Lunar Contour Crafting – A Novel Technique for ISRU-Based Habitat Development

Behrokh Khoshnevis – University of Southern California
Melanie P. Bodiford, Kevin H. Burks, Ed Ethridge, & Dennis Tucker – NASA/Marshall Space Flight Center
Won Kim – NASA/Jet Propulsion Laboratory
Houssam Toutanji – University of Alabama in Huntsville
Michael R. Fiske – Morgan Research Corporation

Paper No. AIAA-2005-XXXX
Presented To:

AIAA 43rd Aerospace Sciences Meeting & Exhibit
Reno, NV
January 11, 2005
Habitat Structures - Introduction

- Habitat Structures at MSFC is one element of the In-Situ Fabrication and Repair (ISFR) Program
 - ISFR develops technologies for fabrication, repair and recycling of tools, parts, and habitats/structures using in-situ resources
 - ISRU-based habitat structures are considered Class III (iaw NASA 1997 Habitat Development Roadmap (Cohen & Kennedy)) and apply primarily to Spirals 3 (Moon) and 5 (Mars)

- Habitat Structures Purpose:
 - Develop Lunar and/or Martian habitat structures for manned missions that maximize the use of in-situ resources to address the following agency topics:
 - Bioastronautics Critical Path Roadmap (BCPR, Rev. E)) risks
 - Risks 31-35 (Radiation Health), 43-44 (ALS) & 49 (SHFE)
 - Strategic Technical Challenges defined in H&RT Formulation Plan, v. 3.0
 - Margins & Redundancy - Reusability
 - Modularity - Autonomy
 - Robotic Networks - Affordable Logistics Pre-positioning
 - Space Resource Utilization
Habitat Structures – Top-Level Requirements

- Support a pressurized (shirtsleeve) environment for the crew
- Protect the crew from a worst case radiation (GCR & SPE) exposure
- Protect the crew from micrometeorites and exhaust plumes
- Initially, be able to be fabricated in advance of a manned crew so as to provide immediate protection (semi-autonomous construction)
- Early, achievable, and visible milestones and successes are required
- Development should be evolutionary and scalable
- Present a psychologically/ergonomically compatible living environment for the crew
- Maximize utilization of in situ resources
Habitat Structures – Construction Products

Raw Regolith

Glass Products

Blocks

Reinforced Concrete

Thin Films/Inflatable Structures

Deployable Metal Structures

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov
What is Contour Crafting?

- Developed at USC, CC is the application of layered fabrication (also known as solid freeform fabrication or rapid prototyping to construction, particularly with concrete
- Computer-controlled, CC delivers superior surface finish and accurate planar or complex geometries
- Terrestrial applications for low income and Army field housing

- Vertical slope can be changed (domed structures)
- Utilities and/or radiation-shielding materials can be incorporated
- System has been demonstrated at a subscale level, utilizing batch processing

- Can envision large gantry system or multiple robots constructing large-scale terrestrial facilities
- High degree of automation lends CC to other planetary applications

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov
Elements of Lunar Contour Crafting

- Process Development
 - USC, MSFC

- Robotic Operations for Lunar Construction
 - JPL, USC, MSFC

- Concrete Development
 - UAH, MSFC

- Glass Reinforcement Development
 - MSFC

- Integrated Testing
 - MSFC, USC, JPL, UAH
- Refinement of nozzle, top and side trowel materials and configuration
- Refinement of ability to generate non-orthogonal surfaces (side trowel orientation control)
- Incorporation of integrated flow start/stop capability
- Variable-position nozzle for tight inside corners
- Integrated cleaning system

- Three-dimensional head movement, 6 DOF delivery
- Continuous processing vs batch processing
- Incorporation of utilities such as:
 - Electrical
 - Plumbing
 - Radiation shielding materials
- Structural reinforcement can be mixed into concrete (glass fibers) or installed during fabrication
- Electrical and plumbing components can be integrated into wall (better on ID for surface applications)
- Radiation shielding components can be integrated into wall, or on either surface
Robotic Operations for Lunar Construction

- Robotic configurations include gantry system and/or multiple, independently controlled robots
- System can be designed for mobility in the event that crews must change habitat locations
- Telescoping and/or foldable beams can be used for main cross beam, guide rails, and vertical supports
- Proximity controls can be incorporated for later structures development with a manned presence
- Completely autonomous control on the Moon must be demonstrated in order to be a successful tech demo for future Mars applications (time delay)

