
.

Requirements to Design to Code: Towards a Fully
Formal Approach to Automatic Code Generation

Michael G. Hinchey' James L. Rash' Christopher A. Rouff2

December 3,2004

'Information Systems Division 2sAIc
Code 580 Suite 300

NASA Goddard Space Flight Center
Greenbelt, MD 20771

4001 N. Fairfax Drive
Arlington, VA 22203

{ michael.g.hinchey, james.l.rash} @nasa.gov rouffc@saic.com

1

Abstract

A general-purpose method to mechanically transform system require-
ments into a provably equivalent model has yet to appear. Such a method
represents a necessary step toward high-dependability system engineering
for numerous possible application domains, including sensor networks and
autonomous systems. Currently available tools and methods that start with
a formal model of a system and mechanically produce a provably equivalent
implementation are valuable but not sufficient. The “gap” that current tools
and methods leave unfilled is that their formal models cannot be proven to
be equivalent to the system requirements as originated by the customer. For
the classes of systems whose behavior can be described as a finite (but sig-
nificant) set of scenarios, we offer a method for mechanically transforming
requirements (expressed in restricted natural language, or in other appropri-
ate graphical notations) into a provably equivalent formal model that can be
used as the basis for code generation and other transformations.

1 Introduction

Sensor networks and other highly distributed autonomous systems cannot attain
high dependability without addressing software dependability issues. Develop-
ment of a system that will have a high level of reliability requires the developer to
represent the system as a formal model that can be proven to be correct. Through
the use of currently available tools, the model can then be automatically trans-
formed into code with minimal or no human intervention to reduce the chance of
inadvertent insertion of errors by developers. Automatically producing the formal
model from customer requirements would further reduce the chance of insertion of
errors by developers.

The need for ultra-high dependability systems increases continually, along with
a correspondingly increasing need to ensure correctness in system development.
By “correctness,” we mean that the implemented system is equivalent to the re-
quirements, and that this equivalence can be proved mathematically.

Available system development tools and methods that are based on formal
models provide neither automated generation of the models from requirements nor
automated proof of correctness of the models. Therefore, today there is no auto-
mated means to produce a system or a procedure that is a provably correct imple-
mentation of the customer’s requirements. Furthermore, requirements engineering
as a discipline has yet to produce an automated, mathematics-based process for
requirements validation.

1

i

i .

2 Problem Statement

Automatic code generation from requirements has been the ultimate objective of
software engineering almost since the advent of high-level programming languages,
and calls for a “requirements-based programming” capability have become deafen-
ing !3kQ4]. Several tools and products exist in the marketplace for automatic code
generation from a given model; however, they typically generate code, portions of
which are never executed, or portions of which cannot be justified from either the
requirements or the model. Moreover, existing tools do not and cannot overcome
the fundamental inadequacy of all currently available automated development ap-
proaches,‘ which is that they include no means to establish a provable equivalence
between the requirements stated at the outset and either the model or the code they
generate.

Traditional approaches to automatic code generation, including those embod-
ied in commercial products such as Matlab @latoo], in system development toolsets
such as the B-Toolkit &H96] or the VDM++ toolkit [rr;AoO], or in academic re-
search projects, presuppose the existence of an explicit (formal) model of reality
that can be used as the basis for subsequent code generation, Figure l(a). While
such an approach is reasonable, the advantages and disadvantages of the various
modeling approaches used in computing are well known and certain models can
serve well to highlight certain issues while suppressing other less relevant de-
tails Ipar951. It is clear that the converse is also true. Certain models of reality,
while successfully detailing many of the issues of interest to developers, can fail to
capture some important issues, or perhaps even the most important issues. Existing
reverse-engineering approaches suffer from a similar plight. In typical approaches,
such as the one illustrated in Figure l(b), a model is extracted from an existing
system and is then represented in various ways, for example as a digraph [McL92].
The re-engineering process then involves using the resulting representation as the
basis for code generation, as above.

