Information Theory — The Bridge Connecting Bounded Rational Game Theory and Statistical Physics

David H. Wolpert
NASA Ames Research Center,
Moffett Field, CA, 94035, USA
dhw@email.arc.nasa.gov

A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality of all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. This paper shows that the same information theoretic mathematical structure, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not only provides a principled formulation of bounded rationality and a set of new types of mean field theory in statistical physics; it also shows that those topics are fundamentally one and the same.

PACS numbers: 89.20.-a, 89.75.-k, 89.75.Fb

I. INTRODUCTION

In noncooperative game theory, one has a set of N players, each choosing its strategy x_i independently, by sampling a distribution $q_i(x_i)$ over those strategies. Each player i also has her own utility function $g_i(x_i)$, specifying how much reward she gets for every possible joint-strategy x of all N players. Let $q(x_i(x_i))$ mean the joint probability distribution of all players other than i, i.e., $\prod_{j \neq i} q_j(x_j)$. Then the “goal” of each player i is to set q_i so that, conditioned on $q_i(x_i)$, the expected value of i’s utility is as high as possible.

Conventional game theory assumes each player i is “fully rational”, able to solve for that optimal q_i, and that she then uses that distribution. It is primarily concerned with analyzing the such equilibria of the game [3-6]. In the real world, this assumption of full rationality almost never holds, whether the players are humans, animals, or computational agents [7-15]. This is due to the cost of computation of that optimal distribution, if nothing else. This real-world bounded rationality is one of the major impediments to applying conventional game theory in the real world.

More generally, consider any scientific scenario, in which one wishes to make predictions about a particular physical system. To make those predictions it is necessary to first have some information / data concerning the system, to serve as the basis of one’s prediction. Without such information, science can say nothing, and to pretend otherwise is erroneous. This is true even when the physical system is a set of human players engaged in a game: To make any predictions concerning the players, one must first be provided (or obtain through observation) some information concerning them and the game. Together with known scientific laws, only that provided information should be used in making one’s prediction. So in particular, unless one explicitly is provided the information that the players in a game are fully rational, to simply assume that they are violates one of the fundamental tenets of how science is done.

This paper shows how Shannon’s information theory [16-18] provides a principled way to modify conventional game theory to accommodate bounded rationality. This is done by following information theory’s prescription that, given only partial knowledge concerning the distributions the players are using, we should use the minimum information (Maxent) principle to infer those distributions. Doing so results in the principle that the bounded rational equilibrium is the minimizer of a certain set of coupled Lagrangian functions of the joint distribution, $q(x) = \prod_i q_i(x_i)$. This mathematical structure is a special instance of Product Distribution (PD) theory [11, 19-24].

In addition to showing how to formulate bounded rationality, PD theory provides many other advantages to game theory. Its formulation of bounded rationality explicitly includes a term that, in light of information theory, is naturally interpreted as a cost of computation. PD theory also seamlessly accommodates multiple utility functions per player. It also provides many powerful techniques for finding (bounded rational) equilibria, and helps address the issue of multiple equilibria. Another advantage is that by changing the coordinates of the underlying space of joint moves x, the same mathematics describes a type of bounded rational cooperative game theory, in which the moves of the players are transformed into contracts they all offer one another.

Perhaps the most succinct and principled way of deriving statistical physics is as the application of the Maxent principle. In this formulation, the problem of statistical physics is cast as how best to infer the probability distribution over a system’s states when one’s prior knowledge consists purely of the expectation values of certain functions of the system’s state [18, 25]. For example, this prescription says we should infer that the probability distribution p governing the system is the Boltzmann distribution when our prior knowledge is the system’s expected energy. This is known as the “canonical ensemble”. Other ensembles arise when other expectation values are added to one’s prior knowledge. In particu-
lar, if the number of particles in the system is uncertain, but one knows its expectation value, one arrives at the "grand canonical ensemble".

One major difficulty with working with these ensembles is that under them the particles of the system are statistically coupled with one another. For high-dimensional systems, this can make statistical physics calculations very difficult. Accordingly, a large body of work has been produced under the rubric of Mean Field (MF) theory, in which the ensemble is approximated with a distribution in which the particles are independent [26]. In an MF approximation, a product distribution q governs the joint state of the particles — just as a product distribution governs the joint strategy of the players in a game.

MF approximations are usually derived in an ad hoc manner. The principled way to derive a MF approximation (or any other kind) to a particular ensemble is to specify a distance measure saying how close two probability distributions are, and then solve for the q that is closest to the distribution being approximated, p. To do this one needs to specify the distance measure. How best to measure distances between probability distributions is a topic of ongoing controversy and research [27].

The most common way to do so is with the infinite limit log likelihood of data being generated by one distribution but misattributed to have come from the other. This is known as the Kullback-Leibler (KL) distance [16, 17, 28]. It is far from being a metric. In particular, it is not symmetric under interchange of the two distributions being compared.

It turns out that the simplest MF theories minimize the KL distance from q to p. However it can be argued it is the KL distance from p to q that is the most appropriate measure, not the KL distance from q to p. Using that distance, the optimal q is a new kind of approximation not usually considered in statistical physics.

For the canonical ensemble, the type of KL distance arising in simple MF theories turns out to be identical to the maxent Lagrangian arising in bounded rational game theory. This shows how bounded rational (independent) players are formally identical to the particles in the MF approximation to the canonical ensemble. Under this identification, the moves of the players play the roles of the states of the particles, and particle energies are translated into player utilities. The coordinate transformations which in game theory result in cooperative games are, in statistical physics, techniques for more allowing the canonical ensemble to be more accurately approximated with a product distribution.

This identification raises the potential of transferring some of the powerful mathematical techniques that have been developed in the statistical physics community (e.g., extensions of mean field theory [26] or cavity methods [29]) to noncooperative game theory. In also suggests translating some of the other ensembles of statistical physics to game theory, in addition to the canonical ensemble. As an example, in the grand canonical ensemble the number of particles is variable, which, after a MF approximation, corresponds to having a variable number of players in game theory. Among other applications, this provides us with a new framework for analyzing games in evolutionary scenarios, different from evolutionary game theory. Finally, much work has been done in statistical physics on approximations that are higher-order than mean-field, introducing extra random variables that allow for some statistical dependencies coupling the variables. The associated generalization of PD theory is a full-blown theory of Probability Lagrangians.

In the next section noncooperative game theory and information theory are cursorily reviewed. Then bounded rational game theory is derived, and its many advantages are discussed. The following section starts with a cursory review of the information-theoretic derivation of statistical physics. After that is a discussion of the two kinds of KL distance and the MF theories they induce, and a discussion of coordinate systems. This section also includes a discussion on translating a MF version of the grand canonical ensemble into a new kind of evolutionary game theory.

Miscellaneous proofs can be found in the appendix.

As discussed in the physics section, the maxent Lagrangian and associated Boltzmann solution at the core of this paper has been investigated for an extremely long time in the context of many-particle systems.

The use of the Boltzmann distribution over possible moves also has a long history in the Reinforcement Learning (RL) literature, i.e., in the design of algorithms for a player involved in an iterated game with Nature [30, 31]. Related work has considered multiple players [32, 33]. In particular, some of that work has been done in the context of "mechanism design" of many players, i.e., in the context of designing the utility functions of the players to induce them to maximize social welfare [34–37]. In all of this RL work the Boltzmann distribution is usually motivated either as an a priori reasonable way to trade off exploration and exploitation, as part of Markov Chain Monte Carlo procedure, or by its asymptotic convergence properties [38].

In addition, independent of the work reported in this paper, the maxent Lagrangian and/or the Boltzmann distribution has previously been muted as a way to model human players [10, 39, 40]. Some of that work has explicitly noted the relation between the Boltzmann distribution and statistical physics [41]. However the motivation of the maxent Lagrangian and Boltzmann distribution in that work is ad hoc, based on particular simple models of human decision-making and/or of player interactions. There is no use of information theory to derive the maxent Lagrangian from first principles. Due to this, no connection is made in that previous work between the maxent Lagrangian and the cost of computation, no extension is made to other kinds of prior knowledge concerning the game, there is no recognition of how to modify the Lagrangian for multiple cost functions, there is no extension to the grand canonical ensemble and therefore variable numbers of players, and there is no development.
of rationality operators, or the relation between semi-coordinate transformations and cooperative game theory. Ultimately, this lack of theoretical underpinnings is also why that previous work did not note the formal identity between the game theory of actual bounded rational human players and MFT.

Finally, it's important to note that PD theory also has many applications in science beyond those considered in this paper. For example, see [21, 22, 42–44] for work relating the maxent Lagrangian to distributed control and to distributed optimization. See [43] for algorithms for speeding up convergence to bounded rational equilibria. Some of those algorithms are related to simulated and deterministic annealing [28]. In [20] others of those algorithms are related to Stackelberg games, and more generally to the problem of finding the optimal control hierarchy for team of players with a common goal, i.e., finding an optimal organization chart. See also [45–47] for work showing, respectively, how to use PD theory to improve Metropolis-Hastings sampling, how to relate it to the mechanism design work in [34–37], and how to extend it to continuous move spaces and time-extended strategies.

II. PD THEORY AS BOUNDED RATIONAL NONCOOPERATIVE GAME THEORY

This section motivates PD theory as a way of addressing several of the shortcomings of conventional noncooperative game theory.

A. Review of noncooperative game theory

In noncooperative game theory one has a set of N players. Each player i has its own set of allowed pure strategies. A mixed strategy is a distribution $q_i(x_i)$ over player i's possible pure strategies. Each player i also has a utility function g_i that maps the pure strategies adopted by all N of the players into the real numbers. So given mixed strategies of all the players, the expected utility of player i is $E(g_i) = \int dx \prod_j q_j(x_j) q_i(x)$ [54].

This basic framework can be elaborated to model many interactions between biological organisms, and in particular between human beings. These interactions range from simple abstractions like the famous prisoner's dilemma to iterated games like chess, to international relations [3, 4, 48].

Much of noncooperative game theory is concerned with equilibrium concepts specifying what joint-strategy one should expect to result from a particular game. In particular, in a Nash equilibrium every player adopts the mixed strategy that maximizes its expected utility, given the mixed strategies of the other players. More formally, $\forall i, q_i = \text{argmax}_{q_i} \int dx q_i \prod_{j \neq i} q_j(x_j) g_i(x)$.

Several very rich fields have benefited from a close relationship with noncooperative game theory. Particular examples are evolutionary game theory (in which the set of N players is replaced by an infinite set of reproducing organisms) and cooperative game theory (in which players choose which coalitions of other players to join) [6, 49]. Game theory as a whole is also closely related to economics, in particular the field of mechanism design, which is concerned with how to induce the set of players to do adopt a socially desirable joint-strategy [3, 50–52].

