
A Survey of Formal Methods for Intelligent Swarms

Christopher Rouff
SAIC

Walt Truszkowski, James Rash, Mike Hinchey
NASA Goddard Space Flight Center

December 14&, 2004

,

1 .
2 .
. 3 .
4 .
5 .

.

.

.

.

6 .
7 .

. 8 .

.

.

9 .
- IO .
.

Table of Contents

Introduction ... 3
Intellipent Swarm Technolorn Overview .. 4
ANTS Mission Overview .. 5
Formal Amroaches and Assurance .. 5
Potential Candidates .. 7
5.1 Process Algebras ... 7
5.1.1 Communicating Sequential Processes KSP) .. 7
5.1.2 Calculus for Communicating Systems CCCSl ... 10
5.1.3 >-Calculus ... 1 1
5.1.4 Inuut/oUtDut Automata (IOA) .. 12
- 5.2 Model-Oriented Auuroaches ... - 144-3
5.2.1 z .. 1444
5.2.2 .. 16-H
5.2.3 Finite State Machines (FSMs) .. 17
5.2.4 Statecharts ... 18
5.2.5 Petri Nets .. ?019 I
5.2.6 X-Machines (XhQ ... 21
5.3 Logics &__ 3 ?y
5.3.1 Temporal Logic ... 22
5.3.2 Real Time Logic rnTL1 ... 24
5.3.3 BDI Logics .. 25
5.3.4 KARO Loic ... 26
- 5.4 Other Auuroaches 27
5.4.1 Artificial Physics .. 27
5.4.2 S- ... 29
5.4.3 Mathematical Analvsis ... 30
5.4.4 Game The0 rv ... 31
5.4.5 UML .. 3332
5.4.6 Integrated Amroaches ... 34
Specification Amroaches Used for Social. Swarm and Emergent Behavior - 353-4
Comparison and Selection of Formal Methods to Spec@ ANTS 35
7.1 Comuarison of Formal Methods .. 35
Evaluation of Methods for SDecifirinF and Analyzing Emergent Behavior 37
8.1.1 Csp ... 38

- -

-
-

-

I .. -

-

-

8.1.2 WSCCS: ... 38
8.1.3 Unity Logic ... 3% I
8.1.4 X-Machines ... 39
8.1.5 summw ... 39
Conclusion .. 4039 I
Acknowledgements .. 40
References .. 40

-

11 . -

3

1. Introduction
Swarms of intelligent autonomous spacecraft, involving complex behaviors and interactions, are
being proposed for future space exploration missions. Such missions provide greater flexibility
and offer the possibility of gathering more science data than traditional single spacecraft
missions. The emergent properties of swarms make these missions powerful, but simultaneously
far more difficult to design, and to assure that the proper behaviors will emerge. These missions
are also considerably more complex than previous types of missions, and NASA, like other
organizations, has little experience in developing or in verifying and validating these types of
missions. A significant challenge when verifying and validating swarms of intelligent
interacting agents is how to determine that the possible exponential interactions and emergent
behaviors are producing the desired results. Assuring correct behavior and interactions of
swarms will be critical to mission success.

' The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm
types of missions NASA is considering. The ANTS mission will use a swarm of picospacecraft
that will fly fiom Earth orbit to the Asteroid Belt. Using an insect colony analogy, ANTS will be
composed of specialized workers for asteroid exploration. Exploration would consist of
cataloguing the mass, density, morphology, and chemical composition of the asteroids, including
any anomalous concentrations of specific minerals. To perform this task, ANTS would carry
miniaturized instruments, such as imagers, spectrometers, and detectors.

Since ANTS and other similar missions are going to consist df autonomous spacecraft that may
be out of contact with the earth for extended periods of time, and have low bandwidths due to
weight constraints, it will be difficult to observe improper behavior and to correct any errors after
launch. Providing V&V (verification and validation) for this type of mission is new to NASA,
and represents the cutting edge in system correctness, and requires higher levels of assurance
than other (traditional) missions that use a single or small number of spacecraft that are
deterministic in nature and have near continuous communication access.

One of the highest possible levels of assurance comes from the application of formal methods.
Formal methods are mathematics-based tools and techniques for specifying and verifying
(software and hardware) systems. They are particularly useful for specifying complex parallel
systems, such as exemplified by the ANTS mission, where the entire system is difficult for a
single person to fully understand, a problem that is multiplied with multiple developers. Once
written, a formal specification can be used to prove properties of a system (e.g., the underlying
system will go from one state to another or not into a specific state) and check for particular
types of errors (e.g., race or livelock conditions). A formal specification can also be used as
input to a model checker for further validation.

This report gives the results of a survey of formal methods techniques for verification and
validation of space missions that use swarm technology. Multiple formal methods were
evaluated to determine their effectiveness in modeling and assuring the behavior of swarms of
spacecraft using the ANTS mission as an example system. This report is the first result of the
project to determine formal approaches that are promising for formally specifying swarm-based
systems. From this survey, the most promising approaches were selected and are discussed

____-

relative to their possible application to the ANTS mission. Future work will include the
application of an integrated approach, based on the selected approaches identified in this report,
to the formal specification of the ANTS mission.

2. Intelligent Swarm Technology Overview
Bonabeau et aI. (1997), who studied self-organization in social insects, state “that complex
collective behaviors may emerge from interactions among individuals that exhibit simple
behaviors” and describe emergent behavior as “a set of dynamical mechanisms whereby
structures appear at the global level of a system from interactions among its lower-level
components.”

Agent swarms are being used as a computer modeling technique and have also been used as a
tool to study complex systems (Hiebeler, 1994). In swarm simulations, a group of interacting
agents (Weiss, 1999) (often heterogeneous or near heterogeneous agents) has been studied for
their emergent behavior. Examples of simulations that have been undertaken are swarms of
birds (Reynolds, 1987; Carlson, 2000), business and economics (Luna and Stefansson, 2000) and
ecologicai systems (Savage and Askenaki, 1998). In swarm simulations, each of the agents is
given certain parameters that it tries to maximize. In terms of the bird swarms, each bird tries to
find another bird to fly with, and it will try to fly off to one side and slightly higher to reduce its
drag. Eventually the birds form flocks. Other types of swarm simulations have been developed
that exhibit unlikely emergent behavior. The emergent behavior makes the whole greater than
the sum of the individuals in the swarm. These emergent behaviors are the sums of often simple
individual behaviors, but when aggregated, form complex and often unexpected behaviors.
Swarm behavior is also being investigated for use in such applications as telephone switching,
network routing, data categorizing, and shortest path optimizations (Bonabeau and Theraulaz,
2000).

Intelligent swarms (Bonabeau et ai., 1999; Beni, 1998; Beni and Want, 1989) involve,
minimally, simple agents and local interactions (interactions between agents and the
environment). There is no central controller directing the swarm; they are self-organizing based
on the emergent behaviors of the simple interactions. The emergent behavior is sometimes
referred to as the macroscopic behavior and the individual behavior and local interactions as the
microscopic behavior. These types of swarms exhibit self-organization since there is no external
entity directing their behavior and no one agent has a global view of the intended macroscopic
behavior. This type of behavior is observed in insects and flocks of birds.

One of the most challenging aspects of using swarms is how to verify that the emergent behavior
of such systems will be proper and that no undesirable behaviors will occur. In addition to
emergent behavior in swarms, there are also a large number of concurrent interactions going on
between the agents that make up the swarms. These interactions can also contain errors, such as
race conditions, that are very difficult to detect until they occur. Once they do occur, it can also
be very difficult to recreate the errors since they are usually data and time dependent.

Intelligent swarm technology is based on swarm technology where the individual members of the
swarm also have independent intelligence. This makes verifying such systems even more

A

difficult since the swarms are no longer made up of homogeneous members with limited
intelligence and communications. With intelligent swarms, members of the swarm may be
heterogeneous or homogeneous. Even if members are initially homogeneous, their differing
environments may cause them to learn different things and develop different goals and
consequently become a heterogeneous swarm. Intelligent swarms may also be made up of
heterogeneous elements from the outset, reflecting different capabilities as well as a possible
social structure. Verifjing such swarms will be difficult due to the complexity of each member
but also due to the complex interaction of a large number of intelligent elements. This will
create a huge state space, and, since the elements may be learning, the behavior of the individual
elements and the emergent behavior of the swarm will be constantly changing and may be
difficult to predict. .

3. ANTS Mission Overview
The Autonomous Nan-Technology Swarm (ANTS) mission (ANTS Team; Clark et al., 2002;
ANTSPAM website; Curtis et al., 2000; Curtis et al. 2003) will have swarms of autonomous
pico-class (approximately lkg) spacecraft that will search the asteroid belt for asteroids that have
specific characteristics. There will be approximately 1,000 spacecraft involved in the mission.
The spacecraft will be initially carried to the asteroid belt by a transport ship and then released.
Replacement spacecraft will be sent from Earth on an as-needed basis.

There will be several types of spacecraft involved in the mission (Figure 1). Some of the
spacecraft, called workers, will have a specialized instrument onboard (e.g., a magnetometer, x-
ray, gamma-ray, visibleAR, neutral mass spectrometer) and will gather specific types of data.
Some will be coordinators (called rulers) that have rules that decided the types of asteroids and
data the mission is interested in and will coordinate the efforts of the workers. The third type of
spacecraft are the messengers that will coordinate communications between the workers, rulers
and Earth. Each worker spacecraft will examine asteroids they encounter and send messages
back to a coordinator that will then evaluate the data and send other appropriate satellites with
specialized instruments to the asteroid to gather further information if needed. Approximately SO
percent of the spacecraft will be workers.

To implement this mission, a high degree of autonomy is being planned. A heuristic approach is
being considered that provides for a social structure for the spacecraft based on the above
hierarchy. Artificial intelligence technologies such as genetic algorithms, neural nets, fuzzy
logic and on-board planners are being investigated to assist the mission in maintaining a high
level of autonomy. Crucial to the mission will be the ability to modi@ its operations
autonomously to reflect the changing nature of the mission and the high-latency and low
bandwidth communications back to Earth.

4. Formal Approaches and Assurance

Figure 1 : ANTS Mission Concept.

Software engineers are confi-onting the central dilemma of the field - the necessity of producing
high quality software -- knowing that, using traditional methods, 100% verification and
validation (V&V) of non-trivial software systems is impossible. Addressing this dilemma is a
crucial problem facing computer science and soflware engineering in general. For NASA,
having software with less than 100% V&V means having less than 100% assurance of mission
safety and success. Finding a solution to the software dilemma is a matter of urgency and is a
major focus of computer science as well as for NASA.

As mission software becomes more complex, testing it also becomes more difficult. This is
especially true of parallel processes and distributed computing, which NASA is increasingly
developing and using on missions. Errors in these systems can rarely be found by inputting
sample data into the system and checking if the results are correct. These types of errors are
time-based and only occur when processes send or receive data at particular times or in a
particular sequence. To find these errors, the software processes involved have to be executed in
all possible combinations of states (state space) that the processes could collectively be in. The
state space grows extremely rapidly (often exponentially) with the number of states in the
processes, and becomes increasingly difficult to test with a relatively small number of processes.
Traditionally, to get around the state explosion problem, testers have artificially reduced the
number of states and approximated the underlying software using restricted models.

Formal methods are proven approaches for assuring the correct operation of complex interacting
systems (Hinchey and Jarvis, 1995; Hoare, 1985; Clare and Wing, 1996). Once written, a formal
specification can be used to prove properties of a system correct (e.g., the underlying system will
go from one state to another, or not into a specific state), check for particular types of errors
(e.g., race conditions), as well as used as input to a model checker.

5. Potential Candidates
The following is a list of potential formal approaches that could be used for formally specifiring
swarm related technologies, such as ANTS. This list gives the name of each of the formal
approaches, a brief summary, history, applications that it has been used on, strengths,
weaknesses, and tool support.

This list of approaches was determined through a literature search. A high emphasis was given
to those approaches that have been used in agent technologies or other highly distributed,
concurrent environment, which is the environment of swarms.

The following gives a brief overview of several formal methods that have been used to model
agent-based systems.

5.1 Process Algebras
Process algebras generally are made up of the following: a language for describing systems, a
behavioral equivalence or inequivalence that allows comparison of system behaviors, and axioms
that allow for proofs of equivalence between systems. Some algebras include a refmement
ordering to determine whether one system is a refinement of another. Process algebras usually
use a handshake mechanism (rendezvous) between processes via a port or channel. One process
may wait for data at a channel until another process sends data over the channel (or vice versa).
Once the data is exchanged, both processes continue. The receiving process then may execute
different processes based on the data received. Internal, non-communications aspects of
processes are not reflected by process algebras.

