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1. Introduction 
Swarms of intelligent autonomous spacecraft, involving complex behaviors and interactions, are 
being proposed for future space exploration missions. Such missions provide greater flexibility 
and offer the possibility of gathering more science data than traditional single spacecraft 
missions. The emergent properties of swarms make these missions powerful, but simultaneously 
far more difficult to design, and to assure that the proper behaviors will emerge. These missions 
are also considerably more complex than previous types of missions, and NASA, like other 
organizations, has little experience in developing or in verifying and validating these types of 
missions. A significant challenge when verifying and validating swarms of intelligent 
interacting agents is how to determine that the possible exponential interactions and emergent 
behaviors are producing the desired results. Assuring correct behavior and interactions of 
swarms will be critical to mission success. 

' The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm 
types of missions NASA is considering. The ANTS mission will use a swarm of picospacecraft 
that will fly fiom Earth orbit to the Asteroid Belt. Using an insect colony analogy, ANTS will be 
composed of specialized workers for asteroid exploration. Exploration would consist of 
cataloguing the mass, density, morphology, and chemical composition of the asteroids, including 
any anomalous concentrations of specific minerals. To perform this task, ANTS would carry 
miniaturized instruments, such as imagers, spectrometers, and detectors. 

Since ANTS and other similar missions are going to consist df autonomous spacecraft that may 
be out of contact with the earth for extended periods of time, and have low bandwidths due to 
weight constraints, it will be difficult to observe improper behavior and to correct any errors after 
launch. Providing V&V (verification and validation) for this type of mission is new to NASA, 
and represents the cutting edge in system correctness, and requires higher levels of assurance 
than other (traditional) missions that use a single or small number of spacecraft that are 
deterministic in nature and have near continuous communication access. 

One of the highest possible levels of assurance comes from the application of formal methods. 
Formal methods are mathematics-based tools and techniques for specifying and verifying 
(software and hardware) systems. They are particularly useful for specifying complex parallel 
systems, such as exemplified by the ANTS mission, where the entire system is difficult for a 
single person to fully understand, a problem that is multiplied with multiple developers. Once 
written, a formal specification can be used to prove properties of a system (e.g., the underlying 
system will go from one state to another or not into a specific state) and check for particular 
types of errors (e.g., race or livelock conditions). A formal specification can also be used as 
input to a model checker for further validation. 

This report gives the results of a survey of formal methods techniques for verification and 
validation of space missions that use swarm technology. Multiple formal methods were 
evaluated to determine their effectiveness in modeling and assuring the behavior of swarms of 
spacecraft using the ANTS mission as an example system. This report is the first result of the 
project to determine formal approaches that are promising for formally specifying swarm-based 
systems. From this survey, the most promising approaches were selected and are discussed 
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relative to their possible application to the ANTS mission. Future work will include the 
application of an integrated approach, based on the selected approaches identified in this report, 
to the formal specification of the ANTS mission. 

2. Intelligent Swarm Technology Overview 
Bonabeau et aI. (1997), who studied self-organization in social insects, state “that complex 
collective behaviors may emerge from interactions among individuals that exhibit simple 
behaviors” and describe emergent behavior as “a set of dynamical mechanisms whereby 
structures appear at the global level of a system from interactions among its lower-level 
components.” 

Agent swarms are being used as a computer modeling technique and have also been used as a 
tool to study complex systems (Hiebeler, 1994). In swarm simulations, a group of interacting 
agents (Weiss, 1999) (often heterogeneous or near heterogeneous agents) has been studied for 
their emergent behavior. Examples of simulations that have been undertaken are swarms of 
birds (Reynolds, 1987; Carlson, 2000), business and economics (Luna and Stefansson, 2000) and 
ecologicai systems (Savage and Askenaki, 1998). In swarm simulations, each of the agents is 
given certain parameters that it tries to maximize. In terms of the bird swarms, each bird tries to 
find another bird to fly with, and it will try to fly off to one side and slightly higher to reduce its 
drag. Eventually the birds form flocks. Other types of swarm simulations have been developed 
that exhibit unlikely emergent behavior. The emergent behavior makes the whole greater than 
the sum of the individuals in the swarm. These emergent behaviors are the sums of often simple 
individual behaviors, but when aggregated, form complex and often unexpected behaviors. 
Swarm behavior is also being investigated for use in such applications as telephone switching, 
network routing, data categorizing, and shortest path optimizations (Bonabeau and Theraulaz, 
2000). 

Intelligent swarms (Bonabeau et ai., 1999; Beni, 1998; Beni and Want, 1989) involve, 
minimally, simple agents and local interactions (interactions between agents and the 
environment). There is no central controller directing the swarm; they are self-organizing based 
on the emergent behaviors of the simple interactions. The emergent behavior is sometimes 
referred to as the macroscopic behavior and the individual behavior and local interactions as the 
microscopic behavior. These types of swarms exhibit self-organization since there is no external 
entity directing their behavior and no one agent has a global view of the intended macroscopic 
behavior. This type of behavior is observed in insects and flocks of birds. 

One of the most challenging aspects of using swarms is how to verify that the emergent behavior 
of such systems will be proper and that no undesirable behaviors will occur. In addition to 
emergent behavior in swarms, there are also a large number of concurrent interactions going on 
between the agents that make up the swarms. These interactions can also contain errors, such as 
race conditions, that are very difficult to detect until they occur. Once they do occur, it can also 
be very difficult to recreate the errors since they are usually data and time dependent. 

Intelligent swarm technology is based on swarm technology where the individual members of the 
swarm also have independent intelligence. This makes verifying such systems even more 
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difficult since the swarms are no longer made up of homogeneous members with limited 
intelligence and communications. With intelligent swarms, members of the swarm may be 
heterogeneous or homogeneous. Even if members are initially homogeneous, their differing 
environments may cause them to learn different things and develop different goals and 
consequently become a heterogeneous swarm. Intelligent swarms may also be made up of 
heterogeneous elements from the outset, reflecting different capabilities as well as a possible 
social structure. Verifjing such swarms will be difficult due to the complexity of each member 
but also due to the complex interaction of a large number of intelligent elements. This will 
create a huge state space, and, since the elements may be learning, the behavior of the individual 
elements and the emergent behavior of the swarm will be constantly changing and may be 
difficult to predict. . 

3. ANTS Mission Overview 
The Autonomous Nan-Technology Swarm (ANTS) mission (ANTS Team; Clark et al., 2002; 
ANTSPAM website; Curtis et al., 2000; Curtis et al. 2003) will have swarms of autonomous 
pico-class (approximately lkg) spacecraft that will search the asteroid belt for asteroids that have 
specific characteristics. There will be approximately 1,000 spacecraft involved in the mission. 
The spacecraft will be initially carried to the asteroid belt by a transport ship and then released. 
Replacement spacecraft will be sent from Earth on an as-needed basis. 

There will be several types of spacecraft involved in the mission (Figure 1). Some of the 
spacecraft, called workers, will have a specialized instrument onboard (e.g., a magnetometer, x- 
ray, gamma-ray, visibleAR, neutral mass spectrometer) and will gather specific types of data. 
Some will be coordinators (called rulers) that have rules that decided the types of asteroids and 
data the mission is interested in and will coordinate the efforts of the workers. The third type of 
spacecraft are the messengers that will coordinate communications between the workers, rulers 
and Earth. Each worker spacecraft will examine asteroids they encounter and send messages 
back to a coordinator that will then evaluate the data and send other appropriate satellites with 
specialized instruments to the asteroid to gather further information if needed. Approximately SO 
percent of the spacecraft will be workers. 

To implement this mission, a high degree of autonomy is being planned. A heuristic approach is 
being considered that provides for a social structure for the spacecraft based on the above 
hierarchy. Artificial intelligence technologies such as genetic algorithms, neural nets, fuzzy 
logic and on-board planners are being investigated to assist the mission in maintaining a high 
level of autonomy. Crucial to the mission will be the ability to modi@ its operations 
autonomously to reflect the changing nature of the mission and the high-latency and low 
bandwidth communications back to Earth. 

4. Formal Approaches and Assurance 



Figure 1 : ANTS Mission Concept. 

Software engineers are confi-onting the central dilemma of the field - the necessity of producing 
high quality software -- knowing that, using traditional methods, 100% verification and 
validation (V&V) of non-trivial software systems is impossible. Addressing this dilemma is a 
crucial problem facing computer science and soflware engineering in general. For NASA, 
having software with less than 100% V&V means having less than 100% assurance of mission 
safety and success. Finding a solution to the software dilemma is a matter of urgency and is a 
major focus of computer science as well as for NASA. 

As mission software becomes more complex, testing it also becomes more difficult. This is 
especially true of parallel processes and distributed computing, which NASA is increasingly 
developing and using on missions. Errors in these systems can rarely be found by inputting 
sample data into the system and checking if the results are correct. These types of errors are 
time-based and only occur when processes send or receive data at particular times or in a 
particular sequence. To find these errors, the software processes involved have to be executed in 
all possible combinations of states (state space) that the processes could collectively be in. The 
state space grows extremely rapidly (often exponentially) with the number of states in the 
processes, and becomes increasingly difficult to test with a relatively small number of processes. 
Traditionally, to get around the state explosion problem, testers have artificially reduced the 
number of states and approximated the underlying software using restricted models. 



Formal methods are proven approaches for assuring the correct operation of complex interacting 
systems (Hinchey and Jarvis, 1995; Hoare, 1985; Clare and Wing, 1996). Once written, a formal 
specification can be used to prove properties of a system correct (e.g., the underlying system will 
go from one state to another, or not into a specific state), check for particular types of errors 
(e.g., race conditions), as well as used as input to a model checker. 

5. Potential Candidates 
The following is a list of potential formal approaches that could be used for formally specifiring 
swarm related technologies, such as ANTS. This list gives the name of each of the formal 
approaches, a brief summary, history, applications that it has been used on, strengths, 
weaknesses, and tool support. 

This list of approaches was determined through a literature search. A high emphasis was given 
to those approaches that have been used in agent technologies or other highly distributed, 
concurrent environment, which is the environment of swarms. 