B. Problems with conventional noncooperative game theory

A number of objections to the Nash equilibrium concept have been resolved. In particular, it was Nash who proved that every game has at least one Nash equilibrium if one expands the realm of discourse to include mixed strategies. (The same is not true for pure strategies.) Other objections have been more or less resolved through numerous refinements of the Nash equilibrium concept.

However there are several major problems with the concept that are still outstanding. One of them is the possible multiplicity of equilibria; this multiplicity means the Nash equilibrium concept cannot be used to specify the joint strategy that is actually adopted in a real world game. (Some refinements of the Nash equilibrium concept attempt to address this problem, though none has succeeded.) Another problem is that while calculating Nash equilibria is straightforward in many simple games (e.g., 2 players in a zero-sum game), calculating them in the general case can be a very difficult computational multi-criteria optimization problem. Yet another problem is that there is no general way to extend the concept to allow each player to have multiple utility functions.

However perhaps the major problem with the Nash equilibrium concept is its assumption of full rationality. This is the assertion that every player i can both calculate what the strategies $q_{j \neq i}$ will be and then calculate its associated optimal distribution. In other words, it is the assumption that every player will calculate the entire joint distribution $q(x) = \prod_j q_j(x_j)$. If for no other reasons than computational limitations of real humans, this assumption is essentially untenable. This problem is just as severe if one allows statistical coupling among the players [3, 53].

A large body of empirical lore has been generated characterizing the bounded rationality of humans. Similarly much has been learned about the empirical behavior of (bounded rational) machine learning computer algorithms playing games with one another [7, 13]. None of this work has resulted in a full mathematical theory of bounded rationality however.

There have also been numerous theoretical attempts to incorporate bounded rationality into noncooperative game theory by modifying the Nash equilibrium concept. Some of them assume essentially that every player's mixed strategy is its Nash-optimal strategy with some
form of noise superimposed [6]. Others explicitly model
the humans, typically as computationally limited auto-
mata, and assume the automata perform optimally
subject to those computational limitations [10]. Both
approaches, while providing insight, are very ad hoc as
models of games involving real-world organisms or real-
world (i.e., non-trivial) machine learning algorithms.

The difficulty of calculating equilibria is addressed in
the sections below on solving for the distributions of PD
theory. The rest of this section shows how information
theory can be used to extend game theory to avoid its
other shortcomings. Finally, the sections after this one

C. Review of the minimum information principle

Shannon was the first person to realize that based
on any of several separate sets of very simple desider-
ata, there is a unique real-valued quantification of the
amount of syntactic information in a distribution $P(y)$. He
showed that this amount of information is (the nega-
tive of) the Shannon entropy of that distribution, $S(P) =
- \int dy P(y) \ln \left(\frac{P(y)}{\mu(y)} \right)$ [55].

So for example, the distribution with minimal infor-
mation is the one that doesn’t distinguish at all between
the various y, i.e., the uniform distribution. Conversely,
the most informative distribution is the one that specifies
a single possible y. Note that for a product distribution,
entropy is additive, i.e., $S(\prod_i q_i(y_i)) = \sum_i S(q_i)$.

Say we given some incomplete prior knowledge about a
distribution $P(y)$. How should one estimate $P(y)$ based
on that prior knowledge? Shannon’s result tells us how to
do that in the most conservative way: have your estimate
of $P(y)$ contain the minimal amount of extra information
beyond that already contained in the prior knowledge
about $P(y)$. Intuitively, this can be viewed as a version
of Occam’s razor. This approach is called the minimum
information (or “maxent”) principle. It has proven ex-
tremely useful in domains ranging from signal processing
to image processing to supervised learning [17].

D. Maxent Lagrangians

Much of the work on equilibrium concepts in game the-
dory adopts the perspective of an external observer of a
game. We are told something concerning the game, e.g.,
the moves sets and utility functions of the separate play-
ers, information sets, etc., and from that wish to predict
what joint strategy will be followed by real-world players
of the game. Say that in addition to such information, we are
told the expected utilities of the players. What
is our best estimate of the distribution q that generated
those expected utility values? By the maxent principle,
it is the distribution with maximal entropy, subject to
those expectation values.

To formalize this, for simplicity assume a finite number
of players, and a finite number of possible moves (pure
strategies) for each player. To agree with the convention
in other fields, from now on we implicitly flip the sign of
each g_i so that the associated player i wants to minimize
that function rather than maximize it. Intuitively, this
flipped $g_i(x)$ is the “cost” to player i when the joint-
strategy is x, rather than its utility then.

So our prior knowledge is that the players are inde-
pendent, that their cost functions are the (g_i), and that
thenir expected utilities are given by the set of values $\{\epsilon_i\}$.

The maxent estimate of the q for that prior knowledge is
given by the minimizer of the Lagrangian

$$\mathcal{L}(q) = \sum \beta_i |E_q(g_i) - \epsilon_i| - S(q)$$

$\beta_i \sum dx \prod_j q_j(x_j) g_i(x) - \epsilon_i - S(q)$ (1)

where the subscript on the expectation value indicates
that it evaluated under distribution q, and the $\{\beta_i\}$ are
Lagrange parameters implicitly set by the constraints on
the expected utilities [56].

Solving, we find that the mixed strategies minimizing
the Lagrangian are related to each other via

$$q_i(x_i) \propto e^{-E_{x_i}(G|x_i)}$$ (2)

where the overall proportionality constant for each i is set
by normalization, and $G \equiv \sum_i \beta_i g_i$, and the subscript
q_i on the expectation value indicates that it is evalu-
ated according to the distribution $\prod_j q_j$. In Eq. 2 the probability of player i choosing pure strategy x_i depends
on the effect of that choice on the utilities of the other
players. This reflects the fact that our prior knowledge
concerns all the players equally.

If we wish to focus only on the behavior of player i, it
is appropriate to modify our prior knowledge. To see
how to do this, first consider the case of maximal prior
knowledge, in which we know the actual joint-strategy of
the players, and therefore all of their expected costs. For
this case, trivially, the maxent principle says we should
“estimate” q as that joint-strategy (it being the q with
maximal entropy that is consistent with our prior knowl-
edge). The same conclusion holds if our prior knowledge
includes the expected cost of player i.

Now modify this maximal set of prior knowledge by
removing from it specification of player i’s strategy. So
our prior knowledge is the mixed strategies of all players
other than i, together with player i’s expected cost. We
can incorporate the prior knowledge of the other players’
mixed strategies directly into our Lagrangian, without
introducing Lagrange parameters. That maxent La-
grangian is

\[\mathcal{L}_i(q_i) = \beta_i [E(g_i) - \epsilon_i] - S_i(q_i) \]

\[= \beta_i \int dx \sum_j q_i(x_j) g_i(x) - \epsilon_i] - S_i(q_i). \]

All of these Lagrangians (one for each \(i \)) are jointly solved at a \(q \) given by a set of coupled Boltzmann distributions:

\[q^B(x_i) \propto e^{-\beta_i E_i(q|x_i)} \]

where the \(\{\beta_i\} \) are Lagrange parameters enforcing our constraints in the usual way. Following Nash, we can use Brouwer's fixed point theorem to establish that for any fixed set of non-negative values \(\{\beta_i\} \), there must exist at least one product distribution given by the product of these Boltzmann distributions (one term in the product for each \(i \)).

The first term in \(\mathcal{L}_i \) is minimized by a perfectly rational player. The second term is minimized by a perfectly irrational player, i.e., by a perfectly uniform mixed strategy \(q_i \). So \(\beta_i \) in the maxent Lagrangian explicitly specifies the balance between the rational and irrational behavior of the player. In particular, for \(\beta \to \infty \), by minimizing the Lagrangians we recover the Nash equilibria of the game. More formally, in that limit the set of \(q \) that simultaneously minimize the Lagrangians is the same as the set of delta functions about the Nash equilibria of the game. The same is true for Eq. 2.

The \(\beta < \infty \) solutions of Eq. 3 can also be viewed as "equilibria" in the conventional game theory sense, of being a self-consistent set of mixed strategies of the players. To see this, posit that for each player there is a rule (implicit or otherwise) for how it sets its mixed strategy, a rule based on the expected costs of each of that player's pure strategies. Say that each player's rule takes the form of a Boltzmann distribution over those expected costs for each of the player's possible pure strategies. (Such a rule may reflect cost of computation (see below), desire by the player to explore as well as exploit, inherent psychological biases, etc.) Then the system is in a bounded rational equilibrium for a joint mixed strategy where all the players follow their separate rules in a globally consistent manner.

Eq. 2 is just a special case of Eq. 3, where all player's share the same cost function \(G \). (Such games are known as team games.) Due to this, our guarantee of the existence of a solution to the set of maxent Lagrangians implies the existence of a solution of the form Eq. 2.

Typically players aren't close to perfectly self-defeating. Almost always they will be closer to minimizing their expected cost than maximizing it. For prior knowledge consistent with such a case, the \(\beta_i \) are all non-negative. Examples of games and their associated bounded rational equilibria can be found below in Sec. II K, after the discussion of rationality operators.

Finally, our prior knowledge often will not consist of exact specification of the expected costs of the players, even if that knowledge arises from watching the players make their moves. Such other kinds of prior knowledge are addressed in several of the following subsections.

E. Alternative interpretations of Lagrangians

There are numerous alternative interpretations of these results. For example, change our prior knowledge to be the entropy of each player \(i \)'s strategy, i.e., how unsure it is of what move to make. Now we cannot use information theory to make our estimate of \(q \). Given that players try to minimize expected cost, a reasonable alternative is to predict that each player \(i \)'s expected cost will be as small as possible, subject to that provided value of the entropy and the other players' strategies. The associated Lagrangians are \(\alpha [S(q_i) - \sigma_i] - E(g_i) \), where \(\sigma_i \) is the provided entropy value. This is equivalent to the maxent Lagrangian, and in particular has the same solution, Eq. 3.

Another alternative interpretation involves world cost functions, which are quantifications of the quality of a joint pure strategy \(x \) from the point of view of an external observer (e.g., a system designer, the government, an auctioneer, etc.). A particular class of world cost functions are "social welfare functions", which can be expressed in terms of the cost functions of the individual players. Perhaps the simplest example is \(G(x) = \sum_i \beta_i g_i(x) \), where the \(\beta_i \) serve to trade off how much we value one player's cost vs. anothers. If we know the value of the social welfare function, but nothing else, then maxent tells us to minimize the Lagrangian of Eq. 1.

An important aspect of any of these interpretations is that typically one does not have to explicitly specify the values in one's "prior knowledge". This is because typically the Lagrange parameters are monotonic functions of those "prior knowledge" values [43]. So it suffices to specify the values of the Lagrange parameters; the expected value "prior knowledge" is purely nominal. This is formalized in the subsection on rationality operators, where the prior knowledge is explicitly formulated as the values of Lagrange parameters.