2.1 Specifications, Models, and Designs

The model on which automatic code generation is based is referred to as a de-
sign, or more correctly, a design specification. There is typically a mismatch be-
tween the design and the implementation (sometimes termed the “specification-
implementation gap”) in that the process of going from a suitable design to an
implementation involves many practical decisions that must be made by the auto-
mated tool used for code generation without any clear-cut justifications, other than
the predetermined implementation decisions of the tool designers. There is a more
problematic “gap,” termed the “analysis-specification gap,” that emphasizes the

2

(a) tmditional development process

(b) reverse enpineering process

Figure 1 : (a) traditional software development process from requirements to code,
and (b) reverse engineering from code to a system description.

3

,

problem of capturing requirements and adequately representing them in a specifica-
tion that is clear, concise, and complete. This specification must be formal, or proof
of correctness is impossible fBau801. Unfortunately, there is reluctance by many to
embrace formal specification techniques, believing them to be difficult to use and
apply [HalW] [BH95], despite many industrial success stories [HB95] [HBW].

Our experience at NASA Goddard Space Flight Center (GSFC) has been that
while engineers are happy to write descriptions as natural language scenarios, or
even using semi-formal notations such as UML use cases, they are loath to un-
dertake formal specification. Absent a formal specification of the system under
consideration, there is no possibility of determining any level of confidence in the
correctness of an implementation. More importantly, we must ensure that this for-
mal specification fully, completely, and consistently captures the requirements set
forth at the outset. We cannot expect requirements to be perfect, complete, and
consistent from the outset, which is why it is even more important to have a for-
mal specification, which can highlight errors, omissions, and conflicts. The formal
specification must also reflect changes and updates from system maintenance, as
well as changes and compromises in requirements, so that it remains an accurate
representation of the system.

2.2 A Novel Approach

Our approach involves providing a mathematically tractable round-trip engineering
approach to system development. The approach described herein is provisionally
named R2D2C (“Requirements to Design to Code”).

In this approach, engineers (or others) may write specifications as scenarios
in constrained (domain-specific) natural language, or in a range of other notations
(including UML use cases). These will be used to derive a formal model (Fig-
ure 2) that is guaranteed to be equivalent to the requirements stated at the outset,
and which will subsequently be used as a basis for code generation. The formal
model can be expressed using a variety of formal methods. Currently we are using
CSP, Hoare’s language of Communicating Sequential Processes moa781 [Hoa85],
which is suitable for various types of analysis and investigation, and as the basis for
fully formal implementations, as well as for use in automated test case generation,
etc.

3 Technical Approach

R2D2C is unique in that it allows for full formal development from the outset, and
maintains mathematical soundness through all phases of the development process,

4

Figure 2: The R2D2C approach, generating a formal model from requirements and
producing code from the formal model, with automatic reverse engineering.

from requirements through to automatic code generation. The approach may also
be used for reverse engineering, that is, in retrieving models and formal specifica-
tions from existing code, as shown in Figure 2. The approach can also be used to
“paraphrase” (in natural language, etc.) formal descriptions of existing systems. In
addition, the approach is not limited to generating high-level code. It may also be
used to generate business processes and procedures, and we are currently experi-
menting with using it to generate instructions for robotic devices to be used on the
Hubble Robotic Servicing Mission (HFSM). We are also experimenting with using
it as a basis for an expert system verification tool, and as a means of capturing ex-
pert knowledge for expert systems. (Such potential applications will be described
in Section 5.)

Section 3.1 describes the approach at a relatively high level. Section 3.2 de-
scribes an intermediate version of the approach for which we have built a prototype
tool, and with which we have successfully undertaken some examples.

3.1 R2D2C

The R2D2C approach involves a number of phases, which are reflected in the
system architecture described in Figure 3. The following describes each of these
phases.

D1 Scenarios Capture: Engineers, end users, and others write scenarios describ-
ing intended system operation. The input scenarios may be represented in a
constrained natural language using a syntaxdirected editor, or may be r e p
resented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic events are derived from
the scenarios defined in D1.

5

D3 Model Inference: A formal model, or formal specification, expressed in CSP
is inferred by an automatic theorem prover - in this case, ACL2 [KMMOO]
- using the traces derived in phase 2. A deep’ embedding of the laws of
concurrency jHJ951 in the theorem prover gives it sufficient knowledge of
concurrency and of CSP to perform the inference. The embedding will be
the topic of a future paper.

