CORE PROGRAM

in the

JOINT INSTITUTE FOR ADVANCEMENT OF FLIGHT SCIENCES

at the

NASA LANGLEY RESEARCH CENTER

NCC1-01-020

Final Report

December 1, 2000 – August 31, 2003

School of Engineering and Applied Science
The George Washington University
Washington, DC 20052
The objectives of the "Core Program in the Joint Institute for Advancement of Flight Sciences (JIAFS) at the NASA Langley Research Center" are described in the original proposal awarded November 1980. Funding for this program is given in Appendix A.

Participants and Activities

Participants in the "Core Program" during this period included:
- Professor J. L. Whitesides
- Ms. Jessie Coates
- Ms. Carolyn F. Stough

Professor Whitesides has administered and provided technical direction for the JIAFS.

Research Activities

Following the precedent started several years ago, each of the graduating MS and DSc candidates in JIAFS present a seminar which is advertised throughout the area. Following the formal seminar the attendees are excused and the review committee examines the student as in a standard thesis defense. This allows the students to gain experience in presenting their research and disseminating the Institute's research results to a wider audience. A list of seminars are given in Appendix B.

Some 172 excellent applications for the Graduate Research Scholar Assistantships were received during this period. Forty-nine new GRSA were appointed by Professor Whitesides to JIAFS under the various research grants and contracts.

A list of the publications and presentations by members of JIAFS is given in Appendix C.

During this period there were 54 graduates from the academic programs in JIAFS. A list of these graduates and their initial employer upon graduation from GW is included as Appendix D. A list of the courses offered during the period Fall 2000 through Summer, 2003 is given in Appendix E.
APPENDIX A

Period of Performance

December 1, 2000 through August 31, 2003

Summary

12/01/00 – 11/30/01
New Cooperative Agreement – Funding: 102,446.00
08/09/01 – 11/30/01
Supplement 1 – Augmentation/correct award history – Funding 102,446.00
12/01/01 – 12/31/02
Supplement 2 – Augment award history, add incremental funding and extend period – Funding: 102,446.00
01/01/03 – 08/31/03
Supplement 3 – No Cost Time Extension

Award History
Funding History
Total: 102,446.00
SEMINARS PRESENTED

1. M. A. Benes, "Investigating the Application of a Confidence Interval Methodology to Assessing Neural Network Surrogates."

2. G. C. Harding, "A High-Frequency Supersonic Pulsed Injector with Applications to Supersonic Combustors."

4. R. L. Stephens, "Recursive Attitude and Rate Estimator."

16. J. L. Hanna, “Approaches to Autonomous Aerobraking at Mars.”

17. J. P. Hundley, “A Thermography System for Imaging Reusable Launch Vehicles.”

29. P. P. Zomkowski, “Preliminary Design and Analysis of the GIFTS Instrument Pointing System.”

34. L. Kay-Bunnell, "Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories."

35. B. P. Anderson, "Spacecraft-Ballute Interactions Using Continuum and Rarefied Computational Analysis."

37. A. L. Martin, "Methodology for Reduced Monte Carlo Simulations with Application to Mars Science Laboratory Entry."

40. M. C. Bastow, "A Telescope Tracking and Thermal Imaging System for High-Speed Vehicles."

42. R. M. Lunceford, "Crash Test and Analysis Validation of Aircraft Seat Structures."

APPENDIX C

PUBLICATIONS AND PRESENTATIONS

37. B. P. Anderson, "Computational Continuum and Rarefied Flow Results for Ballute Applications." Presented: AIAA Mid-Atlantic Region 1 Student Conference, College Park, MD, April 11-12, 2003.

