ELASTIC RESPONSE OF CRIMPED COLLAGEN FIBRILS
A. D. FREED AND T. C. DOEHRING

ABSTRACT. A physiologic constitutive expression is presented in algorithmic format
for the elastic response of wavy collagen fibrils found in soft connective tissues. The
model is based on the cbservation that crimped fibrils have a three-dimensional
structure at the um scale that we approximate as a helical spring. The symmetry of
this waveform allows the force/displacement relationship derived from Castigliano’s
theorem to be solved in closed form. Model predictions are in good agreement with
experirnental observations for mitral-valve chordee tendinese.

1. INTRODUCTION

Passive soft tissues are multi-constituent materials that, from a load carrying point
of view, are predominantly composed of two elastic substances (elastin and collagen)
immersed in a hydrated proteoglycan gel {ground substance) [1]. The elastin/gel
mixture (ground substance matrix) contributes to the overall isotropic response of
soft tissues. Unorganized collagen filaments with random orientations also contribute
to the response of the ground substance matrix [2]. Organized collagen fibers, on
the other hand, form fibrous networks that introduce anisotropic attributes into the
tissue response [3].

The objective of this paper is to derive a physically based material model that is
capable of describing the elastic response of soft tissues comprised of crimped collagen
fibers.

1.1. Collagen Structure. Collagen molecules are built from polypeptide chains [2].
These molecules are synthesized within cells as a tropocollagen, and then secreted into
the surrounding connective tissue through cell vesicles. The tropocollagen polymer
has a triple-helix geometry whose length is about 285 nm and whose diameter is
1.4 nm. A single tropocollagen self-assembles with four other tropocollagen in the
extracellular matrix at quarter-stagger intervals of 67 nm (D period) to form a micro-
fibril whose diameter is about 3.5 nm {4]. Glycosaminoglycans {GAG’s) serve as the
cross-linking agent in this assembly process, with chemical attachments primarily
located at the D-period banding sites. Micro-fibrils are gathered together via lateral
and end-to-end aggregations to form sub-fibrils with a 10-20 nm diameter, which
themselves aggregate to form fibrils with a 50-500 nm diameter {5]. The outcome is
a slender, flexible fibril with fractal geometry.
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FIGURE 1. SEM photograph of a cross-sectional cut of a chordse
tendenez taken from a porcine mitral valve showing a 3D undulating
fiber structure. (Reproduced with permission from J. Liao [6].)

Fibrils are the fibrous entities observed in photographic images taken by scanning
electron microscopes, like the image presented in Fig. 1.

Fibrils are assembled by the human body in a variety of ways to meet the varying
needs of its soft tissues. Because the aspect ratio of a fibril is huge (2000 to 2500 [7]),
it readily buckles under the internal restoring forces of the elastin matrix whenever a
fibrous tissue is free from external load [8]. This rumpied configuration is known as
crimp (see Fig. 1). Crimp occurs at the level of a fascicle—an aggregate of fibrils—
which is the sixth tier in the collagen hierarchy [5]. Collagen fibers are assemblages of
fibrils or fasciclee, depending on the tissue; for example, chorde tendinea are ‘yarns’
of fibrils (i.e., a fascicle), while tendons are ‘ropes’ of fascicles. The wavy structure of
crimp has a periodicity of between 10 and 1006 pm, depending on the tissue. Tissues
with shorter wavelengths tend to have greater extensibility’s, as there seems to be
less variability in crimp amplitude between tissues [6].

The elastic modulus of a collagen molecule is about 3 GPa. A collagen fibril has an
elastic modulus in the mid 100’s of MPa {9]. Both have linear stress/strain responses.
The existence of crimp in aggregates of fibrils is the primary cause of the characteristic
nonlinear response which is so prevalent in soft-tissue data. The nonlinear effect that
crimp has on mechanical response has been known for nearly a century [10]. Crimped
collagen tissues typically have an elastic modulus in the upper 10’s to lower 100’s
of MPa when measured in the linear region. The elastic modulus therefore appears
to decrease as lower-level assemblages aggregate into higher-level architectures in the
collagen-fiber hierarchy [9}; however, there are conflicting data in this regard [11].
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FIGURE 2. A schematic of the stress/stretch response of collagenous
tissues, and how their wavy structures vary with deformation.