D4 Analysis: Based on the formal model, various analyses can be performed,
using currently available commercial or public domain tools, and specialized
tools that are planned for development. Because of the nature of CSP, the
model may be analyzed at different levels of abstraction using a variety of
possible implementation environments. This will be the subject of a future
paper-

D5 Code Generation: The techniques of automatic code generation from a suitable
model are reasonably well understood. The present modeling approach is
suitable for the application of existing code generation techniques, whether
using a tool specifically developed for the purpose, or existing tools such
as FDR Fo1991, or converting to other notations suitable for code genera-
tion (e.g., converting CSP to B @3ut99]) and then using the code generating
capabilities of the B Toolkit.

It should be re-emphasized that the “code” generated may be code in a high-
level programming language, low-level instructions for (electro-) mechanical de-
vices, natural-language business procedures and instructions, or the like. As Fig-
ure ?? illustrates, the above process may also be run in reverse:

R1 Model Extraction: Using various reverse engineering techniques [vZ93], a
formal model expressed in CSP may be extracted

R2 Traces Generation: The theorem prover may be used to automatically gener-
ate traces based on the laws of concurrency and the embedded knowledge of
CSP.

R3 Analysis: Traces may be analyzed, used to check for various conditions, un-
desirable situations arising, etc.

R4 Paraphrasing: A description of the system (or system components) may be
retrieved in the desired format (natural language scenarios, UML use cases,
etc.).

’ “ ~ e e p ~ ~ in the sense that the embedding is semantic rather than merely syntactic.

6

1 I *

Figure 3: The entire process with D1 through D5 illustrating the development ap-
proach and R1 through R4 the reverse engineering.

7

+

Figure 4: Reverse engineering of system using R2D2C.

Paraphrasing, whereby more understandable descriptions (above and beyond
existing documentation) of existing systems or system components are extracted,
is likely to have useful application in future system maintenance for systems that
have lost the original design documents or that have been modified so much that
the original design and requirements document do not reflect the current system.

3.2 Short-cut ED2C

The approach described in Section 3.1 is the way that R2D2C is intended to be
applied, from requirements specification through code generation. The approach,
however, requires significant computing power in the form of an automated theo-
rem prover performing significant inferences based on traces input and its “knowl-
edge” of the laws of concurrency. While this is well warranted for certain applica-
tions, it is likely to be beyond the resources of many developers and organizations.
As a practical concession, we also define a reduced version of R2D2C called the
“shortcut version” (Figure 5), whereby the use of a theorem prover is avoided, yet
without sacrificing high confidence in the validity of the approach. The following
describes each of the phases for the shortcut R2D2C:

8

S1 Scenarios Capture: As before, intended system behavior is described by sce-
narios input in natural language, or an appropriate graphical or semi-formal
notation.

S 2 Tra.nshtion to Zntennediate Notation: Scenarios are translated to an intermedi-
ate notation, termed EzyCSP, which is a simple natural language-like subset
of CSP that can be used to describe a large number of situations and scenar-
ios (recall that scenarios are domain specific).

S3 Analysis: While far more simple than CSP, EzyCSP allows some simple anal-
yses to be performed.

S4 Implementation in Java: EzyCSP is sufficiently simple that it may easily be
translated to Java and executed.

This simplified or shortcut approach clearly has significant disadvantages when
compared to our full approach. First, the correctness of the development process is
contingent on the correctness of both the translation of scenarios to the intermediate
(EzyCSP) notation and the translation of EzyCSP to Java. However, the correctness
of the translators for these is assured via a proof of correctness undertaken with
the ACL2 theorem prover. Second, we do not have a reverse process, suitable
to support reverse and (ultimately) re-engineering, for free; however, a Java-to-
EzyCSP translator would certainly be possible for highly constrained subsets of
Java.

The significant advantage of this simplified approach, however, is that although
a proof of correctness involving a theorem prover is still required, this is required
exactly once and would be performed by the support system developers (presum-
ably expert in the art). This is significantly less expensive computationally than
using a theorem prover in the development of each individual application.

