[Event expression]:

\[
\begin{align*}
(\gamma, n, b, r, a, s, \text{ev}) & \rightarrow (\gamma, n, b', r', a', s', t) \\
(\gamma, n, b, r, a', s, \text{epp}) & \rightarrow (\gamma, n', b', r', a', s', t) \\
(\gamma, n, b, r, a, s, [\text{ev} \text{epp}]) & \rightarrow (\gamma, n', b', r'[R_n \rightarrow (\mathcal{P}, t')], a', s', t' \rightarrow R_n(\mathcal{X}'))
\end{align*}
\]

The following applies to the variables in the rule: \(n' = n + 1 \). \(\mathcal{X} \) is a sequence of the form \(<..., \text{getValue}(b(k)), ...>\), and \(\mathcal{P} \) is a sequence of the form \(<..., (k; \gamma(k)), ...>\) where \(k \in \text{fv}(\text{ev}) \cup \text{id} \). In other words, \(k \) is a free identifier labeled with a question mark, declared in \(\text{ev} \), and possibly used in \(\text{epp} \). The rule call \(R_n(\mathcal{X}) \) defines a new scope in
which these identifiers are bound. The binding map \(b' \) gives the keywords to each \(k \), and \(y \) their types. `getValue` is the name of a method in the JEAGLE state that will be used to access the objects denoting these keywords. Note that a different map \((b') \) is carried over to transform \(epp \). This happens because the identifiers are already bound in the rule \(R_n \). So \(b' \) equals to \(b \) with \([k \mapsto k] \) for all \(k \in FV(ev) \cap Id? \). \(b' \) and \(b'' \) are discarded after the transformation.

The event expression \((\ldots)\) has similar semantics. They differ in the final term produced. Instead of \(t \mapsto R_n(\overline{r}) \), this construct produces the term \(t \land R_n(\overline{r}) \).

[Rule Application]:

\[
\frac{(y,n,b,r,a,s,eppseq) \Rightarrow (y,n,b,r',a',s',tseq)}{(y,n,b,r,a,s,Id0(eppseq)) \Rightarrow (y,n,b,r',a',s',Id0(tseq))}
\]

meaning that the transformation of a rule application depends only on its actual parameters. The rule for JEAGLE expression sequence follows:

\[
\frac{(y,n0,b,r,a,s,epp) \Rightarrow (y,n1,b,r',a',s',t)}{(y,n1,b,r',a',s',epp _ seq) \Rightarrow (y,n2,b,r',a',s',t')}
\]

\[
(y,n0,b,r,a,s, _ epp _ "seq") \Rightarrow (y,n2,b,r',a',s',t' _ _ t)
\]

[Event binding all variables (example)]:

One can define events of many forms and each may bind variables differently. We decided to fix the format of an event in order to make clear the use and definition of bindings. The next two transformations are instantiations of the "Event" transformation (not showed).

We here define the translation of events denoting "method returns" in which the issuing thread, arguments, result, and target object are all passed as parameters to the rule that defines the continuing obligation. That is, all identifiers in the event are binding (appear labeled by a question mark).

\[
\frac{(y,n,b,r,a,s,Id0 : Id1 _ , , (.) _ . _ . _ . _) \Rightarrow (y,n',b',r,a',s',Id3(_))}{(y,n,b,r,a,s,Id0 : Id1 _ , , (.) _ . _ . _ . _) \Rightarrow (y,n',b',r,a',s',Id3(_))}
\]

In this transformation \(n' = n + 1 \), \(Id0 \) denotes the thread name, \(Id1 \) the calling object, \(Id2 \) the method name, and \(Id3 \) the name of the returned value. This event is translated to a boolean expression \((Id3()) \) returning true when the declared event is the current event notified in the EAGLE state. In addition to this, the name environment must be updated as well as the aspect and set of state methods:

\(b' = b \setminus \{ [p_i \mapsto \text{arg}_i] \mid p_i = \text{head}([\text{tail}([\text{plist}])]) \text{ and } p_i \in Id? \text{ and } 0 \leq i < |\text{plist}| \} \setminus \{ [Id1 \mapsto \text{caller}], [Id3 \mapsto \text{return}], [Id0 \mapsto \text{issuingThread}] \} \). The symbol \(\setminus \) denotes right over-riding of bindings as usual.