The following gives a brief overview of several formal methods that have been used to model 
agent-based systems. 

5.1 Process Algebras 
Process algebras generally are made up of the following: a language for describing systems, a 
behavioral equivalence or inequivalence that allows comparison of system behaviors, and axioms 
that allow for proofs of equivalence between systems. Some algebras include a refmement 
ordering to determine whether one system is a refinement of another. Process algebras usually 
use a handshake mechanism (rendezvous) between processes via a port or channel. One process 
may wait for data at a channel until another process sends data over the channel (or vice versa). 
Once the data is exchanged, both processes continue. The receiving process then may execute 
different processes based on the data received. Internal, non-communications aspects of 
processes are not reflected by process algebras. 

5.1.1 Communicating Sequential Processes (CSP) 

5.1.1.1 Summary 

Communicating Sequential Processes (CSP) was designed by C.A.R. Hoare (1978; 1985) to 
specify and model concurrent systems. Systems specified in CSP consist of independently 
executing processes that communicate over unbuffered, unidirectional channels and use events 
for synchronization. Processes in CSP are recursively defined as the occurrence of an event 
followed by a process. The events guard the processes so that the process does not execute until 
the event occurs. When a process needs to synchronize with another process or send it data, data 
is sent over a channel and then blocks until the other process reads the data fiom the channel. If 
the reading process tries to read data from a channel and there is no data on the channel, it also 
blocks until data arrives. There are also standard processes, such as STOP, SKIP, RUN and 
bottom (I). Choice operators and conditionals also exist that allow for choosing one of many 
processes to execute depending on a condition. 
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CSP has a proof system associated with it so that properties of CSP specifications can be proven 
correct or not correct. Proofs are based on traces of events that can be produced by a 
specification. Every time an event occurs, the event is listed as part of a trace for the process. A 
specification has a set of acceptable traces that can occur. By applying the laws of CSP traces to 
a set of traces, it can be determined whether the given set of traces can be produced by a given 
specification. It can also be determined the set of possible traces that a specification can 
produce. Correctness of a specification can then be determined by proving that a sequence of 
traces can never be produced by the specification and/or that a set of traces can be produced by 
the specification. In addition, properties such as deadlock and liveness can also be proven as 
properties of a specification. 

5.1.1.2 History 

CSP was developed by C.A.R. Hoare and originally presented in a paper in the Communications 
of the ACM in 1978 (Hoare, 1978). A book (Hoare, 1985) was subsequently published in 1985 
that contained updates on CSP that added the named channels and renaming. CSP has also been 
updated several times with several variations such as Timed CSP (Reed and Roscoe, 1987), CSP- 
i (Wrench, 1988) and Receptive Process Theory (Josephs, 1992). 

It is a popular formal specification notation forconcurrent systems and has been widely used to 
specify concurrent systems. It has often formed the basis of programming language extensions 
for concurrent systems and other specification systems. 

5.1. 1. 3 Applications 

CSP has been used in a wide range of applications for specification of concurrent systems. A 
few of these include: 

9 

9 

Specification of the LOGOS multi-agent system at NASA Goddard (Rouff et al., 2000; 
Hinchey et al., 2001), 
Specification of the Open Systems Interconnection (OSI) model (Hinchey and Jarvis, 
1995), 
Specification of an operating system by praxis Systems Ltd (Craigen et al., 1993), 
Specification of the Textronix 1 1000 oscilloscope, 
Specification of the T 800 Transputer for N O S  Ltd., 
Specification of the WOO0 Transputer for INMOS Ltd, 

5.1.1.4 Strengths 

The primary strength of CSP is that it was originally developed for describing concurrent 
systems. It is also a simple language that is easy to read with little training and also easy to 
write. By modeling systems using processes, events, and channels, the communication between 
processes is easily modeled and concurrency-related problems easily detected by inspection. 
CSP can also be used at differing levels of abstraction to give a high-level overview of a system 
as well as a detailed view. CSP allows for proof of correctness for deadlock and livelock as well 
as general safety and liveness properties. Other strengths noted of CSP are that it naturally 
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supports specification of nondeterministic systems and is good at modeling resource sharing, 
process control, and real-time interactions. 

Some model checkers have used CSP as a basis for their model checking languages. An 
example is the Promela model checking language for SPIN (Holzmann, 1991). This makes 
converting CSP into a model checking language straight3orward and the process can even be 
automated. An advantage of using CSP instead of a model checking language directly is that the 
resulting CSP specification is more general purpose and can then be translated to a wide range of 
tools (see below) as opposed to just the model checker. 

Many programming languages and other modeling languages are using CSP as a model when 
adding concurrency features; examples include languages such as Communicating Java Threads 
(CJT) (Hilderink et al., 1998), and Modula-P (Vollmer and Hoffart, 1992). This means that 
specifications written in CSP can be transfered to other implementation languages, and code or 
code fragments can be automatically generated based on CSP specifications. 

5. I .  I .  5 Weaknesses 

Due to the simplicity of the language (processes, events, and channels), specifications can 
become large and therefore difficult to read and understand. Another weakness noted is that CSP 
cannot explicitly deal with data or algorithmic issues. Data can be sent in messages through 
channels, but the manipulation of that data must be done in the context of sending the data 
through the channel. Other weaknesses noted are that specifications can become over- 
synchronized due to the limited language constructs, namely that (in its pure form) it does not 
support asynchronous message passing, it does not perform message buffering, and there can be 
readability issues. 

5.1. I. 6 Tool Support 

There are several tools that support development of specifications in CSP or the implementation 
of CSP. The following is a partial list: 

CSP2B (Butler, 1999) is a tool that converts CSP specification to B specifications, 
Failures-Divergence Refinement (FDR) (Roscoe et al., 1995) is a model checker based on 
the theory of CSP, 
Occam (INMOS, 1984) is a parallel processing language based on CSP and implemented 
on the transputer processor, 
Java Communicating Sequential Processes (JCSP) (Lea, 1999) is a library of Java classes 
that give programmers a process model based on CSP, 
CCSP is an execution environment for CSP programs. The CSP programs are converted 
to C and then run as individual process on networked workstations, 
Communicating Java Threads (CJT) is a class library for Java that provides CSP 
channels, composition constructs, and scheduling of processes. 

There are also other tools that use languages that are similar to CSP. One of those is the model 
checker SPIN (Hohann, 1991) that uses a language called Promela. CSP is similar enough to 
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Promela that CSP specifications can be easily convert into Promela, and a converter could also 
be developed that automatically does the conversion. 

5.1.2 Calculus for Communicating Systems (CCS) 

5.7.2. I Summary 

The Calculus of Communicating Systems (CCS) (Milner, 1985) is a process algebra that was 
developed for reasoning about concurrent systems. CCS defines concurrent systems as a set of 
processes using actions (or events) and operators on the actions. Actions represent external 
inputs and outputs on ports from the environment or internal computation steps. Operators on 
actions consist of an action prefix operator, a nil operator, a choice operator (+), a parallel 
composition operator (I), a restriction operation (I) that permits actions to be localized within a 
system, a renaming operator v] that maps actions to other actions, and an invocation function 
that allows systems to be defined recursively. Similar to CSP, processes in CCS are defined 
recursively and communicate with other processes through ports. CCS also has a set of axioms 
that can be used to reason about the processes and prove properties of systems. 

5. I. 2.2 History 

CCS, developed by Robin Milner (1985), was one of the first process algebras. CCS has had 
several extensions made to it, including CCS with Broadcast (CCS+b) and Temporal CCS 
(TCCS). CSP and Pi Calculus are also considered to be extensions to CCS. 

5-1.2.3 Applications 

CCS is being used to specify agents, where instead of a process that is defined by a set of 
equations, an agent is substituted. It has also been used on the T9000 Transputer for INMOS 
Ltd. CCS was also extended by Tofts (1991)to model social insect behavior. 

5.7.2.4 Strengths 

Like CSP, the primary strength of CCS is that it was originally developed for describing 
concurrent systems. Process algebras are fairly easy to read with little training and also easy to 
write. By modeling systems using processes, actions and ports, the communication between 
processes are easily modeled and concurrency related problems can be easily detected by 
inspection. CCS can also be used to represent systems at different levels of abstraction to give a 
high-level overview of a system as well as a detailed view. With its refmement ability, CCS can 
also maintain equivalences between higher level and lower level specifications. In addition, 
there is the ability to test that two specifications are bisimuzations of each other (two 
specifications simulate each other). CCS also allows for proof of correctness as well as deadlock 
and livelock. 

5.1.2.5 Weaknesses 

CCS has many of the weaknesses of CSP. Due to the simplicity of the language (processes, 
actions, and ports), specifications can become large and therefore difficult to read and 
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understand. Another weakness is that CCS cannot explicitly deal with data or algorithmic issues. 
A limited form of data exchange can be performed by encoding values in port names, which 
makes the passing of data predefined and based on the name of the port. Specifications can also 
become overly synchronized due to the limited Ianguage constructs; it does not support 
asynchronous message passing; it does not perform message buffering; and there can be 
readability issues. 

5.12- 6 Tod Support 

CCS is supported by a public domain tool called the Concurrency Workbench (CWB). It is an 
interactive tool that.is available from several sources (e.g., University of Edinburgh (Moller and 
Stevens)). CWB displays simulations of concurrent systems specified in CCS. It can search for 
deadlocks, test for equality between agents and can determine if a system satisfies defined 
properties. 

5.1.3.1 Summary 

>-calculus (Milner et al., 1992) is a process algebra based on CCS that differs from some of the 
other process algebras in that it supports mobility of processes. It does this by being able to pass 
a link (channel) as data in a handshake. This allows data links to be passed to other processes 
and links can then be represented by variable names and compared for equality or inequality, and 
reasoned about. 

There are two versions of the ?-calculus: monadic calculus and polyadic calculus. The monadic 
calculus communicates one name at each handshake and the polyadic calculus can communicate 
zero or more names at each handshake. The two are equivalent (multiple single name 
communications can be used to represent one polyadic communication). Pi-calculus contains 
constructs for input and output on links, a silent (empty) prefix, sum operator, parallel 
composition operator, match and mismatch link comparison, restricted links, and parameterized 
process names which can be used for invocation. 