F. Bounded rational game theory

In many situations we have prior knowledge different from (or in addition to) expected values of cost functions. This is particularly true when the players are human beings (so that behavioral economics studies can be brought to bear) or simple computational algorithms. To apply information theory in such situations, we simply need to incorporate that prior knowledge into our Lagrangian(s).

To give a simple example, say that we know that the players all want to ensure not just a low expected cost, but also that the actual cost doesn't vary too much from one sample of \(q \) to the next. We can formalize this by saying that in addition to expected costs, our prior knowl-
Then we formulate of game theory presented above. To see how, for each player that cost arises naturally in the bounded rationality for-
natural approach is to use information theory. Indeed, associated with some particular joint-strategy formed by
entire distribution one cannot simply incorporate that cost into
presume that the player acts perfectly rationally for this
player avoidable consequence of the cost of computation to
players, even though those players are independent. See
constraint term is in cost of players.

The reason is that this cost is associated with the
finding its optimal strategy. Unfortunately,
makes $E(q_i)$ be linear in q_i. In addition, entropy is a concave function, and the unit simplex is a convex region. Accordingly, the Lagrangian of Eq. 3 has a unique local minimum over q_i. So there is no issue of choosing among multiple minima when all of q_i is fixed. Nor is there any problem of “getting trapped in a local minimum” in a computational search for that minimum.

Indeed, in this situation we can just jump directly to that
global optimum, via Eq. 3. All of this is also true if we are considering the Lagrangian $L_{j\neq i}$ rather than L_i; the function from i's strategy to j's Lagrangian has a single optimum, interior to i's simplex.

Now introduce the shorthand $[U]_{i,p}(x_i) \equiv \int dx(x)U(x_i, x(j)p(x(i) | x_i),$

Now in a bounded rational game every player sets its
strategy to minimize its Lagrangian, given the strategies
of the other players. In light of Eq. 6, this means that we
can interpret each player in a bounded rational game as
being perfectly rational for a cost function that incorpo-
rates its computational cost. To do so we simply need to
expand the domain of “cost functions” to include proba-
ability values as well as joint moves.

Similar results hold for non-maxent Lagrangians. All
that's needed is that we can write such a Lagrangian in
the form of Eq. 6 for some appropriate function f_i.

H. Shape of the Lagrangian surface

In this subsection we consider L_i as a function of q_i,
with β_i and e_i both treated as fixed parameters. (So in
particular, $E_q(g_i)$ need not equal e_i.)

First, say that $q_{(i)}$ is held fixed, with only q_i allowed
to vary. This makes $E(q_i)$ be linear in q_i. In addition, entropy is a concave function, and the unit simplex is a convex region. Accordingly, the Lagrangian of Eq. 3 has a unique local minimum over q_i. So there is no issue of choosing among multiple minima when all of q_i is fixed. Nor is there any problem of “getting trapped in a local minimum” in a computational search for that minimum.

Indeed, in this situation we can just jump directly to that
global optimum, via Eq. 3. All of this is also true if we are considering the Lagrangian $L_{j\neq i}$ rather than L_i; the function from i's strategy to j's Lagrangian has a single optimum, interior to i's simplex.

Now introduce the shorthand

\[
[U]_{i,p}(x_i) \equiv \int dx(x)U(x_i, x(j)p(x(i) | x_i),
\]

so that $[g_i]_{i,q_{(i)}}(x_i)$ is player i's effective cost function,
$E_{X_{(i)}}(g_i | x_i)$. Consider the value $E_{q_{(i)}}([g_i]_{i,q_{(i)}})$. This
is the value of $E(g_i)$ at i's bounded rational equilib-
rium for the fixed $q_{(i)}$, i.e., it is the value at the min-
imum over q_i of L_i. View that value as a function of
β_i. One can show that this is a decreasing function. In
fact, its derivative just equals the negative of the variance
of $[g_i]_{i,q_{(i)}}(x_i)$ evaluated under distribution $q^B(x_i)$. Since
$E(g_i)$ is bounded below (for bounded g_i), this means that
that variance must go to zero for large enough β_i. So
as β_i grows, $q^B(x_i) \rightarrow 0$ for all x_i that don't minimize
$E_{q_{(i)}}(g_i | x_i)$. In other words, in that limit, q_i becomes
Nash-optimal.

Next consider varying over all $q \in Q$, the space of all
product distributions q. This is a convex space; if $p \in Q$
and $p' \in Q$, then so is any distribution on the line con-
necting p and p'. However over this space, the $E(g_i)$ term
in L_i is multilinear. So L_i is not a simple convex func-
tion of q. This is true even for a team game, with shared
β_i for which case every i has the same Lagrangian. So
we do not have the guarantees of a single local minimum
provided by convexity even in this case.

G. Cost of computation

As mentioned above, bounded rationality is an un-
avoidable consequence of the cost of computation to
player i of finding its optimal strategy. Unfortunately,
one cannot simply incorporate that cost into g_i, and then
presume that the player acts perfectly rationally for this
new g_i. The reason is that this cost is associated with the
entire distribution $q_i(x_i)$ that player i calculates; it not
associated with some particular joint-strategy formed by
sampling such a distribution.

How might we quantify the cost of calculating q_i? The
natural approach is to use information theory. Indeed,
that cost arises naturally in the bounded rationality for-
mulation of game theory presented above. To see how,
for each player i define

\[f_i(x, q_i(x_i)) = \beta_i g_i(x) + \ln[q_i(x_i)]. \]

Then we can write the maxent Lagrangian for player i as

\[L_i(q) = \int dx q(x)f_i(x, q_i(x_i)). \]

This is the value of $E(g_i)$ at i's bounded rational equilib-
rium for the fixed $q_{(i)}$, i.e., it is the value at the min-
imum over q_i of L_i. View that value as a function of
β_i. One can show that this is a decreasing function. In
fact, its derivative just equals the negative of the variance
of $[g_i]_{i,q_{(i)}}(x_i)$ evaluated under distribution $q^B(x_i)$. Since
$E(g_i)$ is bounded below (for bounded g_i), this means that
that variance must go to zero for large enough β_i. So
as β_i grows, $q^B(x_i) \rightarrow 0$ for all x_i that don't minimize
$E_{q_{(i)}}(g_i | x_i)$. In other words, in that limit, q_i becomes
Nash-optimal.

Next consider varying over all $q \in Q$, the space of all
product distributions q. This is a convex space; if $p \in Q$
and $p' \in Q$, then so is any distribution on the line con-
necting p and p'. However over this space, the $E(g_i)$ term
in L_i is multilinear. So L_i is not a simple convex func-
tion of q. This is true even for a team game, with shared
β_i for which case every i has the same Lagrangian. So
we do not have the guarantees of a single local minimum
provided by convexity even in this case.
To further analyze the shape of the team game Lagrangian as a function of g, we start with the following lemma, which extends the technique of Lagrange parameters to off-equilibrium points:

Lemma 1: Consider the set of all vectors leading from $x' \in \mathbb{R}^n$ that are, to first order, consistent with a set of constraints over \mathbb{R}^n. Of those vectors, the one giving the steepest ascent of a function $V(x)$ is $\mathbf{u} = \nabla V + \sum_i \lambda_i \nabla f_i$, up to an overall proportionality constant, where the λ_i enforce the first order consistency conditions, $\mathbf{u} \cdot \nabla f_i = 0 \ \forall i$.

Note that the gradient of entropy is infinite at the border of Q, since at least one $\ln(q_i)$ term will be negative infinite there. Combined with Lemma 1, this can be used to establish that at the edge of Q, the steepest descent direction of any player's Lagrangian points into the interior of Q (assuming finite β and (g_i)). (This is reflected in the equilibrium solutions Eq. 3.) Accordingly, whereas Nash equilibria can be on the edge of Q (e.g., for a pure strategy Nash equilibrium), in bounded rational games any equilibrium must lie in the interior of Q. In other words, any equilibrium (i.e., any local minimum) of a bounded rational game has non-zero probability for all joint moves. So just as when only varying a single g_i, we never have to consider extremal mixed strategies in searching for equilibria over all Q. We can use local descent schemes instead [21, 23, 43].

Lemma 1 can also be used to construct examples of games with more than one bounded rational equilibrium (just like there are games with more than Nash equilibrium). One can also show that for every player i and any point q interior to Q, there are directions in Q along which i's Lagrangian is locally convex. Accordingly, no player’s Lagrangian has a local maximum interior to Q. So if there are multiple local minima of i’s Lagrangian, they are separated by saddle points across ridges. In addition, the uniform q is a solution to the set of coupled equations Eq. 3 for a team game, but typically is not a local minimum, and therefore must be a saddle point.

Say we modify the Lagrangians to be defined for all possible p, not just those that are product distributions. For example the Lagrangian of Eq. 1 becomes

$$L(p) \equiv \sum_i \beta_i \left[\int dx \ g_i(x)p(x) - c_i \right] - S(p).$$

The first term in this Lagrangian is linear in p. Since entropy is a concave function of the Euclidean vector p over the unit simplex, this means that the overall Lagrangian is a convex function of p over the space of allowed p. This means there is a unique minimum of the Lagrangian over the space of all possible legal p. Furthermore, as mentioned previously, for finite β at least one of the derivatives of the Lagrangian is negative infinite at the border of the allowed region of p. This means that the unique minimum of the Lagrangian is interior to that region, i.e., is a legal probability distribution.

In general this optimal p will not be a product distribution, of course. Rather the strategy choices of the players are typically statistically coupled, under this p. Such coupling is very suggestive of various stochastic formulations of noncooperative game theory. Coupling also arises in cooperative game theory, in which binding contracts couple the moves of the players [6, 48].

Similarly, as proven in the appendix, the Lagrangian $L(p) = \beta \sum_i (E_p(g_i))^2 - S(p)$ is convex over the manifold of legal p, assuming non-negative β. So the model of mechanism design introduced in Sec. III has a unique equilibrium — if we allow the players to be statistically coupled.

I. Multiple cost functions per player

Say player i has several different cost functions $\{g^j_i\}$ and wants to choose a strategy that will do well at all of them. In the case of pure strategies we can simply “roll up” the cost functions into an aggregate function and employ that in a conventional, single-cost-function-per-player game theoretic analysis. An aggregate cost function like $\sum_j g^j_i(x)$ would not necessarily work, since it may be that the pure strategy x minimizing that sum results in a relatively large value for one of the $g^j_i(x)$. However by construction, minimizing a function like $\max_j g^j_i(x)$ will ensure that no particular cost function is favored over the others. Player i will perform well according to such an aggregate function if it performs well according to all of the constituent g^j_i.