1.2. Collagen Models. The response of collagen dominated tissues to external loads
can be divided into two regions, as shown in Fig. 2. In the first region, called the toe
or toe/heel region, collagen undulates carrying load as if it were an uncoiling spring.
No stretching at the micro-fibril level is observed—the D-spacing remains constant
throughout the toe region {12].

As the deformation leaves the toe region, passing the heel in the stress/stretch
curve, the response enters a nearly linear domain of substantial stiffness. Here the
collagen fibrils have been stretched from their former wavy shape into a straightened
configuration. Stretch arises from several mechanisms in the linear region. The D-
spacing at the micro-fibril level has been observed to extend from 67 nm up to 69 nm,
but this only contributes about 40% to the overall stretch [12]. Another possible
mechanism for stretch is the deformation of mechanical linkages binding the various
tiers in the collagen hierarchy—a folding over and extension of the GAG cross-links
[6]. The extent that this combined shear-lag/fluid-transport effect contributes to the
overall elastic stiffness is unknown. Our physical model also suggests that another
contribution to this mechanism of deformation may actually belong to the heel region:
the final stretching of crimp into its taut state {cf. Fig. 7).

Fiber tearing generally occurs at the end of stretching in the linear region. Fibrils
tear; they do not deform plastically, although plasticity concepts have been applied
to them [2]. Figure 2 represents the response of a single crimped fibril. A fiber is a
collection of fibrils, wherein the failure of individual fibrils occur at different states
producing a collective stress/strain response (beyond the toe region) whose eventual
failure is more gradual and graceful than that of an individual fibril.
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Material models for collagen generally belong to one of two classes: phenomenolog-

ical or structural. Both micro and macro variants belonging to these material classes
have been constructed.

Phenomenoclogical models have material parameters with no direct morphological
basis. The exponential function is most commonly employed in such descriptions
of collagen [13]. Power-law functions have alsc been used with good success in the
modeling of collagen [14].

Structural models have physiologic parameters. There are predominantly two types
of structural crimp models that have been reported on in the literature. Both consider
2D waveforms for describing crimp. They are outgrowths from two distinct camps of
thought: one being that crimp has a fairly smooth planar waveform like a sinusoid,
and the other being that crimp has a more jagged planar waveform like a sawtooth.
Both collectives base their hypothesis upon microscopic evidence.

Comninou and Yannas {15} and Lanir {1} derived constitutive formule for collagen
fibers from a sinusoidal waveform for crimp, as advocated by Dale et al. |16]. Both
models were shown to correlate experimental data reasonably well. Lanir’s model
adds a fiber/matrix (i.e., collagen/elastin) interaction effect.

Zig-zag models based on kinematic linkages with rigid hinges and flexible links {17},
with flexible hinges and rigid links [18], and with flexible hinges and flexible links [19]
constitute a second class of assumed collagen fiber waveforms. They correlate data
with varying degrees of realism.

In contrast, our collagen model assumes a smooth 3D waveform for describing
crimp; specifically, we employ a cylindrical helix. Evans and Barbenel [20] and Yahia
and Drouin [21] have both reported that planar and helical crimp patterns exist.
The waveform shape depends on both tissue and location. Lerch [22] was the first
to describe the geometric features of crimp, and this he did using the geometry of a
cylindrical helix for representing crimp waveform. Beskos and Jenkins {23] were the
first, and apparently the only ones to derive a constitutive expression for crimped
collagen based on a cylindrical helix for the waveform. However, their model predicts
an infinite stiffness at full extension due to an assumption of fiber in-extensibility,
which is not realistic.