\(a' = a \cup \text{"pointcut to track returns of method } id2 \text{ passing the calling thread, call target, return value, and parameters as arguments to a corresponding advice"} \).

\(s' = s \cup \text{" public boolean } ida (\{ \ldots \} \text{ "}, where \(ida \) is a fresh identifier. This method denotes an event that will be used in the EAGLE formula corresponding to
the event expression associated to this event. The event denoted by \(\text{t: a.m(i?,j)} \) returns \(o? \) drives the generation of a method that will return true when the caller is \(a \), the method called is \(m \) with parameters as defined by \(\gamma(i) \) and \(\gamma(j) \), the second argument of the call is \(j \), and the calling thread is \(t \).

[JEAGLE Event using bound variables (example):]

The previous rule and this differ essentially in how they build the aspect and the method denoting the event. These constructions are described by \(a' \) and \(s' \), \(n' = n + 1 \):

\[
\begin{align*}
(y, n, b, r, a, s, \text{id}_0 : \text{id}_1.\text{id}_2.(\text{plist}) \text{returns id}_3) & \Rightarrow (y, n', b, r, a', s', \text{id}_n(\mathcal{X}')) \\
a' & = a \cup \text{"pointcut and advice to track returns of method id}_2. \\\ns' & = s \cup \{ \text{"public boolean} \ \text{id}_n(\mathcal{F})\{\ldots\} \text{"} \}, \text{where} \ \text{id}_n \ \text{is a fresh identifier. This method returns true when the last event tracked} \\
\text{with an aspect advice has id}_0 \ \text{as the issuing thread, id}_1 \ \text{as the calling} \\
\text{object, and so forth. These identified variables are passed as parameters \((\mathcal{F})\) to \text{id}_n() while the last event is part of the EAGLE global state.}
\end{align*}
\]

\(\mathcal{X} \) is a sequence of the form\(^4 \): \(<\ldots, k,\ldots> \), where \(k \in FV(\text{"id}_0 : \text{id}_1. \ \text{id}_2.(\text{plist}) \ \text{returns id}_3") \cap \ (b < \text{Id}) \). Since all names appear without question marks there must be an enclosing rule in which these names bind formal parameters. This is checked by intersecting the set of names with \((b < \text{Id})\).

[JAVA Boolean Expression]:

\[
\begin{align*}
(y, n, b, r, a, s, \text{bexp}) & \Rightarrow (y, n', b, r, a, s', \text{id}_n(\mathcal{X}')) \\
s' & = s \cup \{ \text{"public boolean} \ \text{id}_n(\mathcal{F})\{\ldots\} \ \text{bexp} \ \text{"} \}. \text{JAVA boolean expressions are translated into boolean methods that can be used as predicates in the generated EAGLE formula. Note that no transformation is applied within the JAVA boolean expression since the syntax of these are closed in the JAVA language (see section 4.1).}
\end{align*}
\]

The method call construction is as defined in the previous rule and thus omitted. In addition, \(n' = n + 1 \).

[Monitor]:

\[
\begin{align*}
(y, 0, b, r, a, s, \text{epp}) & \Rightarrow (y, n', b, r, a', s', t) \\
(y, 0, 0, 0, 0, 0, \text{mon id}_0 = \text{epp}) & \Rightarrow (y, n, 0, r', a', s', t)
\end{align*}
\]

We omit the rules for the define block since it is only associating names to type. Note that no new term is generated particularly in this rule. The EAGLE expression can be output as the concatenation of all rules collected \((r')\) and a monitor of the form:

\[
\text{mon id}_n = t.
\]

Similarly, the aspects can be generated from \(a' \) and the state from \(s' \).