4 A Simple Example

The Lights-Out Ground Operating System (LOGOS) is a proof-of-concept NASA
system for automatic control of ground stations when satellites pass overhead and
under their control. The system exhibits both autonomous and autonomic prop-
erties [TRRHo4] [THRROS], and operates by having a community of distributed
autonomous software modules work cooperatively to perform the functions pre-
viously undertaken by human operators using traditional software tools, such as
orbit generators and command sequence planners. A post-implementation formal
specification of the system was undertaken in CSP. The interested reader is directed
to [HRRM] [RRHOO] and [HRROl] for a detailed discussion of our experiences in

9

apply in formal methods

Figure 5: Short cut R2D2C.

I LOGOS. Using CSP, a number of anomalies, conflicts,
and omissions in the system were discovered that had not been detected in testing
and/or actual execution. This experience is typical of highly distributed systems,
such as sensor networks or other multi-agent based systems where dependability is
both very important and very difficult to evaluate. The same approach can be used
for space based WSN systems where a control station is in charge of several WSNs
located on spacecrafts in deep space. An example is the Autonomous Nan0 Tech-
nology Swarm mission (ANTS) [CMN+OO], which is at the concept development
phase. This mission will send 1 ,OOO pico-class (approximately 1 kg) spacecraft to
explore the asteroid belt. The ANTS spacecraft will act as a sensor network making
observations of asteroids and analyzing their composition.

4.1 Specification of LOGOS

We will not consider the entire LOGOS/ANTS related system here. Although a
relatively small system, it is too extensive to illustrate in its entirety in this paper.
Instead, we will take a couple of example agents from the system, and illustrate
their mapping from natural language descriptions through to simple Java imple-
mentations.

10

Let us first illustrate, via a trivial example, how scenarios map to CSP. Suppose
we have the following as part of one of the scenarios for the system:

if the WSN Monitoring Agent receives a “fault” advisory from the

OR
if the WSN Monitoring Agent receives engineering data from the WSN

WSN the agent sends the fault to the Fault Resolution Agent

the agent sends the data to the Trending Agent

That part of the scenario could be mapped to structured text as:

inWSNMA?fault from WSN
then outWSNMA!fault to FIRE
else
inengWSNMA?data from WSN
then outengWSNMA!data to TREND

The laws of concurrency would allow us to c a k e the traces as:

tWSNMA 2 { () 7 (inWSNMAfault), (inWSNMfault,outWSNMAfault))
U { (), (inengWSNMA,data), (i n e n g W S ~ , d a t 4 o u t W S N ~ , d a ~) }

From which, we can infer an equivalent CSP process specification as:

WSNMA = inWSNMA ?fault + (outWSNM!fault + S K Z P)

I (inengWSNMA?data + outengWSNU!data + S K I P)

Let us now consider a slightly larger example, the Pager Agent, and illustrate its
implementation in Java. The pager agent sends pages to engineers and controllers
when there is a WSN anomaly and there is no analyst logged on to the system. The
pager agent receives requests from the user interface agent that no analyst is logged
on, gets paging information from the database agent that keeps relevant information
about each user of the system (in this case the analyst’s pager number), and, when‘
instructed by the user interface agent that the analyst has logged on, stops paging.
These scenarios can be restated in more structured natural language as follows:

if the Pager agent receives a request from the User Interface agent, the
Pager agent sends a request to the database agent for an analyst’s
pager information and puts the message in a list of requests to the
database agent

OR
if the Pager agent receives a pager number from the database agent,

then the pager agent removes the message from the paging queue

11

and sends a message to the analyst’s pager and adds the analyst to
the list of paged people

OR
if the Pager agent receives a message from the user interface agent

to stop paging a particular analyst, the pager sends a stoppaging
command to the analyst’s pager and removes the analyst from the
paged list

OR
if the Pager agent receives another kind of message, reply to the sender

that the message was not recognized

The above scenarios would then be translated into CSP. The following is a
partial CSP description of the pager agent:

P A G E R-BU Sdb-wairing,paged = pager.lin?msg +

G E T-U SER-INF Odb-waiting, paged, pagee,text

case

i f msg = (START-PAGING, specialist, t ex t)