One might think that for mixed strategies one could similarly roll up the cost functions and say that player i works to minimize an aggregate cost function. However especially when player i has many cost functions, it may be that performance according to one or more of the constituent cost functions is quite bad even though the performance according to this average function is good. In particular, it may be that player i has relatively low value of the expectation of the maximum of its cost functions, even though the maximum of the expected costs is quite high [57]. More generally, we cannot ensure that the expected costs of player i, $E_q(g^j_i) = \int dx \ g^j_i(x)q(x)q_i(xq(x))$, all have good values by appropriately defining an aggregate q_i and requiring only that $\int dx \ g_i(x)q(x)q_i(xq(x))$ is good. Instead, we must redefine the goal of “minimizing expected costs”.

One way to reformulate our goal proceeds by analogy with the goal typically ascribed to a player in pure strategy games. This analogy is based on viewing the cost function for player i as controlled by a fictional player in a meta-game. Conventional game theory analyzes the case where player i chooses a pure strategy to minimize the worst case (over other players’ moves) cost to i, i.e., to minimize $\max_{x_{-i}} g^j_i(x_i, x_{-i})$. Here the analogy would be for the player to choose a mixed strategy to minimize the worst case (over moves by the fictional player)
expected cost, i.e., to minimize \(\max_i E_q(g_i^1) \).

A similar solution, appropriate when all of the cost functions are nowhere-negative, is for player \(i \) to minimize \(\sum_j [E_q(g_j^i)]^2 \). Due to the convexity of the squaring operator such minimization will help ensure that no single expectation value \(E_q(g_i^1) \) is too high [58]. Indeed, consider increasing the power \(\nu \) we raise the costs to, getting the function \(\left[\sum_j [E_q(g_j^i)]^\nu \right]^{1/\nu} \). Minimizing this for large \(\nu \) will approximate the lim-sup norm, which would force all \(g_i^1 \) to have the same (as low as possible) expectation value.

As far as the math is concerned, \(\sum_j [E_q(g_j^i)]^2 \) is just a “Lagrangian” of \(q \), one that is convex like the Lagrangian in Eq. 3. If we wish, we can modify such a Lagrangian to incorporate bounded rationality, to force the solution to be interior to \(Q \), getting Lagrangians like \(\sum_j \beta_j[E_q(g_j^i)]^2 - S(q_i) \), where the \(\beta_j \) determine the relative rationalities of player \(i \) according to its various cost functions.

These kinds of Lagrangians can also model the process of mechanism design, where there is an external designer who induces the players to adopt a desirable joint-strategy [3]. As an example, “desirable” sometimes means that no single player’s expected cost is high. A system that meets this goal fairly well can be modeled with a Lagrangian involving terms like \(\sum_i [E_q(g_i)]^2 \).

\[J. \text{ Rationality operators} \]

Often our prior knowledge will not concern expected costs. In particular, this is usually true if our prior knowledge is provided to us before the game is played, rather than afterward. In such a situation, prior knowledge will more likely concern the “intelligences” of the players, i.e., how close they are to being rational. In particular, if we want our prior knowledge concerning player \(i \) to be relatively independent of what the other players do, we cannot use \(i \)'s expected cost as our prior knowledge. Our prior knowledge will often concern how peaked \(i \)'s mixed strategy is about whichever of its moves minimize its cost (or how peaked we can assume it to be), not the associated minimal cost values.

Formally, the problem faced by player \(i \) is how to set its mixed strategy \(q_i(x_i) \) so as to maximize the expected value of its effective cost function, \(E(g_i | x_i) \). Generalizing, what we want is a rationality operator \(R(U, p) \) that measures how peaked an arbitrary distribution \(p(y) \) is about the minimizers of an arbitrary cost function \(U(y) \), \(\argmin y U(y) \).

Formally, we make two requirements of \(R \):

1. If \(p(y) \propto e^{-\beta U(y)} \), for non-negative \(\beta \), then it is natural to require that the peakedness of the distribution — its rationality value — is \(\beta \).

2. We also need to also specify something of \(R(U, p) \)'s behavior for non-Boltzmann \(p \). It will suffice to require that of the \(p \) satisfying \(R(U, p) = \beta \), the one that has maximal entropy is proportional to \(e^{-\beta U(y)} \). In other words, we require that the Boltzmann distribution maximizes entropy subject to a provided value of the rationality operator.

As an illustration, a natural choice for \(R(U, p) \) would be the \(\beta \) of the Boltzmann distribution that “best fits” \(p \). Information theory provides us such a measure for how well a distribution \(p_1 \) is fit by a distribution \(p_2 \). This is the Kullback-Leibler distance [16, 28]:

\[KL(p_1 || p_2) \equiv S(p_1 || p_2) - S(p_1) \]

where \(S(p_1 || p_2) \equiv -\int dy \ p_1(y) \ln \frac{p_2(y)}{p_1(y)} \) is known as the cross entropy from \(p_1 \) to \(p_2 \) (and as usual we implicitly choose uniform \(\mu \)). The KL distance is always non-negative, and equals zero iff its two arguments are identical.

Define that \(N(U) \equiv \int dy \ e^{-U(y)} \), the normalization constant for the distribution proportional to \(e^{-U(y)} \). (This is called the partition function in statistical physics.) Then using the KL distance, we arrive at the rationality operator

\[R_{KL}(U, p) \equiv \argmin \beta KL(p || e^{-\beta U}) \]

\[= \argmin \beta \left[\int dx \ p(y) U(y) + \ln(N(\beta U)) \right]. \]

In the appendix it is proven that \(R_{KL} \) respects the two requirements of rationality operators.

The quantity \(\ln(N(\beta U)) \) appearing in the second equation, when scaled by \(\beta^{-1} \), is called the free energy. It is easy to verify that it equals the Lagrangian \(E_p(U) - S(p)/\beta \) if \(p \) is given by the Boltzmann distribution \(p(y) \propto e^{-\beta U(y)} \).

Say our prior knowledge is \(\{\rho_i\} \), the rationalities of the players for their associated effective cost functions. Then the Lagrangian for our prior knowledge is

\[L(q) = \sum_i \lambda_i [R([g_i]_i, q_i) - \rho_i] - S(q). \]

where the \(\lambda_i \) are the Lagrange parameters. Just as before, there is an alternative way to motivate this Lagrangian: if our prior knowledge consists of the entropy of the joint system, and we assume each player will have maximal rationality subject to that prior knowledge, we are led to the Lagrangian of Eq. 9.

It is shown in the appendix that for the Kullback-Leibler rationality operator, we can replace any constraint of the form \(R([g_i]_i, q_i) = \rho_i \) with \(E_q(g_i) = \int dx \ g_i(x) e^{(g_i) - q_i(x_i)} - q_i(x_i) \). In other words, knowing that player \(i \) has KL rationality \(\rho_i \) is equivalent to knowing that the actual expected value of \(g_i \) equals the “ideal expected value”, where \(q_i \) is replaced by the Boltzmann distribution of Eq. 3 with \(\beta = \rho_i \). This contrasts with the prior knowledge underlying the Lagrangian in Eq. 1, in which we know the actual numerical value of \(E_q(g_i) \).
Just as before, we can focus on player \(i \) by augmenting our prior knowledge to include the strategies of all the other players. The associated Lagrangian is

\[
L_i(g_i) = \lambda_i [R([g_i]_{i,q}, q_i) - p_i] - S(q_i),
\]

(10)

(The prior knowledge concerning the strategies of the other players is manifested in the effective cost function.) It is shown in the appendix that the set of all the Lagrangians in Eq. 10 (one for each player) are minimized simultaneously by any distribution of the form

\[
q^i = \frac{\prod_i e^{-\lambda_i [g_i]_{i,q}}}{N(p_i[g_i]_{i,q})}
\]

In addition, since this distribution obeys all the constraints in the Lagrangian in Eq. 9, we know that there exists a minimizer of that Lagrangian. All of this holds regardless of the precise rationality operator one uses.

Note that the Lagrangian \(L_i \) of Eq. 10 for player \(i \) arises in response to prior knowledge specific to player \(i \). Changing from one player and its Lagrangian to another changes the prior knowledge. The same is true for the Lagrangians in Eq. 3.

In contrast, the Lagrangian of Eq. 9 arises for a single unified body of prior knowledge, namely the set of all players' rationalities. For that single body of knowledge, the equilibrium of the game is the solution to a single-objective optimization problem. This contrasts with the conventional formulation of full rationality game theory, where the equilibrium is cast as a solution to a multi-objective optimization problem (one objective per player). Furthermore, as usual, for finite \(\beta \) at least one of the derivatives of the Lagrangian is negative infinite at the border of the allowed region of product distributions (i.e., at the border of the Cartesian product of unit simplices). Accordingly, all solutions lie in the interior of that region. This can be a big advantage for finding such solutions numerically, since it allows one to use local descent algorithms.

K. Examples of bounded rational equilibria

It can be difficult to write down a set of cost functions and associated rationalities \(\beta_i \) and then solve for the associated bounded rational equilibrium. Starting with expected costs rather than rationalities (so the \(\beta_i \) are not specified upfront but instead are Lagrange parameters that we must solve for) can be even more tedious. However there is a simple alternative way to construct examples of games and their bounded rational equilibria. In this alternative one starts with a particular mixed strategy \(q \) and then solves for a game for which \(q \) is a bounded rational equilibrium, rather than the other way around.

To illustrate this, consider a 2-person noncooperative single-stage game. Let each player have 3 possible moves. Indicate each players' three possible moves by the numerals 0, 1, and 2. Say the (bounded rational) mixed strategy equilibrium is

\[
q_i(0) = 1/2, q_i(1) = 1/4, q_i(2) = 1/4; \\
q_j(0) = 2/3, q_j(1) = 1/4, q_j(2) = 1/12.
\]

Now we know that at the equilibrium, \(q_i(x_i) \propto e^{-\beta_i E(g_i(x_i))} \), where \(\beta \) is player \(i \)'s rationality, and \(g_i \) is her cost function (the negative of her utility function). This means for example that

\[
\exp(\beta_i [E(g_i \mid x_i = 0) - E(g_i \mid x_i = 1)]) = \frac{q_i(0)}{q_i(1)} = 2; \\
\beta_i [E(g_i \mid x_i = 0) - E(g_i \mid x_i = 1)] = -\ln(2).
\]

We have a similar equation for the remaining independent difference in expectation values for player 1. The analogous pair of equations for player 2 also hold.