5.1.1 Communicating Sequential Processes (CSP)

5.1.1.1 Summary

Communicating Sequential Processes (CSP) was designed by C.A.R. Hoare (1978; 1985) to
specify and model concurrent systems. Systems specified in CSP consist of independently
executing processes that communicate over unbuffered, unidirectional channels and use events
for synchronization. Processes in CSP are recursively defined as the occurrence of an event
followed by a process. The events guard the processes so that the process does not execute until
the event occurs. When a process needs to synchronize with another process or send it data, data
is sent over a channel and then blocks until the other process reads the data fiom the channel. If
the reading process tries to read data from a channel and there is no data on the channel, it also
blocks until data arrives. There are also standard processes, such as STOP, SKIP, RUN and
bottom (I). Choice operators and conditionals also exist that allow for choosing one of many
processes to execute depending on a condition.

7

CSP has a proof system associated with it so that properties of CSP specifications can be proven
correct or not correct. Proofs are based on traces of events that can be produced by a
specification. Every time an event occurs, the event is listed as part of a trace for the process. A
specification has a set of acceptable traces that can occur. By applying the laws of CSP traces to
a set of traces, it can be determined whether the given set of traces can be produced by a given
specification. It can also be determined the set of possible traces that a specification can
produce. Correctness of a specification can then be determined by proving that a sequence of
traces can never be produced by the specification and/or that a set of traces can be produced by
the specification. In addition, properties such as deadlock and liveness can also be proven as
properties of a specification.

5.1.1.2 History

CSP was developed by C.A.R. Hoare and originally presented in a paper in the Communications
of the ACM in 1978 (Hoare, 1978). A book (Hoare, 1985) was subsequently published in 1985
that contained updates on CSP that added the named channels and renaming. CSP has also been
updated several times with several variations such as Timed CSP (Reed and Roscoe, 1987), CSP-
i (Wrench, 1988) and Receptive Process Theory (Josephs, 1992).

It is a popular formal specification notation forconcurrent systems and has been widely used to
specify concurrent systems. It has often formed the basis of programming language extensions
for concurrent systems and other specification systems.

5.1. 1. 3 Applications

CSP has been used in a wide range of applications for specification of concurrent systems. A
few of these include:

9

9

Specification of the LOGOS multi-agent system at NASA Goddard (Rouff et al., 2000;
Hinchey et al., 2001),
Specification of the Open Systems Interconnection (OSI) model (Hinchey and Jarvis,
1995),
Specification of an operating system by praxis Systems Ltd (Craigen et al., 1993),
Specification of the Textronix 1 1000 oscilloscope,
Specification of the T 800 Transputer for N O S Ltd.,
Specification of the WOO0 Transputer for INMOS Ltd,

5.1.1.4 Strengths

The primary strength of CSP is that it was originally developed for describing concurrent
systems. It is also a simple language that is easy to read with little training and also easy to
write. By modeling systems using processes, events, and channels, the communication between
processes is easily modeled and concurrency-related problems easily detected by inspection.
CSP can also be used at differing levels of abstraction to give a high-level overview of a system
as well as a detailed view. CSP allows for proof of correctness for deadlock and livelock as well
as general safety and liveness properties. Other strengths noted of CSP are that it naturally

8

..

supports specification of nondeterministic systems and is good at modeling resource sharing,
process control, and real-time interactions.

Some model checkers have used CSP as a basis for their model checking languages. An
example is the Promela model checking language for SPIN (Holzmann, 1991). This makes
converting CSP into a model checking language straight3orward and the process can even be
automated. An advantage of using CSP instead of a model checking language directly is that the
resulting CSP specification is more general purpose and can then be translated to a wide range of
tools (see below) as opposed to just the model checker.

Many programming languages and other modeling languages are using CSP as a model when
adding concurrency features; examples include languages such as Communicating Java Threads
(CJT) (Hilderink et al., 1998), and Modula-P (Vollmer and Hoffart, 1992). This means that
specifications written in CSP can be transfered to other implementation languages, and code or
code fragments can be automatically generated based on CSP specifications.

5. I . I . 5 Weaknesses

Due to the simplicity of the language (processes, events, and channels), specifications can
become large and therefore difficult to read and understand. Another weakness noted is that CSP
cannot explicitly deal with data or algorithmic issues. Data can be sent in messages through
channels, but the manipulation of that data must be done in the context of sending the data
through the channel. Other weaknesses noted are that specifications can become over-
synchronized due to the limited language constructs, namely that (in its pure form) it does not
support asynchronous message passing, it does not perform message buffering, and there can be
readability issues.

5.1. I. 6 Tool Support

There are several tools that support development of specifications in CSP or the implementation
of CSP. The following is a partial list:

CSP2B (Butler, 1999) is a tool that converts CSP specification to B specifications,
Failures-Divergence Refinement (FDR) (Roscoe et al., 1995) is a model checker based on
the theory of CSP,
Occam (INMOS, 1984) is a parallel processing language based on CSP and implemented
on the transputer processor,
Java Communicating Sequential Processes (JCSP) (Lea, 1999) is a library of Java classes
that give programmers a process model based on CSP,
CCSP is an execution environment for CSP programs. The CSP programs are converted
to C and then run as individual process on networked workstations,
Communicating Java Threads (CJT) is a class library for Java that provides CSP
channels, composition constructs, and scheduling of processes.

There are also other tools that use languages that are similar to CSP. One of those is the model
checker SPIN (Hohann, 1991) that uses a language called Promela. CSP is similar enough to

9

Promela that CSP specifications can be easily convert into Promela, and a converter could also
be developed that automatically does the conversion.

5.1.2 Calculus for Communicating Systems (CCS)

5.7.2. I Summary

The Calculus of Communicating Systems (CCS) (Milner, 1985) is a process algebra that was
developed for reasoning about concurrent systems. CCS defines concurrent systems as a set of
processes using actions (or events) and operators on the actions. Actions represent external
inputs and outputs on ports from the environment or internal computation steps. Operators on
actions consist of an action prefix operator, a nil operator, a choice operator (+), a parallel
composition operator (I), a restriction operation (I) that permits actions to be localized within a
system, a renaming operator v] that maps actions to other actions, and an invocation function
that allows systems to be defined recursively. Similar to CSP, processes in CCS are defined
recursively and communicate with other processes through ports. CCS also has a set of axioms
that can be used to reason about the processes and prove properties of systems.

5. I. 2.2 History

CCS, developed by Robin Milner (1985), was one of the first process algebras. CCS has had
several extensions made to it, including CCS with Broadcast (CCS+b) and Temporal CCS
(TCCS). CSP and Pi Calculus are also considered to be extensions to CCS.

5-1.2.3 Applications

CCS is being used to specify agents, where instead of a process that is defined by a set of
equations, an agent is substituted. It has also been used on the T9000 Transputer for INMOS
Ltd. CCS was also extended by Tofts (1991)to model social insect behavior.

5.7.2.4 Strengths

Like CSP, the primary strength of CCS is that it was originally developed for describing
concurrent systems. Process algebras are fairly easy to read with little training and also easy to
write. By modeling systems using processes, actions and ports, the communication between
processes are easily modeled and concurrency related problems can be easily detected by
inspection. CCS can also be used to represent systems at different levels of abstraction to give a
high-level overview of a system as well as a detailed view. With its refmement ability, CCS can
also maintain equivalences between higher level and lower level specifications. In addition,
there is the ability to test that two specifications are bisimuzations of each other (two
specifications simulate each other). CCS also allows for proof of correctness as well as deadlock
and livelock.

5.1.2.5 Weaknesses

CCS has many of the weaknesses of CSP. Due to the simplicity of the language (processes,
actions, and ports), specifications can become large and therefore difficult to read and

i n

I

z --

understand. Another weakness is that CCS cannot explicitly deal with data or algorithmic issues.
A limited form of data exchange can be performed by encoding values in port names, which
makes the passing of data predefined and based on the name of the port. Specifications can also
become overly synchronized due to the limited Ianguage constructs; it does not support
asynchronous message passing; it does not perform message buffering; and there can be
readability issues.

5.12- 6 Tod Support

CCS is supported by a public domain tool called the Concurrency Workbench (CWB). It is an
interactive tool that.is available from several sources (e.g., University of Edinburgh (Moller and
Stevens)). CWB displays simulations of concurrent systems specified in CCS. It can search for
deadlocks, test for equality between agents and can determine if a system satisfies defined
properties.

5.1.3.1 Summary

>-calculus (Milner et al., 1992) is a process algebra based on CCS that differs from some of the
other process algebras in that it supports mobility of processes. It does this by being able to pass
a link (channel) as data in a handshake. This allows data links to be passed to other processes
and links can then be represented by variable names and compared for equality or inequality, and
reasoned about.

There are two versions of the ?-calculus: monadic calculus and polyadic calculus. The monadic
calculus communicates one name at each handshake and the polyadic calculus can communicate
zero or more names at each handshake. The two are equivalent (multiple single name
communications can be used to represent one polyadic communication). Pi-calculus contains
constructs for input and output on links, a silent (empty) prefix, sum operator, parallel
composition operator, match and mismatch link comparison, restricted links, and parameterized
process names which can be used for invocation.

5. I. 3.2 History

The &calculus is an extension to CCS and was first extended to pass link names by Astesiano
and Zucca (1 984) and Engberg and Nielson (1 986). These early versions were viewed by some
as overly complicated, and were later refmed by Milner, Parrow and Walker (1992). There have
been many other calculi that have also been based on the 2-calculus, including Pict (Pierce and
Turner, 1999), Facile (Borgia et ai., 1996), Join (Fournet and Gonthier, 1996), Ambients
(Cardelli and Gordon, 1998), Spi (Abadi and Gordon, 1998), and POOL (Walker, 1995)).

5.7 -3.3 Applications

11

>-calculus has been used by several people to model agent-based systems. Esterline et al. have
used ?-calculus to specify the LOGOS multi-agent system (2000) and Kawabe et a1.(2000) have
developed a 2-calculus-based system called Nepi2 to specify communicating software or agents.

5. I. 3.4 Strengths

>-calculus’ strength is being able to model processes whose interconnections change over time.
These types of processes are modeled by >-calculus’ ability to transfer the name of a
communication link (or channel) to another process, which can also pass it on to other processes.
This gives it the ability to model systems whose resources vary over time as well as mobile
processes. It also has the ability to define links that are private between two or more processes,
but the restricted names are also transferable to other processes.

In addition, there is the ability to test that two specifications are bisimulations of each other (two
specifications simulate each other). CCS also allows for proof of correctness as well as deadlock
and livelock.

5.1.3.5 Weaknesses

?-calculus does not provide for data passing between processes (only names of links). Other
weaknesses are also similar to other process algebras: specifications can become large and
therefore difficult to read and understand, it does not deal explicitly with data or algorithmic
issues, specifications can become over-synchronized due to the limited language constructs,
asynchronous message passing is not supported, there is no message buffering, and there can be
readability issues.

5.1.3.6 Tool Support

The Concurrency Workbench (C W) that is used to support CCS has been extended for 1-
calculus and is called the Mobility Workbench (MWB) (Victor and Moller, 1994). The MWB
addresses the polyadic ?-calculus, and like CWB can be used to decide equivalence, determine
whether an agent satisfies a formula, can find deadlocks using a model checker, and provides an
interactive simulator.

5.1.4 InpUVOutput Automata (IOA)

5.1.4.1 Summary

Input/output automaton (IOA) are nondeterministic state machines. They can be described as a
labeled transition system for modeling asynchronous concurrent systems (Lynch and Tuttle,
1987). An IOA consists of a set of states with a transition hc t ion . IOA may have infinitely
many states, and an infinite alphabet with strings of infinite length in the language that is
accepted by the automata. Actions are classified as input, output or internal. The inputs to the
automata are generated by its environment. The outputs and internal actions are generated by the
automata with the outputs being sent to the environment. Actions can also have preconditions
for them to fire.

13

An I/O automaton has "tasks"; in a fair execution of an I/O automaton, all tasks are required to
get turns infinitely many times in any finite interval. The behavior of an I/O automaton is
describable in terms of traces, or alternatively in terms of fair traces. Both types of behavior
notions are compositional.

5.1.4.2 History

The inputloutput automaton model was developed by Lynch and Tuttle (1987). Variants of IOA
have been developed that include Hybrid Automata (Lynch et al., 2003) for modeling systems
that are a combination of continuous and discrete systems, Timed Automata (Grobauer and
Muller, 1999) for reasoning about real-time systems, probabilistic versions (PIOA) (Wu et al.,
1997) for specieing systems with a combination of probabilistic and nondeterministic behavior,
and dynamic IOA (DIOA) (Attie and Lynch, 2001) for describing systems with run-time process
creation, termination, and mobility.

5.1.4.3 Applications

IOA has been used to verify a number of types of systems, including various communication
protocols (e.g., TCP) (Smith, 1997) and performance analysis of networks (upper and lower
bounds and failures). It has also been used for specification and reasoning about agent-based
systems (Tadashi et al., 2000).