\(^4\) In the general "Event" transformation \(\mathcal{X} = \mathcal{X}_1 \cdot \mathcal{X}_2 \) where the first sequence is in charge of passing the values bound by names with question marks, and second sequence takes the form defined here.
4.4 Buffer Example revisited

Figure 3 depicts the format of a logic observer specification in JEAGLE for a Buffer monitor defined in the beginning of this section. The transformation of this specification produces the following EAGLE monitor and rules:

\[
\begin{align*}
\text{max } R2(\text{Object } o, \text{ Object } k) &= \text{compare\textunderscore references}(o, k) \\
\text{max } R1(\text{Object } b, \text{ Object } o) &= \text{Eventually}(\text{get\textunderscore b}()) \land R2(o, \text{getValue}(ht, 'return')) \\
\text{mon } M1 &= \text{Always}(\text{put\textunderscore o}())
ightarrow \text{R1}(\text{getValue}(ht, 'caller'), \text{getValue}(ht, 'argl')) \\
\end{align*}
\]

We changed the name of the methods (to get\textunderscore o(), put\textunderscore o(), compare\textunderscore references\textunderscore o()) to improve understanding. These are declared in the EAGLE state.

Here is the Eagle specification file with additional rules and monitors:

```java
observer BufferObserver {
    classPath = C:/downloads/src
    targetPath = C:/downloads/src
    terminationMethod = bufferexample.Barrier.end()
    var Buffer b;
    var Object o;
    var Object k;
    mon M1 = Always({ b?.put(o) })
        Eventually ( { b.get() returns k? } (o == k) ) .
}
```

Fig. 3. JEAGLE observer

ht is a hash table stored in the state and carried over to access the parameters of the last event. This is necessary because methods declared in the EAGLE state and called from the observer (corresponding to the specification above) can only access actual parameters. So we have to pass a table that maps keywords to their associated objects in the latest event.

Note that rules have Object as formals. This is not relevant because an EAGLE observer makes reflective calls to a state method assuming it has the formal types equal to the actual types of the arguments. We regard these as EAGLE implementation issues so they have been omitted thus far.

4.5 Implementation

A parser for JEAGLE was built using JLEX and JAVA CUP. Each transformation rule or axiom in the previous section corresponds to a visit method in a Visitor class [9] in charge of transforming the expression. The tool has 6500 lines of Java source code. The compiler works by transforming JEAGLE phrases written in a specification file into equivalent EAGLE phrases. A new file is produced as the result.
The state and aspect class associated to this specification are generated under the directory targetPath in a package named monitors. The user must inform where the classes mentioned in the specification are located. The classPath will be appended to the ajc (AspectJ compiler) classpath directive which will be called from inside the compiler. In addition, the user must inform the name of a method - terminationMethod - he will call when the program terminates. We track this call and inform EAGLE to finish observation. This is necessary to check eventualities.

5 Conclusion

We have described a tool that generates observers to monitor temporal properties of JAVA program. The tool and language is named JEAGLE and uses EAGLE as its base logic. The contribution of this work is twofold. First, instrumentation is automated. Recall that EAGLE does not support instrumentation since it is language-independent. Second, one can reason about program objects directly in the formula. This makes it easier to write object-oriented specifications and also guides program instrumentation.

Further work includes: (1) enhancing the tool to support additional events and wildcards, (2) developing a visualization tool for the remaining obligation of the formulae, and (3) pass vector-clocks as parameters of events in order to tame concurrency. The first allows one collecting data-values from other events in the program and also declaring wildcards as actual parameters for the kinds of events described here. This should make the definition more concise and clear since only the essential variables are declared. The second is a tool to support temporal debugging, which has been reported to be a hard task in temporal specification [18]. Finally, we should consider a true concurrent model where events might happen simultaneously in different processors. We believe that by tagging events with vector clocks, as in [17], one can build the partial-order from the trace and that could be used as the model to observe.
References

Appendix A: EAGLE Syntax and Formal Semantics

This appendix is a fragment of [3].