ST O P-C ONTACTdb-waiting,paged,pagee
i f msg = (STOP-PAGING, pagee)

pager. Iout (head(msg), U N R E C O G N I Z E D)
4 P A G E R-B u Sdb-wai t ing, paged

otherwise

This specification states that the process PAGER_BUS receives a message on
its “Iin” channel and stores it in a variable called “msg”. Depending on the contents
of the message, one of four different processes is executed. If the message has a
STm-PAGING performative, then the GET-USER-INFO process is called with
parameters of the type of specialist to page (pagee) and the text to send the pagee.
If the message has a RETURN-DATA performative with a pagee’s pager number,
then the database has returned a pager number and the BEGIN-PAGING process
is executed with a parameter containing the original message id (used as a key
to the db-waiting set) and the passed pager number. The third type of message
that the pager agent might receive is one with a STOP-PAGING performative.
This message contains a request to stop paging a particular specialist (stored in the

12

pagee parameter). When this message is received, the STOP-PAGING process is
executed with the parameter of the specialist type. If the pager agent receives any
other message than the above three messages, an error message is returned to the
sender of the message (which is the first item of the list) stating that the message is
“UNRECOGNIZED. After this, the PAGER-BUS process is again executed.

5 ApplicationAreas

The motivation for this work was the need for automatic code generation for ultra-
high dependability systems, but the method described in this paper is applicable in
a number of other areas. The following areas may find significant value from the
use of this system.

Sensor Networks
NASA is currently conducting research and development on sensor networks

for planetary and solar system exploration as well as to support its Mission to
Planet Earth. In addition to the ANTS mission, a similar mission is being con-
sidered to explore the rings of Saturn. Sensor networks are also being considered
for planetary (e.g., Martian) exploration, to yield valuable scientific information on
weather and geological aspects. For the Mission to Planet Earth, sensor networks
are already being researched and developed towards capabilities for early warnings
about natural disasters and climate change. With the “system of systems” nature
of sensor networks, the inter-relatedness of these systems all networked together
will create a level of complexity that will require a new level of dependability and
a corresponding new approach to system and software development.

Projected NASA sensor networks are highly distributed autonomous systems
that must operate with a high degree of reliability, especially the solar system and
planetary exploration networks, which will be out of touch with the Earth and mis-
sion control for long periods of time and must operate under extremes of dynamic
environmental conditions. Because of the complexity of these systems, as well as
their distributed and parallel nature, they will have an extremely large state space
and will be impossible to test using traditional testing techniques. The more “code”
or instructions that can be generated automatically from a verifiably correct model,
the less likely that people will introduce errors during the development process. In
addition, the higher the level of abstraction that developers can work from, as is
afforded through the use of scenarios to describe system behavior, the less likely
that a mismatch will occur between requirements and implementation and the more
likely that the system will be validated. Working from a higher level of abstraction
will also allow errors in the system to be more easily caught, because developers

13

can better see the “big picture” of the system. In addition to allowing complex sys-
tems developers to work at a higher level of abstraction, R2D2C also converts the
scenarios into a formal model that can be analyzed for concurrency-related errors
as well as consistency and completeness, in addition to domain-specific errors.

ExpertSY-
We have been studying the potential use of this approach in the development,

maintenance, and verification of expert systems. In particular, we have been giv-
ing consideration to using the R2D2C method in verifying the expert system used
in the NASA ground control center for the POLAR spacecraft, which performs
multi-wavelength imaging of the Earth’s aurora. The POLAR ground control ex-
pert system has rules written in the production system CLPS [Gia92] for auto-
mated ‘‘lights out” (untended) operation of the spacecraft. A suitable translator
from CLIPS, rather than natural language, to CSP (or EzyCSP) enables us to use
this technology to examine existing expert system rule bases for consistency, etc.
What has proven to be of great interest, however, is the ability to generate CLIPS
rules from CSP (or EzycSP), just as we would generate code in Java or C++. PO-
LAR ground control center personnel expect this would be a great benefit because
it would give them a means of capturing expert knowledge, from natural language
description through to CLIPS rules, while maintaining correctness, which hereto-
fore has not been available.

Robotic Operations
As pointed out earlier, the “code” generated by this approach need not be

specifically code in a programming language. To this end, we have been exper-
imenting with generating code to control robotic devices. Perhaps more interesting
is the use of this approach to investigate the validity and correctness of procedures
for complex robotic assembly or repair tasks. We have begun exploratory work in
this direction, to validate procedures from the Hubble Robotic Servicing Mission
(HRSMtfor example, the procedures for replacement of cameras, etc., on the
Hubble Space Telescope (HST).