Now define the vectors \(g_{ij}(\cdot) = g_i(x_j = j, \cdot) \). So for example \(g_{ij}(1) = (g_i(x_1 = 0, x_2 = 0), g_i(x_1 = 0, x_2 = 1), g_i(x_1 = 0, x_2 = 2)) \). Then we can express our equations compactly as four dot product equalities:

\[
\beta_i (g_{i,0} - g_{i,1}) \cdot q_2 = -\ln(2), \quad \beta_i (g_{i,0} - g_{i,2}) \cdot q_1 = -\ln(2); \\
\beta_j (g_{j,0} - g_{j,1}) \cdot q_1 = -\ln(2), \quad \beta_j (g_{j,0} - g_{j,2}) \cdot q_1 = -\ln(2).
\]

Note that we can absorb each \(\beta_i \) into its associated \(g_i \); all that matters is their product. We can now plug in for the vectors \(q_1 \) and \(q_2 \) from Eq. 12 and simply write down solutions for the four three-dimensional vectors \(g_{ij} \). If desired, we can then evaluate the associated expected values of the cost functions for the two players.

Note that the variables in the first pair of equalities in Eq. 14 are independent of those in the second pair. In other words, whereas the Boltzmann equations giving \(q \) for a specified set of \(g_i \) are a set of coupled equations, the equations giving the \(g_i \) for a specified \(q \) are not coupled. Note also that our equations for the \(g_{ij} \) are (extremely) underconstrained. This illustrates how compressive the mapping from the \(q_i \) to the associated equilibrium \(g \) is. Bear in mind though that that mapping is also multi-valued in general; in general a single set of cost functions can have more than one equilibrium, just like it can have more than one Nash equilibrium.

The generalization of this example to arbitrary numbers of players with arbitrary move spaces is immediate. As before, indicate the moves of every player by an associated set of integer numerals starting at 0. Let the subscript \((i) \) on a vector indicate all components but the \(i \)'th one. Also absorb the rationalities \(\beta_i \) into the associated \(g_i \).

Now specify \(q \) and the vectors \(g_i(x_i = 0, \cdot) \) (one vector for each \(i \)) to be anything whatsoever. Then for all players \(i \), the only associated constraint on the \(i \)'th cost function concerns certain projections of the vectors...
where $\zeta(.)$ is the mapping from x to z, and P_z and P_x are the distributions across x-space and z-space, respectively. To see what this rule means geometrically, let \mathcal{P} be the space of all distributions (product or otherwise) over z's. Recall that \mathcal{Q} is the space of all product distributions over x and let $\zeta(\mathcal{Q})$ be the image of \mathcal{Q} in \mathcal{P}. Then by changing $\zeta(.)$, we change that image; different choices of $\zeta(.)$ will result in different manifolds $\zeta(\mathcal{Q})$.

As an example, say we have two players, with two possible strategies each. So z consists of the possible joint strategies, labeled $(1,1), (1,2), (2,1)$ and $(2,2)$. Have the space of possible x equal the space of possible z, and choose $\zeta(1,1) = (1,1), \zeta(1,2) = (2,2), \zeta(2,1) = (2,1), \zeta(2,2) = (1,2)$. Say that q is given by $q_1(x_1 = 1) = q_2(x_2 = 1) = 2/3$. Then the distribution over joint-strategies z is $P_z(1,1) = P_z(1,2) = 2/9, P_z(2,1) = 2/9, P_z(2,2) = 1/9$. So $P_z(z) \neq P_z(x_1) P_z(x_2)$; the strategies of the players are statistically coupled. Such coupling of the players’ strategies can be viewed as a manifestation of sets of potential binding contracts. To illustrate this return to our two player example. Each possible value of a component x_i determines a pair of possible joint strategies. For example, setting $x_1 = 1$ means the possible joint strategies are $(1,1)$ and $(2,2)$. Accordingly such a value of x_i can be viewed as a set of proferred binding contracts. The value of the other components of x determines which contract is accepted; it is the intersection of the proferred contracts offered by all the components of x that determines what single contract is selected. Continuing with our example, given that $x_1 = 1$, whether the joint-strategy is $(1,1)$ or $(2,2)$ (the two options offered by x_1) is determined by the value of x_2.

Binding contracts are a central component of cooperative game theory. In this sense, semi-coordinate transformations can be viewed as a way to convert noncooperative game theory into a form of cooperative cooperative game theory.

While the distribution over x uniquely sets the distribution over z, the reverse is not true. However so long as our Lagrangian directly concerns the distribution over x rather than the distribution over z, by minimizing that Lagrangian we set a distribution over z. In this way we can minimize a Lagrangian involving product distributions, even though the associated distribution in the ultimate space of interest is not a product distribution.

The Lagrangian we choose over x should depend on our prior information, as usual. If we want that Lagrangian to include an expected value over x’s (e.g., of a cost function), we can directly incorporate that expectation value into the Lagrangian over x’s, since expected values in x and z are identical: $\int dx P_z(x) A(z) = \int dx P_z(x) A(\zeta(z))$ for any function $A(z)$. (Indeed, this is the standard justification of the rule for transforming probabilities, Eq. 17.)

However other functionals of probability distributions can differ between the two spaces. This is especially common when $\zeta(.)$ is not invertible, so the space of possible x is larger than the space of possible z. For example, in general the entropy of a $q \in \mathcal{Q}$ will differ from that
of its image, $\zeta(q) \in \zeta(Q)$ in such a case. (The prior probability μ in the definition of entropy only gives us invariance when the two spaces have the same cardinality.) A correction factor is necessary to relate the two entropies [46].

In such cases, we have to be careful about which space we use to formulate our Lagrangian. If we use the transformation $\zeta(.)$ as a tool to allow us to analyze bargaining games with binding contracts, then the direct space of interest is actually the x's (that is the place in which the players make their bargaining moves). In such cases it makes sense to apply all the preceding sections exactly as it is written, concerning Lagrangians and distributions over x rather than z (so long as we redefine cost functions to implicitly pre-apply the mapping $\zeta(.)$ to their arguments). However if we instead use $\zeta(.)$ simply as a way of establishing statistical dependencies among the strategies of the players, it may make sense to include the entropy correction factor in our z-space Lagrangian.

An important special case is where the following three conditions are met: Each point z is the image under $\zeta(.)$ of the same number of points in x-space, n; $\mu(z)$ is uniform (and therefore so is $\mu(x)$); and the Lagrangian in z-space, \mathcal{L}_z, is a sum of expected costs and the entropy. In this situation, consider a z-space Lagrangian, \mathcal{L}_z, whose functional dependence on P_z, the distribution over z's, is identical to the dependence of \mathcal{L}_x on P_x, except that the entropy term is divided by n [59]. Now the minimizer $P^*(x)$ of \mathcal{L}_x is a Boltzmann distribution in values of the cost function(s). Accordingly, for any z, $P^*(x)$ is uniform across all n points $x \in \zeta^{-1}(z)$ (all such x have the same cost value(s)). This in turn means that $S(\zeta(P_x)) = nS(P_x)$ So our two Lagrangians give the same solution, i.e., the "correction factor" for the entropy term is just multiplication by n.

M. Entropic prior game theory

Finally, it is worth noting that in the real world the information we are provided concerning the system often will not consist of exact values of functionals of q, but rather values expected costs, rationalities, or what have you. Rather that knowledge will be in the form of data, D, together with an associated likelihood function over the space of q. For example, that knowledge might consist of a bias toward particular rationality values, rather than precisely specified values:

$$P(D \mid q) \propto e^{-n \sum_i \left[R_{KL}(p_i \parallel q) - p_i \right]^2}$$

where α sets the strength of the bias.

The extension of the minimum information principle to such situations uses the entropic prior, $P(q) \propto e^{-\gamma S(q)}$. Bayes' theorem is then invoked to get the posterior distribution [18]:

$$P(q \mid D) \propto e^{-\sum_i \alpha_i R_{KL}(p_i \parallel q) - \beta \left[\sum_i n_i \mu_i \right]} e^{-\gamma S(q)}.$$

The Bayes optimal estimate for q, under a quadratic penalty term, is then given by $E(q \mid D)$. The maximum principle for estimating q is given by this estimate under the limit of all α_i going to infinity. For finite α solving for $E(q \mid D)$ can be quite complicated though. For simplicity, such cases are not considered here.

III. PD theory and statistical physics

There are many connections between bounded rational game theory — PD theory — and statistical physics. This should not be too surprising, given that many of the important concepts in bounded rational game theory, like the Boltzmann distribution, the partition function, and free energy, were first explored in statistical physics. This section discusses some of these connections.

A. Background on statistical physics

Statistical physics is the physics of systems about which we have incomplete information. An example is knowing only the expected value of a system's energy (i.e., its temperature) rather than the precise value of the energy. The statistical physics of such systems is known as the canonical ensemble. Another example is the grand canonical ensemble (GCE). There the number of particles of various types in the system is also uncertain. As in the canonical ensemble, in the GCE what knowledge we do have takes the form of expectation values of the quantities about which we are uncertain, i.e., the number of particles of the various types that the system contains, and the energy the system.

Traditionally these kinds of ensembles were analyzed in terms of "baths" of the uncertain variable that are connected to the system. For example, in the canonical ensemble the system is connected to a heat bath. In the GCE the system is also connected to a bath of particles of the various types.

Such analysis showed that for the canonical ensemble the probability of the system being in the particular state x is given by the Boltzmann distribution over the associated value of the system's energy, $G(x)$, with β interpreted as the (inverse) temperature of the system: $p(x) \propto e^{-\beta G(x)}$. This result is independent of the details characteristics of the physical system; all that is important is the Hamiltonian $G(x)$, and temperature β.

Note that once one knows $p(x)$ and $G(x)$, one knows the expected energy of the system. It is $E(x)$ that is a fixed property of the system, whereas β can vary. Accordingly, specifying β is exactly equivalent to specifying the expected energy of the system.

In the case of the GCE, x implicitly specifies the number of particles of the various types, as well as their precise state. The analysis for that case showed that $p(x) \propto e^{-\beta G(x)} - \sum_i \mu_i n_i$. In this formula β is again the inverse temperature, n_i is the number of particles of type
i, and $\mu_i > 0$ is the chemical potential of each particle of type i.

Jaynes was the first to show that these results of conventional statistical physics could be derived without recourse to artificial notions like “baths”, simply by using the maxent principle. In particular, he used the exact reasoning in Sec. II F to derive the fact that the canonical ensemble is governed by the Boltzmann distribution.

B. Mean field theory and PD theory

In practice it can be quite difficult to evaluate this Boltzmann distribution, due to difficulty in evaluating the partition function. For example, in a spin glass, x is an N-dimensional vector of bits, one per particle, and $G(x) = \sum_{i,j} H_{i,j} x_i x_j$. So the partition function is given by $\int dx e^{-\sum_{i,j} H_{i,j} x_i x_j}$, where H is a symmetric real-valued matrix, and as before we use f to indicate the integral according to the appropriate measure (here a point-sum measure). In general, evaluating this sum for large numbers of spins cannot be done in closed form.