A strength of I/O Automata is that inputs from the environment can not be blocked. This
enforces an environment driven model of the system. In addition, IOA can model multiple levels
of abstractions of a system, from high-level specifications to detailed algorithms. IOA models
are executable, can be simulated, and are highly nondeterministic. IOA is a calculus so YO
automata can be used to generate code. Finally, IOA has constructs for proving correctness of a
specification.

5.1.4.5 Weaknesses

A former weakness of 110 Automata ,that there is not a formal algebra for it, has been addressed
by the development of a process algebra that describes 1/0 automata (Nicola and Segala, 1995).

5. $. 4.6 Tool Support

Isabelle/HOLCF (Hamberger, 1999) allows for fully formal tool-supported verification and
model checking for specifications using YO automata. Simulators have also been developed for
YO automata (Cheer, 1998).

5.2 Model-Oriented Approaches

5-21 z
5.2. f - 7 Summary

Z is based on Zermelo set theory and is used to describe the behavior of sequential processes. In
general, concurrency and timing cannot be described in Z (although there are variants and
extensions to address these issues).

Z is strongly typed, with types being associated with sets and operators of equality and
membership defined for all types. The main construct of Z to describe the functionality of a
system is the schema, which is a visual construct that includes a declaration part and an optional
predicate part. The declaration part contains named and typed schema components with
constraining information. The predicate part contains pre- and post-conditions of the
components in the declaration as well as invariants and operations on the components. The
schema calculus of Z allows schemas to be combined to form new schemas and describe the
functionality of a system as a whole.

5.2. I. 2 History

Z was originally developed by Jean-Raymond Abrial at the Programming Research Group at the
Oxford University Computing Laboratory (OUCL) and further developed elsewhere since the
late 1970s. There have also been several object oriented extensions to Z that include ZERO,
MooZ, Object-Z, OOZE, Z++, ZEST, and Fresco, with Object-Z currently being the prominent
version.

Z has also been combined with other formal methods, such as CSP, to give it the ability to handle
concurrency and timing. An example is Timed Communicating Object 2 (TCOZ) that has
Object Z’s strength in modeling algorithms and data, and CSP’s strength in modeling process
control and real-time interactions (Mahoney and Dong, 2000).

5.2.7.3 Applications

Z has been used in a wide range of applications. It has been used to formally specify a radiation
therapy machine control program, sliding window protocol (Hinchey and Bowen, 1999), and a
steam-boiler controller, among others.

For agent-based systems, d’Inverno and Luck (2000; 2001) have used Z to specify an agent
framework. In their framework they have specified a four-tiered hierarchy that consists of
entities, objects, agents, and autonomous agents. As part of the agent framework specification
they specify engagement, cooperation, inter-agent relationships, sociological agent, plans, and
goals.

A few of the applications specified by Z include (Craigen et al., 1993):

14

Extensions to a secure operating system, a security policy, and a software development
toolset by Praxis Systems Ltd,
IBM’s Customer Information Control System,
Oscilloscope software at Textronix,
The T 800 Transputer at INMOS Ltd.

Z has been used on a wide number of other projects with a high degree of success.

5.2.1.4 Strengths

Some of Z’s strengths include having a basis in set theory and predicate calculus, its ability to
model complex data and algorithms, its precise expressions of functions, and its notational
variety. Z also has a wide range of tools to support specifications, type checking, typesetting,
and verification with some programming languages.

5.2. I . 5 Weaknesses

Z’s main weakness in terms of agent-based and swarm systems is its sequential nature. It has
been faulted for not being good at modeling concurrency. Some of the concurrency issues have
been addressed by integrated models that use a process algebra for concurrency and Z for the
sequential parts (h4ahony and Dong, 2000), or Object-Z for the agent modeling and statecharts
for the concurrency (Kawabe et al., 2000). Another weakness that has been noted is that since Z
is mathematically based, it is theoretically possible to specify a system that is impossible to
construct. In reality, however, this is avoided in that standard practice in the use of Z requires
the specifier to define a valid initial state from which all other states are derived by application of
valid operations. As a rem14 the system specified is guaranteed to be possible to construct.

5.2.1.6 Tool Support

There are a range of tools for formatting, type-checking, and aiding in proofs of Z. The
following is a partial list:

ZTC - is a type checker that is intended to be compliant with the 2“d edition of Spivey’s
Z Reference Manual.
ZANS - is a research prototype Z animator.
FUZZ - is a syntax and type checker with a LaTex style option.
CADiZ - is a suite of integrated tools for preparing and type-checking Z specifications
for documents.
ProofPower - is a suite of tools that support specifications and proofs. It can also
support verification of SPARK-Ada programs against Z specifications.
Sola - is a commercial integrated support tool for Z for automated assistance in the
specification construction, proving, and maintenance process. It is intended for system
developers and includes an editor, type-checker, and tactical theorem prover. It is no
longer actively supported.

15

I

Z/EVES - is a tool for analyzing Z specifications. Some of its features include syntax
and type checking, schema expansion, precondition calculation, domain checking,
refinement proofs, and general theorem proving.
CZT - Community Z Tools is an initiative that is ongoing to coordinate a set of Z tools.

5.2.2 B

5.2.2.7 Summary

The B method uses the Abstract Machine Notation (AM"), which is based on set theory and
predicate logic. The AMN uses a finite state machine model (FSM) that supports states
(variables of an abstract machine), invariants (constraints/relations between variables), and
operations on the environment. Expressions in B can also have guards on them.

Development of a specification in B is done by first specifjiug the system behavior in AMN,
refining the specification, and then implementing the specification. B specifications describe the
state variables, invariants between the variables, and operations on the variables. The
specification is developed iteratively through refinements of the model until the specification is
completed. Verifications and simulations during the development of the specification can also
be done using the B toolkit, a set of tools that support the methodology, to prove that invariants
are preserved after operations are performed.

5.2.2.2 History

The B method was developed by Abrial (1996), who also developed the 2 specification
language. B is a relatively new formal method, but has already found a large amount of use in
complex systems specifications.

5.2.2.3 Applications

The B-method has been used in a wide range of safety-critical applications. The following are a
few of these:

Hardware circuits.

Railway Signaling System for the Paris rapid transit authority that was safety-critical
(Craigen et al., 1993),
Train excessive speed system (Craigen et al., 1 W3),
Train deceleration control (Craigen et al., 1993),
French census analysis and information system (Hinchey and Bowen, 1 W9),
Chemical process controller (Hinchey and Bowen, 1999),

The B-method has also been modified for specifjling distributed cooperative algorithms by
adding temporal logic aspects to it (Bonnet et al., 1995).

5.2.2.4 Strengths

An advantage of the B-method is the iterative refinements, so specifications are developed in a
top-down fashion. Another advantage is the component-based approach to developing the
specifications, which maps well to component-based architectures and development
methodologies.

An additional strength of the B method is its tool support. From a B specification, code can be
generated, it can be analyzed for correctness, and an animation and proof of correctness can be
performed. The ability to easily reuse specifications has also been cited as a strength of the B
method and tools.

5.2.2.5 Weaknesses
1

As is the case with other methods based on finite state machines, specifying concurrent systems
can present chaltenges due to the exponential growth of the state space of such systems.

5 2 - 2 6 Tool Support

The B method is supported by tools from a number of vendors, including BP International,
Edinburgh Portable Compilers, Atelier B, and B-Core. The B Toolkit, fiom B-Core, includes an
analyzer that generates proof obligations, a type checker, an animator, a status checker, and a
prover. The B toolkit can also produce C, C++, and Ada code that implements B Specifications.

5.2-3 Fjniie State Machines (FSMs)

5.2.3.7 Summary

Finite State Machines (FSMs) model behavior using states and transitions between the states.
Transitions contain events and conditions needed for the FSM to change states. The conditions
act as guards on the transitions and the events are matches to inputs. States changes can occur
when a transition fiom the current state has an event that matches the current input and the
condition on the transition evaluates to true. For AI systems, FSMs often represent knowledge
systems where the states represent knowledge and the transitions represent rules.

5.2.3.2 History

Finite state machines have been used in specifying AI related systems for a long time. Since
FSMs are inherently sequential, they have been modified over time to work in a concurrent
environment. Concurrent systems are often described using concurrent FSMs with the ability of
the FSMs to communicate with each other either at checkpoints or through buffers. Extensions
of FSMs include statecharts, fuzzy state machines (FuSM), and others.

5.2.3.3 Applications

FSMs have been used to specify a wide range of applications and have been very popular in
specifying AI related applications. FSMs have also been used to specify multi-agent systems.
They are usually modified so that concurrency and communication between the agents can be

17

specified. An example is the Java-based Agent Framework for Multi-Agent Systems (JAFMAS)
that uses FSMs to specify multi-agent conversations (Gala and Baker, 1999).

5.2.3.4 Strengths

FSMs are very natural in their expression of behavior and are straightforward to design, program,
and execute efficiently. They are also taught to most engineering majors and so are understood
by a wide range of people and are easily taught and learned by others. FSMs are also easy to
analyze at the state level: states just need to be studied to determine which states have transitions
to them and which states they reach and on what conditions and events.

5.2.3.5 Weaknesses

FSMs are inherently sequential, so they are not good by themselves to express concurrent
systems, such as agent-based systems. Modifications to FSMs have been made so they can be
used in concurrent systems

FSM are also “flat” in the way they are described, with no hierarchy are modularization, so
specifications of systems can become very large and difficult to understand (spaghetti-nature of a
large number of states and transitions). Because of this, they also do not support topdown or
other refinement methodologies (Bowen and Hinchey, 1999). FSMs can also be uneconomical
when it comes to transitions, especially for real-time systems, since a high level interrupt would
have to be associated with each state. In addition, FSMs, due to the state paradigm, grow
exponentially as the size of the system being specified grows iinearly. There have been many
modifications, such as concurrent FSMs and Statecharts, to overcome some of these
shortcomings.

5.2.3.6 Tool Support

Since FSMs have been in use for a long time, there are a number of tools available to support
them. There are FSM editors, simulators, and verification tools. Many of these are available
through Computer Aided Software Engineering (CASE) t o o k Code generators are also
available that automatically produce code for a programming language.

5.2.4 Sfatechafts

5.2.4.1 Summary

Statecharts extend finite state machines by adding hierarchy, concurrency, and communication
and were designed to specify complex discreteevent systems. The main advantage of statecharts
over FSMs is that statecharts have built in the means to represent concurrency. The
specifications can be developed in a hierarchical fashion, which aids in abstraction and top-down
OJ bottom-up development.

. 5.2.4.2 History

18

Statecharts were developed by David Harel (1988; 1987; Harel et al., 1987). Statecharts have
been widely used on many projects for specification and design of many types of systems.
Coleman, Hayes, and Bear (1992) introduced a variant of statecharts called Objectcharts for
object-oriented design.

Several integrated versions of Statecharts that in conjunction use formal methods have been
introduced. Uselton and Smolka combine statecharts with a process algebra (1994a) and also
added the Labeled Transition Systems algebra (1994b) in order to establish formal semantics for
statecharts. Andrews, Day, and Joyce (1997) have used statecharts embeded with a typed
predicate logic. Other integrated approaches have been introduced for real-time systems that
embed the concept of time, such as Sowmya and Ramesh, who extended statecharts with
temporal logic (1998).

5.2.4.3 Applications

Statecharts have been used successfully on a wide range of industry projects, and have a large
number of advocates. It has also been used to specie agent-based systems by a number of
people. A few of them include Kimiaghaiam, et al. (2002) who have used a statechart-based
approach for specifying agents, Hilaire et al. (2000) who used a combination of Object-Z and
Statecharts to specify agent-based systems, and Griss et al. (2002), who use statecharts for
defming agent behavior.

5.2-4.4 Str;engftis

One strength of statecharts is their visual representation: with little training, a person can
understand what they mean. The hierarchical nature of statecharts can help in specifying large
systems since the hierarchy helps to give high-level descriptions of the system as well as to drill
down to levels of increasing detail.

5.2.4.5 Weaknesses

A weakness of statecharts is that development of the statecharts can be more time consuming
than textual methods. In addition, statecharts lack the mathematical underpinning that other
techniques like Z and CSP are inherently based on, which means that statecharts are not
considered a formal language. For this reason, there have been several extensions that add
process algebras or other formal languages to statecharts (see above). The hierarchical approach
to statecharts can also make it difficult to get an overall picture of how a system works. If not
developed well, statecharts can have some of the same understandability problems that FSMs
have.

Statecharts also do not involve the notion of time. Transitions are considered to be executed
instantaneously, which is not realistic in many real-time systems. With the ability to have
multiple transitions occumng from a single state, the problem of race conditions can be
embedded in a specification. Infinite loops are also possible, which requires statecharts to be
checked for consistency. Statecharts have also been faulted as not being suited for object-

19

oriented design because the broadcast property is incompatible with object-to-object method
calls.