5. I. 3.2 History 

The &calculus is an extension to CCS and was first extended to pass link names by Astesiano 
and Zucca (1 984) and Engberg and Nielson (1 986). These early versions were viewed by some 
as overly complicated, and were later refmed by Milner, Parrow and Walker (1992). There have 
been many other calculi that have also been based on the 2-calculus, including Pict (Pierce and 
Turner, 1999), Facile (Borgia et ai., 1996), Join (Fournet and Gonthier, 1996), Ambients 
(Cardelli and Gordon, 1998), Spi (Abadi and Gordon, 1998), and POOL (Walker, 1995)). 

5.7 -3.3 Applications 
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>-calculus has been used by several people to model agent-based systems. Esterline et al. have 
used ?-calculus to specify the LOGOS multi-agent system (2000) and Kawabe et a1.(2000) have 
developed a 2-calculus-based system called Nepi2 to specify communicating software or agents. 

5. I. 3.4 Strengths 

>-calculus’ strength is being able to model processes whose interconnections change over time. 
These types of processes are modeled by >-calculus’ ability to transfer the name of a 
communication link (or channel) to another process, which can also pass it on to other processes. 
This gives it the ability to model systems whose resources vary over time as well as mobile 
processes. It also has the ability to define links that are private between two or more processes, 
but the restricted names are also transferable to other processes. 

In addition, there is the ability to test that two specifications are bisimulations of each other (two 
specifications simulate each other). CCS also allows for proof of correctness as well as deadlock 
and livelock. 

5.1.3.5 Weaknesses 

?-calculus does not provide for data passing between processes (only names of links). Other 
weaknesses are also similar to other process algebras: specifications can become large and 
therefore difficult to read and understand, it does not deal explicitly with data or algorithmic 
issues, specifications can become over-synchronized due to the limited language constructs, 
asynchronous message passing is not supported, there is no message buffering, and there can be 
readability issues. 

5.1.3.6 Tool Support 

The Concurrency Workbench ( C W )  that is used to support CCS has been extended for 1- 
calculus and is called the Mobility Workbench (MWB) (Victor and Moller, 1994). The MWB 
addresses the polyadic ?-calculus, and like CWB can be used to decide equivalence, determine 
whether an agent satisfies a formula, can find deadlocks using a model checker, and provides an 
interactive simulator. 

5.1.4 InpUVOutput Automata (IOA) 

5.1.4.1 Summary 

Input/output automaton (IOA) are nondeterministic state machines. They can be described as a 
labeled transition system for modeling asynchronous concurrent systems (Lynch and Tuttle, 
1987). An IOA consists of a set of states with a transition hc t ion .  IOA may have infinitely 
many states, and an infinite alphabet with strings of infinite length in the language that is 
accepted by the automata. Actions are classified as input, output or internal. The inputs to the 
automata are generated by its environment. The outputs and internal actions are generated by the 
automata with the outputs being sent to the environment. Actions can also have preconditions 
for them to fire. 
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An I/O automaton has "tasks"; in a fair execution of an I/O automaton, all tasks are required to 
get turns infinitely many times in any finite interval. The behavior of an I/O automaton is 
describable in terms of traces, or alternatively in terms of fair traces. Both types of behavior 
notions are compositional. 

5.1.4.2 History 

The inputloutput automaton model was developed by Lynch and Tuttle (1987). Variants of IOA 
have been developed that include Hybrid Automata (Lynch et al., 2003) for modeling systems 
that are a combination of continuous and discrete systems, Timed Automata (Grobauer and 
Muller, 1999) for reasoning about real-time systems, probabilistic versions (PIOA) (Wu et al., 
1997) for specieing systems with a combination of probabilistic and nondeterministic behavior, 
and dynamic IOA (DIOA) (Attie and Lynch, 2001) for describing systems with run-time process 
creation, termination, and mobility. 

5.1.4.3 Applications 

IOA has been used to verify a number of types of systems, including various communication 
protocols (e.g., TCP) (Smith, 1997) and performance analysis of networks (upper and lower 
bounds and failures). It has also been used for specification and reasoning about agent-based 
systems (Tadashi et al., 2000). 

A strength of I/O Automata is that inputs from the environment can not be blocked. This 
enforces an environment driven model of the system. In addition, IOA can model multiple levels 
of abstractions of a system, from high-level specifications to detailed algorithms. IOA models 
are executable, can be simulated, and are highly nondeterministic. IOA is a calculus so YO 
automata can be used to generate code. Finally, IOA has constructs for proving correctness of a 
specification. 

5.1.4.5 Weaknesses 

A former weakness of 110 Automata ,that there is not a formal algebra for it, has been addressed 
by the development of a process algebra that describes 1/0 automata (Nicola and Segala, 1995). 

5. $. 4.6 Tool Support 

Isabelle/HOLCF (Hamberger, 1999) allows for fully formal tool-supported verification and 
model checking for specifications using YO automata. Simulators have also been developed for 
YO automata (Cheer, 1998). 



5.2 Model-Oriented Approaches 

5-21 z 
5.2. f - 7  Summary 

Z is based on Zermelo set theory and is used to describe the behavior of sequential processes. In 
general, concurrency and timing cannot be described in Z (although there are variants and 
extensions to address these issues). 

Z is strongly typed, with types being associated with sets and operators of equality and 
membership defined for all types. The main construct of Z to describe the functionality of a 
system is the schema, which is a visual construct that includes a declaration part and an optional 
predicate part. The declaration part contains named and typed schema components with 
constraining information. The predicate part contains pre- and post-conditions of the 
components in the declaration as well as invariants and operations on the components. The 
schema calculus of Z allows schemas to be combined to form new schemas and describe the 
functionality of a system as a whole. 

5.2. I. 2 History 

Z was originally developed by Jean-Raymond Abrial at the Programming Research Group at the 
Oxford University Computing Laboratory (OUCL) and further developed elsewhere since the 
late 1970s. There have also been several object oriented extensions to Z that include ZERO, 
MooZ, Object-Z, OOZE, Z++, ZEST, and Fresco, with Object-Z currently being the prominent 
version. 

Z has also been combined with other formal methods, such as CSP, to give it the ability to handle 
concurrency and timing. An example is Timed Communicating Object 2 (TCOZ) that has 
Object Z’s strength in modeling algorithms and data, and CSP’s strength in modeling process 
control and real-time interactions (Mahoney and Dong, 2000). 

5.2.7.3 Applications 

Z has been used in a wide range of applications. It has been used to formally specify a radiation 
therapy machine control program, sliding window protocol (Hinchey and Bowen, 1999), and a 
steam-boiler controller, among others. 

For agent-based systems, d’Inverno and Luck (2000; 2001) have used Z to specify an agent 
framework. In their framework they have specified a four-tiered hierarchy that consists of 
entities, objects, agents, and autonomous agents. As part of the agent framework specification 
they specify engagement, cooperation, inter-agent relationships, sociological agent, plans, and 
goals. 

A few of the applications specified by Z include (Craigen et al., 1993): 
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Extensions to a secure operating system, a security policy, and a software development 
toolset by Praxis Systems Ltd, 
IBM’s Customer Information Control System, 
Oscilloscope software at Textronix, 
The T 800 Transputer at INMOS Ltd. 

Z has been used on a wide number of other projects with a high degree of success. 

5.2.1.4 Strengths 

Some of Z’s strengths include having a basis in set theory and predicate calculus, its ability to 
model complex data and algorithms, its precise expressions of functions, and its notational 
variety. Z also has a wide range of tools to support specifications, type checking, typesetting, 
and verification with some programming languages. 

5.2. I .  5 Weaknesses 

Z’s main weakness in terms of agent-based and swarm systems is its sequential nature. It has 
been faulted for not being good at modeling concurrency. Some of the concurrency issues have 
been addressed by integrated models that use a process algebra for concurrency and Z for the 
sequential parts (h4ahony and Dong, 2000), or Object-Z for the agent modeling and statecharts 
for the concurrency (Kawabe et al., 2000). Another weakness that has been noted is that since Z 
is mathematically based, it is theoretically possible to specify a system that is impossible to 
construct. In reality, however, this is avoided in that standard practice in the use of Z requires 
the specifier to define a valid initial state from which all other states are derived by application of 
valid operations. As a rem14 the system specified is guaranteed to be possible to construct. 

5.2.1.6 Tool Support 

There are a range of tools for formatting, type-checking, and aiding in proofs of Z. The 
following is a partial list: 

ZTC - is a type checker that is intended to be compliant with the 2“d edition of Spivey’s 
Z Reference Manual. 
ZANS - is a research prototype Z animator. 
FUZZ - is a syntax and type checker with a LaTex style option. 
CADiZ - is a suite of integrated tools for preparing and type-checking Z specifications 
for documents. 
ProofPower - is a suite of tools that support specifications and proofs. It can also 
support verification of SPARK-Ada programs against Z specifications. 
Sola - is a commercial integrated support tool for Z for automated assistance in the 
specification construction, proving, and maintenance process. It is intended for system 
developers and includes an editor, type-checker, and tactical theorem prover. It is no 
longer actively supported. 
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Z/EVES - is a tool for analyzing Z specifications. Some of its features include syntax 
and type checking, schema expansion, precondition calculation, domain checking, 
refinement proofs, and general theorem proving. 
CZT - Community Z Tools is an initiative that is ongoing to coordinate a set of Z tools. 

5.2.2 B 

5.2.2.7 Summary 

The B method uses the Abstract Machine Notation (AM"), which is based on set theory and 
predicate logic. The AMN uses a finite state machine model (FSM) that supports states 
(variables of an abstract machine), invariants (constraints/relations between variables), and 
operations on the environment. Expressions in B can also have guards on them. 

Development of a specification in B is done by first specifjiug the system behavior in AMN, 
refining the specification, and then implementing the specification. B specifications describe the 
state variables, invariants between the variables, and operations on the variables. The 
specification is developed iteratively through refinements of the model until the specification is 
completed. Verifications and simulations during the development of the specification can also 
be done using the B toolkit, a set of tools that support the methodology, to prove that invariants 
are preserved after operations are performed. 