In measurements of crimp angle vs. strain, Dale et al. [16] observed actual tissue
behavior to be bounded between models of an extending sine wave (from below) and
an extending cylindrical helix (from above). In this paper we derive a physiologically
based constitutive expression at the pm scale for the helical bound.

Lanir [24] proposed assembling an aggregate of micro-constitutive fibril models
oriented in various directions that are averaged via a probability distribution function,
thereby resulting in a homogenized macro-constitutive equation appropriate for tissue
modeling. Expounding upon this idea, we [25] have derived a constitutive expression
for soft tissues that accounts for fiber splay in an efficient manner, thereby making it
suitable for finite-element implementation. This continuum model requires o(A) and
do(A)/dA as material inputs, where ¢ is the fiber stress and A is the fiber stretch.
The paper you are reading resulted from our need to know these material functions,
and our desire to derive them from a physiologic representation of collagen crimp.
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FIGURE 3. SEM photograph showing the helical nature of crimped
collagen fibrils in chorde tendenes taken from a porcine mitral valve.
(Reproduced with permission from J. Liao [6].)

2. GEOMETRIC MODEL FOR COLLAGEN FIBRILS IN A FASCICLE

Figure 3 is a close-up of Fig. 1, where one observes that collagen fibrils have a 3D
helical shape in a fascicle free from external traction. Three different protocols were
followed for SEM specimen preparation, all resulting in images of crimped collagen
fibrils that undulate in 3-space [6].

By exploiting the geometry of a cylindrical helix, we have been able to derive a
physiologically based material model that can represent the nonlinear stress/strain
response of soft collagenous tissues. An advantage of adopting a cylindrical helix for
representing the waveform of crimp is that the symmetry of its geometry mitigates the
need to integrate along the helical axis, thereby resulting in a closed-form algebraic
constitutive expression.

2.1. Geometry of a Cylindrical Helix. Consider a fibril in a reference frame that
is free from external traction, and assume that this fibril takes on the shape of a
cylindrical helix. Let the height (or wavelength) of this helix be denoted by H,
which has a typical value ranging between 10 and 100 pm, and let its radius (or
amplitude) be given by R, which has a typical value ranging between 1 and 10 um
[4]. Consequently, the chord length L of one helical revolution is determined to be
L = (4n?R? + H?)'/>—a parameter that we shall assume remains fixed throughout
deformation in the toe region. Furthermore, let the radius of this fibril be denoted
by r—another parameter that we assume remains fixed, but whose value can vary
between 50 and 500 nm depending on age, tissue, and location within the tissue [4].
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When modeling a particular tissue, the three physiologic parameters H, R, and »

represent statistical averages taken over the volume.

A cylindrical-polar coordinate system was employed by Ancker and Goodier [26] in
their classic study of helical springs, and by Beskos and Jenkins [23] in the develop-
ment of their collagen model. We, on the other hand, adopt the coordinate system
of differential geometry, where the geometry of any curve in 3-space can be described
by an orthogonal triad of unit base vectors, which for a cylindrical helix is given by
[27, pg. 27]

t
(1) A = (—cosws, —sinws, 0},

b= w(H sinws, —H cosws, R}ﬁ

w(—Rsinws, Reosws, H),

I

wherein t is the tangent vector, A is the normal vector, and b is the binormal vector.
Parameter s designates a location along the curve, while w = (R?+H?)™"2. Curvature
s and torsion 7 (properties of curves in space) are equal in a helix, with 1/x being
the radius of curvature. For a cylindrical helix, k = R/(R? + H?) with R > 0.

