DIELS-ALDER TRAPPING OF PHOTOCHEMICALLY GENERATED DIENES WITH ACRYLIC ESTERS: A NOVEL APPROACH TO PHOTOCURED POLYMER FILM DEVELOPMENT

Faysal Ilhan,1 Daniel S. Tyson,2 Deedee Smith,1 Mary Ann Meador2 and Michael A. Meador2

1Ohio Aerospace Institute, 22800 Cedar Point Rd., Cleveland, OH 44142
2Northwestern University, Department of Chemistry, 2145 Sheridan Rd., Evanston, IL 60208
3NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135

Introduction

Diels-Alder cycloadditions have often been utilized in polymer synthesis as an alternative to condensation reactions.1 In our earlier efforts, we developed a new method for the preparation of linear aromatic polyimides, which employ o-quinodimethanes (o-QDMs), generated by a well-known photochemical reaction: the photoenolization of o-methylphenyl ketones.2 Photolysis of o-methylbenzophenone 1 produces hydroxy-o-quinodimethane 2, which can be trapped with dienophiles, such as dimethyl acetylenedicarboxylate,3 to efficiently yield the corresponding cycloadduct (Scheme 1). Here we extended this approach to a novel photocuring process for development of polymer films. We synthesized a series of molecules with multi o-methylphenyl ketone functionalities. We further investigated these molecules as photoreactive monomers to obtain polymer films through Diels-Alder cycloadditions.4

Scheme 1

Experimental

Materials. All reagents were used without further purification. Cyclocexanone (99+%), 1,6-hexanediol ethoxylate diacrylate, pentaerythritol triacrylate and methyl acrylate were purchased from the Aldrich Chemical Co.

Instrumentation 1H and 13C NMR spectra of the ketones were obtained on a Bruker AC-200 spectrometer. CDCl3 containing 1% TMS as an internal reference was used as the solvent. Irradiation studies were performed using a Fusion UV Systems HP-6 equipped with a high-powered six-inch UV lamp system and a VPS-3 power supply.

General Synthesis for Ketones. To a stirred solution of the corresponding nitrile in dry tetrahydrofuran (THF) under nitrogen was added dropwise a solution of 2-methyl phenylazanium bromide in THF. The resulting mixture was refluxed under nitrogen for 18 hours. The reaction mixture was then allowed to cool down to room temperature and poured into a saturated aqueous solution of NH4Cl. The organic phase was collected and the aqueous phase extracted with THF. The organic extracts were combined and dried over Na2SO4. The solvent was dried in vacuo to yield the crude product. A (1:1) mixture of concentrated HCl and H2O were added to that product and the resulting mixture was refluxed for 18 hours. The mixture was then cooled down to room temperature and extracted with CH2Cl2. The combined organic extracts were then washed with a 5% aqueous NaOH solution. The solvent was dried to yield the crude product. Products were further purified either by recrystallization or column chromatography. The products were characterized by 1H and 13C NMR.

General Procedure for the Film Curing by Irradiation. A solution of the ketone, 1,6-hexanediol ethoxylate diacrylate (HED), pentaerythritol triacrylate (PPT) and methyl acrylate in cyclocexanone was prepared. This solution was transferred into a tin pan and placed in an inerting chamber. The chamber was then purged with a stream of Argon for 5 minutes and passed under the UV irradiation source. The UV lamp intensity was set at 65% and the belt speed at 1. After each pass the chamber was allowed to cool down for 2 minutes. Resulting films were further dried in a vacuum oven at 55°C for 96 hours.

Results and Discussion

To obtain polymer films with different properties, we synthesized an array of molecules having multiple o-methylphenyl ketone sites (3-8) (Figure 1). All ketones were synthesized from the precursor dinitriles by Grignard synthesis with yields higher than 95%.

To obtain the linear polymer backbone growth in photocuring process, we employed 1,6-hexanediol ethoxylate diacrylate (HED) 9 as a dienophile. This molecule with the long alkyl chain contributes to the molecular mobility of the system, compensating for the loss of entropy due to high molecular weight polymer development. We also employed pentaerythritol triacrylate (PPT) 10 as a dienophile to obtain increased strength by crosslinking. Furthermore, we used methyl acrylate 11 as an end-cap to control the molecular weights of the polymers.