5.2.2.2 History 

The B method was developed by Abrial (1996), who also developed the 2 specification 
language. B is a relatively new formal method, but has already found a large amount of use in 
complex systems specifications. 

5.2.2.3 Applications 

The B-method has been used in a wide range of safety-critical applications. The following are a 
few of these: 

Hardware circuits. 

Railway Signaling System for the Paris rapid transit authority that was safety-critical 
(Craigen et al., 1993), 
Train excessive speed system (Craigen et al., 1 W3), 
Train deceleration control (Craigen et al., 1993), 
French census analysis and information system (Hinchey and Bowen, 1 W9), 
Chemical process controller (Hinchey and Bowen, 1999), 

The B-method has also been modified for specifjling distributed cooperative algorithms by 
adding temporal logic aspects to it (Bonnet et al., 1995). 

5.2.2.4 Strengths 



An advantage of the B-method is the iterative refinements, so specifications are developed in a 
top-down fashion. Another advantage is the component-based approach to developing the 
specifications, which maps well to component-based architectures and development 
methodologies. 

An additional strength of the B method is its tool support. From a B specification, code can be 
generated, it can be analyzed for correctness, and an animation and proof of correctness can be 
performed. The ability to easily reuse specifications has also been cited as a strength of the B 
method and tools. 

5.2.2.5 Weaknesses 
1 

As is the case with other methods based on finite state machines, specifying concurrent systems 
can present chaltenges due to the exponential growth of the state space of such systems. 

5 2 - 2 6  Tool Support 

The B method is supported by tools from a number of vendors, including BP International, 
Edinburgh Portable Compilers, Atelier B, and B-Core. The B Toolkit, fiom B-Core, includes an 
analyzer that generates proof obligations, a type checker, an animator, a status checker, and a 
prover. The B toolkit can also produce C, C++, and Ada code that implements B Specifications. 

5.2-3 Fjniie State Machines (FSMs) 

5.2.3.7 Summary 

Finite State Machines (FSMs) model behavior using states and transitions between the states. 
Transitions contain events and conditions needed for the FSM to change states. The conditions 
act as guards on the transitions and the events are matches to inputs. States changes can occur 
when a transition fiom the current state has an event that matches the current input and the 
condition on the transition evaluates to true. For AI systems, FSMs often represent knowledge 
systems where the states represent knowledge and the transitions represent rules. 

5.2.3.2 History 

Finite state machines have been used in specifying AI related systems for a long time. Since 
FSMs are inherently sequential, they have been modified over time to work in a concurrent 
environment. Concurrent systems are often described using concurrent FSMs with the ability of 
the FSMs to communicate with each other either at checkpoints or through buffers. Extensions 
of FSMs include statecharts, fuzzy state machines (FuSM), and others. 

5.2.3.3 Applications 

FSMs have been used to specify a wide range of applications and have been very popular in 
specifying AI related applications. FSMs have also been used to specify multi-agent systems. 
They are usually modified so that concurrency and communication between the agents can be 
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specified. An example is the Java-based Agent Framework for Multi-Agent Systems (JAFMAS) 
that uses FSMs to specify multi-agent conversations (Gala and Baker, 1999). 

5.2.3.4 Strengths 

FSMs are very natural in their expression of behavior and are straightforward to design, program, 
and execute efficiently. They are also taught to most engineering majors and so are understood 
by a wide range of people and are easily taught and learned by others. FSMs are also easy to 
analyze at the state level: states just need to be studied to determine which states have transitions 
to them and which states they reach and on what conditions and events. 

5.2.3.5 Weaknesses 

FSMs are inherently sequential, so they are not good by themselves to express concurrent 
systems, such as agent-based systems. Modifications to FSMs have been made so they can be 
used in concurrent systems 

FSM are also “flat” in the way they are described, with no hierarchy are modularization, so 
specifications of systems can become very large and difficult to understand (spaghetti-nature of a 
large number of states and transitions). Because of this, they also do not support topdown or 
other refinement methodologies (Bowen and Hinchey, 1999). FSMs can also be uneconomical 
when it comes to transitions, especially for real-time systems, since a high level interrupt would 
have to be associated with each state. In addition, FSMs, due to the state paradigm, grow 
exponentially as the size of the system being specified grows iinearly. There have been many 
modifications, such as concurrent FSMs and Statecharts, to overcome some of these 
shortcomings. 

5.2.3.6 Tool Support 

Since FSMs have been in use for a long time, there are a number of tools available to support 
them. There are FSM editors, simulators, and verification tools. Many of these are available 
through Computer Aided Software Engineering (CASE) t o o k  Code generators are also 
available that automatically produce code for a programming language. 

5.2.4 Sfatechafts 

5.2.4.1 Summary 

Statecharts extend finite state machines by adding hierarchy, concurrency, and communication 
and were designed to specify complex discreteevent systems. The main advantage of statecharts 
over FSMs is that statecharts have built in the means to represent concurrency. The 
specifications can be developed in a hierarchical fashion, which aids in abstraction and top-down 
OJ bottom-up development. 

. 5.2.4.2 History 
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Statecharts were developed by David Harel (1988; 1987; Harel et al., 1987). Statecharts have 
been widely used on many projects for specification and design of many types of systems. 
Coleman, Hayes, and Bear (1992) introduced a variant of statecharts called Objectcharts for 
object-oriented design. 

Several integrated versions of Statecharts that in conjunction use formal methods have been 
introduced. Uselton and Smolka combine statecharts with a process algebra (1994a) and also 
added the Labeled Transition Systems algebra (1994b) in order to establish formal semantics for 
statecharts. Andrews, Day, and Joyce (1997) have used statecharts embeded with a typed 
predicate logic. Other integrated approaches have been introduced for real-time systems that 
embed the concept of time, such as Sowmya and Ramesh, who extended statecharts with 
temporal logic (1998). 

5.2.4.3 Applications 

Statecharts have been used successfully on a wide range of industry projects, and have a large 
number of advocates. It has also been used to specie agent-based systems by a number of 
people. A few of them include Kimiaghaiam, et al. (2002) who have used a statechart-based 
approach for specifying agents, Hilaire et al. (2000) who used a combination of Object-Z and 
Statecharts to specify agent-based systems, and Griss et al. (2002), who use statecharts for 
defming agent behavior. 

5.2-4.4 Str;engftis 

One strength of statecharts is their visual representation: with little training, a person can 
understand what they mean. The hierarchical nature of statecharts can help in specifying large 
systems since the hierarchy helps to give high-level descriptions of the system as well as to drill 
down to levels of increasing detail. 

5.2.4.5 Weaknesses 

A weakness of statecharts is that development of the statecharts can be more time consuming 
than textual methods. In addition, statecharts lack the mathematical underpinning that other 
techniques like Z and CSP are inherently based on, which means that statecharts are not 
considered a formal language. For this reason, there have been several extensions that add 
process algebras or other formal languages to statecharts (see above). The hierarchical approach 
to statecharts can also make it difficult to get an overall picture of how a system works. If not 
developed well, statecharts can have some of the same understandability problems that FSMs 
have. 

Statecharts also do not involve the notion of time. Transitions are considered to be executed 
instantaneously, which is not realistic in many real-time systems. With the ability to have 
multiple transitions occumng from a single state, the problem of race conditions can be 
embedded in a specification. Infinite loops are also possible, which requires statecharts to be 
checked for consistency. Statecharts have also been faulted as not being suited for object- 
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oriented design because the broadcast property is incompatible with object-to-object method 
calls. 

5-2.4.6 Tool Support 

Statecharts are support by several tools. The STATEMATE case tool by iLogix was the first 
tool that supported statecharts and has been in use since the early 1990s. It allows statecharts to 
be created, simulated, analyqd and transformed into code. Another tool called Betterstate, 
developed by IS1 (www.isi.com), supports graphical specification, automatic code generation, 
validation, and graphical debugging. It has also been integrated with Rational Rose. 

5.2-5 Petd Nets 

5.2.5.1 Summary 

Petri Nets are a graph-based system for specifying asynchronous processes in concurrent 
systems. Petri nets are represented by the 5-tuple (P, T, I, 0, I@, where P is a set of places, T is 
a set of transitions, I is a set of inputs, 0 is a set of outputs, and M is a set of initial markings. 

5.2.5.2 History 

Petri Nets were developed in 1962 by Carl Adam Petri (1962) and were one of the first theories 
to address concurrency issues (Peterson, 1981; Peterson, 1977). Several variants of Petri nets 
have been developed over the years. Some of the variants include colored Petri nets, hierarchical 
Petri nets, obje.ct-oriented Petri nets, temporal Petri Nets, and G-Nets. 

5.2.5.3 Applications 

Petri nets have been used extensively to model concurrent systems. Petri nets have been used by 
several people to spec@ multi-agent systems (Ferber, 1999). Examples of using Petri Nets for 
specifying multi-agent systems include: 

Brown (1998) who used hierarchical colored and colored p Petri Nets to specify the 
NASA Lights-Out Ground Operations Systems, 
Bakam et al. (2000) who used Colored Petri Nets to study a multi-agent model of hunting 
activity in Cameroon, 
Shen (1998) who used Petri Nets to model mobile agents, 
Xu and Shak (2001) have used a variant of Petri Nets called G-Nets to model buyer and 
seller agents in electronic commerce, and 
Weyns and Holvoet (2002) used Colored Petri Nets to study the social behavior of 
agents. 

5.2.5.4 Strengths 

Strengths of Petri Nets include the ability to simulate a model and do performance evaluation 
and verification and validation of a system. They have been widely used and therefore may be 
intuitive and easy to understand for many people. 



5.2.5.5 Weaknesses 

One Petri Nets weakness is the lack of modularity (van Linder et al., 1998). For complex 
systems, Petri Net models will become very large and will be difficult to understand or analyze. 
Another weakness is that many aspects of a system’s behavior cannot be specified. For example, 
there is no way to express ordering between processes, synchronization of processes, or 
exclusive access to a process (for security). 