APPENDIX D

GRADUATES - 2000-2003

Concentration

Employed by

Fall 2000

- **Michael A. Benes**
 - Aero, GRSA
 - Visteon Steering Systems, MI

- **Gregory C. Harding**
 - Aero, GRSA
 - Schweizer Aircraft Corp, NY

- **Timothy M. Mauery**
 - Aero, GRSA
 - Lockheed Martin Aircraft & Logistics, SC

- **Robert L. Stephens**
 - SDyn, GRSA
 - Swales & Assoc @ NASA Langley

- **Javier Velez**
 - Aero, GRSA
 - Raytheon Missile Systems, AZ

Spring 2001

- **Michael S. Bonner**
 - Aero, GW
 - Naval Air Warfare Ct, CA

- **Timothy J. Bozung**
 - Astro, GRSA
 - Stryker Instruments, MI

- **Jeffrey S. Parker**
 - Astro, GRSA
 - Allied Signal Technical Services, MD

- **James P. Tomey**
 - SDyn, GRSA
 - Ford Motor Co, MI

- **Kenrick A. Waithe**
 - Aero, GRSA
 - AS&M @ NASA Langley

Summer 2001

- **Marcus D. Billings**
 - SDyn, GRSA
 - ATA Engineering, CA

- **Alicia M. Dwyer**
 - Astro, GRSA
 - ICASE @ NASA Langley

- **Louis R. Giersch**
 - Astro, GRSA
 - University of Kentucky, KY

- **Kristopher R. Horne**
 - SDyn, GRSA
 - Lockheed Martin, CA

- **Alan D. Sullins**
 - Astro, GRSA
 - Aerospace Corp, CA

Fall 2001

- **Stephen J. Alter**
 - Aero, NASA
 - NASA Langley

- **Brooke M. Anderson**
 - Astro, GW
 - Swales @ NASA Langley

- **Frederico R. Garza**
 - Aero, GW
 - Swales @ NASA Langley

- **Benjamin E. George**
 - Astro, GRSA
 - USAF

- **Govinda B. Haines**
 - Aero, GRSA
 - Unknown

- **Jill L. Hanna**
 - Astro, GRSA
 - ICASE @ NASA Langley

- **Scott A. Hill**
 - S/Dyn, N
 - NASA Langley

- **Jason P. Hundley**
 - Aero, GRSA
 - Northrop-Grumman, CA

- **Craig A. Hunter (DSc)**
 - Aero, GRSA
 - NASA Langley

- **Byron R. Monzon**
 - Aero, GRSA
 - Pratt & Whitney, CT

- **Matthew T. Phillips**
 - Aero, GRSA
 - USAF

- **Michael T. Powers**
 - S/Dyn, GRSA
 - Lockheed Martin Missiles & Space Systems, CA

- **Jason B. Prince**
 - Aero, GRSA
 - Aerotech Research, USA Inc., VA

- **Yelena M. Savranskaya**
 - Astro, GRSA
 - Aerospace Corp, CA
Spring 2002

Troy D. Altus Aero GRSA ATK Tactical Systems Co., MD
Adam C. Olsen Aero GRSA Unknown

Summer 2002

Dustin J. Bouch Aero GRSA Eidetics Corp, CA
Zachary Q. Chavis Astro GRSA Pratt & Whitney, CT
Christopher G. Lang Astro GRSA NASA Langley
Dawn R. Phillips Aero GRSA Lockheed Martin Space Operation
Brendan R. Rogillio Astro GRSA Unknown
Joshua E. VerHage Astro GRSA Unknown
Paul P. Zomkowski Astro GRSA Aerospace Corp, CA

Fall 2002

David W. Fiala Astro GRSA Unknown
Corey D. Hernandez Astro GW Swales & Associates @ NASA LaRC
Micah J. Solter Astro GRSA Lockheed Martin Missiles & Space, CA
Michael P. Strauss Aero GRSA Sikorsky Aircraft Corp, CT
Jeffrey I. Walters Aero GRSA Lockheed Martin Missiles & Space, CA

Spring 2003

Paul E. Escalera Astro GRSA Orbital Sciences Corp, VA
Linda Kay-Bunnell Astro GRSA Analytical Mechanics Assoc @ NASA LaRC
Derek S. Liechty Aero NASA NASA Langley