5-2.4.6 Tool Support

Statecharts are support by several tools. The STATEMATE case tool by iLogix was the first
tool that supported statecharts and has been in use since the early 1990s. It allows statecharts to
be created, simulated, analyqd and transformed into code. Another tool called Betterstate,
developed by IS1 (www.isi.com), supports graphical specification, automatic code generation,
validation, and graphical debugging. It has also been integrated with Rational Rose.

5.2-5 Petd Nets

5.2.5.1 Summary

Petri Nets are a graph-based system for specifying asynchronous processes in concurrent
systems. Petri nets are represented by the 5-tuple (P, T, I, 0, I@, where P is a set of places, T is
a set of transitions, I is a set of inputs, 0 is a set of outputs, and M is a set of initial markings.

5.2.5.2 History

Petri Nets were developed in 1962 by Carl Adam Petri (1962) and were one of the first theories
to address concurrency issues (Peterson, 1981; Peterson, 1977). Several variants of Petri nets
have been developed over the years. Some of the variants include colored Petri nets, hierarchical
Petri nets, obje.ct-oriented Petri nets, temporal Petri Nets, and G-Nets.

5.2.5.3 Applications

Petri nets have been used extensively to model concurrent systems. Petri nets have been used by
several people to spec@ multi-agent systems (Ferber, 1999). Examples of using Petri Nets for
specifying multi-agent systems include:

Brown (1998) who used hierarchical colored and colored p Petri Nets to specify the
NASA Lights-Out Ground Operations Systems,
Bakam et al. (2000) who used Colored Petri Nets to study a multi-agent model of hunting
activity in Cameroon,
Shen (1998) who used Petri Nets to model mobile agents,
Xu and Shak (2001) have used a variant of Petri Nets called G-Nets to model buyer and
seller agents in electronic commerce, and
Weyns and Holvoet (2002) used Colored Petri Nets to study the social behavior of
agents.

5.2.5.4 Strengths

Strengths of Petri Nets include the ability to simulate a model and do performance evaluation
and verification and validation of a system. They have been widely used and therefore may be
intuitive and easy to understand for many people.

5.2.5.5 Weaknesses

One Petri Nets weakness is the lack of modularity (van Linder et al., 1998). For complex
systems, Petri Net models will become very large and will be difficult to understand or analyze.
Another weakness is that many aspects of a system’s behavior cannot be specified. For example,
there is no way to express ordering between processes, synchronization of processes, or
exclusive access to a process (for security).

5.2.5.6 Tool Supporf

There are a large number of tools available for Petri Nets. Tools provide a number of features,
including graphical editors, token .game animation, simulation, performance analysis, state
spaces, place invariants, transition invariants, structural analysis, model checking, deadlock
checking, optimization, net reductions, code generation, and reachability checking.

5.2.6 X-Machines (XM)

5.2.6.1 Summary

X-machines are based on iinite state machines (FSM) except they have an internal memory state
and transitions between states are labeled as functions which accept input symbols and output
symbols based on the action of the function with reference to the internal memoxy state. X-
machines can be thought of as typed FSMs with the set X acting as a memory and also having
input and output tapes.

I

5.2.6.2 History

X-machines were developed by the mathematician Samuel Eilenberg in 1974 (1974). In 1986,
Mike Holcome started using X-machines for biological specification purposes (1986a; 1986b)
and then for system specifications (1988). X-machines have undergone modifications to specify
a wider range of systems, such as Stream X-Machines (Gheorghe, 1998) that are used to control
a family of distributed grammars, Communicating Stream X-Machines to better model
concurrent systems (Barnard et al., 1996), and Object Communicating X-Machines (Barnard,
1999).

5.2.6.3 Applications

X-machines were originally used to describe intracellular biochemical organization and model
cell biochemistry. Recently they have also been used to specify agent-based systems (Kefalas,
2000) and model the behavior of a bee colony (Gheorghe et al., 2001). X-Machines are aIso
being investigated relative to emergent behavior of agent communities.

5.2.6.4 Strengths

X-Machines are more powerful than FSM and can spec@ complex systems more easily. In
addition, the SXM Testing method, which is based on X-Machines, contains a set of rules that
ensures complete functional testability of an implementation. The method does constrain the

71

types of systems that can be implemented. X-machine specifications can also prove the
correctness of an implementation with respect to the specification.

5.2.6.5 Weaknesses

The biggest weakness of X-machines is the lack of tool support. They also appear not to have
gained wide support (perhaps due to the lack of tool support).

5.2.6.6 Tool Support

There is not a lot of tool support for X-machines. There are tools that can automatically convert
an X-machine into Prolog, as well as model check an X-machine.

5.3 Logics

There are several types of logics that have been used and they are used for different applications.
Propositional and predicate logics are used to represent factual information. For agents this may
be a knowledge base or the agent’s environment. These logics use and, or, not, implication,
universal, and existential operators. Modal logics are used for different modes of truth, such as
possibly true and necessarily true. Denotic logic describes what is obliged to be done. Dynamic
logic is like modal logic but is action based. Temporal logic is the logic of time.

5.3.1 Temporal Logic

5.3.1.1 Summary

Temporal logic is used to express time-related aspects of systems. There is both modal and
predicate approaches to temporal logic. In the original modal temporal logic created by Prior
(1957) there were four additional operators to the standard logic operators:

P, which stands for “It has at some time been the case that . . .”,
F, which stands for “It will at some time be the case that . . . ”,
H, which stands for “It has always been the case that . . .”, and
G, which stands for “It will always be the case that . . . ”.

P and F are called weak tense operators, and H and G are called strong tense operators. G is
sometimes denoted as F as 2, H as and P as _.

In temporal logic, an expression is always true or will be true at some time in the future. There
are two types of semantic models used timed specifications based on linear time and branching
time. With linear time, a specification is a set of linear states with each state being part of a
possible execution sequence (used in CSP traces). With branching time, a specification
describes a tree structure of states, with each path in the tree a possible execution sequence (used
in CCS). Other differences in temporal logics include discrete vs. dense, and moment-based vs.
period-based times.

33

5.3.7.2 History

Temporal logic was developed by Arthur Prior in 1957 (1957) under the name of Tense Logic
and has gone through several modifications by different people for application to different fields.
The idea of temporal logic has also been added to other formal methods to give them the basis of
time in those methods. Also a wide variety of temporal logics have been developed. Bellini,
Mattolini, and Nesi give a good survey of temporal logics in (2000). Variations of temporal
logics covered include Propositional Temporal Logic (PTL), Choppy Logic, Branching Time
Temporal Logic (BTI'L), Interval Temporal Logic, (ITL), Propositional Modal Logic of Time
Intervals (PMLTI), Computational Tree Logic (CTL), Interval Logic (IL), Extended Interval
Logic (EL), Real-Time Interval Logic (RTIL), Timed Propositional Temporal Logic (TPTL),
Real-Time Logic (RTL), Tempo Reale Implicit0 (TRIO), Metric Temporal Logic (MTL), and
Time Interval Logic with Compositional Operators (TILCO). The differences in the .different
temporal logics range from expressiveness, availability of support tools for executability, and
verifiability.

5.3.1.3 Applications

Temporal logic has been widely used for adding timing constraints and sequencing formation in
real-time and artificial intelligence applications. In AI, it has been used to find a general
framework for temporal representations (Allen, 1984). In specification and verification of
concurrent programs, modal temporal logic has been successfully used to specify the timing of
concurrent programs running on separate processors (Pnueli, 1977). Temporal logic has also
been widely used to add timing to other formal specification languages like Z, Petri nets,
Statechar@, and process algebras.

5.3.1.4 Strengths

Strengths of temporal logics are their ability to support proof of correctness related to timed
constraints of systems. It has also been found that implementations from temporal logic tend to
be efficient. Since temporal logics have been around for a number of years, they are well
understood and there is a large class of researchers and practitioners familiar with them. There
are also a number of versions of temporal logics available that can suite particular classes of
problems. In addition, there are a wide number of tools available to support specifications.

5.3.1.5 Weaknesses

As with other logics, a major weakness is readability as the complexity of the system being
specified increases, because of the unstructured nature of temporal logics (a specification is a set
of predicates). Therefore, it is best used for simple or narrowly scoped properties of a complex
system. There has been some work done to offset some of these problems by adding structure to
temporal logic, and thereby increase its readability for larger specifications.

5.3.1.6 Tool Support

A number of tools are available to support various versions of temporal logics. The following is
a partial list:

PTL - the propositional temporal logic (PTL) tautology checker reads formulas in PTL
and checks whether they are tautologies, i.e., always true no matter what truth values are
assigned to the propositional variables at each instant of time. Typically, PTL can check
whether a PTL-formula is a tautology and, if not, check whether the formula is
satisfiable; and if the specification and implementation are written in PTL, verify that the
implementation implies the specification.
Step - Stanford Temporal Prover does computer-aided formal verification of reactive,
real-time, and integrated systems based on their temporal specification. It combines
model checking with deductive methods to allow the verification of systems, including
parameterized (Ncomponent) circuit designs, parameterized (N-process) programs, and
programs with infinite data domains.
TLA+ - a language for writing Temporal Logic of Actions (TLA) specifications. There
are three TLA+ tools available: a parser and syntax checker for TLA+ specifications, a
model checker and simulator for a subclass of "executable" TLA+ specifications, and a
program for typesetting TLA+ specifications.
TLC - Temporal Logic Checker is a temporal logic assertion checker.
TirneRover - provides a set of tools for temporal logic that includes temporal rule
checking, runtime verification, high-level exception handling, and temporal simulation.

5.3.2 Real Time Logic (RTL)

5.3.2.1 Summary

Real Time Logic (RTL) is a predicate logic that relates the events of a system to tAeir time of
occurrence. RTL uses a discrete model of time that allows for reasoning about absolute timing
(wall clock) properties in a system. RTL differs from modal temporal logic in that modal
temporal logic uses relative timing of events for specifying time, which is qualitative. Since
RTL uses a discrete model of time, it uses integers in RTL formulas. RTL uses an occurrence
relation that assigns a time value to each occurrence of an event. The occurrence relation is
denoted as R(e, i ,t), which means that the i-th occurrence of event e happens at time t .
Predicates in RTL are made up from the occurrence relation as well as the mathematical relations
(=, <, 1, ', 2).

5.3.2.2 History

RTL was developed by Jahanian and Mok (1986) in 1986. RTL has been extended by other
researchers and combined with other logics. It has been combined with Z for specifjring real
time systems, temporal linear logic for specifying event-based logical systems, and Presburger
arithmetic. The University of Texas Real-Time Systems Group (headed by Mok) supports RTL
with ongoing research and the development of supporting tools, such as Modechart and
Timetool.

5.3.2.3 Applications

The following are some of the applications in which RTL has been used:

0

Verification of the planned performance of the safety-critical system functions of the
NASA X-38 space station crew return vehicle multiprocessor system task structure,
Axiomatic specification of communication protocols,
The specification of the Real Rime Operating System (RTOS), and
The verification of real time controllers.

5.3.2.4 Strengths

The primary strength of RTL over temporal logic is its ability to express the exact time an event
or action will take place. In temporal logic, only relative times to other events or actions can be
expressed. Like other logics, RTL also has the strength that it has the ability to support proof of
correctness related to timed constraints of systems.

5.3.2.5 Weaknesses

As with other logics, a major weakness is readability as the complexity of the system being
specified increases, because of the unstructured nature of temporal logics (a specification is a set
of predicates). Therefore, it is best used for simple or narrowly scoped properties of a complex
system.

5.3.2.6 Tod Support

The following are some tools that support RTL:

MSP.RTL - a tool for producing real time schedulers based on real time logic.
Modechart - a specification language, Simulator, and verifier based on RTL.
Multiway Decision Graphs (MDG) -a RTL functional verifier.

5.3.3 BDI Logics

5.3.3.7 Summary

Belief, Desires, and Intentions (BDI) is an agent architecture for describing agent behaviors
(Georgeff and Lansky, 1987) based on the theory of action in humans by the philosopher M.
Bratman (1987). To give formal semantics to BDI architectures, BDI logics were developed
(Raq and Georgeff, 1991; 1995) that are multi-modal and extensions to the branching time logic
CTL* [149]. The BDI logics allow the BDI architectures to be formally modeled and then -~

proofs of correctness on BDI-based
logics and describe beliefs, desires,
follow to achieve its intentions.

5.3.3.2 History

Rao and Georgeff (1991) initially
subsequently there has been much

agents can be done. The BDI logics tend to be modal type
intentions and the plans (or plan library) that an agent can

introduced the idea of a logic for BDI architectures and
work on evolving it, such as Wooldridge (1996a; 1996b;

2000) for plans, Padgham and Lambrix (2000) for capabilities in plans, and Singh and Asher
(1990) for intentions. Different people have added on or concentrated on one aspect of the BDI
logic to give it more formalism or extend it to cover specific aspects of a BDI agent
specification.