Syntax

A specification S consists of a declaration part D and an observer part O. D consists of zero or more rule definitions R, and O consists of zero or more monitor definitions M, which specify what to be monitored. Rules and monitors are named (N).

$$S ::= D O$$
$$D ::= R^*$$
$$O ::= M^*$$
$$R ::= \{ \text{max} | \text{min} \} N(T_1 x_1, \ldots, T_n x_n) = F$$
$$M ::= \text{mon} N = F$$
$$T ::= \text{Form} \mid \text{primitive type}$$
$$F ::= \text{expression} | \text{true} | \text{false} | \neg F | F_1 \land F_2 | F_1 \lor F_2 | F_1 \rightarrow F_2 | (\bigcirc F \mid (F_1 \cdot F_2 | N(F_1, \ldots, F_n) | x_i)$$

A rule definition R is preceded by a keyword indicating whether the interpretation is maximal or minimal (which determines the value of a rule application at the boundaries of the trace). Parameters are typed, and can either be a formula of type Form, or of a primitive type, such as int, long, float, etc. The body of a rule/monitor is a boolean valued formula of the syntactic category Form (with meta-variables F, etc.). Any recursive call on a rule must be strictly guarded by a temporal operator. The propositions of this logic are boolean expressions over an observer state. Formulas are composed using standard propositional logic operators together with a next-state operator (\bigcirc), a previous-state operator (\bigodot), and a concatenation-operator ($F_1 \cdot F_2$). Finally, rules can be applied and their arguments must be type correct. That is, an argument of type Form can be any formula, with the restriction that if the argument is an expression, it must be of boolean type. An argument of a primitive type must be an expression of that type. Arguments can be referred to within the rule body (x_i).

In what follows, a rule N of the form

$$\{ \text{max} | \text{min} \} N(\text{Form} f_1, \ldots, \text{Form} f_m, T_1 p_1, \ldots, T_n p_n) = F,$$

where f_1, \ldots, f_m are arguments of type Form and p_1, \ldots, p_n are arguments of primitive type, is written in short as

$$\{ \text{max} | \text{min} \} N(\text{Form} f, T p) = F$$

where f and p represent tuples of type Form and T respectively. Without loss of generality, in the above rule we assume that all the arguments of type Form appear first.

Semantics

The semantics of the logic is defined in terms of a satisfaction relation $|=\

states $\sigma = s_1s_2...s_n$, where $|\sigma| = n$ is the length of the trace. The i'th state s_i of a trace σ is denoted by $\sigma(i)$. The term $\sigma[i,j]$ denotes the sub-trace of σ from position i to position j, both positions included; if $i \geq j$ then $\sigma[i,j]$ denotes the empty trace. In the implementation a state is a user defined java object that is updated through a user provided updateOnEvent method for each new event generated by the program. Given a trace σ and a specific cation $D \sigma$, satisfaction is defined as follows:

$$\sigma \models D \sigma \iff \forall (\text{mon } N = F) \in D \cdot \sigma, 1 \models_D F$$

That is, a trace satisfies a specification if the trace, observed from position 1 (the first state), satisfies each monitored formula. The definition of the satisfaction relation $\models_D \subseteq (\text{Trace } \times \text{nat}) \times \text{Form}$, for a set of rule definitions D, is presented below, where $0 \leq i \leq n+1$ for some trace $\sigma = s_1s_2...s_n$. Note that the position of a trace can become 0 (before the first state) when going backwards, and can become $n+1$ (after the last state) when going forwards, both cases causing rule applications to evaluate to either true if maximal or false if minimal, without considering the body of the rules at that point.