Summer 2003

Brian P. Anderson Astro GRSA Combustion Research & Flow Technology, PA
Jonathan T. Black Astro GRSA University of Kentucky
Craig P. Hugger Aero GW Unknown
Alex L. Martin Astro GRSA Aerospace Corporation, CA
Kyle G. Moss Aero GRSA Swales Aerospace @ NASA Langley
Michael E. Theriot Astro GRSA George Washington University
David T. Walker SDyn GRSA Thiokol, UT
Martin R. Werner Astro GRSA Spectrum Astro, AZ
APPENDIX E

ACADEMIC PROGRAM

FALL 2000

ApSc 212 Analytical Methods in Engineering II
ApSc 213 Analytical Methods in Engineering III
MAE 207 Theory of Elasticity
MAE 221 Fluid Mechanics
MAE 224 Viscous Flow
MAE 248 Aircraft Design II
MAE 253 Aircraft Structures
MAE 274 Spacecraft Dynamics
MAE 275 Stability and Control of Aircraft
MAE 276 Space Flight Mechanics
MAE 286 Numerical Solution Techniques in MAE
MAE 292 Special Topics in Aerospace Engineering
MAE 298 Research (arr.)

SPRING 2001

ApSc 214 Analytical Methods in Engineering IV
ECE 202 Linear Systems Theory
MAE 225 Computational Fluid Dynamics
MAE 228 Compressible Flow
MAE 234 Composite Materials
MAE 247 Aircraft Design I
MAE 250 Launch Vehicle Design
MAE 257 Theory of Vibrations
MAE 277 Spacecraft Attitude Control
MAE 286 Numerical Solution Techniques in MAE
MAE 292 Special Topics in Aerospace Engineering (Astro Project)
MAE 298 Research (arr.)
ACADEMIC PROGRAM (continued)

FALL 2001

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApSc 212</td>
<td>Analytical Methods in Engineering II</td>
</tr>
<tr>
<td>ApSc 213</td>
<td>Analytical Methods in Engineering III</td>
</tr>
<tr>
<td>MAE 207</td>
<td>Theory of Elasticity</td>
</tr>
<tr>
<td>MAE 221</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>MAE 227</td>
<td>Aeroelasticity</td>
</tr>
<tr>
<td>MAE 248</td>
<td>Aircraft Design II</td>
</tr>
<tr>
<td>MAE 274</td>
<td>Spacecraft Dynamics</td>
</tr>
<tr>
<td>MAE 275</td>
<td>Stability and Control of Aircraft</td>
</tr>
<tr>
<td>MAE 276</td>
<td>Space Flight Mechanics</td>
</tr>
<tr>
<td>MAE 286</td>
<td>Numerical Solution Techniques in MAE</td>
</tr>
<tr>
<td>MAE 291</td>
<td>Special Topics in Mechanical Engineering [Heat Transfer]</td>
</tr>
<tr>
<td>MAE 292</td>
<td>Special Topics in Aerospace Engineering [Engineering Optimization]</td>
</tr>
<tr>
<td>MAE 292</td>
<td>Special Topics in Aerospace Engineering [Orbit and Trajectory Optimization]</td>
</tr>
<tr>
<td>MAE 298</td>
<td>Research (arr.)</td>
</tr>
</tbody>
</table>

SPRING 2002

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApSc 214</td>
<td>Analytical Methods in Engineering IV</td>
</tr>
<tr>
<td>ECE 202</td>
<td>Linear Systems Theory</td>
</tr>
<tr>
<td>MAE 228</td>
<td>Compressible Flow</td>
</tr>
<tr>
<td>MAE 234</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>MAE 247</td>
<td>Aircraft Design I</td>
</tr>
<tr>
<td>MAE 257</td>
<td>Theory of Vibrations</td>
</tr>
<tr>
<td>MAE 277</td>
<td>Spacecraft Attitude Control</td>
</tr>
<tr>
<td>MAE 286</td>
<td>Numerical Solution Techniques in MAE</td>
</tr>
<tr>
<td>MAE 288</td>
<td>Adv Finite Element Methods in Structural Mech</td>
</tr>
<tr>
<td>MAE 292</td>
<td>Special Topics in Aerospace Engineering [Spacecraft Navigation]</td>
</tr>
</tbody>
</table>