2.2. Extension of a Cylindrical Helix. Figure 4 presents a schematic of how 2
helical collagen fibril is considered to carry load. A force P = (0,0, P) is assumed to
act along the centerline of the helix in the 3-direction, which is consistent with spring
theory [26]. This load translates out to the helix mean radius R, thereby producing
normal F' and shearing V forces that act on the face of the helix in directions t and
5, respectively, such that

- F=(P-t)t=Ft, F=PH/VR*+ H2,
V=(P-bb=Vbh, V = PR/VR? + H?,

where P -1 = 0. The act of moving P to the helix backbone also produces a bending
moment M and a torque T that are quantified by

) M=RaxFt=-RFb=-Mb, M = PRH/VR? + H?,
T=RaxVb=RVi="Ti, T = PR/\/R? + H2,

Scalars P, F', V, M, and T are the magnitudes of vectors P, F, V, M, and T,
respectively.

Consider first the case of a straight filament whose strain energy is U = % foedV,
where o is stress, ¢ is strain, and V is volume. The elastic strain energy of such a
filament is Up = F2L/2AE;, where F is the applied force, L is the length, A = 772 is
the cross-sectional area, and E; is the elastic modulus of the filament. An application
of Castigliano’s theorem {28, pp. 133-136] leads to the following force/displacement

relation aU AL
— F . — [— = (oo
AL = 3F F =Ky T = ;= AEy,
where AL is the change in length, and K is the filament stiffness.

For a helix, one must add to the strain energy for stretch Up, the strain energies for
shear Uy = 20V2L/9AGy, bending Uy = M2L/2IE;, and torsion Ur = T2L/2JGy,
where [ = %:7(?"4 and J = é—'zrr‘z‘ are the moment of inertia and polar-moment of inertia,
respectively, with G denoting the shear modulus of the filament, which we take to
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FIGURE 4. Diagram of how force P acting along the centerline of a
helix is transferred to forces F' and V and moments M and T that act
along the backbone of the helix.

be Gy = E;/3. Another application of Castigliano’s theorem, this time using Egs. (2
& 3), leads to

_OUp+Uy +Uy +Ur)
(4a) AH = 5P
and therefore
AH R*+ H?
4b) P=K 1 K=K :
(4b) B T LI+ 4R 1 6(20/9 + R/ )

with K being the elastic spring stiffness of a helix. The first term in the parentheses
of the denominator arises from stretching, the second term from bending, the third
term from shearing, and the forth term from twisting. All four energies are needed to
obtain realistic behavior from the ensuing constitutive formula. It is the symmetry
of a cylindrical helix along its length that leads to an algebraic equation for stiffness
(instead of an integral equation), which adds great utility to the resulting model.

Unlike classical spring theory, where the ratio of radii (r/R < 0.25) and the angle
of pitch (¢ = tan™! H/4R < 15°) of a helix are constrained so that the spring stiffness
remains approximately linear with deformation [26], the physics of crimped collagen
requires the helix to stretch straight. A plot of changes in the amplitude R and angle
of pitch ¢ over the toe region, whose responses are almost identical, is presented in
Fig. 5.

Linear beam theory was used in the derivation of Eq. (4b) as an approximation.
We also employed the Winkler-Bach flexure formula from curved beam theory |29,
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Normalized Crimp Parameters

Stretch in Toe Region

FiGURE 5. Plots of the amplitude K and angle of pitch ¢ of crimp
(normalized by their initial values Ry and ¢g) vs. stretch A over the toe
region.

pg. 142] and found the additional effects due to curvature to be negligible for helical
geometries representative of crimp.

2.3. Counstitutive Formulation. Our helical model for collagen appears to have
three, independent, geometric parameters (viz., Hy, Ry, and rp) but, in fact, there
are only two. This is demonstrated in Fig. 6, where two different curves for Hy/rg
are plotted against a normalized stiffness F/F, wherein F is the elastic modulus of
the linear region, and E is that secant modulus belonging to the point of transition
between the toe and linear regions. In one curve, Hy is held constant and rg is varied,
while in the other curve, 7y is held constant and Hy is varied. The two curves are
identical. Consequently, one is free to choose the dimensionless ratios Hy/ro and
Ry/ro as the independent variables.