5.2.5.6 Tool Supporf 

There are a large number of tools available for Petri Nets. Tools provide a number of features, 
including graphical editors, token .game animation, simulation, performance analysis, state 
spaces, place invariants, transition invariants, structural analysis, model checking, deadlock 
checking, optimization, net reductions, code generation, and reachability checking. 

5.2.6 X-Machines (XM) 

5.2.6.1 Summary 

X-machines are based on iinite state machines (FSM) except they have an internal memory state 
and transitions between states are labeled as functions which accept input symbols and output 
symbols based on the action of the function with reference to the internal memoxy state. X- 
machines can be thought of as typed FSMs with the set X acting as a memory and also having 
input and output tapes. 

I 

5.2.6.2 History 

X-machines were developed by the mathematician Samuel Eilenberg in 1974 (1974). In 1986, 
Mike Holcome started using X-machines for biological specification purposes (1986a; 1986b) 
and then for system specifications (1988). X-machines have undergone modifications to specify 
a wider range of systems, such as Stream X-Machines (Gheorghe, 1998) that are used to control 
a family of distributed grammars, Communicating Stream X-Machines to better model 
concurrent systems (Barnard et al., 1996), and Object Communicating X-Machines (Barnard, 
1999). 

5.2.6.3 Applications 

X-machines were originally used to describe intracellular biochemical organization and model 
cell biochemistry. Recently they have also been used to specify agent-based systems (Kefalas, 
2000) and model the behavior of a bee colony (Gheorghe et al., 2001). X-Machines are aIso 
being investigated relative to emergent behavior of agent communities. 

5.2.6.4 Strengths 

X-Machines are more powerful than FSM and can spec@ complex systems more easily. In 
addition, the SXM Testing method, which is based on X-Machines, contains a set of rules that 
ensures complete functional testability of an implementation. The method does constrain the 
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types of systems that can be implemented. X-machine specifications can also prove the 
correctness of an implementation with respect to the specification. 

5.2.6.5 Weaknesses 

The biggest weakness of X-machines is the lack of tool support. They also appear not to have 
gained wide support (perhaps due to the lack of tool support). 

5.2.6.6 Tool Support 

There is not a lot of tool support for X-machines. There are tools that can automatically convert 
an X-machine into Prolog, as well as model check an X-machine. 

5.3 Logics 

There are several types of logics that have been used and they are used for different applications. 
Propositional and predicate logics are used to represent factual information. For agents this may 
be a knowledge base or the agent’s environment. These logics use and, or, not, implication, 
universal, and existential operators. Modal logics are used for different modes of truth, such as 
possibly true and necessarily true. Denotic logic describes what is obliged to be done. Dynamic 
logic is like modal logic but is action based. Temporal logic is the logic of time. 

5.3.1 Temporal Logic 

5.3.1.1 Summary 

Temporal logic is used to express time-related aspects of systems. There is both modal and 
predicate approaches to temporal logic. In the original modal temporal logic created by Prior 
(1957) there were four additional operators to the standard logic operators: 

P, which stands for “It has at some time been the case that . . .”, 
F, which stands for “It will at some time be the case that . . . ”, 
H, which stands for “It has always been the case that . . .”, and 
G, which stands for “It will always be the case that . . . ”. 

P and F are called weak tense operators, and H and G are called strong tense operators. G is 
sometimes denoted as F as 2, H as and P as _. 

In temporal logic, an expression is always true or will be true at some time in the future. There 
are two types of semantic models used timed specifications based on linear time and branching 
time. With linear time, a specification is a set of linear states with each state being part of a 
possible execution sequence (used in CSP traces). With branching time, a specification 
describes a tree structure of states, with each path in the tree a possible execution sequence (used 
in CCS). Other differences in temporal logics include discrete vs. dense, and moment-based vs. 
period-based times. 
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5.3.7.2 History 

Temporal logic was developed by Arthur Prior in 1957 (1957) under the name of Tense Logic 
and has gone through several modifications by different people for application to different fields. 
The idea of temporal logic has also been added to other formal methods to give them the basis of 
time in those methods. Also a wide variety of temporal logics have been developed. Bellini, 
Mattolini, and Nesi give a good survey of temporal logics in (2000). Variations of temporal 
logics covered include Propositional Temporal Logic (PTL), Choppy Logic, Branching Time 
Temporal Logic (BTI'L), Interval Temporal Logic, (ITL), Propositional Modal Logic of Time 
Intervals (PMLTI), Computational Tree Logic (CTL), Interval Logic (IL), Extended Interval 
Logic (EL), Real-Time Interval Logic (RTIL), Timed Propositional Temporal Logic (TPTL), 
Real-Time Logic (RTL), Tempo Reale Implicit0 (TRIO), Metric Temporal Logic (MTL), and 
Time Interval Logic with Compositional Operators (TILCO). The differences in the .different 
temporal logics range from expressiveness, availability of support tools for executability, and 
verifiability. 

5.3.1.3 Applications 

Temporal logic has been widely used for adding timing constraints and sequencing formation in 
real-time and artificial intelligence applications. In AI, it has been used to find a general 
framework for temporal representations (Allen, 1984). In specification and verification of 
concurrent programs, modal temporal logic has been successfully used to specify the timing of 
concurrent programs running on separate processors (Pnueli, 1977). Temporal logic has also 
been widely used to add timing to other formal specification languages like Z, Petri nets, 
Statechar@, and process algebras. 

5.3.1.4 Strengths 

Strengths of temporal logics are their ability to support proof of correctness related to timed 
constraints of systems. It has also been found that implementations from temporal logic tend to 
be efficient. Since temporal logics have been around for a number of years, they are well 
understood and there is a large class of researchers and practitioners familiar with them. There 
are also a number of versions of temporal logics available that can suite particular classes of 
problems. In addition, there are a wide number of tools available to support specifications. 

5.3.1.5 Weaknesses 

As with other logics, a major weakness is readability as the complexity of the system being 
specified increases, because of the unstructured nature of temporal logics (a specification is a set 
of predicates). Therefore, it is best used for simple or narrowly scoped properties of a complex 
system. There has been some work done to offset some of these problems by adding structure to 
temporal logic, and thereby increase its readability for larger specifications. 

5.3.1.6 Tool Support 



A number of tools are available to support various versions of temporal logics. The following is 
a partial list: 

PTL - the propositional temporal logic (PTL) tautology checker reads formulas in PTL 
and checks whether they are tautologies, i.e., always true no matter what truth values are 
assigned to the propositional variables at each instant of time. Typically, PTL can check 
whether a PTL-formula is a tautology and, if not, check whether the formula is 
satisfiable; and if the specification and implementation are written in PTL, verify that the 
implementation implies the specification. 
Step - Stanford Temporal Prover does computer-aided formal verification of reactive, 
real-time, and integrated systems based on their temporal specification. It combines 
model checking with deductive methods to allow the verification of systems, including 
parameterized (Ncomponent) circuit designs, parameterized (N-process) programs, and 
programs with infinite data domains. 
TLA+ - a language for writing Temporal Logic of Actions (TLA) specifications. There 
are three TLA+ tools available: a parser and syntax checker for TLA+ specifications, a 
model checker and simulator for a subclass of "executable" TLA+ specifications, and a 
program for typesetting TLA+ specifications. 
TLC - Temporal Logic Checker is a temporal logic assertion checker. 
TirneRover - provides a set of tools for temporal logic that includes temporal rule 
checking, runtime verification, high-level exception handling, and temporal simulation. 

5.3.2 Real Time Logic (RTL) 

5.3.2.1 Summary 

Real Time Logic (RTL) is a predicate logic that relates the events of a system to tAeir time of 
occurrence. RTL uses a discrete model of time that allows for reasoning about absolute timing 
(wall clock) properties in a system. RTL differs from modal temporal logic in that modal 
temporal logic uses relative timing of events for specifying time, which is qualitative. Since 
RTL uses a discrete model of time, it uses integers in RTL formulas. RTL uses an occurrence 
relation that assigns a time value to each occurrence of an event. The occurrence relation is 
denoted as R(e, i ,t), which means that the i-th occurrence of event e happens at time t .  
Predicates in RTL are made up from the occurrence relation as well as the mathematical relations 
(=, <, 1, ', 2). 

5.3.2.2 History 

RTL was developed by Jahanian and Mok (1986) in 1986. RTL has been extended by other 
researchers and combined with other logics. It has been combined with Z for specifjring real 
time systems, temporal linear logic for specifying event-based logical systems, and Presburger 
arithmetic. The University of Texas Real-Time Systems Group (headed by Mok) supports RTL 
with ongoing research and the development of supporting tools, such as Modechart and 
Timetool. 

5.3.2.3 Applications 



The following are some of the applications in which RTL has been used: 

0 

Verification of the planned performance of the safety-critical system functions of the 
NASA X-38 space station crew return vehicle multiprocessor system task structure, 
Axiomatic specification of communication protocols, 
The specification of the Real Rime Operating System (RTOS), and 
The verification of real time controllers. 

5.3.2.4 Strengths 

The primary strength of RTL over temporal logic is its ability to express the exact time an event 
or action will take place. In temporal logic, only relative times to other events or actions can be 
expressed. Like other logics, RTL also has the strength that it has the ability to support proof of 
correctness related to timed constraints of systems. 

5.3.2.5 Weaknesses 

As with other logics, a major weakness is readability as the complexity of the system being 
specified increases, because of the unstructured nature of temporal logics (a specification is a set 
of predicates). Therefore, it is best used for simple or narrowly scoped properties of a complex 
system. 

5.3.2.6 Tod Support 

The following are some tools that support RTL: 

MSP.RTL - a tool for producing real time schedulers based on real time logic. 
Modechart - a specification language, Simulator, and verifier based on RTL. 
Multiway Decision Graphs (MDG) -a RTL functional verifier. 