6 Relatedwork

Hare1 [HarOl] [HMO31 has advocated scenario-based programming through UML
use cases and play-in scenarios. This work differs in that it uses scenarios in
the form of structured text that is easily understandable by engineers and non-
engineers. In addition, the results of converting the structured text to traces and
then from traces to a formal model allows us to use a wide range of formal methods

14

tools (e.g., model checkers), which can be used to verify and validate the system.
NASA Ames has been working on the automatic translation of UML use cases

to executable code, and report success in using the approach on large applica-
tions pWSKO31. Our approach is different, however, in that we are not limited
to UML use cases, nor to natural language. R2D2C will work equally well with
any input mechanism whereby requirements can be represented as scenarios, and
traces extracted. Our approach works equally well with graphical, mathematical,
and textual requirements representations. More importantly, the key to our ap-
proach and what makes it invaluable for high-dependability applications is the full
formal basis, and complete mathematical tractability from requirements through
to code. To our knowledge, no other currently available automated development
methodology can make this claim.

7 Conclusions and Future Work

R2D2C is a unique approach to the automatic derivation of ultra-high dependability
systems. It is unique in that it supports fully (mathematically) tractable develop
rnent from requirements elicitation through to automatic code generation (and back
again). While other approaches have supported various subsets of the development
lifecycle, there has been heretofore a “jump” in deriving (from the requirements)
the formal model that is a prerequisite for sound automatic code generation. Yet,
R2D2C is a simple approach, combining techniques and notations that are well
understood, well tried and tested, and trusted. The novelty of the approach, and
the part of the approach that achieves continuity in the development process, is the
use of a theorem prover to reverse the laws of concurrency, and to achieve levels of
inference that would be impossible for a human being to perform on all but trivial
systems.

It is our contention that R2D2C, and other approaches that similarly provide
mathematical soundness throughout the development lifecycle will:

0 Dramatically increase assurance of system success by ensuring

- completeness and consistency of requirements

- that implementations are true to the requirements

- that automatically coded systems are bug-free

- that implementation behavior is as expected

0 Decrease costs and schedule impacts of ultra-high dependability systems
through automated development

15

Decrease re-engineering costs and delays

Future work will include improving the quality of the embedding of CSP in
ACL2, and optimizing that for efficiency. We plan a plethora of support tools to
allow us to easily change the level of abstraction in a formal model, to visualize
various system models and changes in those models, and to aid in tracking changes
through the development process (or the reverse engineering process). We plan
to enhance our existing prototype to support the full version of R2D2C, to make it
into a fully functional robust prototype, and to apply it to more significant examples
than the one presented in this paper.

Acknowledgments
This work was funded in part by the NASA Goddard Space Flight Center Tech-

nology Transfer Office. We are grateful to Ted Mecum, NOM Cheeks, Chris Kirk-
man, Diana Cox, Yvette Conwell-Brown, and Keith Dixon for their support and
encouragement. Denis Gracanin (Virginia Tech) and John Erickson (University of
Texas at Austin) worked with us on the intermediate approach described in Section
3.2, and undertook the implementation of the prototype described in that section.
The approach described in this paper is protected under United States and interna-
tional Patent Applications assigned to the United States government.

References

[Bau80] F. L. Bauer. A trend for the next ten years of software engineering.
In H. Freeman and P. M. Lewis, editors, Sofnvare Engineering, pages
1-23. Academic Press, 1980.

[BH95] 3. P. Bowen and M. G. Hinchey. Seven more myths of formal methods,
1995.

[But991 Michael J. Butler. csp2B : A Practical Approach To Combining CSP
and B. Declarative Systems and Software Engineering Group, Depart-
ment of Electronics and Computer Science, University of Southamp-
ton, February 1999.

[CMN+OO] S. A. Curtis, J. Mica, J. Nuth, G. Marr, M. Rilee, andM. Bhat. Ants
(autonomous nano-technology swarm): An artificial intelligence ap-
proach to asteroid belt resource exploration. In Proc. Int’l Astronauti-
cal Federation, 51st Congress, October 2000.