The derivation of our constitutive equation for collagen, which is outlined in Alg. 1,
was founded upon the following set of assumptions:

(1) The wavelorm used to represent crimp is that of a cylindrical helix which
extends into a straightened configuration in the linear region of deformation.

(2) The only load carried by a crimped fibril is an axial force acting along the
centerline of the helix, which is consistent with spring theory, torsion springs
withstanding.

(3) Micro-structurally, the chord of a helix deforms elastically, in accordance with
linear (infinitesimal deformation) theory. Macro-structurally, the helical fiber
deforms in accordance with finite-deformation theory.

(4) No interactions are considered between neighboring helices (e.g., there is no
fiber recruitment {30} or out-of-phase wave pattern {31]), or between a fibril
and the ground substance matrix {1].

(5) The molecular dimensions along the backbone of a helix remain fixed over a
deformation history when loaded in the toe region.

Whenever the mean radius R of a helix is positive, the deformation is said to be in
the toe region. Whenever this radius becomes zero, the deformation is said to be in
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FIGURE 6. Plots of crimp wavelength Hy normalized by fibril radius
ro (where in one curve Hy varies, and in the other curve rg varies) vs.
the elastic modulus £ normalized by the secant modulus £ evaluated
at the end of the toe region.

Algorithm 1.
Given Ho/rg, Ro/7o, E, and X, where Hy is the initial wavelength of crimp,
Ry is the initial amplitude of crimp, ry is the initial fibril radius, E is the elastic
modulus of the fiber in the linear region, and A, is its ultimate stretch, then:
Set ro=1 sothat Ho=Hy/ro & Ro= Ry/ro.
Compute constant parameters:
Lo = {(2nRo)* + H3) ",
}:\_ - LO/HO < )\’LU
E _= E/{(Hg/Lg)z -+ [Ho(LO - Hg)/L(Q)Hl + 37/6772 -+ 2([10/7?7"0)2]}.
If A< X Then
(Yes, compressive stretches, i.e., 0 < A < 1, are allowed.)
H = AH@,

TFIN1/o

R={(L=H%""/2r,
¢ = (R*+ H?)/{LoH[1 +4R?*/r2 + 6(20/9 + R?/r3)R*/ H*]},
o=FE—1)/X
Else Ifﬁ <A< A, Then
o= BEO—D/A+ B\ —})
FElse (Fibril Failure)
o=0.
Return o.

the linear region. The first four assumptions stated above were used in the derivation
of Eq. (4). The fifth assumption allows Eq. (4) to be uncoupled so that stiffness only
depends on geometric parameters. Coupling would arise if the chord length L were
allowed to extend elastically whenever R > 0. Figure 7 demonstrates the wide range
of material behavior that Alg. 1 can reproduce.
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FIGURE 7. Various shapes for stress/stretch curves in the toe region,
where X and & = E(X—1)/) are the stretch and stress values belonging
to the point of transition between the toe and linear regions. The linear
region is not plotted.

Algorithm 1 applies to a fibril. It requires four material constants to be specified:
Hy/re, Ro/ro, E, and A,. Given an axial stretch X for a fiber, the algorithm returns
the stress ¢ carried by that fiber. In this algorithm, A and E represent the stretch
and secant modulus, respectively, at the point of transition between the toe and
linear regions. Parameter £ was extracted from Eq. (4b). Of the four specified
material parameters, the stretch at failure A, and the elastic modulus £ (over the
linear region) can both be obtained directly from an experimental stress/strain curve.
Acquiring the remaining two parameters, Hy/ro and Rp/rg, is a more arduous task
that is greatly aided by optimization techniques.

Unlike other collagen fiber models, our model permits compressive states—a helical
spring can compress. These states are very soft.