5.3.3 BDI Logics 

5.3.3.7 Summary 

Belief, Desires, and Intentions (BDI) is an agent architecture for describing agent behaviors 
(Georgeff and Lansky, 1987) based on the theory of action in humans by the philosopher M. 
Bratman (1987). To give formal semantics to BDI architectures, BDI logics were developed 
(Raq and Georgeff, 1991; 1995) that are multi-modal and extensions to the branching time logic 
CTL* [149]. The BDI logics allow the BDI architectures to be formally modeled and then -~ 

proofs of correctness on BDI-based 
logics and describe beliefs, desires, 
follow to achieve its intentions. 

5.3.3.2 History 

Rao and Georgeff (1991) initially 
subsequently there has been much 

agents can be done. The BDI logics tend to be modal type 
intentions and the plans (or plan library) that an agent can 

introduced the idea of a logic for BDI architectures and 
work on evolving it, such as Wooldridge (1996a; 1996b; 



2000) for plans, Padgham and Lambrix (2000) for capabilities in plans, and Singh and Asher 
(1990) for intentions. Different people have added on or concentrated on one aspect of the BDI 
logic to give it more formalism or extend it to cover specific aspects of a BDI agent 
specification. 

5.3.3.3 Applications 

BDI logic has been applied to a programming language called Agentspeak&) (Rao, 1996) which 
is based on a restricted first-order language with events and actions. Other BDI-based agent 
architectures based on BDI logic include the Java Agent Compiler and Kernel (JACK) (Howden 
et al., 2001), and dMARS (Distributed Multi-Agent Reasoning System) (1996). 

5.3.3.4 Strengths 

BDI logics tend to be very expressive and formal, so a large number of specifications can be 
written with a formal foundation. It also has the strength that it is a formal method and 
properties of the systems it specifies can be proven to be correct. Since BDI logics are based on 
BDI architectures, agent specifications can be easily mapped into a BDI architecture. 

5.3.3.5 Weaknesses 

The expressiveness of BDI logics make theorem proving and model checking much more 
difficult. As with other logics, a major weakness is also decreasing readability as the complexity 
of the system being specified increases, because of the unstructured nature of logics. 

5.3.3.6 Tool Support 

An Agentspeak&) interpreter is available free for downloading (AgentSpeak website). The 
interpreter will run Agentspeak&) and AgentSpeakW) programs. This allows agent 
specifications written in BDI logic to be executed. A restricted version of Agentspeak&), is 
Agentspeak@), which can be model checked. The restricted nature of AgentSpeakP) allows it 
to be converted to Promela and then run on the model checker Spin (Holunann, 1991). 

5.3.4 KARO Logic 

5.3.4.1 Summary 

The KARO (Knowledge, Abilities, Results and Opportunities) logic (Hustadt et al., 2000; van 
Linder et al., 1998) is a formal system based on modal logic for reasoning about and specifying 
the behavior of intelligent multi-agent systems. KARO formalizes the notion of knowledge 
contained within agents and the agents’ possible execution of actions. The KARO framework 
allows agents to reason about their own and other agent’s abilities to perform actions, the 
possible results of those actions, and the availability of the opportunities to take those actions. 
KARO combines both dynamic and epistemic logic into a single modal logic with additional 
modal operators, and adds the notion of abilities. 
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5.3.4.2 History 

KARO was proposed by van Linder, van der Hoek, and Meyer in 1998 (1998). So it is a 
relatively new logic and fiamework. Additional work is also being done on KARO that includes, 
Hustadt, et al. (2000) who are developing automated proof methods for KARO, Meyer, et ai. 
(2000) who are working on linking KARO to agent programming languages, Aldewereld (2002) 
who has worked on extending KARO fiom single-agent to multi-agent, and Dixon et al. (2000) 
who have applied Computational Tree Logic (CTL) instead of dynamic logic. 

5.3.4.3 Applications 

KARO was developed specifically for modeling agent-based systems. At the time of this 
writing, specific applications of KARO to specific multi-agent systems has not been found. 

5.3.4.4 Strengths 

KARO is based on modal logic, which has historically been used to describe knowledge, belief, 
time, obligation, desire and other attributes that apply to agent-based systems. The use of modal 
logic can be more concise that fmt-order logics. In addition, modal logic lends itself to logical 
proofs of correctness and it tends to be more intuitive than frst-order logic representations, while 
at the same time being able to be reducible to first-order logic and those fwst-order methods and 
techniques can still be applied. 

5.3.4.5 Weaknesses 

A weakness of KARO that has been discussed is its use of dynamic logic (Dixon et al., 2000). 
Dynamic logic can become complex in practical applications and specifications can become 
undecidable and incomplete. A fur to this has been to replace dynamic logic with CTL. 

5.3.4.6 Tool Support 

Since KARO is very new, there are very few tools available for it, with tool support still being 
developed and proposed. One tool XProof (Valk, 1998) has been used to construct a theorem 
prover for KARO (Valk, 1999). 

5.4 Other Approaches 

The following is a list of other approaches that are being used to specify and verify agent-based 
or swarm-based systems. 

5.4.1 Artificial Physics 

5.4. I .  1 Summary 

Artificial physics (AP) is based on using properties fiom physics to model constraints and 
interaction between agents (Spears, W. and Gordon, D., 1999, Shehory et al., 1999). Control of 
agents in an AP fiamework is mapped to one of minimizing potential energy @E). If constraints 

37  



are violated or performance degrades, PE increases, triggering a reactive response. Global 
behaviors are automatically computed via local interactions between agents. Given a set of 
initial conditions and desired global behavior, sensors, effectors, and local force laws can be 
determined for the desired global behavior to emerge. 

As an example of artificial physics, suppose a set of agents are treated as physical particles. 
Particles move in response to the virtual forces that are exerted upon them by their neighbors - in 
essence the particles act as if they were part of a molecular dynamics simulation. Particles have 
a position, mass, velocity, and momentum. Friction is included, for self-stabilkition. The net 
action of the system of particles is to reduce potential energy in a continuously changing virtual 
potential field. 

5.4. I. 2 History 

The work that is most related to artificial physics is referred to as “swarm intelligence” 
(Hiebeler, 1994) and “social potential fields” (Reif and Wang, 1994). In swarm intelligence the 
swarm distribution is determined via a system of linear equations describing difference equations 
with periodic boundary conditions. The social potential fields method relies on a force-law 
simulation that is similar to that found in molecular dynamics. 

Physicomimetics is also similar to work in robotics, such as “potential field” and behavior-based 
approaches. Potential field (PF) approaches are used for robot navigation and obstacle avoidance 
(Khatib, 1986). The emphasis is on a single robot. In a manner similar to physicomimetics, PF 
approaches model a goal position as an attractive force, while obstacles are modeled with 
repulsive forces. PF computes force vectors by taking the gradient of an entire potential field, 
which is very computationally intensive. AP uses force vectors directly, and thus has lower run- 
time computational overhead. Furthermore, unlike the standard PF approach, AP relies on inter- 
agent forces, as well as environmental forces. 

Behavior-based approaches (Balch, 1998) derive vector information in a fashion similar to 
physicomimetics. Particular behaviors such as “aggregation” and “dispersion” have some 
similarity to the attractive and repulsive forces in physicomirnetics. However, behavior-based 
approaches do not make use of potential fields or forces. Rather, they deal directly with velocity 
vectors and heuristics for changing those vectors 

5.4.1.3 Applications 

Artificial physics has been used to generate a variety of vehicle formations in simulation and it 
has demonstrated the capability of clustering agents into subgroups (Spears and Gordon, 1999). 
Others have used physicomimetics for physical simulations of self-assembly. Schwartz et al. 
(1998) investigated the self-assembly of viral capsids in a 3D solution. Winfree (1998) has 
investigated the self-assembly of DNA double-crossover molecules on a 2D lattice. Shehory et 
al. (1 999) used physics-based systems for modeling emergent behavior. 

5.4.1.4 Strengths 
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Physics-based descriptions can be very efficient to execute. Most computer hardware is made to 
do these types of computations, which can be much more efficient than rule-based or knowledge- 
based systems. Artificial physics is also very good for representing reactive behavior since the 
phy sics-based equations can be quickly executed. Physics-based approaches could also support 
learning similar to genetic programming, where different formulas are used and then modified, 
with the best performing formula used. Formulas could also be modified through other reflective 
processes that examine the performance of a system and modify the formulas for better 
performance. 

5.4. I. 5 Weaknesses 

Physics-based systems may not be good for deliberative processes in agents. Deliberation often 
involves examining models or doing symbolic manipulation, which physics-based systems may 
not be easy to develop to do. Physics-based descriptions of agent-based interaction can be 
difficult to understand by people who do not have a physics background. Also, most intelligent 
systems are developed from a logic background, so the logic may have to be translated into a 
physics-based representation. 

5.4.1.6 Tool Support 

Tool support for artificial physics is based on current tools for visualizing physical properties. 
No specific tools have been developed. 

5.4-2 Software Cost ReductSon (SCR) 

5.4.2. 1 Summary 

SCR is a formal method based on tables for specification and analysis of black-box behavior of 
complex safety-critical systems (Bharadwaj and Heitmeyer, 1999a). A toolset, called SCR* is 
available to help automate as much of the method as possible. SCR describes both the system’s 
environment (which is usually nondeterministic) and the system’s behavior (usually 
deterministic). The system is represented as a state machine and the environment is represented 
as a nondeterministic event generator. An SCR specification represents the state machine’s 
transitions as a set of tables. 

The system environment specification includes monitored variables (environmental quantities 
that the system monitors) and controlled variables (environmental quantities that the system 
controls) (Bharadwaj and Heitmeyer, 1999b). The system behavior is represented by two’ 
relations, NAT and REQ. NAT represents the natural constraints on the system behavior (such 
as physical laws and the system environment constraints). REQ represents the relationships 
between the monitored and the controlled quantities that the system must maintain. Tables are 
used to describe transitions, events, and conditions of a state machine for the system. 

5.4.2.2 History 

SCR was originally developed in 1978 at the Naval Research Lab (NRL) to document the 
requirements of the flight program of the Navy’s A-7E aircraft It has been used on a number of 



safety-critical control system as well as other systems. It has also been extended to specify 
hardware/software co-design and co-validation (Bharadwaj and Heitmeyer, 1999a). 