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov
Concrete Development

- 1994 STS GAS Can experiment prepared traditional concrete samples with mixed results
- Techniques include:
 - Wet-mix method
 - Dry-mix/Steam Injection (DMSI)
 - Waterless Regolith Mix (WRM)

<table>
<thead>
<tr>
<th></th>
<th>Compressive Strength, mPa</th>
<th>Tensile Strength, mPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRS/Sulfur Mix</td>
<td>62</td>
<td>7.4</td>
</tr>
<tr>
<td>LRS/Portland Cement</td>
<td>35</td>
<td>2.5</td>
</tr>
</tbody>
</table>

- ISFR effort focused on development of “waterless” concrete
-Sulfur-based concrete feasible:
 - Sulfur readily available
 - Good mechanical properties
 - Rapid setting
 - High chemical resistance
 - Low water permeability

- Constraints include:
 - Volume change/softening of S at 96°C
 - Combination of low temperature and low pressure on S sublimation
 - Effect of thermal cycles on strength

- Current research includes:
 - Additions of Dicyclopentadiene to improve strength
 - Effects of glass fiber additions on strength

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov
Glass Reinforcement Development

- Lunar regolith is comprised of up to 80% glassy materials, depending on regolith "maturity"

- Mechanical properties of lunar-derived glass are expected to be significantly higher than terrestrial glass, based on lack of water during glass formation

- Current work includes:
 - Use of solar-powered furnace to melt LRS, fabricate glass beads and/or fibers
 - Evaluation of additives required to tune optical properties of LRS-derived glass

- Applications for glass products include:
 - electrical and thermal insulation
 - braided cables
 - reinforcement in structural materials
 - struts
 - compression members in tensegrity structures
 - optical elements

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov
- Currently modifying prototype hardware by:
 - Addition of limit switches
 - Addition of "home" or "stop" position
 - Addition of a third axis of motion to aid in development of more complex shapes
 - Software upgrades
 - Use of LRS-based concrete
 - Addition of capability for continuous processing for future operations
 - Addition of solenoid "shutter" and pressure relief for stop/start operations and air purging of system

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov
Current SOA:
- Lots of 10-20 yr old Studies
- Limited experience w/Lunar-based concrete, blocks or glass
- Few applications of space-based inflatables

Technology(ies)
Identification

Initial Trade Studies:
- Reqts Defn
- Eval. Criteria
- Weighting

Initial Technology(ies)
Downselect

Technology(ies)
Roadmap Development

Project Formulation (6/04 – 6/05)

M. Fiske, (256) 544-6456, mike.fiske@msfc.nasa.gov

Continuous Technology Development
Habitat Structures – Fabrication Challenges

- Lunar soil (regolith) is well characterized, but from limited locations (Apollo, Luna, Surveyor)
- Probable South Pole location of Moon base is essentially uncharacterized
- Lack of large quantities of high quality Lunar Regolith Simulant (LRS)
- Design must support high tensile loads due to pressurized environment – habitat is a pressure vessel!
- Pre-manned mission construction requires complex robotics and teleoperations
- Integration of utilities and radiation shielding materials
- Configuration-specific technical challenges, for example:
 - Reinforced Concrete
 - Extruded in place vs pre-cast, pre-stressed
 - Steel vs glass rod reinforcement
 - Water-based vs waterless concrete
 - Hermeticity
Near-Term Development Activities

- Lunar regolith simulant characterization
 - JSC-1 (NASA/JSC)
 - JPT-1890 (Jensen Scientific)
- Concrete development/testing
 - Sulfur & LRS-based concrete testing in work
 - Significant improvements in tensile & compressive strength over Portland cement-based concrete
 - Effects of simulant on materials properties to be evaluated
 - Testing with prototype Contour Crafting system in MDL
- Compacted block development/testing
 - Binderless compacted JSC-1 LRS block did not hold together
 - Evaluating potential binders
- Radiation shielding modeling/testing of candidate configurations
- Evaluation of all technologies with respect to acceptance criteria (being defined), including TRL and RD³ assessment
- Definition of technology exit criteria