FALL 2002

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApSc 212</td>
<td>Analytical Methods in Engineering II</td>
</tr>
<tr>
<td>ApSc 213</td>
<td>Analytical Methods in Engineering III</td>
</tr>
<tr>
<td>MAE 207</td>
<td>Theory of Elasticity</td>
</tr>
<tr>
<td>MAE 221</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>MAE 229</td>
<td>Propulsion</td>
</tr>
<tr>
<td>MAE 248</td>
<td>Aircraft Design II</td>
</tr>
<tr>
<td>MAE 249</td>
<td>Spacecraft Design</td>
</tr>
<tr>
<td>MAE 253</td>
<td>Aircraft Structures</td>
</tr>
<tr>
<td>MAE 274</td>
<td>Spacecraft Dynamics</td>
</tr>
<tr>
<td>MAE 275</td>
<td>Stability and Control of Aircraft</td>
</tr>
<tr>
<td>MAE 276</td>
<td>Space Flight Mechanics</td>
</tr>
<tr>
<td>MAE 286</td>
<td>Numerical Solution Techniques in MAE</td>
</tr>
<tr>
<td>MAE 298</td>
<td>Research (arr.)</td>
</tr>
</tbody>
</table>
ACADEMIC PROGRAM (continued)

SPRING 2003

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApSc 214</td>
<td>Analytical Methods in Engineering IV</td>
</tr>
<tr>
<td>ECE 202</td>
<td>Linear Systems Theory</td>
</tr>
<tr>
<td>MAE 222</td>
<td>Applied Aerodynamics</td>
</tr>
<tr>
<td>MAE 228</td>
<td>Compressible Flow</td>
</tr>
<tr>
<td>MAE 234</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>MAE 247</td>
<td>Aircraft Design I</td>
</tr>
<tr>
<td>MAE 257</td>
<td>Theory of Vibrations</td>
</tr>
<tr>
<td>MAE 270</td>
<td>Theoretical Acoustics</td>
</tr>
<tr>
<td>MAE 271</td>
<td>Time Series Analysis</td>
</tr>
<tr>
<td>MAE 277</td>
<td>Spacecraft Attitude Control</td>
</tr>
<tr>
<td>MAE 278</td>
<td>Space Flight Guidance and Navigation</td>
</tr>
<tr>
<td>MAE 286</td>
<td>Numerical Solution Techniques in MAE</td>
</tr>
<tr>
<td>MAE 288</td>
<td>Advanced Finite Element Methods in Structural Mechanics</td>
</tr>
<tr>
<td>MAE 292</td>
<td>Special Topics in Aerospace Engineering</td>
</tr>
<tr>
<td>MAE 298</td>
<td>Research (arr.)</td>
</tr>
<tr>
<td>MAE 298-Z1</td>
<td>Research (arr.)</td>
</tr>
</tbody>
</table>

FALL 2003

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApSc 213</td>
<td>Analytical Methods in Engineering III</td>
</tr>
<tr>
<td>ApSc 214</td>
<td>Analytical Methods in Engineering IV</td>
</tr>
<tr>
<td>MAE 225</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>MAE 229</td>
<td>Propulsion</td>
</tr>
<tr>
<td>MAE 248</td>
<td>Aircraft Design II</td>
</tr>
<tr>
<td>MAE 249</td>
<td>Spacecraft Design</td>
</tr>
<tr>
<td>MAE 275</td>
<td>Stability and Control of Aircraft</td>
</tr>
<tr>
<td>MAE 276</td>
<td>Space Flight Mechanics</td>
</tr>
<tr>
<td>MAE 286</td>
<td>Numerical Solution Techniques in MAE</td>
</tr>
<tr>
<td>MAE 292</td>
<td>Sp Topics in Aerospace Engineering (Engineering Optimization)</td>
</tr>
<tr>
<td>MAE 298</td>
<td>Research (arr.)</td>
</tr>
</tbody>
</table>