\[
\begin{align*}
\sigma, i \models_D \text{expression} &\iff 1 \leq i \leq |\sigma| \text{ and } \text{evaluate}(\text{expression})(\sigma(i)) = \text{true} \\
\sigma, i \not\models_D \text{false} &\iff \sigma, i \not\models_D F \\
\sigma, i \models_D F_1 \land F_2 &\iff \sigma, i \models_D F_1 \text{ and } \sigma, i \models_D F_2 \\
\sigma, i \models_D F_1 \lor F_2 &\iff \sigma, i \models_D F_1 \text{ or } \sigma, i \models_D F_2 \\
\sigma, i \models_D F_1 \rightarrow F_2 &\iff \sigma, i \models_D F_1 \implies \sigma, i \models_D F_2 \\
\sigma, i \not\models_D \bigcirc F &\iff i \leq |\sigma| \text{ and } \sigma, i + 1 \models_D F \\
\sigma, i \models_D F &\iff 1 \leq i \text{ and } \sigma, i - 1 \models_D F \\
\sigma, i \models_D F_1 \cdot F_2 &\iff 3 j \text{ s.t. } i \leq j \leq |\sigma| + 1 \text{ and } \sigma^{|j - 1|}, i \models_D F_1 \text{ and } \sigma^{|i|,|j|}, 1 \models_D F_2 \\
&\quad \quad \text{if } 1 \leq i \leq |\sigma| \text{ then:} \\
&\quad \quad \quad \sigma, i \models_D F, \overline{F} \rightarrow F, \overline{p} \rightarrow \text{evaluate}(F)(\sigma(i)) \\
&\quad \quad \quad \text{where } (\overline{N(\text{Form } f, \overline{p}) = F}) \in D \\
&\quad \quad \text{otherwise, if } i = 0 \text{ or } |\sigma| + 1 \text{ then:} \\
\sigma, i \models_D N(F, \overline{P}) &\iff \text{rule } N \text{ is defined as max in } D
\end{align*}
\]

An expression (a proposition) is evaluated in the current state in case the position i is within the trace ($1 \leq i \leq n$). In the boundary cases ($i = 0$ and $i = n + 1$) a proposition evaluates to false. Propositional operators have their standard semantics in all positions. A next-time formula $\bigcirc F$ evaluates to true if the current position is not beyond the last state and F holds in the next position. Dually for the previous-time formula. The concatenation formula $F_1 \cdot F_2$ is true if the trace σ can be split into two sub-traces $\sigma = \sigma_1\sigma_2$, such that F_1 is true on σ_1, observed from the current position i, and F_2 is true on σ_2 (ignoring σ_1, and thereby limiting the scope of past time operators). Applying a rule within the trace (positions $1...n$) consists of replacing the call with the right-hand side of the definition, substituting arguments for formal parameters; if an argument is of primitive type its evaluation in the current state is substituted for the associated formal parameter of the rule, thereby capturing a desired freeze variable semantics. At the boundaries (0 and $n + 1$) a rule application evaluates to true if and only if it is maximal.
Appendix B: Buffer Example

Source specification

```java
/* LTL with past and future: */
// Future:
max Always(Term t) = t /\ @ Always(t).
mim Eventually(Term t) = t /\ @ Eventually(t).
mim Until(Term t1, Term t2) = t2 /\ (t1 /\ @ Until(t1, t2)).
// Past:
max Sofar(Term t) = t /\ # Sofar(t).
mim Previously(Term t) = t /\ # Previously(t).
mim Since(Term t1, Term t2) = t2 /\ (t1 /\ # Since(t1, t2)).

observer BufferObserver {
  classpath = C:/tests/eaglepp
  targetPath = C:/tests/eaglepp
  terminationMethod = bufferexample.Barrier.end()

  var bufferexample.Buffer b;
  var Object o;
  var Object k;

  mon M1 = Always[{b?.put(o?)}]
  Eventually {<b.get() returns k?} (o == k) ) .
}
```

