Applications for Mission Operations Using Multi-Agent Model-Based Instructional Systems with Virtual Environments

William J. Clancey, PhD
Chief Scientist, Human-Centered Computing
NASA Ames Research Center
& Institute for Human and Machine Cognition, UWF
Presentation Outline

- Intelligent Tutoring Systems — using AI (problem-solving models) for instruction
- Astronauts as Students
- ICAT: The Hubble Repair Training System
- Foundations for Revitalizing ITS at NASA
 - Brahms: Workpractice modeling, Agents, and VE
 - Trends and Opportunities for Exploration Systems
Guidon: Case Method Tutor (1979)

Student: What is the CSF Glucose?
Guidon: The CSF glucose value is 5.
We have substantially completed our discussion of the type of the infection. Would you like to make a hypothesis now?
S: Yes
G: What is the type of the infection?
S: Bacterial (.9)
G: What facts about this case tell you that the type of the infection is bacterial (.9)?
S: CSFGLUC, PMNS, CSFPOLY, PROTEIN
G: The percent of PMN's in the CBC is not relevant for determining the type of the infection.

You're right about the CSF protein, the percent of PMNSs in the CSF and the CSF glucose value, however you should have mentioned the fact that the meningitis is partially treated (.95), the WBC from the CSF and the fact that the simultaneous blood glucose value is not known.
Guidon's Domain-General Design

Infectious Disease Dx (Mycin)
Manufacturing Dx (Sacon)
Pulmonary Function Dx (Puff)

EMYCIN

Domain Rule Interpreter

Dynamic Knowledge:
Case facts & Reasoning traces

Consultation Client

GUIDON

Dialogue Records & Plans

TUTORING RULES

Overlay Student Knowledge Model

Student
ITS Successes (30 Years)

- High School Algebra
- Electro-mechanical Troubleshooting (military)
- Manufacturing Process Control
- Computer Programming
- Medical Diagnosis
Astronauts as Students

- Multiple PhDs/MD
- Insufficient time from specs to flight to formalize domain knowledge
- Highly procedural, mission critical, manipulative skills
- "Practicing understanding"
- Tasks open to alternatives
- CBT with personal tutors
- Comprehensive ground support "coach in your ear"
Varieties of Simulation Training

"Integrated"

"Motion-based"

"ICAT"

Mockup
Bowen Loftin's Hubble VE

- Dec '93 Hubble Repair Mission
- Hubble model + Shuttle payload bay
- 100 team members, 200 hrs training
- Feature id & repair constraints; six EVA scenarios (part changes)
- Procedure monitoring, intervention, & assistance
• Part-Task model highly restricted
 – Flattens data-process relation (e.g., comparing alternative methods)
 – Omits contextual information (e.g., orbit #)
 – Omits interaction with other individuals/subtasks

• Increased cognitive demand
 – Undermined learning
 – Misleading evaluation of effectiveness

• Need richer work system conceptualization

S: ... I would tell dynamics to make ephemeris 2 and 4 look like 1.

E: How would you do that?

S: I would tell them exactly that – to make ephemeris 2 and 4 look like 1. So, I’m going to have to do this myself.
Technology Foundations for Revitalizing ITS at NASA

MER
Work System Study & Simulation

BrahmsVE
Human-Robotic Systems

- Work practice (activity-based) simulation of mission operations and tools
- Virtual environments for design and training of human-robotic systems
- Multiagent systems using NL for life support and surface exploration
BrahmsVE Architecture

- **Multiagent Work Practice Simulation:** People, systems, places, activities, communications

- Coupled to animation graphics in virtual world

- **Browser-based Visualization** implemented in *Adobe Atmosphere*

- Foundation for interactive distributed training

Agent system simulates behaviors; Virtual World simulates spatial relations
MOBILE AGENTS: "Automating Capcom"

Astros can work in parallel, talking to personal agents

Robot in "follow me" mode

Robot tracks ledge, astronauts & takes photos

Voice annotation is recorded and transmitted to database in habitat & to RST on earth
Scientific understanding of the *differences* between present technology and people is essential for both exploiting and improving computational tools.

What is Collaboration? Teamwork? Decision making?