5.4.2.3 Appiications 

SCR has been used on a number of projects, including the Navy's A-7E aircraft and the C-130J 
Flight Program, as well as telephone networks, communications security devices, control 
systems for nuclear power plants, the International Space Station, the Deep Space-1 spacecraft, 
and military and civilian flight controls. It has also been used by a number of organizations to 
specify requirements, including NASA IV&V Center, JPL, Grumann, AT&T, Ontario Hydro, 
Rockwell, and Lockheed. 

5.4.2-4 Strengths 

Strengths of SCR include its easy interpretation of the specification through use of the table 
format. The method scales up well, as was demonstrated in its use on a project that was 
implemented with 230K lines of Ada. In addition, the formal basis of the method also enables 
proof of correctness and use in model checkers. 

5.4.2.5 Weaknesses 

SCR's reliance on a state machine model could make it difficult for modeling large numbers of 
parallel systems, such as swarm-based systems. Like state machines, SCR is inherently 
sequential, so it may not be good by itself to express concurrent systems. Modifications, such as 
those that have been made to FSMs, may enable SCR to better handle concurrent systems. 

5.4.2.6 Tool Support 

To support the SCR method, there is an integrated toolset called SCR. (Heitmeyer et al., 1998). 
The toolset includes a specification editor, dependency graph browser, consistency checker, a 
simulator, and verification tools (including Spin, TAME, and Salsa). 

5.4.3 Mathematical Analysis 

5.4.3.7 Summary 

Mathematical analysis uses mathematical formulas to model or spec@ a system and then uses 
mathematical techniques for analyzing the resulting system specification. From the 
mathematical specification system properties can be proven correct or that they remain in 
bounds. For swarm-based systems, mathematical models can be either developed at the agent 
level (microscopic) or the swarm level (macroscopic). Some techniques used are physics-based 
approaches (see artificial physics); others have used stochastic approaches (Lerman and 
Galstyan, 2001). Mathematical analysis can be used to study the dynamics of swarms and 
predict long-term behavior as well as such things as efficiency and steady state characteristics 
without having to do simulations. It also allows parameters to be found that determine swarm 
behavior and how the actions of a single member of the swarm affect the entire swarm. 



5.4.3.2 History 

Mathematical analysis has been used in many different fields. It has been used in biology to 
study insects and model their macroscopic and microscopic behavior, molecular dynamics, 
cellular automata and particle hopping. Due to its wide use in a number of fields, there are many 
reference materials and mathematicians that are experienced in this type of modeling and 
analysis. 

5.4.3.3 Appijcations 

Mathematical analysis has been used for both multi-agent systems and swarm-based systems. 
Lerman (2000; Lerman and Galstyan, 2001) used a stochastics-based method for modeling a 
multi-agent system that formed coalitions. Sheory, et al. (1999) used physics-based systems and 
applied physics-based mathematical techniques to the analysis of multi-agent systems. 

5.4.3.4 Strengths 

The strengths of a mathematical approach are that it affords a precise model of the system and 
entails a wide range of analytical methods to analyze the system. In addition, there are a large 
number of tools and techniques available with which to perform the analysis, and there is a long 
history of these types of analysis, giving assurance that they are also well understood. 

5.4.3.5 Weaknesses 

Mathematical models can be difficult to develop and difficult to understand. In addition, 
mathematical models do not always reflect the complexity of artificial systems, and artificial 
systems do not always reflect the orderliness of nature. 

5.4.3.6 Tool Support 

Standard mathematical tools can be used for mathematical analysis, such as Mathematica or 
Matlab. These types of tools are available from a wide range of sources and have excellent 
visualization capabilities so that properties of the system can be seen. 

5.4.4 Game Theory 

5.4.4.1 Summary 

Game theory uses mathematical analysis to analyze decision making in conflict situations. It 
provides for the study of human behavior and choice optimization. It uses probability and other 
mathematical techniques for analyzing situations and coming up with the best choice. It has 
been used extensively in economics, politics, management, biology, and social sciences, as well 
as other sciences, to describe interacting entities. It has recently been applied to agent-based and 
swarm-based systems as a way of modeling and analyzing agents and their societies. 

5.4.4.2 History 



Game theory has been traced back to the time of 0-500 AD in the Babylonian Talmud, which is a 
compilation of ancient law and tradition and serves as the basis of Jewish religious, criminal, and 
civil law. In the Talmud, a marriage contract problem is described that relates to a modem 
cooperative game. There are also references to game theory emerging in the 1700s, 1800s, and 
early 19oos, with the first textbook on game theory being published in 1952. 

5.4.4.3 Applications 

There have been a number of researchers who used game t h e o j  to analyze and verify agent- 
based systems: a sampling can be found in (Parsons and Wooldridge, 2002). Rudnianski and 
Bestougeff (2000) have used games of deterrence to analyze and simulate agent-based systems. 
Others (Osbome, 2003; Tomlin et al., 1998) have used game theory as a way to model agent- 
based systems as a non-cooperative, zero-sum dynamic game with self-interested agents where 
the actions of agents are modeled as disturbances to the other agents. Some of these are modeled 
as 2-player games and others as n-player games. These models have been applied to sharing 
limited resources (such as airport runways or automated highways) or for collision avoidance. 
Once a model for a system is developed, properties of the system can be proven correct by 
showing the model maintains those properties. Game theory has also been used to study 
biological (Rowe, 1997) and swarm-based systems (Challet and Zhang, 1997). 

5.4.4.4 Strengths 

The strengths of game theory are its mathematical foundation, the fact that it can be used to 
describe large entities (such as economies) and that properties of the system can be proven 
correct. In addition, many agent-based systems can be viewed as games so the models are a 
natural expression of those systems. 

5.4.4.5 Weaknesses 

Weaknesses of game theory for multi-agent or swarm-based systems are that the game theory 
specification does not always reflect the logical or procedural description of the behavior of the 
system. This means that validation can be more difficult. In addition, the mathematical game 
theory specification is unfamiliar to many engineers or software specifiers. 

5.4.4.6 Tool Support 

There are several tools available to assist in developing or analyzing game theory models 
including: 

Gambit - a library of game theory software and tools for the construction and analysis of 
games, 
CSWiz - a set of Excel spreadsheet add-ons for solving optimization or equilibrium 
problems, 
Optimizers for solving a wide range of linear and non-linear equations, available from a 
number of sources, 



Agent-based simulation (e.g. the Swarm software) tools, available for modeling large 
game-based simulations, 
Several tools for visualizing curves and equations for game and economic theories 

5.4.5 UlWL 

5.4.5. -I Summary 

The Unified Modeling Language (UML) is a language for specifying, visualizing and 
documenting models of software systems (€3ooch et al., 1999). Uh4L has twelve different 
diagram types divided into three classes: structural diagrams, behavior diagrams, and model 
management diagrams. UML does not specify a particular methodology for using the language, 
so it is methodology independent, though many of the UML tools use a particular methodology. 

5.4.5.2 Hisfory 

UML was developed from three different modeling languages: the Grady Booch method, James 
Rumbaugh’s Object Modeling Technique 2 (OMT-2) method, and Ivar Jacobson’s Object- 
Oriented Software Engineering (OOSE) method (Alhir, 2002). UML supports object-oriented 
analysis and design in addition to use cases and other system specification techniques. 

5.4.5.3 Applications 

UML is an industry standard and is widely used. It is likely the most widely used software 
specification and design technique in use today. 

UML has been used to specify agent-based systems. One of the main thrusts for using UML for 
agents is Agent UML ( A m )  (Bauer et al., ZOOO), which is a standard now being worked on by 
the Foundation for Intelligent Physical Agents (FIPA) Modeling Technical Committee 
(Modeling TC). The FIPA AUML standard has class diagrams for specifying the internal 
behavior of agents and the external environment, and has interaction diagrams. The Modeling 
TC has also identified modeling areas for Multi- vs. single agent, use cases, social aspects, 
temporal constraints, deployment and mobility, and workflow/planning, as well as other areas. 
One of the main challenges of AUML is adding semantics to UML that reflect the autonomy, 
social structures, and asynchronous communication aspects of agents. 

Other work on extending Uh4L for agent specification includes: 

The Agent-Object-Relationship Modeling Language (AORML) (Wagner, 2003), which 
enhances UML sequence diagams for specifying agent interactions, 
MASSIF (Mentges, 1999), which uses standard UML sequence diagrams for describing 
interactions, 
Oechslein, et al. (2001) uses UML Object Constraint Language (OCL) to extend UML to 
formally specifjr agents using UML, 
Role-Based Modeling Method for Multi-Agent Systems (RoMAS) (Yan et al., 2003), 
which uses UML use cases for defining system events and interactions, 
Extension of use cases for specifying agent behavior (Heinze et al., 2000), 



Extensions to UML (Papasimeon and Heinze, 2001) to support the Java Agent Compiler 
and Kernel (JACK website) agents. 

5.4.5.4 Strengths 

The major strengths of UML are its wide use in industry, its standardization by Object 
Management Group (OMG), and the large range of tool support. This means that specifications 
of agents done in UML will be able to be understood by a wide range of software specifiers and 
designers, and can be manipulated and analyzed by a wide range of tools. 

5.4.5.5 Weaknesses 

One of the weaknesses of UML has been its lack of a formal mathematical foundation for its 
semantics. This means that properties of a UML specification or design cannot be proven 
correct, and therefore means that it is not a formal method. There has been work in this area to 
formally define the semantics of UML and make it a formal specification language 
(OOPSLA’98, 1998; Kazuki, 2001). 

5.4.5.6 Tool Supporf 

There are a large number of UML tools available commercially from a range of well-known, 
mainstream tool companies (e.g., Borland and IBM), so there is excellent support. These tools 
help developers with modeling systems through diagramming at the specification and design 
level, as well as additional tools for skeleton code generation based on design diagrams and tools 
for testing the end system. 