Mean Field (MF) theory is a technique for getting around this problem by approximating the partition function. Intuitively, it works by treating all the particles as independent. It does this by replacing some of the values of the state of a particle in the Hamiltonian by its average state. For example, in the case of the spin glass, one approximates $\sum_{i,j} H_{i,j} x_i x_j$, where the expectation values are evaluated according to the associated exact Boltzmann distribution, i.e., one assumes that fluctuations about the means are relatively negligible. This then means that

$$G(x) \approx \sum_{i,j} H_{i,j} 2x_i E(x_j) - \sum_{i,j} H_{i,j} E(x_i) E(x_j),$$

The second sum in this approximation cancels out when we evaluate the associated approximate Boltzmann distribution, leaving us with the distribution

$$p^{SU}(x) \approx p^{SU}(x) \equiv e^{-\beta \sum_{i,j} H_{i,j} 2x_i E(x_j)} / (\int dx e^{-\beta \sum_{i,j} H_{i,j} 2x_i E(x_j)}) = \prod_i e^{-\alpha_i x_i} \int dx_i e^{-\alpha_i x_i},$$

where

$$\alpha_i \equiv 2\beta \sum_j H_{i,j} E(x_j).$$

This approximation $p^{SU}(x)$ is far easier to work with than the exact Boltzmann distribution, $p^{SU}(x) = e^{-\beta U(x)} / N(\beta)$, since each term in the product is for a single spin by itself. In particular, if we adopt this approximation we can use numerical techniques to solve the associated set of simultaneous equations

$$E(x_i) = \frac{\partial}{\partial \alpha_i} \left[\int dx_i e^{-\alpha_i x_i} \right] \forall i$$

for the $E(x_i)$ (so that those $E(x_i)$ are no longer exactly equal to the expected values of the $\{x_i\}$ under the distribution $p^{SU}(x)$). Given those $E(x_i)$ values, we can then evaluate the associated approximate Boltzmann distribution explicitly.

The mean field approximation to the Boltzmann distribution is a product distribution, and in fact is identical to the product distribution q^ϕ of bounded rational game theory, for the team game where $g_i(x) = 2\beta G(x) \forall i$. Accordingly, the “mean field theory” approximation for an arbitrary Hamiltonian U can be taken to be the associated team game q^ϕ, which is defined for any U.

This bridge between bounded rational game theory and statistical physics means that many of the powerful tools that have been developed in statistical physics can be applied to bounded rational game theory. In particular, much work in statistical physics has been done with approximating distributions that are higher order than products, allowing for coupling between the variables. The associated extension of PD theory is a full-blown theory of Probability Lagrangians.

Finally, this bridge can be used to apply PD theoretic techniques in statistical physics rather than vice-versa. In particular, it is shown elsewhere [20, 21] that if one replaces the identical cost function of each player in a team game with different cost functions, then the bounded rational equilibrium of that game can be numerically found far more quickly. In the context of statistical physics, this means that numerically solving for a MF approximation may be expedited by assigning a different Hamiltonian to each particle.

C. Information-theoretic misfit measures

The proper way to approximate a target distribution p with a distribution from a set C is to first specify a misfit measure saying how well each member of C approximates p, and then solve for the member with the smallest misfit. This is just as true when C is the set of all product distributions as when it is any other set.

How best to measure distances between probability distributions is a topic of ongoing controversy and research [27]. The most common way to do so is with the infinite limit log likelihood of data being generated by one distribution but misattributed to have come from the other. This is known as the Kullback-Leibler distance [16, 17, 28]:

$$KL(p_1 \parallel p_2) \equiv S(p_1 \parallel p_2) - S(p_1)$$

where $S(p_1 \parallel p_2) \equiv -\int dx p_1(x) \ln[p_2(x) / p_1(x)]$ is known as the cross entropy from p_1 to p_2 (and as usual we implicitly choose uniform μ). The KL distance is always non-negative, and equals zero iff its two arguments are identical. However it is far from being a metric. In addition to violating the triangle inequality, it is not symmetric under interchange of its arguments, and in numerical applications has a tendency to blow up. (That happens
functions over the set of
with Lemma

tatively,
distribution for the integral to approximate
distribution of

found via derivative-based traversal

bution that optimizes the maxent Lagrangian is usually
typically calculated numerically. The product distri-

are typically calculated numerically. The product distri-

is set to the associated marginal distribution of

where

The minimizer of this is just

where

The minimizer of this is just

where is the marginal distribution

The minimizer of this is just

where is the marginal distribution

Another difference between the two kinds of KL distance

how the associated optimal product distributions are typically calculated numerically. The product distri-

that optimizes the maxent Lagrangian is usually

found via derivative-based traversal of that Lagrangian,
or techniques like (mixed) Brouwer updating[20-22, 24,

In contrast, the integral giving each marginal dis-

distribution of is usually found via adaptive importance
sampling of the associated integral, with the proposal
distribution for the integral to approximate set adap-

tively, as[20].

It is possible to motivate yet other choices for the
that best approximates . To derive one of them, start
with Lemma 1, with set to the space of real-valued
functions over the set of 's (so that is the number
of possible) . Have a single constraint that restricts
us to , the unit simplex in , i.e., that restricts us
to the set of functions that (assuming they are nowhere-
negative) are probability distributions. Choose to be
the associated Lagrangian, , being a point in our constrained submanifold of . Note that this can be any distribution over the 's, including one that couples the components

Say we are at some current product distribution . Then we can apply Lemma 1 with the choices just outlined to tell us what direction to move from to in order to reduce the Lagrangian. In general, taking a step in that direction will result in a distribution that is not a product distribution. However we can solve for the product distribution that is closest to that , and move to that product distribution. By iterating this procedure we can define a search over the submanifold of product distributions. We can then solve for the product distribution at which this search will terminate.

To do this, of course, we must define what we mean by “closest”. Say that we choose to measure closeness by distance. Then the terminating production distribution is the one for which the marginals of \(\nabla L + \lambda \nabla f \) all equal 0. For each , this means that

\[
\int d(x) [\beta G(x) + \ln(p(x))] + 1 + \lambda = 0
\]

at the equilibrium product distribution . Writing out \(p = \prod_i q_i \) and evaluating gives

\[
q_i(x_i) \propto \exp \left(-\beta \frac{\int d(x) G(x)}{\int d(x)} \right). \tag{19}
\]

This is akin to the \(q^* \) of a bounded rational game, except that each player/particle sets its distribution by evaluating conditional expected \(U \) with a uniform distribution over the \(x(i) \), rather than with \(q_i \).

D. Semi-coordinate transformations

Let’s say there are numerical difficulties with our finding a \(q \) that is local minimization of the maxent Lagrangian. That \(q \) might still be a poor fit to \(p(x) \) if it is far from the global minimizer of the Lagrangian. Furthermore, even the global minimizer might be a poor fit, if \(p(x) \) simply can’t be well-approximated by a product distribution.

There are many techniques for improving the fit of a product distribution to a target distribution in machine learning and statistics [28]. To give a simple example, say one wishes to approximate the target distribution in \(\mathbb{R}^N \) with a product of Gaussians, one Gaussian for each coordinate. Even if the target distribution a Gaussian, if it is askew, then one won’t be able to do a good job of approximating it with a product of Gaussians. However one can use Principal Components Analysis (PCA) to
find how to rotate one's coordinates so that a product of Gaussians fits the target exactly.

Similar techniques can address both the issue of breaking free of local minima of the Lagrangian, and improving the accuracy of the best product distribution approximation to \(p \). More precisely, identify \(x \) with the variables \(z \) discussed in Sec. II.L. Then consider changing the map \(\zeta(z) : x \rightarrow z \) from the identity map. This will in general change the mapping from \(P_x \) to \(\mathcal{L}_z(\zeta(P_x)) \). So if \(\mathcal{L}_z \) is the Lagrangian we are interested in, the mapping from product distributions over \(x \) can be changed by changing \(\zeta(z) \), in general.

As an example, consider the case where the space of \(x \)'s is identical to the space of \(z \)'s, and consider all possible bijective transformations \(\zeta \). Entropy is the same in both spaces for any \(\zeta \), i.e., \(S(P_z) = S(\zeta(P_z)) = S(P_x) \). So for fixed \(P_z \), the entropy in \(z \)-space is independent of \(\zeta(\cdot) \). However if we fix \(P_x \) and change \(\zeta(\cdot) \) the expected values of utilities will change. So \(\mathcal{L}_z(\zeta(P_x)) \) does depend on \(\zeta(\cdot) \), as claimed.

This means that by changing \(\zeta(\cdot) \) while leaving \(q_x \) unchanged, we will in general change whether we are at a local minimum of \(\mathcal{L}_z(\zeta(q_x)) \). Furthermore, such a change will change how closely the global minimizer of \(\mathcal{L}_z(\zeta(q_x)) \) approximates any particular target distribution. Indeed, some such transformation will always transform a team game to have a strictly convex maxent Lagrangian, with only one (bounded rational) equilibrium, an equilibrium that is in the interior of the region of allowed \(q \) and that has the lowest possible value of the Lagrangian. In the worst case, we can get this behavior by transforming to the semi-coordinate system in which \(x \) is one-dimensional, so that any \(p(z) \) — coupling its variables or not — can be expressed as a \(q(x) = q_1(x) \).

Note that unlike with PCA, semi-coordinate transformations can be used for non-Euclidean semi-coordinates (i.e., when neither \(x \)'s nor \(z \)'s are Euclidean vectors). They also can be guided by numerous measures of the goodness of fit to the target distribution (e.g., KL distance), in contrast to PCA's restriction to assuming a Gaussian likelihood.

E. Bounded rational game theory for variable number of players

The bridge between statistical physics and bounded rational game theory have many uses beyond the practical ones alluded to the previous subsection. In particular, it suggests extending bounded rational game theory to ensembles other than the canonical ensemble. As an example, in the GCE the number of particles of the various allowed types is uncertain and can vary. The bounded rational game theory version of that ensemble is a game in which the number of players of various types can vary.

We can illustrate this by extending a simple instance of evolutionary game theory [6] to incorporate bounded rationality and allow for a finite total number of players. Say we have a finite population of players, each of which has one of \(m' \) possible types. (These are sometimes called feature vectors in the literature.) Each player \(i \) in the population is randomly paired with a different player \(j \), and they each choose a strategy for a two-person game. The set of strategies each of those players can choose among is fixed by its respective attribute vector. In addition the cost player \(i \) receives depends on the attribute vectors of itself and of \(j \), in addition to their joint strategy. Finally, to reflect this dependence, we allow each player to vary its strategy depending on the attribute vector of its opponent; we call player \(i \)’s meta-strategy the mapping from its opponent’s attribute vector to \(i \)’s strategy. [61].