5.3.3.3 Applications

BDI logic has been applied to a programming language called Agentspeak&) (Rao, 1996) which
is based on a restricted first-order language with events and actions. Other BDI-based agent
architectures based on BDI logic include the Java Agent Compiler and Kernel (JACK) (Howden
et al., 2001), and dMARS (Distributed Multi-Agent Reasoning System) (1996).

5.3.3.4 Strengths

BDI logics tend to be very expressive and formal, so a large number of specifications can be
written with a formal foundation. It also has the strength that it is a formal method and
properties of the systems it specifies can be proven to be correct. Since BDI logics are based on
BDI architectures, agent specifications can be easily mapped into a BDI architecture.

5.3.3.5 Weaknesses

The expressiveness of BDI logics make theorem proving and model checking much more
difficult. As with other logics, a major weakness is also decreasing readability as the complexity
of the system being specified increases, because of the unstructured nature of logics.

5.3.3.6 Tool Support

An Agentspeak&) interpreter is available free for downloading (AgentSpeak website). The
interpreter will run Agentspeak&) and AgentSpeakW) programs. This allows agent
specifications written in BDI logic to be executed. A restricted version of Agentspeak&), is
Agentspeak@), which can be model checked. The restricted nature of AgentSpeakP) allows it
to be converted to Promela and then run on the model checker Spin (Holunann, 1991).

5.3.4 KARO Logic

5.3.4.1 Summary

The KARO (Knowledge, Abilities, Results and Opportunities) logic (Hustadt et al., 2000; van
Linder et al., 1998) is a formal system based on modal logic for reasoning about and specifying
the behavior of intelligent multi-agent systems. KARO formalizes the notion of knowledge
contained within agents and the agents’ possible execution of actions. The KARO framework
allows agents to reason about their own and other agent’s abilities to perform actions, the
possible results of those actions, and the availability of the opportunities to take those actions.
KARO combines both dynamic and epistemic logic into a single modal logic with additional
modal operators, and adds the notion of abilities.

76

5.3.4.2 History

KARO was proposed by van Linder, van der Hoek, and Meyer in 1998 (1998). So it is a
relatively new logic and fiamework. Additional work is also being done on KARO that includes,
Hustadt, et al. (2000) who are developing automated proof methods for KARO, Meyer, et ai.
(2000) who are working on linking KARO to agent programming languages, Aldewereld (2002)
who has worked on extending KARO fiom single-agent to multi-agent, and Dixon et al. (2000)
who have applied Computational Tree Logic (CTL) instead of dynamic logic.

5.3.4.3 Applications

KARO was developed specifically for modeling agent-based systems. At the time of this
writing, specific applications of KARO to specific multi-agent systems has not been found.

5.3.4.4 Strengths

KARO is based on modal logic, which has historically been used to describe knowledge, belief,
time, obligation, desire and other attributes that apply to agent-based systems. The use of modal
logic can be more concise that fmt-order logics. In addition, modal logic lends itself to logical
proofs of correctness and it tends to be more intuitive than frst-order logic representations, while
at the same time being able to be reducible to first-order logic and those fwst-order methods and
techniques can still be applied.

5.3.4.5 Weaknesses

A weakness of KARO that has been discussed is its use of dynamic logic (Dixon et al., 2000).
Dynamic logic can become complex in practical applications and specifications can become
undecidable and incomplete. A fur to this has been to replace dynamic logic with CTL.

5.3.4.6 Tool Support

Since KARO is very new, there are very few tools available for it, with tool support still being
developed and proposed. One tool XProof (Valk, 1998) has been used to construct a theorem
prover for KARO (Valk, 1999).

5.4 Other Approaches

The following is a list of other approaches that are being used to specify and verify agent-based
or swarm-based systems.

5.4.1 Artificial Physics

5.4. I . 1 Summary

Artificial physics (AP) is based on using properties fiom physics to model constraints and
interaction between agents (Spears, W. and Gordon, D., 1999, Shehory et al., 1999). Control of
agents in an AP fiamework is mapped to one of minimizing potential energy @E). If constraints

37

are violated or performance degrades, PE increases, triggering a reactive response. Global
behaviors are automatically computed via local interactions between agents. Given a set of
initial conditions and desired global behavior, sensors, effectors, and local force laws can be
determined for the desired global behavior to emerge.

As an example of artificial physics, suppose a set of agents are treated as physical particles.
Particles move in response to the virtual forces that are exerted upon them by their neighbors - in
essence the particles act as if they were part of a molecular dynamics simulation. Particles have
a position, mass, velocity, and momentum. Friction is included, for self-stabilkition. The net
action of the system of particles is to reduce potential energy in a continuously changing virtual
potential field.

5.4. I. 2 History

The work that is most related to artificial physics is referred to as “swarm intelligence”
(Hiebeler, 1994) and “social potential fields” (Reif and Wang, 1994). In swarm intelligence the
swarm distribution is determined via a system of linear equations describing difference equations
with periodic boundary conditions. The social potential fields method relies on a force-law
simulation that is similar to that found in molecular dynamics.

Physicomimetics is also similar to work in robotics, such as “potential field” and behavior-based
approaches. Potential field (PF) approaches are used for robot navigation and obstacle avoidance
(Khatib, 1986). The emphasis is on a single robot. In a manner similar to physicomimetics, PF
approaches model a goal position as an attractive force, while obstacles are modeled with
repulsive forces. PF computes force vectors by taking the gradient of an entire potential field,
which is very computationally intensive. AP uses force vectors directly, and thus has lower run-
time computational overhead. Furthermore, unlike the standard PF approach, AP relies on inter-
agent forces, as well as environmental forces.

Behavior-based approaches (Balch, 1998) derive vector information in a fashion similar to
physicomimetics. Particular behaviors such as “aggregation” and “dispersion” have some
similarity to the attractive and repulsive forces in physicomirnetics. However, behavior-based
approaches do not make use of potential fields or forces. Rather, they deal directly with velocity
vectors and heuristics for changing those vectors

5.4.1.3 Applications

Artificial physics has been used to generate a variety of vehicle formations in simulation and it
has demonstrated the capability of clustering agents into subgroups (Spears and Gordon, 1999).
Others have used physicomimetics for physical simulations of self-assembly. Schwartz et al.
(1998) investigated the self-assembly of viral capsids in a 3D solution. Winfree (1998) has
investigated the self-assembly of DNA double-crossover molecules on a 2D lattice. Shehory et
al. (1 999) used physics-based systems for modeling emergent behavior.

5.4.1.4 Strengths

. .

Physics-based descriptions can be very efficient to execute. Most computer hardware is made to
do these types of computations, which can be much more efficient than rule-based or knowledge-
based systems. Artificial physics is also very good for representing reactive behavior since the
phy sics-based equations can be quickly executed. Physics-based approaches could also support
learning similar to genetic programming, where different formulas are used and then modified,
with the best performing formula used. Formulas could also be modified through other reflective
processes that examine the performance of a system and modify the formulas for better
performance.

5.4. I. 5 Weaknesses

Physics-based systems may not be good for deliberative processes in agents. Deliberation often
involves examining models or doing symbolic manipulation, which physics-based systems may
not be easy to develop to do. Physics-based descriptions of agent-based interaction can be
difficult to understand by people who do not have a physics background. Also, most intelligent
systems are developed from a logic background, so the logic may have to be translated into a
physics-based representation.

5.4.1.6 Tool Support

Tool support for artificial physics is based on current tools for visualizing physical properties.
No specific tools have been developed.

5.4-2 Software Cost ReductSon (SCR)

5.4.2. 1 Summary

SCR is a formal method based on tables for specification and analysis of black-box behavior of
complex safety-critical systems (Bharadwaj and Heitmeyer, 1999a). A toolset, called SCR* is
available to help automate as much of the method as possible. SCR describes both the system’s
environment (which is usually nondeterministic) and the system’s behavior (usually
deterministic). The system is represented as a state machine and the environment is represented
as a nondeterministic event generator. An SCR specification represents the state machine’s
transitions as a set of tables.

The system environment specification includes monitored variables (environmental quantities
that the system monitors) and controlled variables (environmental quantities that the system
controls) (Bharadwaj and Heitmeyer, 1999b). The system behavior is represented by two’
relations, NAT and REQ. NAT represents the natural constraints on the system behavior (such
as physical laws and the system environment constraints). REQ represents the relationships
between the monitored and the controlled quantities that the system must maintain. Tables are
used to describe transitions, events, and conditions of a state machine for the system.

5.4.2.2 History

SCR was originally developed in 1978 at the Naval Research Lab (NRL) to document the
requirements of the flight program of the Navy’s A-7E aircraft It has been used on a number of

safety-critical control system as well as other systems. It has also been extended to specify
hardware/software co-design and co-validation (Bharadwaj and Heitmeyer, 1999a).

5.4.2.3 Appiications

SCR has been used on a number of projects, including the Navy's A-7E aircraft and the C-130J
Flight Program, as well as telephone networks, communications security devices, control
systems for nuclear power plants, the International Space Station, the Deep Space-1 spacecraft,
and military and civilian flight controls. It has also been used by a number of organizations to
specify requirements, including NASA IV&V Center, JPL, Grumann, AT&T, Ontario Hydro,
Rockwell, and Lockheed.

5.4.2-4 Strengths

Strengths of SCR include its easy interpretation of the specification through use of the table
format. The method scales up well, as was demonstrated in its use on a project that was
implemented with 230K lines of Ada. In addition, the formal basis of the method also enables
proof of correctness and use in model checkers.

5.4.2.5 Weaknesses

SCR's reliance on a state machine model could make it difficult for modeling large numbers of
parallel systems, such as swarm-based systems. Like state machines, SCR is inherently
sequential, so it may not be good by itself to express concurrent systems. Modifications, such as
those that have been made to FSMs, may enable SCR to better handle concurrent systems.

5.4.2.6 Tool Support

To support the SCR method, there is an integrated toolset called SCR. (Heitmeyer et al., 1998).
The toolset includes a specification editor, dependency graph browser, consistency checker, a
simulator, and verification tools (including Spin, TAME, and Salsa).

5.4.3 Mathematical Analysis

5.4.3.7 Summary

Mathematical analysis uses mathematical formulas to model or spec@ a system and then uses
mathematical techniques for analyzing the resulting system specification. From the
mathematical specification system properties can be proven correct or that they remain in
bounds. For swarm-based systems, mathematical models can be either developed at the agent
level (microscopic) or the swarm level (macroscopic). Some techniques used are physics-based
approaches (see artificial physics); others have used stochastic approaches (Lerman and
Galstyan, 2001). Mathematical analysis can be used to study the dynamics of swarms and
predict long-term behavior as well as such things as efficiency and steady state characteristics
without having to do simulations. It also allows parameters to be found that determine swarm
behavior and how the actions of a single member of the swarm affect the entire swarm.

5.4.3.2 History

Mathematical analysis has been used in many different fields. It has been used in biology to
study insects and model their macroscopic and microscopic behavior, molecular dynamics,
cellular automata and particle hopping. Due to its wide use in a number of fields, there are many
reference materials and mathematicians that are experienced in this type of modeling and
analysis.

5.4.3.3 Appijcations

Mathematical analysis has been used for both multi-agent systems and swarm-based systems.
Lerman (2000; Lerman and Galstyan, 2001) used a stochastics-based method for modeling a
multi-agent system that formed coalitions. Sheory, et al. (1999) used physics-based systems and
applied physics-based mathematical techniques to the analysis of multi-agent systems.

5.4.3.4 Strengths

The strengths of a mathematical approach are that it affords a precise model of the system and
entails a wide range of analytical methods to analyze the system. In addition, there are a large
number of tools and techniques available with which to perform the analysis, and there is a long
history of these types of analysis, giving assurance that they are also well understood.

5.4.3.5 Weaknesses

Mathematical models can be difficult to develop and difficult to understand. In addition,
mathematical models do not always reflect the complexity of artificial systems, and artificial
systems do not always reflect the orderliness of nature.

5.4.3.6 Tool Support

Standard mathematical tools can be used for mathematical analysis, such as Mathematica or
Matlab. These types of tools are available from a wide range of sources and have excellent
visualization capabilities so that properties of the system can be seen.

5.4.4 Game Theory

5.4.4.1 Summary

Game theory uses mathematical analysis to analyze decision making in conflict situations. It
provides for the study of human behavior and choice optimization. It uses probability and other
mathematical techniques for analyzing situations and coming up with the best choice. It has
been used extensively in economics, politics, management, biology, and social sciences, as well
as other sciences, to describe interacting entities. It has recently been applied to agent-based and
swarm-based systems as a way of modeling and analyzing agents and their societies.

5.4.4.2 History

Game theory has been traced back to the time of 0-500 AD in the Babylonian Talmud, which is a
compilation of ancient law and tradition and serves as the basis of Jewish religious, criminal, and
civil law. In the Talmud, a marriage contract problem is described that relates to a modem
cooperative game. There are also references to game theory emerging in the 1700s, 1800s, and
early 19oos, with the first textbook on game theory being published in 1952.