5.4.6 integrated Approaches 

The majority of formal notations currently available were developed in the 1970s and 1980s and 
reflect the types of distributed systems being developed at that time. Current distributed systems 
are evolving and may not be able to be specified the same way past systems have been 
developed. Because of this, it appears that many people are combining formal methods into 
integrated approaches to address some of the new features of distributed systems (e.g., mobile 
agents, swarms, and emergent behavior). 

Integrated approaches have been very popular in specifying concurrent and agent-based systems. 
Integrated approaches o h  combine a process algebra or logic-based approach with a model- 
based approach. The process algebra or logic-based approach allows for easy specification of 
concurrent systems, while the model-based approach provides strength in specifying the 
algorithmic part of a system. The following is a partial list of integrated approaches that have 
been used for specifying concurrent, agent-based, and swarm-based systems. 

Communicating X-Machines (Barnard et al., 1996), 
CSP-OZ - a combination of CSP and Object-Z (Fischer, 2000), 
Object-Z and Statecharts (Bussow et al., 1998), 
Timed Communicating Object Z (Gala and Baker, 1999), 
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Name 

Artificial 
Physics 
B 

Temporal B (Bonnet et al., 1995), 
Timed CSP (Reed and Roscoe, 1983, 
Temporal Petri Nets (Temporal Logic and Petri Nets) (Bakam et al., 2000), 
ZCCS - a combination of 2 and CCS (Galloway and Stoddart, 1997). 

Concurrency Algorithm Tool Formal U s e d  i n  U s e d  i n  
support Support Support Basis Agent-Based Swarm-Based 

Yes Yes YeS Yes- Yes Yes 

NO Yes Yes Yes Yes NO 

specs. specs. 

(Mathematical) (limited) 

From the wide interest in integrated approaches, it appears that current techniques are not 
sufficient to model and verify distributed and concurrent systems. 

6. Specification Approaches Used for Social, Swarm and Emergent Behavior 

The following is a summary of specification techniques that have been used for specifying 
social, swarm, and emergent behaviors. All of these approaches are based on the formal 
approaches described above. 

Weighted Synchronous Calculus of Communicating Systems (WSCCS), a process 
algebra, was used by Tofts to model social insects (1991). WSCCS was also used in 
conjunction with a dynamical systems approach for analyzing the non-linear aspects of 
social insects (Sumpter et al., 2001). 
X-Machines have been used to model cell biology (Fournet and Gonthier, 1996; 
Holcombe, €986) and modifications, such as Communicating Stream X-Machines 
(Barnard et al., 1996) also have potential for specifying swarms. 
Dynamic Emergent System Modeling Language (DESML) (Kiniry, 1998), which is a 
variant of ZTML, has been suggested for modeling emergent systems. 
Cellular automaton (von Neumann, 1996) has been used to model systems that exhibit 
emergent behavior (such as land use). 
Simulation approaches are also being investigated to determine emergent behavior and 
then use a modeling technique to model the behavior. These approaches do not model 
emergent behavior beforehand, only after the fact. 

7. Comparison and Selection of Formal Methods to Specify ANTS 

7.1 Comparison of Formal Methods 

Tables 1 through 3 compare the formal methods described in the above sections. Table 1 
compares the methods described in section 5, relative to several characteristics: support for 
concurrency, support for algorithm specification, tool support, formal foundation (and the type 
used), and whether the method has been used to specify agent-based or swarm-based systems in 
the past. 

Table 1: Comparison of candidate formal methods for intelligent swarms. 
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Table 2 compares the integrated formal methods relative to the same factors and characteristics 
in Table 1. For the tool support, a yes is entered only if there is integrated tool support for the 
combined languages, not separate tools for each language in the integrated. 

Table 2: Comparison of integrated formal methods. 
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Table 3 compares methods that have been used for modeling or specifying swarm-based systems 
(computer-based or biological based). 

Table 3: Comparison of formal methods used for swarm specifications. 
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8. Evaluation of Methods for Specifying and Analyzing Emergent Behavior 

The following is a list of methods that show promise for specification and verification of swarm- 
based systems: 

Artificial Physics, 
Communicating Sequential Processes, 

X-Machines, 
BDI Logic, 
A m ,  
ZCCS and 
Timed Communicating Object Z. 

wsccs, 
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Based on the results of the survey, four of the above formal methods were selected to be used for 
a sample specification of part of the ANTS mission. These methods were: the process algebras 
CSP and WSCCS, X-Machines, and Unity Logic. These will be used to describe an ANTS 
virtual experiment. CSP was chosen as a baseline specification method because the team has had 
significant experience and success (Rouff et al., 2000 and Hinchey .et al., 2001) in specifjring 
agent-based systems with CSP. WSCCS and X-Machines were chosen because they have 
already been used for specifying emergent behavior by others, apparently with some success. 
Unity Logic was also chosen because it had been successfully used for specifying concurrent 
systems and affords a logic-based specification, which offered a contrast to the other methods. 

DESML, Cellular Automata, Artificial Physics, and simulation approaches were not used even 
though they had been used for specifying or evaluating emergent behavior. DESML, though 
very interesting, was not used because it had not been used or evaluated outside of the thesis it 
was developed under (though we may be revisiting it at a future time). Cellular Automata were 
not selected because they did not have any built in analysis properties for emergent behavior and 
because they have been primarily used for simulating emergent systems (as described in the 
previous section). Though not used for the specification, it too may be revisited to further 
examine its strengths. Artificial physics, which is very promising, was not selected because of 
the newness of the approach and because of the translation that must be done between physics 
and software behavior. Lastly, simulation techniques were not used due to the fact that 
verification cannot be undertaken using simulation. This is because there could be emergent or 
other undesirable behaviors occurring that are not visible or do not become apparent during a 
simulation, but may exist nonetheless. A formal technique is designed to find exactly these 
kinds of errors. 

The following describes the reasons for selecting CSP, WSCCS, Unity Logic and X-Machines. 

8.1.1 CSP 

CSP is a process algebra and is very good at specifying the process protocols between and within 
the spacecraft and analyzing the result for race conditions. Behg able to evaluate a system for 
race conditions is very important, particularly in swarm-based systems, which are highly parallel. 
From a CSP specification, reasoning about the specification can be done to determine race 
conditions as well as converted into a model checking language for running on a model checker. 

8.1.2 WSCCS 

WSCCS provides a process algebra that takes into account the priorities and probabilities of 
actions performed by the leader and other ANTS spacecraft. It further provides a syntax and 
large set of rules for predicting and specifying the choices and behaviors of the Leader, as well as 
a congruence and syntax for determining whether two automata are equivalent. All of this in 
hand, WSCCS can be used to specify the ANTS spacecraft and to reason about and even predict 
the behavior of one or more spacecraft. This robustness affords WSCCS the greatest potential for 
specifying emergent behavior in the ANTS swarm. What it lacks towards that end is an ability to 



track the goals and model of the ANTS mission in a memory. This may be achieved by blending 
the WSCCS methods with the memory aspects of X-Machines. 

8.1.3 Unity Logic 

Unity Logic provides a logical syntax equivalent to simple Propositional Logic for reasoning 
about these predicates and the states they imply as well as for defining specific mathematical, 
statistical and other simple calculations to be performed. However, it does not appear to be rich 
enough to allow ease of specification and validation of more abstract concepts such as mission 
goals. This same simplicity, however, may make it a good tool for specifying and validating the 
actual Reasoning programming (as opposed to Reasoning process) portion of the ANTS Leader 
spacecraft, when the need arises. In short, specifjring emergent behavior in the ANTS swarm will 
not be accomplished well using Unity Logic. 

8.1.4 X-Machines 

X-Machines provide a highly executable environment for specifLing the ANTS spacecraft. It 
allows for a memory to be kept and it allows for transitions between states to be seen as 
functions involving inputs and outputs. This allows us to track the actions of the ANTS 
spacecraft as well as write to memory any aspect of the goals and model. This ability makes X- 
Machines highly effective for tracking and effecting changes in the goals and model. However, 
X-Machines does not provide any robust means for reasoning about or predicting behaviors of 
one or more spacecraft, beyond standard propositional logic. This will make specifLing emergent 
behavior difficult. 

.8.1.5 Summary 

Based on the above evaluation, the following are some of the properties of a formal method 
needed for specming swarm-based systems: 

Ability to model and reason about aggregate behavior based on future actions of the 
individual agents of a swarm (such as provided by WSCCS) 
Ability to model and reason about concurrent processes for detection of race conditions 
(such as provided by CSP and Unity Logic) 
Ability to model states of an agent of the swarm to assure correctness (such as provided 
by StatechartS, X-Machines or Z) 
Ability to model and reason about persistent information so adaptive behavior can be 
verified (such as provided by X-Machines). 

A blending of the above methods seems to be the best approach for specifying swarm-based 
systems and analyzing emergent behavior of these systems. Blending the memory and transition 
function aspects of X-Machines with the priority and probability aspects of WSCCS may 
produce a specification method that will allow all the necessary aspects for specifying emergent 



behavior in the ANTS mission and other swarm-based systems. The idea of merging the above 
methods is currently being furthered studied as well as adding some of the properties of logic and 
cellular automata. 

9. Conclusion 

Swarm-based missions are becoming more important to NASA to enable new science to be 
performed. These types of missions have many positive attributes but represent a change in 
paradigm fiom current types of single spacecraft missions. Swarms require new types of 
verification and validation techniques to assure their correct operation. To overcome their 
nondeterministic nature, high degree of parallelism, intelligent behavior, and emergent behavior, 
new kinds of verification methods need to be used. 

This report has presented the results of an investigation into formal method techniques that might 
be applicable to future swarm-based missions and that can verify their correctness. It also 
analyzed the properties of these methods to determine the needed attributes of a formal 
specification language to predict and verify emergent behavior of future NASA swarm-based 
systems. 

Future work will concern the development of a new formal method based on blending aspects of 
the several formal methods as well as adding additional mathematical techniques from other 
areas of matfiematics that may prove fiuitfid for predicting the emergent behavior of swarms. We 
intend to use ANTS and another NASA swarm-based mission to test the capabilities of the 
resulting formal method. We expect that the resulting formal method could become the basis of 
other specification languages to support specification and analysis of future swarm-based 
systems. 
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