We encode an instance of this scenario in an \(x \) with a countably infinite number of dimensions. \(x_{i,0} \equiv n_i(x) \) specifies the number of players of type \(i \), with \(n_i(x) \) being the vector of the number of players of all types. For \(1 < j \leq x_{i,0}, x_{i,j} \equiv s_{i,j}(x) \) the meta-strategy selected by the \(j \)th player of type \(i \). If its opponent is the \(j \)th player of type \(T' \), the cost to the \(i \)th player of type \(T \) is \(g_{T,i,T',j}(x) \equiv g_{T,i,T'-j}(s, s', n_T, n_{T'}) \), where \(s \) and \(s' \) are the two players’ respective meta-strategies. To enforce consistency between the index numbers \(i, j \) and the associated numbers of players, we set \(g_{T,i,T',j}(s, s', \bar{n}) = 0 \) if either \(i > n_T \) or \(j > n_{T'} \).

To start we parallel the GCE, and presume that for each type we know the expected number of players having that type, and the expected cost averaged over all players having that type. Also stipulate that the distribution over \(x \) is a product distribution, \(q \). Then our prior information specifies the values of

\[
\sum_{k>0} k \, q_{T,0}(k) = \sum_{x_{T,0}} x_{T,0} \, g_{T,0}(x_{T,0})
\]

and

\[
\sum_{n_T, n_{T'} > 0} q(\bar{n}) \sum_{n_T, n_{T'} > 0} \left[\sum_{n_T, n_{T'}} \right] \sum_{k} \int ds_T \, ds_{T'} \left[1 - \delta_{T,T'} \right] \frac{q_{T,j}(s_T)q_{T',i}(s_{T'})g_{T,j, T',i}(s_T, s_{T'}, \bar{n})}{n_T n_{T'}} \]

\[
= \sum_{x_{T,0}, \ldots, x_{T,0} > 0} \cdots \sum_{x_{m',0}} \cdots \sum_{x_{m',0}} \sum_{x_{T,0}} \int dx_T \, dx_{T', k} \left[1 - \delta_{T,T'} \right] \prod_{i=1}^{m'} \left[q_{i,0}(x_{i,0}) \right] \times \frac{q_{T,j}(x_{T,j})q_{T',i}(x_{T',i})g_{T,j, T',i}(x)}{x_{T,0} \sum_{T'} x_{T',0}}
\]

respectively, for all types \(T \). (The sums over \(j \) and \(k \) all implicitly extend from 1 to \(\infty \), and the delta functions are Kronecker deltas that prevent a player from playing itself.)

We can write these expressions as expectation values, over \(x \), of \(2m' \) functions. These functions are the \(m' \)
functions \(n_T(x) = x_{T,0} \) (one function for each \(T \)) and the \(m' \) functions
\[
c_T(x) \equiv \sum_{T',j,k \{1 - \delta_{T,T'} \delta_{j,k} \} g_{T,j,T',k}(x)} \frac{\Theta(x_{T,0})}{\sum_{T'} x_{T',0}}
\]
respectively, where \(\Theta \) is the Heaviside theta function that equals 1 if its argument exceeds 0, and equals 0 otherwise. Accordingly, the maxent principle directs us to minimize the Lagrangian
\[
\mathcal{L}(q) = -\sum_T \left[\mu_T(E(n_T) - N_T) + \beta_T(E(c_T) - C_T) \right] - S(q)
\]
where the integers \(\{N_T\} \) and real numbers \(\{C_T\} \) are our prior information. In the usual way, the solution for each pair \((i \in \{1, \ldots, m'\}, j \geq 0) \) is
\[
g_{i,j}(x_{i,j}) \propto e^{-\frac{1}{\gamma}(\sum_{T'} \mu_{T'} n_{T'} - \beta_{T'} c_{T'}) | x_{i,j} |}
\]
where the values of the Lagrange parameters are all set by our prior information.

This distribution is analogous to the one in the GCE. As usual, one can consider variants of it by focusing on one variable at a time, having prior knowledge in the form of rationality values, etc. In addition, even if we stay in this random-2-player games scenario, there is no reason for us to restrict attention to prior information paralleling that of the GCE. As with bounded rational game theory with a fixed number of players, our prior information can concern nonlinear functions of \(q \), couple the cost functions, etc.

In particular, in evolutionary game theory we do not know the expected number of players having each type, nor their average costs. In addition, the equilibrium concept stipulates that all players will have type \(T \) if a particular condition holds. That condition is that the addition of a player of type other than \(T \) to the population results in an expected cost to that added player that is greater than the associated expected cost to the players having type \(T \). This provides a model of the phenotypic interactions underlying natural selection.

We can encapsulate evolutionary game theory in a Lagrangian by appropriately replacing each pair of GCE-type constraints (one pair for each type) with a single constraint. As an example, we could have the (single) constraint for type \(T \) be that
\[
E(\sum_{T'} n_{T'}) = E\left(\frac{\max_{T'} c_{T'} - c_T}{\max_{T'} (c_{T'}) - \min_{T'} (c_{T'})}\right) \tag{20}
\]
for some positive real value \(\gamma \). For finite \(\gamma \), the entropy term in the Lagrangian ensures that for no \(T \) is the expectation value in the lefthand side of this constraint exactly 0.

In the limit of infinite \(\gamma \), the distribution minimizing this Lagrangian is non-infinitesimal only for the evolutionarily stable strategies of conventional evolutionary game theory. These are the (type, strategy) pairs that are best performing, in the sense that no other pair has a lower cost function value. The distribution for finite \(\gamma \) can be viewed as a “bounded rational” extension of conventional evolutionary game theory. In that extension (type, strategy) pairs are allowed even if they don’t have the lowest possible cost, so long as their cost is close to the lowest possible.

There is always a solution to this Lagrangian (unlike the case in conventional full rationality evolutionary game theory). The technique of Lagrange parameters provides that solution for each pair \((i \in \{1, \ldots, m'\}, j \geq 0) \) in the usual way:
\[
g_{i,j}(x_{i,j}) \propto e^{-E(\sum_{T'} \alpha_{T'} f_{T'}(x) | x_{i,j})}
\]
where the Lagrange parameters enforce our constraint, and
\[
f_{T'}(x) = \frac{n_{T'}}{\sum_{T'} n_{T'}} - \left[\frac{\max_{T'} c_{T'} - c_{T'}}{\max_{T'} (c_{T'}) - \min_{T'} (c_{T'})}\right]^2.
\]

More general forms of evolutionary game theory allow games with more than two players, and localization via network structures delineating how players are likely to be grouped to play a game. Other elaborations have each player not know the exact attribute vectors of all its opponents, but only an “information structure” providing some information about those opponents’ attribute vectors. All such extensions can be straightforwardly incorporated into the current analysis. Many other extensions are simple to make as well. For example, since the cost functions have all components of \(n \) in their argument lists, they can depend on the total size of the population. This allows us to model the effect on population size of finite environmental resources.

Note that if we change how we encode the number of players of the various types and their joint meta-strategy in \(x \), we change the form of the expectations in Eq. 20. This reflects the fact that by changing the encoding we change the implication of using a product distribution. Formally, such a change in the encoding is a change in the semi-coordinate system. See Sec. III.L.

IV. APPENDIX

This appendix provides proofs absent from the main text.

A. \(\beta \sum_i [E_p(g_i)]^2 - S(p) \) is convex over the unit simplex

Proof: Since \(S(p) \) is concave over the unit simplex, and the unit simplex is a hyperplane, it suffices to prove that \(\sum_i [E_p(g_i)]^2 \) is convex over all of Euclidean space. Since a weighted average of convex functions is convex, we only need to prove that any single function of the form \(\int dx \ p(x) f(x) \) is convex. The Hessian of this function
is $2f(x)f(x')$. Rotate coordinates so that f is a basis vector, i.e., so that f is proportional to a delta function. This doesn’t change the eigenvalues of the Hessian. After this change though, the Hessian is diagonal, with one non-zero entry on the diagonal, which is non-negative. So its eigenvalues are zero and a non-negative number. QED.

B. R_{KL} is a rationality operator

Proof: Since KL distance only equals 0 when its arguments match and is never negative, requirement (1) of rationality operators holds for R_{KL}. Next, since $R_{KL} = \arg\min_{\beta} [\frac{1}{N} \frac{\partial N(\beta U)}{\partial \beta}]_{|\beta=R_{KL}(U,p)}$, we know that $E_p(U) = -\frac{1}{N(\beta U)} \frac{\partial N(\beta U)}{\partial \beta} |_{\beta=R_{KL}(U,p)}$. Accordingly, all p with the same rationality have the same expected value $E_p(U)$. Using the technique of Lagrange parameters then readily establishes that of those distributions having the same expected U, the one with maximal entropy is a Boltzmann distribution. Furthermore, by requirement (1), we know that for a Boltzmann distribution the exponent β must equal the rationality of that distribution. QED.

C. Alternative form of a constraint on R_{KL}

Proof: Let $f\{\alpha, v\}$ be any function that is monotonically decreasing in its (real-valued) first argument. Then any constraint $R((g_i), q_i) - \rho_i = 0$ is satisfied iff the constraint $f\{R((g_i), q_i), q_i\} - f\{\rho_i, q_i\} = 0$ is satisfied. Choose

$$f(\alpha, q_i) = -\frac{\partial \ln(N(\beta g_i))}{\partial \beta} |_{\beta=\alpha}$$

$$= \int dx g_i(x) e^{-\alpha g_i(x)}$$

$$N(\alpha g_i, q_i)$$

Differeniating this quantity with respect to α gives the negative of the variance of $[g_i, q_i]$ under the Boltzmann distribution $e^{-\alpha g_i, q_i} N(\alpha g_i, q_i)$. Since variances are non-negative, this derivative is non-positive, which establishes that f is monotonically decreasing in its first argument.

Evaluating,

$$f(\rho_i, q_i) = \int dx g_i(x) e^{-\rho_i E(g_i, x)}$$

$$N(\rho_i, q_i) q_i(x_i)$$

In addition, from the equation defining R_{KL}, we know that

$$-\frac{\ln(N(\beta U(x_i)))}{\partial \beta} |_{\beta=R_{KL}(U, q_i)} = \int dx q_i(x_i) U(x_i)$$

for any function U. Plugging in $U = [g_i, q_i]$, we see that

$$f\{R((g_i, q_i), q_i)\} = \int dx q_i(x_i) [g_i, q_i](x_i)$$

$$= E_q(g_i).$$

D. q^* minimizes the Lagrangians of Eq. 10

Proof: Following Nash, we can use Brouwer’s fixed point theorem to establish that for any non-negative $\{\rho_i\}$, there must exist at least one product distribution given by q^*. The constraint term in all the L_i of Eq. 10 is zero for this distribution. By requirement (2), we also know that given q^*_i (and therefore $[g_i, q_i]$), there is no q_i with rationality ρ_i that has lower entropy than q^*_i. Accordingly, no q_i will have a lower value of L_i. Since this holds for all i, q^* minimizes all the Lagrangians in Eq. 10 simultaneously. QED.