5.4.4.3 Applications

There have been a number of researchers who used game t h e o j to analyze and verify agent-
based systems: a sampling can be found in (Parsons and Wooldridge, 2002). Rudnianski and
Bestougeff (2000) have used games of deterrence to analyze and simulate agent-based systems.
Others (Osbome, 2003; Tomlin et al., 1998) have used game theory as a way to model agent-
based systems as a non-cooperative, zero-sum dynamic game with self-interested agents where
the actions of agents are modeled as disturbances to the other agents. Some of these are modeled
as 2-player games and others as n-player games. These models have been applied to sharing
limited resources (such as airport runways or automated highways) or for collision avoidance.
Once a model for a system is developed, properties of the system can be proven correct by
showing the model maintains those properties. Game theory has also been used to study
biological (Rowe, 1997) and swarm-based systems (Challet and Zhang, 1997).

5.4.4.4 Strengths

The strengths of game theory are its mathematical foundation, the fact that it can be used to
describe large entities (such as economies) and that properties of the system can be proven
correct. In addition, many agent-based systems can be viewed as games so the models are a
natural expression of those systems.

5.4.4.5 Weaknesses

Weaknesses of game theory for multi-agent or swarm-based systems are that the game theory
specification does not always reflect the logical or procedural description of the behavior of the
system. This means that validation can be more difficult. In addition, the mathematical game
theory specification is unfamiliar to many engineers or software specifiers.

5.4.4.6 Tool Support

There are several tools available to assist in developing or analyzing game theory models
including:

Gambit - a library of game theory software and tools for the construction and analysis of
games,
CSWiz - a set of Excel spreadsheet add-ons for solving optimization or equilibrium
problems,
Optimizers for solving a wide range of linear and non-linear equations, available from a
number of sources,

Agent-based simulation (e.g. the Swarm software) tools, available for modeling large
game-based simulations,
Several tools for visualizing curves and equations for game and economic theories

5.4.5 UlWL

5.4.5. -I Summary

The Unified Modeling Language (UML) is a language for specifying, visualizing and
documenting models of software systems (€3ooch et al., 1999). Uh4L has twelve different
diagram types divided into three classes: structural diagrams, behavior diagrams, and model
management diagrams. UML does not specify a particular methodology for using the language,
so it is methodology independent, though many of the UML tools use a particular methodology.

5.4.5.2 Hisfory

UML was developed from three different modeling languages: the Grady Booch method, James
Rumbaugh’s Object Modeling Technique 2 (OMT-2) method, and Ivar Jacobson’s Object-
Oriented Software Engineering (OOSE) method (Alhir, 2002). UML supports object-oriented
analysis and design in addition to use cases and other system specification techniques.

5.4.5.3 Applications

UML is an industry standard and is widely used. It is likely the most widely used software
specification and design technique in use today.

UML has been used to specify agent-based systems. One of the main thrusts for using UML for
agents is Agent UML (A m) (Bauer et al., ZOOO), which is a standard now being worked on by
the Foundation for Intelligent Physical Agents (FIPA) Modeling Technical Committee
(Modeling TC). The FIPA AUML standard has class diagrams for specifying the internal
behavior of agents and the external environment, and has interaction diagrams. The Modeling
TC has also identified modeling areas for Multi- vs. single agent, use cases, social aspects,
temporal constraints, deployment and mobility, and workflow/planning, as well as other areas.
One of the main challenges of AUML is adding semantics to UML that reflect the autonomy,
social structures, and asynchronous communication aspects of agents.

Other work on extending Uh4L for agent specification includes:

The Agent-Object-Relationship Modeling Language (AORML) (Wagner, 2003), which
enhances UML sequence diagams for specifying agent interactions,
MASSIF (Mentges, 1999), which uses standard UML sequence diagrams for describing
interactions,
Oechslein, et al. (2001) uses UML Object Constraint Language (OCL) to extend UML to
formally specifjr agents using UML,
Role-Based Modeling Method for Multi-Agent Systems (RoMAS) (Yan et al., 2003),
which uses UML use cases for defining system events and interactions,
Extension of use cases for specifying agent behavior (Heinze et al., 2000),

Extensions to UML (Papasimeon and Heinze, 2001) to support the Java Agent Compiler
and Kernel (JACK website) agents.

5.4.5.4 Strengths

The major strengths of UML are its wide use in industry, its standardization by Object
Management Group (OMG), and the large range of tool support. This means that specifications
of agents done in UML will be able to be understood by a wide range of software specifiers and
designers, and can be manipulated and analyzed by a wide range of tools.

5.4.5.5 Weaknesses

One of the weaknesses of UML has been its lack of a formal mathematical foundation for its
semantics. This means that properties of a UML specification or design cannot be proven
correct, and therefore means that it is not a formal method. There has been work in this area to
formally define the semantics of UML and make it a formal specification language
(OOPSLA’98, 1998; Kazuki, 2001).

5.4.5.6 Tool Supporf

There are a large number of UML tools available commercially from a range of well-known,
mainstream tool companies (e.g., Borland and IBM), so there is excellent support. These tools
help developers with modeling systems through diagramming at the specification and design
level, as well as additional tools for skeleton code generation based on design diagrams and tools
for testing the end system.

5.4.6 integrated Approaches

The majority of formal notations currently available were developed in the 1970s and 1980s and
reflect the types of distributed systems being developed at that time. Current distributed systems
are evolving and may not be able to be specified the same way past systems have been
developed. Because of this, it appears that many people are combining formal methods into
integrated approaches to address some of the new features of distributed systems (e.g., mobile
agents, swarms, and emergent behavior).

Integrated approaches have been very popular in specifying concurrent and agent-based systems.
Integrated approaches o h combine a process algebra or logic-based approach with a model-
based approach. The process algebra or logic-based approach allows for easy specification of
concurrent systems, while the model-based approach provides strength in specifying the
algorithmic part of a system. The following is a partial list of integrated approaches that have
been used for specifying concurrent, agent-based, and swarm-based systems.

Communicating X-Machines (Barnard et al., 1996),
CSP-OZ - a combination of CSP and Object-Z (Fischer, 2000),
Object-Z and Statecharts (Bussow et al., 1998),
Timed Communicating Object Z (Gala and Baker, 1999),

..

Name

Artificial
Physics
B

Temporal B (Bonnet et al., 1995),
Timed CSP (Reed and Roscoe, 1983,
Temporal Petri Nets (Temporal Logic and Petri Nets) (Bakam et al., 2000),
ZCCS - a combination of 2 and CCS (Galloway and Stoddart, 1997).

Concurrency Algorithm Tool Formal U s e d i n U s e d i n
support Support Support Basis Agent-Based Swarm-Based

Yes Yes YeS Yes- Yes Yes

NO Yes Yes Yes Yes NO

specs. specs.

(Mathematical) (limited)

From the wide interest in integrated approaches, it appears that current techniques are not
sufficient to model and verify distributed and concurrent systems.

6. Specification Approaches Used for Social, Swarm and Emergent Behavior

The following is a summary of specification techniques that have been used for specifying
social, swarm, and emergent behaviors. All of these approaches are based on the formal
approaches described above.

Weighted Synchronous Calculus of Communicating Systems (WSCCS), a process
algebra, was used by Tofts to model social insects (1991). WSCCS was also used in
conjunction with a dynamical systems approach for analyzing the non-linear aspects of
social insects (Sumpter et al., 2001).
X-Machines have been used to model cell biology (Fournet and Gonthier, 1996;
Holcombe, €986) and modifications, such as Communicating Stream X-Machines
(Barnard et al., 1996) also have potential for specifying swarms.
Dynamic Emergent System Modeling Language (DESML) (Kiniry, 1998), which is a
variant of ZTML, has been suggested for modeling emergent systems.
Cellular automaton (von Neumann, 1996) has been used to model systems that exhibit
emergent behavior (such as land use).
Simulation approaches are also being investigated to determine emergent behavior and
then use a modeling technique to model the behavior. These approaches do not model
emergent behavior beforehand, only after the fact.

7. Comparison and Selection of Formal Methods to Specify ANTS

7.1 Comparison of Formal Methods

Tables 1 through 3 compare the formal methods described in the above sections. Table 1
compares the methods described in section 5, relative to several characteristics: support for
concurrency, support for algorithm specification, tool support, formal foundation (and the type
used), and whether the method has been used to specify agent-based or swarm-based systems in
the past.

Table 1: Comparison of candidate formal methods for intelligent swarms.

I

Yes
(Logic)
YeS
(Algebraic)
Yes
(Algebraic)
YeS
(Fomal Lang.)
Yes
(Mathematical)
Yes
(Formal Lang.)
Yes
(Logic)
Yes
(Mathematical)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

BDI Logic

ccs

CSP

Finite State
Machines
GameTheory

Yes

Yes

Yes

No

Yes

Yes

No

No

No
No

No

Yes

No

No

Yes
Yes

Temporal lYes

Yes

No
(limited)
Yes

Yes
Yes

Yes

Yes

Yes

Yes

Yes
NO

Logic I
UML I Yes

UOAutomata

I

Yes

~

Yes

KARO Yes

+ (limited)

Mathematical
Analysis
Petri Nets
PiCalculus

Real Time
Logic
SCR

Statecharts

Yes

Yes
Yes

Yes

No

Yes

I No

(Algebraic)
Yes
(Logic)
YeS
(Formal Lang.)
No
(Formal Lang.)
Yes
(Logic)

No

No

No

Yes

Yes

Yes I Yes I No
Yes 1 Yes

Formal
Basis

Yes

Yes

Used in Used in
Agent- Swam-
Based Based
Specs. Specs.
Yes Yes

Yes No

I

Name Concurrency Algorithmic
support support

Comm.Stream Yes Yes
X-Machines
CSP-oz Yes Yes

No 1 Yes I No
Yes I Yes I No 1

Tool
Support

No

NO

(Set Theory/ 1
Table 2 compares the integrated formal methods relative to the same factors and characteristics
in Table 1. For the tool support, a yes is entered only if there is integrated tool support for the
combined languages, not separate tools for each language in the integrated.

Table 2: Comparison of integrated formal methods.

Name

Cellular
Automaton

Concurrency
support

Yes

No Yes Yes No Yes Yes Object-Z and
statecharts
Temporal B
Temporal Petri
Nets
Timed
communicating

No
No

Yes
No

Yes Yes No
Yes Yes No

Yes
Yes

Yes No Yes

No
Object Z
Timed CSP

I I

Yes I Yes I No YeS Yes
No Yes I Yes I No Yes Yes zccs

Table 3 compares methods that have been used for modeling or specifying swarm-based systems
(computer-based or biological based).

Table 3: Comparison of formal methods used for swarm specifications.

Formal
Basis

I

Yes Yes Yes

Yes
(Formal

FSM)

Language)
Yes

(limited)
Some

Wrkbn)

(LOgiCBSh4)
Yes
(hocess
Algebra)

(Markov

8. Evaluation of Methods for Specifying and Analyzing Emergent Behavior

The following is a list of methods that show promise for specification and verification of swarm-
based systems:

Artificial Physics,
Communicating Sequential Processes,

X-Machines,
BDI Logic,
A m ,
ZCCS and
Timed Communicating Object Z.

wsccs,

17

Based on the results of the survey, four of the above formal methods were selected to be used for
a sample specification of part of the ANTS mission. These methods were: the process algebras
CSP and WSCCS, X-Machines, and Unity Logic. These will be used to describe an ANTS
virtual experiment. CSP was chosen as a baseline specification method because the team has had
significant experience and success (Rouff et al., 2000 and Hinchey .et al., 2001) in specifjring
agent-based systems with CSP. WSCCS and X-Machines were chosen because they have
already been used for specifying emergent behavior by others, apparently with some success.
Unity Logic was also chosen because it had been successfully used for specifying concurrent
systems and affords a logic-based specification, which offered a contrast to the other methods.

DESML, Cellular Automata, Artificial Physics, and simulation approaches were not used even
though they had been used for specifying or evaluating emergent behavior. DESML, though
very interesting, was not used because it had not been used or evaluated outside of the thesis it
was developed under (though we may be revisiting it at a future time). Cellular Automata were
not selected because they did not have any built in analysis properties for emergent behavior and
because they have been primarily used for simulating emergent systems (as described in the
previous section). Though not used for the specification, it too may be revisited to further
examine its strengths. Artificial physics, which is very promising, was not selected because of
the newness of the approach and because of the translation that must be done between physics
and software behavior. Lastly, simulation techniques were not used due to the fact that
verification cannot be undertaken using simulation. This is because there could be emergent or
other undesirable behaviors occurring that are not visible or do not become apparent during a
simulation, but may exist nonetheless. A formal technique is designed to find exactly these
kinds of errors.