Generated Specification

```java
/* LTL with past and future: */
// Future:
max Always(Term t) = t /\ @ Always(t).
mim Eventually(Term t) = t /\ @ Eventually(t).
mim Until(Term t1, Term t2) = t2 /\ (t1 /\ @ Until(t1, t2)).
// Past:
max Sofar(Term t) = t /\ # Sofar(t).
mim Previously(Term t) = t /\ # Previously(t).
mim Since(Term t1, Term t2) = t2 /\ (t1 /\ # Since(t1, t2)).

max r.5(Object o, Object k) = m.7(htable, o, k).
max r.1(Object o, Object b) = Eventually(m.4(htable, b) /\ r.5(o, getValue(htable,c6))) .
mon M1 = Always(m.0(htable) -> r.1(getValue(htable,c2), getValue(htable,c3))) .
```
Generated Instrumentation Aspects

package monitors;
import eagle.parser.RuleBase;
import eagle.rmf.Observer;
import eagle.rmf.EagleState;
import eagle.rmf.EagleState;
import eagle.rmf.EagleState;

public aspect BuffetObserverAspect {

 BufferObserverState state = new BufferObserverState();
 Observer observer =
 new Observer(RuleBase.parse("C:/tests/eaglepp/bufferexample/buffercompiled.spec"));
 Object lock = new Object();

 pointcut put (bufferexample.Buffer caller, Object arg0) :
 target(caller) && args(arg0) &&
 execution("bufferexample.Buffer.put(object)");

 before (bufferexample.Buffer caller, Object arg0) returning (object result) :
 put(caller, arg0, arg0,
 synchronized(lock) {
 MethodCall mcall = new MethodCall("put", caller,
 new Method("bufferexample.Buffer", "put", new String[] {"object"});
 mcall.addActualParameter("arg0", arg0);
 state.setCurrentEvent(mcall);
 state.eventMessage();
 observer.handle(state);
 });

 pointcut get (bufferexample.Buffer caller) :
 target(caller) && execution("bufferexample.Buffer.get()")

 before (bufferexample.Buffer caller) returning (Object result) :
 get(caller, arg0, arg0,
 synchronized(lock) {
 MethodInvoke mcrit = new MethodInvoke(caller, new Method("bufferexample.Buffer", "get", new String[] {"result"}),
 state.setCurrentEvent(mcrit);
 state.eventMessage();
 observer.handle(state);
 });

 pointcut end () : call("bufferexample.Barrier.end()")

 before() : end()
 state.terminate();
 observer.end();
}
Generated EAGLE State

package monitors;

import eaglepp.*; import java.util.*; import java.io.*;

public class BufferObserverState extends EaglePPState {

 public static boolean aOlHashtable htabiel
 return getValue(htable, "methodName") != null
 && getValue(htable, "targetType") != null
 && getValue(htable, "caller") == b;

 public static boolean a4lHashtabie htable, bufferexampie.Buffer b l
 return getValue(htable, "methodName") != null
 && getValue(htable, "targetType") != null
 && getValue(htable, "callee") == b;

 public static final String c2 = "arg0";
 public static final String c3 = "caller";
 public static final String c6 = "value";

 private static File logFile
 new File("bufferexample/errors.BufferobserverState.l";

 private static StringBuffer errorMessages
 new StringBuffer();
 private static StringBuffer errorWarningMonitors
 new StringBuffer();
 private static StringBuffer warningMessages
 new StringBuffer();

 public void eventMessage0
 System.out.println("event: " + a);
 errorWarningMonitors.append("monitor: " + a);
 warningMessages.append("monitor: " + a);

 public void error(String args)
 errorWarningMonitors.append("error: " + args + " was violated!");
 warningMessages.append("error: " + args + " was violated!");

 public void warning(String args)
 errorWarningMonitors.append("warning: " + args + " was not validated.");
 warningMessages.append("warning: " + args + " was not validated.");

 public static void terminate()
 System.out.println("--.");
 try
 PrintWriter pwriter = new PrintWriter(new FileWriter(logFile));
 pwriter.println(errorWarningMonitors.toString());
 pwriter.println(warningMessages.toString());
 pwriter.close();
 catch (IOException ioException)
 System.err.println("Could not write to the file.");
 }
}