E. Derivation of Lemma 1

Proof: Consider the set of \vec{u} such that the directional derivatives $D_{x^i} f_i$ evaluated at x' all equal 0. These are the directions consistent with our constraints to first order. We need to find the one of those \vec{u} such that $D_{x^i} V$ is maximal.

To simplify the analysis we introduce the constraint that $|\vec{u}| = 1$. This means that the directional derivative $D_{x^i} V$ for any function V is just $\vec{u} \cdot \nabla V$. We then use Lagrange parameters to solve our problem. Our constraints on \vec{u} are $\sum_i u_i^2 = 1$ and $D_{x^i} f_i(\vec{u}) = \vec{u} \cdot \nabla f_i(x') = 0 \forall i$. Our objective function is $D_{x^i} V(\vec{u}) = \vec{u} \cdot \nabla V(x')$.

Differentiating the Lagrangian gives

$$2\lambda_0 u_i + \sum_i \lambda_i \nabla f = \nabla V \forall i$$

with solution

$$u_i = \frac{\nabla V}{2\lambda_0} + \sum_i \lambda_i \nabla f$$

λ_0 enforces our constraint on $|\vec{u}|$. Since we are only interested in specifying \vec{u} up to a proportionality constant, we can set $2\lambda_0 = 1$. Redefining the Lagrange parameters by multiplying them by -1 then gives the result claimed. QED.

F. Proof of claims following Lemma 1

1) Define $f_i(q_i) \equiv \int dx q_i(x_i)$, i.e., f_i is the constraint forcing q_i to be normalized. Now for any q that equals zero for some joint move there must be an i and an x_i^* such that $q_i(x_i^*) = 0$. Plugging into Lemma 1, we can evaluate the component of the direction of steepest descent along the direction of player i’s probability of making move x_i:

$$\frac{\partial L_i}{\partial q_i(x_i)} + \lambda \frac{\partial f_i}{\partial q_i(x_i)} =$$

$$\beta E(g_i | x_i) + \ln(q_i(x_i)) - \int dx' [\beta E(g_i | x_i') + \ln(q_i(x_i'))]$$

$$\int dx'$$
Since there must some x_i'' such that $q_i(x_i'') \neq 0$, $\exists x_i$ such that $\beta E(g_i \mid x_i'') + \ln(q_i(x_i''))$ is finite. Therefore our component is negative infinite. So L_i can be reduced by increasing $q_i(x_i)$. Accordingly, no q having zero probability for some joint move x can be a minimum of i's Lagrangian.

ii) To construct a bounded rational game with multiple equilibria, note that at any (necessarily interior) local minimum q, for each i,

$$\beta E(g_i \mid x_i) + \ln(q_i(x_i)) =$$

$$\beta \int dx_i g_i(x_i, x_{-i}) \prod_j q_j(x_j) + \ln(q_i(x_i))$$

must be independent of x_i, by Lemma 1. So say there is a component-by-component bijection $T(x) \equiv (T_1(x_1), T_2(x_2), \ldots)$ that leaves all the $\{q_j\}$ unchanged, i.e., such that $q_j(T(x)) = q_j(T(x)) \forall x, j \geq 63$.

Define q' by $q'(x) = q(T(x)) \forall x$. Then for any two values x_i^1 and x_i^2,

$$\beta E_q(g_i \mid x_i^1) + \ln(q_i(x_i^1))$$

$$- \beta E_q(g_i \mid x_i^2) + \ln(q_i(x_i^2))$$

$$= \beta \int dx_i g_i(x_i^1, x_{-i}) \prod_{j \neq i} q_j(T(x_j)) + \ln(q_i(T(x_i^1)))$$

$$- \beta \int dx_i g_i(x_i^2, x_{-i}) \prod_{j \neq i} q_j(T(x_j)) + \ln(q_i(T(x_i^2)))$$

$$= \beta \int dx_i g_i(T(x_i), x_{-i}) \prod_{j \neq i} q_j(x_j) + \ln(q_i(T(x_i^1)))$$

$$- \beta \int dx_i g_i(T(x_i), x_{-i}) \prod_{j \neq i} q_j(x_j) + \ln(q_i(T(x_i^2)))$$

$$= \beta E_q(g_i \mid T(x_i^1)) + \ln(q_i(T(x_i^1)))$$

$$- \beta E_q(g_i \mid T(x_i^2)) + \ln(q_i(T(x_i^2)))$$

where the invariance of g_i was used in the penultimate step. Since q is a local minimum though, this last difference must equal 0. Therefore q' is also a local minimum.

Now choose the game so that $\forall i, x_i, T(x_i) \neq x_i$. (Our congestion game example has this property.) Then the only way the transformation $q \rightarrow q(T)$ can avoiding producing a new product distribution is if $q_i(x_i) = q_i(x_i') \forall i, x_i, x_i', \text{i.e.}, q$ is uniform. Say the Hessians of the players' Lagrangians are not all positive definite at the uniform q. (For example have our congestion game be biased away from uniform multiplicities.) Then that q is not a local minimum of the Lagrangians. Therefore at a local minimum, $q \neq q(T)$. Accordingly, q and $q(T)$ are two distinct equilibria.

iii) To establish that at any q there is always a direction along which any player's Lagrangian is locally convex, fix all but two of the $\{q_i\}$, q_0 and q_1, and fix both q_0 and q_1 for all but two of their respective possible values, which we can write as $q_0(0), q_0(1), q_1(0),$ and $q_1(1)$, respectively. So we can parameterize the set of q we're considering by two real numbers, $x \equiv q_0(0)$ and $y \equiv q_1(0)$. The 2×2 Hessian of L_i as a function of x and y has the entries

$$\frac{1}{x} + \frac{1}{a - x} \alpha$$

$$\frac{1}{y} + \frac{1}{b - y}$$

where $a \equiv 1 - q_0(0) - q_0(1)$ and $b \equiv 1 - q_1(0) - q_1(1)$, and α is a function of g_i and $\prod_{j \neq 0, 1} q_j$. Defining $s \equiv \frac{1}{x} + \frac{1}{a - x}$ and $t \equiv \frac{1}{y} + \frac{1}{b - y}$, the eigenvalues of that Hessian are

$$s + t \pm \sqrt{4\alpha^2 + (s - t)^2}$$

The eigenvalue for the positive root is necessarily positive. Therefore along the corresponding eigenvector, L_i is convex at q. QED.

iv) There are several ways to show that the value of $E_{q^p}(g_i \mid q_0(q))$ must shrink as β_i grows. Here we do so by evaluating the associated derivative with respect to β_i.

Define $N(U) \equiv \int dy \ e^{-U(y)}$, the normalization constant for the distribution proportional to $e^{-U(y)}$. View the x_i-indexed vector q^p as a function of β_i, g_i and $q_0(q)$. So we can somewhat inegually write $E(g_i) = E_{q^p(\beta_i, g_i, q_0(q))} (g_i)$. Then one can expand

$$\frac{\partial E(g_i)}{\partial \beta_i} = -\frac{\partial^2 \ln(N(\beta_i | g_0(q_0(q))))}{\partial \beta_i^2}$$

where the variance is over possible x_i, sampled according to $q^p_i(x_i)$. QED.

Acknowledgements: I would like to thank Stefan Bieniawski, Bill Macready, Stephane Airiau, Chiu Fan Lee, George Judge, Chris Henze, and Ilan Kroo for helpful discussion.

form, and not write it explicitly. See [16, 18, 25].

[56] Throughout this paper the terms in any Lagrangian that restrict distributions to the unit simplices are implicit. The other constraint needed for a Euclidean vector to be a valid probability distribution is that none of its components are negative. This will not need to be explicitly enforced in the Lagrangian here.

[57] This can even occur if all players other than \(i \) are playing pure strategies. For example, say that the number of cost functions is one less than \(N \), the number of potential moves available to player \(i \). Say that for the pure strategies of the other players, we can write \(g_i(x) = a\delta_{x_i,x_j} + b\delta_{x_i,N} \) where \(a > b \). Then \(E(\max_j g_i^j(x)) \) is minimized by the mixed strategy \(q_i(x_i) = \delta_{x_i,N} \), which results in \(E(g_i^j) = b \) for all \(j \). So the worst-case (over cost functions) expected cost for this mixed strategy is \(b \). On the other hand the uniform strategy results in \(E(g_i^j) = (a + b)/N \) for all \(j \), i.e., for this mixed strategy the worst-case expected cost is \((a + b)/N \). That difference in worst-case expected costs may be very large; the \(q_i \) optimizing \(E(\max_j g_i^j(x)) \) is very different from the one optimizing \(\max_j [E_i(g_i^j)]^2 \), giving a very different value of \(\max_j [E_i(g_i^j)]^2 \).

[58] Choosing \(q_i \) to minimize the expectation value \(\int dx \, q(x) \sum_j [g_i^j(x)]^2 \) will do a roughly similar thing to minimizing \(\sum_j [E_i(g_i^j)]^2 \), in that it will help ensure that \(q_i(x_i) \) is small where the individual \(E(g_i \mid x_i) \) are large. However it will also favor having small variances in the value of the costs, perhaps at the expense of the expected values of the costs: \(E_\pi(\sum_j [g_i^j]^2) = \sum_j (E_i(g_i^j))^2 + \text{Var}_\pi(g_i^j)) \). In accord with conventional game theory and the axiomatization of utility, here we assume players are interested in expected costs (negative utilities), not variances in those costs.

[59] For example, if \(\mathcal{L}_\pi(P_x) = \beta E_{P_x}(G(C(.))) - S(P_x) \), then \(\mathcal{L}_\pi(P_x) = \beta E_{P_x}(G(C(.))) - S(P_x)/n \), where \(P_x \) and \(P_\pi \) are related as in Eq. 17.

[60] Note that any distribution \(\pi(x) \) can be written as a Boltzmann distribution, simply by identifying \(\beta U(x) = \ln(\pi(x)) \); the issues involved in approximating the Boltzmann distribution are generic to the general problem of approximating distributions.

[61] Note that it is trivial to replace meta-strategies with strategies throughout the analysis below: simply restrict attention to meta-strategies that do not vary with the opponent's attribute vector.

[62] Many other parameterized constraints will result in this kind of relation between the parameter value and the resultant Lagrangian-minimizing distribution. The one in Eq. 20 was chosen simply for pedagogical clarity.

[63] As an example, consider a congestion team game in which all players have the same set of possible moves, \(G \) being a function only of the bit string indexed by \(k \in \mathbb{N} \), \{ \(N(x,k) \) \}, where \(N(x,k) = 1 \) if there is a move that is shared by exactly \(k \) of the players when the joint move is \(x \). In this case \(T \) just permutes the set of possible moves in the same way for all players.