The following describes the reasons for selecting CSP, WSCCS, Unity Logic and X-Machines.

8.1.1 CSP

CSP is a process algebra and is very good at specifying the process protocols between and within
the spacecraft and analyzing the result for race conditions. Behg able to evaluate a system for
race conditions is very important, particularly in swarm-based systems, which are highly parallel.
From a CSP specification, reasoning about the specification can be done to determine race
conditions as well as converted into a model checking language for running on a model checker.

8.1.2 WSCCS

WSCCS provides a process algebra that takes into account the priorities and probabilities of
actions performed by the leader and other ANTS spacecraft. It further provides a syntax and
large set of rules for predicting and specifying the choices and behaviors of the Leader, as well as
a congruence and syntax for determining whether two automata are equivalent. All of this in
hand, WSCCS can be used to specify the ANTS spacecraft and to reason about and even predict
the behavior of one or more spacecraft. This robustness affords WSCCS the greatest potential for
specifying emergent behavior in the ANTS swarm. What it lacks towards that end is an ability to

track the goals and model of the ANTS mission in a memory. This may be achieved by blending
the WSCCS methods with the memory aspects of X-Machines.

8.1.3 Unity Logic

Unity Logic provides a logical syntax equivalent to simple Propositional Logic for reasoning
about these predicates and the states they imply as well as for defining specific mathematical,
statistical and other simple calculations to be performed. However, it does not appear to be rich
enough to allow ease of specification and validation of more abstract concepts such as mission
goals. This same simplicity, however, may make it a good tool for specifying and validating the
actual Reasoning programming (as opposed to Reasoning process) portion of the ANTS Leader
spacecraft, when the need arises. In short, specifjring emergent behavior in the ANTS swarm will
not be accomplished well using Unity Logic.

8.1.4 X-Machines

X-Machines provide a highly executable environment for specifLing the ANTS spacecraft. It
allows for a memory to be kept and it allows for transitions between states to be seen as
functions involving inputs and outputs. This allows us to track the actions of the ANTS
spacecraft as well as write to memory any aspect of the goals and model. This ability makes X-
Machines highly effective for tracking and effecting changes in the goals and model. However,
X-Machines does not provide any robust means for reasoning about or predicting behaviors of
one or more spacecraft, beyond standard propositional logic. This will make specifLing emergent
behavior difficult.

.8.1.5 Summary

Based on the above evaluation, the following are some of the properties of a formal method
needed for specming swarm-based systems:

Ability to model and reason about aggregate behavior based on future actions of the
individual agents of a swarm (such as provided by WSCCS)
Ability to model and reason about concurrent processes for detection of race conditions
(such as provided by CSP and Unity Logic)
Ability to model states of an agent of the swarm to assure correctness (such as provided
by StatechartS, X-Machines or Z)
Ability to model and reason about persistent information so adaptive behavior can be
verified (such as provided by X-Machines).

A blending of the above methods seems to be the best approach for specifying swarm-based
systems and analyzing emergent behavior of these systems. Blending the memory and transition
function aspects of X-Machines with the priority and probability aspects of WSCCS may
produce a specification method that will allow all the necessary aspects for specifying emergent

behavior in the ANTS mission and other swarm-based systems. The idea of merging the above
methods is currently being furthered studied as well as adding some of the properties of logic and
cellular automata.

9. Conclusion

Swarm-based missions are becoming more important to NASA to enable new science to be
performed. These types of missions have many positive attributes but represent a change in
paradigm fiom current types of single spacecraft missions. Swarms require new types of
verification and validation techniques to assure their correct operation. To overcome their
nondeterministic nature, high degree of parallelism, intelligent behavior, and emergent behavior,
new kinds of verification methods need to be used.

This report has presented the results of an investigation into formal method techniques that might
be applicable to future swarm-based missions and that can verify their correctness. It also
analyzed the properties of these methods to determine the needed attributes of a formal
specification language to predict and verify emergent behavior of future NASA swarm-based
systems.

Future work will concern the development of a new formal method based on blending aspects of
the several formal methods as well as adding additional mathematical techniques from other
areas of matfiematics that may prove fiuitfid for predicting the emergent behavior of swarms. We
intend to use ANTS and another NASA swarm-based mission to test the capabilities of the
resulting formal method. We expect that the resulting formal method could become the basis of
other specification languages to support specification and analysis of future swarm-based
systems.

1O.Acknowledgements

This work was supported by the NASA Office of Safety and Mission Assurance (OSMA)
Software Assurance Research Program (SAW) and managed by the NASA Independent
Verification and Validation (IV&V) Facility.

1 1. References

[l] Abadi, M. and Gordon, A.D. A calculus for cryptographic protocols: The Spi ,calculus.
Jornal of Information and Computation, 143:l-70, 1999.

[2] Abrial, J.R. The B Book: Assigning Programs to Meanings. Cambridge University Press.
1996.

[3] Agent Speak&). http ://protern .inf. ufigs . br/cucla/.
[4] Aldewereld, H. Rational Teams: Logical Aspects of Multi-Agent Systems. Master’s

Thesis, Utrecht University. May, 2002.
[5] Alhir, S. Guide to Applying the UML. Springer, 2002.

4n

[6] Allen, J.F. Towards a general theory of action and time. Artificial Intelligence, 1984,
Volume 23, PP 123-154.

[7] Andrews, J.H., Day, N.A. and Joyce, J.J. Using Formal Description Technique to Model
Aspects of a Global Air Traffic Telecommunications Network. In 1997 IFIP TC6MG6.1
Joint International Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols, and Protocol Specification, Testing, and Verification
(FORElPSTV). Edited by Higashino, T. and Togashi, A. Chapman and Hall, pp 41 7432,
November 1997.

[SI ANTS Prospecting Asteroids Mission (ANTSRAM). NASA Goddard Space Flight Center.

[9] ANTS team. Protocol for ANTS Encounters. NASA GSFC, Code 695.
[lo] Astesiano, E. &d Zucca, E. Parametric channels via label expressions in CCS. Theoretical

Computer Science, 33:45-64,1984.
[l l] Attie, P.C. and Lynch, N.A. Dynamic InpudOutput Automata: A Formal Model for

Dynamic Systems. In Proceedings of International Conference on Concurrency Theory,
pages 137-151,2001.

[12] Bakam, I., Kordon, F., Le Page, C., and Bousquet, F. Formalization of a Spatialized
Multiagent Model Using Coloured Petri Nets for the Study of an Hunting Management
System. In Proceedings of First International Workshop on Formal Approaches to Agent-
Based Systems. Springer, LNAI 1871. Greenbelt, MD, April 2000.

[131 Balch, T. Behavioral Diversity in Learning Robot Teams. PhD Thesis, Georgia Institute of
Technology, 1998.

[141 Barnard, J. Object COMX: Methodology Using Communicating X-Machine Objects.
Journal of Object-Oriented Programming (JOOP). Nov-Dec. 1999.

[I51 Barnard, J., Whitworth, J. and Woodward, M. Communicating X-machines. Journal of
Information and Software Technology, 38(6), 1996.

[16] Bauer B., Muller J. P. and Ode11 J. Agent UML: A Formalism for Specifying Multiagent
Software Systems. In Proceedings of ICSE 2000 Workshop on Agent-Oriented Software
Engineering AOSE 2000, Limerick, 2000.

[17] Bellini, P., Mattolini, R., and Nesi, P. Temporal Logics for Real-Time System
Specification. ACM Computing Surveys, 32(1): 12-42, March, 2000.

[181 Beni, G. The Concept of Cellular Robotics. In Proceedings of the 1988 IEEE International
Symposium on Intelligent Control, pp 57-62, Los Alamitos, CA 1988. LEEE Computer
Society Press.

[191 Beni, G. and Want, J. Swarm Intelligence. In Proceedings of the Seventh Annual Meeting
of the Robotics Society of Japan, pp 425-428, Tokyo, Japan, 1989, RSJ Press.

[20] Bharadwaj, R and Heitmeyer, C. Hardware/Software Co-Design and Co-Validation Using
the SCR Method. In Proceedings of the IEEE International High Level Design Validation
and Test Workshop (HLDVT'99), Nov. 1999. (a)

[2 11 Bharadwaj, R and Heitmeyer, C. Model Checking Complete Requirements Specifications
Using Abstraction. Automated Software Engineering, 6,37-68 (1999). (b)

[22] Bonabeau, E. and Theraulaz, G., Swarm smarts. Scientific American, pp. 72-79, March
2000.

[23] Bonabeau, E., Dorigo, M. and Theraulaz, G. Swarm Intelligence: From Natural to
Artificial Systems. oxford University Press, New York, 1999.

http://ants~gsfc.n.gov/.

41

[24] Bonabeau, E., G. Theraulaz, et. al.et al. "Self-organization in Social Insects", Trends in
Ecology and Evolution, 1997, vol. 12, pp. 188-193.

[25] Bonnet, L., Florin, G., Duchien, L., Seinturier, L. A Method for Specifying and Proving
Distributed Cooperative Algorithms. DIMASP5. November 1995.

[26] Booch, G., Rumbaugh, J. and Jacobson, I. The Unified Modeling Language User Guide.
The Addison-Wesley Object Technology Series. Addison-Wesley, Reading, MA. 1999.

[27J Borgia, R, Degano, P., Priami, C., Leth, L. and Thomsen, B. Understanding mobile agents
via a non-interleaving semantics for Facile. In Proceedings of SAS'96, Volume 1145 of
LNCS. Editors Cousot, R and Schmidt, D.A. Springer, pages 98-1 12,1996.

[28] Bowen, J.P. and Hinchey, M.G. High-Integrity System Specification and Design. Series
on Formal Approaches to Computing and Information Technology (FACIT), Springer,
1999.

[29] Bratman, M. Harvard University Press,
Cambridge. 1987.

[30] Brown, B. High-Level Petri Nets for Modeling Multi-Agent Systems. MS project report,
Dept. of Computer Science, North Carolina A&T State University, Greensboro, NC, 1998.

[3 I] Bussow, R and Geisler, R. and Klar, M. Specifying Safety-critical Embedded systems with
Statecharts and Z: A Case Study. In Proceedings of the International Conference on
Fundamental Approaches to Software Engineering. Edited by Astesiano. LNCS 1382,
Springer-Verlag, Berlin. Pages 71-87, 1998.

[32] Butler, M. csp2B: A Practical Approach to Combining CSP and B. Technical Report
DSSE-TR-99-2. Department of Electonics and Computer Science, University of
Southampton. 1999.

[33] Cardelli, L. and Gordon, A.D. Mobile ambients. Proceedings of FoSSaCS'98. Editored by
Nivat, M. LNCS, Volume 1378, pages 140-155, Springer, 1998.

[34] Carlson, S. Artificial Life: Boids of a Feather Flock Together. Scientific American,
November 2000.

[35] Challet, D. and Zhang, Y.-C. Emergence of Cooperation and Organization in an
Evolutionary Game, Physica A 246,407. 1997.

[36] Chandy, K.M. and Misra, J. Parallel Program Design: A Foundation. Addison-Wesley
Publishing Company. 1988.

[37] Chefter, A.E. A Simulator for the IOA language. Mater's thesis, MIT Department of
EECS, May 1998.

[38] Clare, E. and Wing, J. Formal Methods: State of the Art and Future Directions. Report by
the Working Group on Formal Methods for the ACM Workshop on Strategic Directions in
Computing Research, ACM Computing Surveys, vol. 28, no. 4, December 1996, pp. 626-
643.

[39] Clark, P. E., Curtis, S. A. and Rilee, M. L. ANTS: Applying a New Paradigm to Lunar and
Planetary Exploration. Solar System Remote Sensing Symposium, Pittsburg, 2002.

[40] Coleman, D., Hayes, F. and Bear, S . Introducing Objectcharts, or How to Use Statecharts
in Object Oriented Design. IEEE Transactions on Software Engineering, January 1992, pp.

An International Survey of Industrial
Applications of Formal Methods (Volume 1 : Purpose, Approach, Analysis and
Conclusions, Volume 2: Case Studies). NIST Technical Report NIST GCR 93/626-V1 and
NIST GCR 93-626-V2,1993.

.

Intentions, Plans, and Practical Reason.

9-18.
[41] Craigen, D., Gerhart, S. and Ralston, T.J.

47

[42] Curtis, S. A., J. Mica, J. Nuth, G. Marr, M. Rilee, and M. Bhat. ANTS (Autonomous Nano-
Technology Swarm): An Artificial Intelligence Approach to Asteroid Belt Resource
Exploration. International Astronautical Federation, 5 1 st Congress, October 2000.

[43] Curtis, S., Truszkowski, W., Rilee, M., and Clark, P. ANTS for the Human Expioration
and Development of Space. IEEE Aerospace Conference, 2003.

[44] Curtis, S., Truszkowski, W., Rilee, M., and Clark, P. ANTS for the Human Exploration
and Development of Space. IEEE Aerospace Conference, 2003.