Like the collagen model of Hurschler et al. {32], our model accounts for failure. Fibril
failure is represented in a boolean manner. Fiber failure, to be correctly modeled,

would need to be an integral sum over all fibrils'in a fiber, which is beyond the scope
of this paper.

3. EXAMPLE

Many passive soft tissues act as tethers, transmitting loads from one attachment
point to another in a one-dimensional manner; for example: tendons, ligaments,
and the chorde tendinez of heart valves. Under normal loading conditions, the
forces carried by individual fibrils in these materials act along the centerlines of their
helices. Most experiments done on soft tissues are also one-dimensional, with the axis
of loading and the dominant fiber axis being coincident. Algorithm 1 applies to these
test conditions.

The ability of our helical model to fit experimental data is demonstrated in Fig.
8. The data presented therein are from five chordee tendineze taken from porcine
mitral valves. The experiments were done in a servo-hydraulic testing system using
a protocol that is described in Ref. [33]. The cross-sectional areas and gage lengths
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FIGURE 8. A fit of the helix model to data taken from five, porcine,
mitral-value, chordae-tendinese specimens.

of these five specimens were measured in their unloaded state. They were gripped
using sinusoidal clamps, and immersed in a temperature controlied (37C) saline bath.
An uniaxial ramp displacement (10 mm/s) was applied, and the resulting loads were
recorded. Stretch was computed from the grip-to-grip displacement, while stress was
computed from the measured load divided by the original cross-sectional area.

Helical model parameters were estimated using the direct-fit method described in
Ref. [14]. The direct-fit method uses a grid-based global optimization approach to
fit the model to the actual point-wise stress/stretch data. A single model fit was
done using the data from all five specimens grouped together. Gage lengths were
originally computed using an established protocol [34]. Because of the difficulty of
assigning an accurate gage length to soft-tissue experiments, these original lengths
were then manually adjusted (by < 0.5%) so that the linear portions of the stress/
stretch curves came into good alignment. The resulting optimal model parameters
were: Hy/r, = 21.0, Ry/ro = 1.80, and F = 26.6 MPa; with a residual sum-of-squares
error of 0.0072.

4. DISCUSSION

A physiological model for collagen tensile behavior can be useful for elucidating
structure-function relationships, and for assessing the mechanical behavior of tissues.
The work presented in this paper provides a theoretical framework for representing
collagen crimp based on the geometry of a cylindrical helix. We chose this helix geom-
etry because recent morphological evidence indicates a helical structure for crimped
collagen [6]. Indeed, helix-type structures are common in biological materials, e.g.,
DNA. Hence, the helix model developed herein may be useful in studies for a variety
of biological materials.

The low residual error obtained indicates that our helical model fits the data well,
particularly in the toe region. The model fit is not as good in the heel region, however,
having a stronger curvature and a more abrupt transition between the toe and linear
regions than is otherwise apparent in the data. Additionally, in the linear region, the
data tend to retain a small amount of curvature that is not represented by the model.
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These behaviors could be accounted for by including fiber recruitment, which would

tend to soften the curvature as fibers are gradually stretched. Including recruitment
into the model is a subject of current study.

We were encouraged to find that the resulting optimal parameters for our relatively
simple helical model corresponded well to the measured wavelengths and amplitudes
of crimp observed in optical and SEM images of the chordze. This further supports the
hypothesis that a cylindrical helix representation may be representative of the actual
tissue micro-structure. Further applications to tensile testing of specimens with differ-
ent crimp patterns (e.g., pericardium, rat-tail tendon, etc.) are needed to investigate
possible relationships between model parameters and tissue micro-structure.

Results from this chorde example suggest that the helical model can be used to
approximate the elastic response of crimped collagen in uniaxial tension. This helical
model has the potential to represent a wide variety of materials that possess a helical-
type structure, and has been incorporated into our ongoing efforts to model various
facets of soft-tissue mechanics that includes physiologic fiber splay, recruitment, and
viscoelastic behaviors.
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