[For991 Formal Systems (Europe), Ltd.
User Manual and Tutorial, 1999.

Failures-Divergences Rejinement:

16

.

[Gia92] J. C. Giarratano. CUPS User’s Guide. NASA Johnson Space Center,
Houston, Texas, 1992.

[Ha1901 J. Anthony Hall. Seven myths of formal methods, 1990.

[Haroll D. Harel. From play-in scenarios to code: An achievable dream, 2001.

[Ha#4] D. Harel. Comments on requirements-based programming as part of
panel session. October 2004.

[HB95] M. G. Hinchey and J. P. Bowen, editors. Applications of Formal Meth-
ods. Series in Computer Science. Rentice Hall International, Engle-
wood Cliffs, NJ, and Hemel Hempstead, UK, 1995.

[HI3991 M. G. Hinchey and J. P. Bowen, editors. Industrial-Strength Formal
Methods in Practice. FACE Series. Springer-Verlag, 1999.

[HJ95] M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal De-
International Series in Software Engineering. verOpment in CSP.

McGraw-Hill International, London, UK, and New York, NY, 1995.

[HMO31 D. Harel and R Marelly. Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[Hoa78] C. A. R. Hoare. Communicating sequential processes, 1978.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall
International Series in Computer Science. Prentice Hall International,
Englewood Cliffs, NJ, and Hemel Hempstead, UK, 1985.

[HRROl] M. Hinchey, J. Rash, and C. Rouff. Verification and validation of au-
tonomous systems. In Proc. 2001 IEEENASA Sofhyare Engineering
Workshop. Springer-Verlag, November 200 1.

IHRRo43 Michael G. Hinchey, James L. Rash, and Christopher A. Rouff. Re-
quirements to design to code: Towards a fully formal approach to auto-
matic code generation. Technical report, NASA Goddard Space Flight
Center, Greenbelt, MD, 2004.

[FA001 IFAD. The vDM++ Toolbox User Manual, 2000.

[KMMOO] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reu-
soning: An Approach. Advances in Formal Methods Series. Kluwer,
Boston, 2000.

17

&H96] K. Lano and H. Haughton. SpeciJication in B: an Introduction Using
the B-Toolkit. Imperial College Press, London,UK, 1996.

[Mat001 The Mathworks, Inc., Natick, Massachusettes. Gem-ng Started with
iU4TL4B, 2000.

WcL921 E McLoughlin. Adaggio-an automated directed graph diag-amming
tool, 1992.

[pa1951 D. L. Parnas. Applications of Fomuzl Methods, chapter Using Math-
ematical Models in the Inspection of Critical Software, pages 17-3 1.
International Series in Computer Science. Prentice Hall, Englewood
Cliffs, NJ, and Hemel Hempstead, UK, 1995.

@RHO01 C. Rouff, J. Rash, and M. Hinchey. Experience using fonnal methods
for specifying a multi-agent system. In Proc. Sixth IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS
2000), 2Ooo.

[THRROS] W. E T&owski, M. G. Hinchey, J. L. Rash, and C. A. Rouff. Au-
tonomous and autonomic system: A paradigm for future space ex-
ploration missions, 2005.

fTRRH041 W. Tmszkowski, J. Rash, C. Rouff, and M. Hinchey. Some auto-
nomic properties of two legacy multi-agent systems-logos and act. In
Proc. 1 Ith IEEE International Conference on Engineering Computer-
Based Systems (ECBS), Workshop on Engineering Autonomic Systems
(EASe), pages 490-498, Bmo, Czech Republic, May 24-27 2004.
IEEE Computer Society Press.

[vZ93] H. J. van Zuylen. The REDO Compendium: Reverse Engineering for
Sofhvare Maintenance. John Wiley and Sons, London, UK, 1993.

mSKO3] J. Whittle, J. Saboo, and R. Kwan. From scenarios to code: An air
traffic control case study. In Pmc. ICSE-25,25th IEEUACM Intema-
tional Conference on Sofiware Engineering, pages 4-95, Portland,
Oregon, 2003. IEEE Computer Society Press.

18