We chose cyclocexanone as the solvent for photocuring studies. Cyclocexanone, a solvent with a high boiling point, minimizes the possibility of evaporation that can affect the degree of polymerization by uncontrollably varying the concentrations of the solutions. Also, in our earlier studies, we demonstrated that cyclocexanone does not interfere with the desired photocatalytic step.

To obtain a systematic understanding of the effects of diketone type and other experimental variables on the polymerization and the final polymer properties, we chose a Design of Experiments (DOE) approach. According to our DOE, we performed 18 film-curing experiments. Type of the diketone, targeted molecular weight, number of passes under the UV lamp, amount of PPT as the crosslinking reagent, and the concentrations of the initial solutions were the main variables utilized in the construction of our DOE (Table 1).

Temperature of the inert chamber containing the solutions increased as it was passed under the UV lamp. To prohibit any possible interference of increasing temperature in the polymerization process, the chamber was allowed to cool down between the passes.

After extensive drying, the resulting films were analyzed using variable techniques. First, to understand their thermal decomposition behaviors we performed thermo gravimetric analysis (TGA) on each film sample. According to these studies, films were mostly dry. Also, we were able to obtain the onset decomposition temperature, Td, for each film from the TGA analysis data (Figure 2).

Additionally, we used differential scanning calorimetry (DSC) to obtain the glass transition temperatures, Tg, for our samples (Figure 2). Another important data that we obtained from these experiments was the extent of the
reacted monomers. We did not observe any sharp melting exotherms for the
starting diketones suggesting the photomelization process was successful. In
addition, we were able to obtain if any unreacted acrylate sites were left by
checking the endotherms for thermal self-polymerization.

<table>
<thead>
<tr>
<th>Ketone</th>
<th>Conc. (%)</th>
<th>PPT (%)</th>
<th># of passes</th>
<th>FMW (x10^3)</th>
<th>Tg (°C)</th>
<th>Tp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>8.9</td>
<td>318</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>50</td>
<td>35</td>
<td>200</td>
<td>-6.3</td>
<td>377</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>50</td>
<td>5</td>
<td>40</td>
<td>3.5</td>
<td>381</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>50</td>
<td>35</td>
<td>40</td>
<td>7.9</td>
<td>365</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>50</td>
<td>35</td>
<td>40</td>
<td>-7.8</td>
<td>370</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>50</td>
<td>35</td>
<td>200</td>
<td>-20.1</td>
<td>384</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>50</td>
<td>5</td>
<td>40</td>
<td>-3.3</td>
<td>398</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>50</td>
<td>5</td>
<td>40</td>
<td>4.7</td>
<td>379</td>
</tr>
<tr>
<td>13</td>
<td>51</td>
<td>50</td>
<td>5</td>
<td>40</td>
<td>-24.9</td>
<td>389</td>
</tr>
<tr>
<td>14</td>
<td>51</td>
<td>50</td>
<td>5</td>
<td>200</td>
<td>-27.7</td>
<td>379</td>
</tr>
<tr>
<td>15</td>
<td>51</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>2.98</td>
<td>360</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>0</td>
<td>35</td>
<td>40</td>
<td>-9.79</td>
<td>389</td>
</tr>
</tbody>
</table>

Table 1. Tabular demonstration of the parameters varied in DOE and the Tg’s and Tp’s obtained for the resulting polymer films.

To better understand the film properties in terms of experimental conditions, statistical analysis was performed on the data presented in Table 1. For each diketone, strong correlations between Tg reaction concentration, and amount of PPT crosslinking reagent were noted (Figure 2). Interestingly, the formulated molecular weight was not significant in the model. Ongoing statistical modeling is probing the value of this and other observations.

Conclusions

Irradiation of o-methylphenyl functionalized ketones generates photocrosslinkers that can be trapped by acrylic esters through Diels-Alder cycloadditions. This methodology can be extended to create thin polymer film as a novel approach for photocured film development.

Polymer properties can be tuned by varying the photoreactive diketones. A series of diketones were synthesized to obtain films with varying properties. Currently, we are in the process of studying the data related to the resulting films. Our progress in this field will be reported in due course.

Acknowledgements. The authors of this paper would like to thank Daniel A. Scheiman for his help in analysis and characterization of the compounds.

References


![Figure 2. Statistical correlation between Tg, PPT (%) and Conc. (%) obtained for the polymer films photocured by 35 passes.](image-url)