[45] Curtis, S.A., Mica, J., Nuth, J., Man, G., %lee, M., Bhat, M. ANTS (Autonomous Nan0
Technology Swarm): An Artificial Intelligence Approach to Asteroid Belt Resource
Exploration. International Astronautical Federation, 5 1 st Congress, October 2000.

[46] d’Inverno, M. and Luck, M. Understanding Agent Systems. Springer-Verlag, 2001.
[47] d’Inverno, M. and Luck, M. Formal Agent Development: Framewok to System. In

Proceedings of First International Workshop on Formal Approaches to Agent-Based
Systems. Springer, LNAI 1871. Greenbelt, MD, April 2000.

[48] d’Inverno, M., Fisher, M., Lomuscio, A., Luck, M., de Rijke, M., Ryan, M. and
Wooldridge, M. Formalisms for multi-agent systems. The Knowledge Engineering
Review, 3(12), 1997.

[49] Dixon, C., Fisher, M. and Bolotov, A. Resolution in a Logic of Rational Agency.
Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2000). IO
Press, 2000.

[50] Eilenberg, S. Automat, Languages and Machines, Vol. A. Academic Press, 1974.
[51] Emerson, E.A. and Halpem, J.Y. ‘Sometimes’ and ‘not never’ revisted: on branching time

versus linear time temporal logic. Journal of the ACM, 33(1): 15 1-1 78,1986.
[52] Engberg, U. and Nielsen, M. A calculus of communicating systems with label-passing.

Technical Report DAIMI PB-208, Computer Science Department, University of Aarhus,
Denmark, 1986.

[53] Esterline, A., Rorie, T. Using the p-Calculus to Model Multiagent Systems. . In
Proceedings of First International Workshop on Formal Approaches to Agent-Based
Systems. Springer, LNAI 1871. Greenbelt, MD, April 2000.

1541 Felder, M., Mandrioli, D. and Monenti, A. Proving properties of real-time systems through
logical specifications and Petr net models. IEEE Transactions on Software Engineering,
20(2):127-141, February 1994.
Ferber, J. Mulit-Agent Systems: An Introduction to Distributed Artificial Intelligence.
Addison-Wesley. 1999.
FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org.
Fischer, Clemens. Combination and Implementation of Processes and Data: from CSP-OZ
to Java. PhD. Dissertation, Fachbereich Informatik, Universitat Oldenburg. 2000.
Fournet, C. and Gonthier, G. The reflexive chemical abstract machine and the join-
calculus. In Proceedings of POPL’96, editors Steel, J.G. ACM, pages 372-385, Jan. 1996.
Gala, A.K. and Baker, A.D. Multi-Agent Communication in JAFMAS. In Workshop on
S peciQing and Implementing Conversation Policies, Third International Conference on
Autonomous Agents (Agents ’99). Seattle, Washington, 1999.
Galloway, A.J. and Stoddart, W.J. An operational semantics for ZCCS. In M. Hinchey and
S. Liu, editors, the IEEE International Conference on Formal Engineering Methods
(ICFEM97), pages 272-282, Hiroshima, Japan, November 1997. IEEE Computer Society
Press.

43

[61] Georgeff, M.P. and Lansky, A.L. Reactive reasoning and planning. In Proceedings of the
Sixth National Conference on Artificial Intelligence (AAAI-87), pages 677-682, Seattle,
WA, 1987.

[62] Gheorghe, M. Stream X-Machines and Grammar Systems. Department of Computer
Science, Faculty of Mathematics, Bucharest University, STr. Academiei 14, 701 09
Bucharest, Romania. 1998.

[63] Gheorghe, M., Holcombe, M. and Kefalas, P. Computational Models of Collective
Foraging. In Proceedings of the 4th International Workshop on Information Processing in
Cells and Tissues, IPCAl2001, Lueven, Belgium, August 2001.

[64] Gordon, D. APT Agents: Agents That are Adaptive, Predictable, and Timely. In
Proceedings of First International Workshop on Formal Approaches to Agent-Based
Systems. Springer, LNAI 1871. Greenbelt, MD, April 2000.

[65] Griss, M.L., Fonseca, S., Cowan, D. and Kessler, R. SmartAgent: Extending the JADE
Agent Behavior Bodel. HP Laboratories Technical Report HPL-2002- 18. Palo Alto, CA,
2002.

[66] Grobauer, B. and Muller, 0. From VO Automata to Timed YO Automata. In Proceedings
of the 12th International Conference on Theorem Proving in Higher Order Logics,
TPHOLs'99. Editors Bertot, Y., Dowek, G., Paulin-Mohring, Ch., and ThCry, L.Lecture
Notes in Computer Science, Nice, France, 1999, pages 273-290. Springer Verlag.

[67] Haddadi, A. and Sundermeyer, K. Belief-Desire-Intention Agent Architectures. In
Foundations of Distributed Artificial Intelligence, G. M. P. O'Hare and N. R. Jennings
(eds.). Wiley, New Yo&. 1996, pp. 169-185.

[68] Hamberger, T. Integrating theorem proving and model checking in isabelldioa. Technical
report, T.U. Munich, Agust 1999.

[69] Harel, D. and Naamad, A. The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering Methodology, October 1996, pp. 293-333.

[70] Harel, D. On Visual Formalisms. Communications of the ACM 31(5):514-530, May 1988.
[71] Harel, D. Pnueli, A., Schmidt, J.P., and Sherman, R. On the formal semantics of

statecharts. In Procedings of the 2nd IEEE Symposium on Logic in Computer Science,
Ithaca, N.Y., June 22-24. IEEE Press, New York, 1987, pp. 54-64.

[72] Harel, D. Statecharts: A visual formalism for complex systems. Science of Computer

[73] Heinze, C., Papasimeon, and Goss, S. Specifying agent Behavior with use cases. In
Proceedings of Pacific Rim Workshop on Multi-Agents, PRIMA2000,2000.

[74] Heitmeyer, C., Kirby, J. Jr., Labaw, B., and Bharadwaj, R. SCR*: A toolset for specifying
and analyzing s o h a r e requirements. In Proceedings of Computer Aided Verification, loth
International Conference, CAV '98. Alan J. Hu, Moshe Y. Vardi (Eds.), Vancouver, BC,
Canada, June 28 - July 2,1998. Lecture Notes in Computer Science 1427, Springer 1998.

In
proceedings of Decision Support 2001: Advanced Technology for Natural Resource
Management. Toronto, Ontario, Canada, Sept. 1994.

[76] Hilaire, V., Koukam, A., Gruer, P. and Muller, J.P. Formal Specification and Prototyping
of Multi-Agent Systems. First International Workshop on Engineering Societies in the
Agents' World. August 2000, Berlin.

Programming, 81231-274, 1987.

[75] Hiebeler, D. The Swarm Simulation System and Individual-based Modeling.

[77] Hilaire, V., Koukam, A., Gruer, P. and Muller, J.P. Formal Specification and Prototyping
of Multi-Agent Systems. In proceedings of Engineering Societies in the Agents World,
Springer-Veriag, LNAI 1972,2000.

[78] Hilderink, G., Broenink, J., and Bakkers, A. A new Java Thread model for Concurrent
Programming of Real-time Systems. Real-Time Magazine, pp 30-35, January, 1998.

[79] Hinchey, M. and Bowen, J. Industrial-Strength Formal Methods in Practice. Springer.
1999.

[SO] Hinchey, M. Jarvis, S. Concurrent Systems: Formal Development in CSP. McGraw-Hill.
1995.

[Sl] Hinchey, M., Rash, J. and Rouff, C. Verification and Validation of Autonomous Systems.
EEEMASA Software Engineering Workshop. November 2001.

[82] Hoare, C.A.R. Communicating Sequential Processes. Communications of the ACM,

[S3] Hoare, C.A.R Communicating Sequential Processes. Prentice Hall, 1985.
[84] Hoare, C.A.R. Communication Sequential Processes. Prentice Hall Series in Computer

Science, Heme1 Hempstead & Englewood Cliffs. 1985.
[85] Holcombe, M. Mathematical models of cell biochemistry. Technical Report CS-864.

1986. Dept of Computer Science, Sheffield University, United Kingdom.
[86] Holcombe, M. Towards a formal description of intracellular biochemical organization.

Technical Report CS-86-1. 1986. Dept of Computer Science, Sheffield University, United
Kigdom.

[87] Holcombe, W.M.L. X-machines as a Basis €or System Specification. Software Engineering

E881 H o h a n n , H. J, Design and Validation of Computer Protocols, Prentice Hall Software
Series, Englewood Cliffs, NJ, 1991.

[89] Howden, N., Ronnquist, R, Hodgson, A. and Lucas, A. JACK - Summary of an Agent
Infiastructure. 5th International Conference on Autonomous Agents. Montreal, Canada,
200 1.

[90] Hustadt, U., Dixon, C., Schmidt, R., Fisher, M., Meyer, J., and van Wiebe, H. Verifcation
within the KARO Agent Theory. In Proceedings of First International Workshop on
Formal Approaches to Agent-Based Systems. Springer, LNAI 187 1. Greenbelt, MD, April
2000.

.

21(8):666-677, August, 1978.

.TO- 3(2), 1988,69-76.

[9l] INMOS, Editor. Occam Programming Manual. Prentice-Hall, Inc., 1984.
[92] Iyengar, J., Truszkowski, W and Mills, F. Describing Intelligent Agent Behaviors. Journal

of International Idormation Management, 10(2), 99-77.2002.
[93] J.-R Abrial, J.-R, Biirger, E., and Langmaack, H., editors. Formal Methods for Industrial

Applications: Specifying and Programming the Steam Boiler, volume 1165 of Lecture
Notes in Computer Science. Springer-Verlag, 1996.

[94] Jahanian, F. and Mok, A.K. Safety Analysis of Timing Properties in Real-Time Systems.
IEEE Transactions on Software Engineering. SE-12(9) pp. 890-904 (Sept. 1986).

[95] James L. Peterson, Petri Nets, ACM Computing Surveys (CSUR), v.9 n.3, p.223-252, Sept.
1977.

E961 Jazayeri, M., Ghezzi, C., Hoffman, D., Middleton, D., and Smotherman, M. CSPBO: a
language for communicating sequential processes. IEEE Compcon, 1980.

[973 Jones, G. and Goldsmith, M. Programming in occam2. Prentice-Hall, 1988.
[98] Josephs, M.B. Receptive Process Theory. Acta Informatica 29(1): 17-31,1992.

45

[99] Kawabe, Y., Mano, IC., and Kogure, K. The Nepi2 Programming System: A ?-calculus-
Based Approach to Agent-Based Programming. In Proceedings of First International
Workshop on Formal Approaches to Agent-Based Systems. Springer, LNAI 1871.
Greenbelt, MD, April 2000.

[loo] Kawabe, Y., Mano, K., and Kogure, K. The Nepi2 Programming System: A p-Calculus-
Based Approach to Agent-Based Programming. In Proceedings of First International
Workshop on Formal Approaches to Agent-Based Systems. Springer, LNAI 187 1.
Greenbelt, MD, April 2000.

[loll Kazuki, M. The Semantic Analysis of UML by Behavioral Specification. Master Thesis.
Japan Advanced Institute of Science and Technology, School of Information Science. 2001.

[lo21 Kefalas, P. Modelling an Agent Reactive Architecture with X-Machines. 2000. Dept of
Computer Science, CITY Liberal Studies, 13 Tsimiski Str., 54624 Thessaloniki, Greece.

[lo31 Khatib, 0. Real-time Obstacle Avoidance for Manipulators and Mobile Robots.
International Journal of Robotics Research, 5(1):9O-98, 1986.

[lo41 Kimiaghalam, B., Homaifar, A., Esterline, A. A Satechart Framework for Agent Roles
that Captures Expertise and Learns Improved Behavior. In Proceedings of Second
International Workshop on Formal Approaches to Agent-Based Systems (FAABS 11).
Springer, LNCS. Greenbelt, MD, October 2002.

[1051 Kinky, J.R. The Specification of Dynamic Distributed Component Systems. Masters’
Thesis, CS-TR-98-08 1998 California Institute of Technology, Computer Science
Department.

[lo61 Lea, D. Concurrent Programming in Java: Design Principles and Pattern (2nd Edition).
Addison-Wesley, 1999.

[1071 Lerman, K. Design and Mathematical Analysis of Agent-Based Systems. In Proceedings
of First International Workshop on Formal Approaches to Agent-Based Systems. Springer,
LNAI 1871. Greenbelt, MD, April 2000.

[lo81 Leman, K. and Galstyan, A. A General Methodology for Mathematical Analysis of
Multi-Agent Systems. USC Information Sciences Technical Report ISI-TR-529,200 1.

[lo91 Luna, F. and Stefansson, B. Economic Simulations in Swarm: Agent-Based Modelling
and Object Oriented Programming. Kluwer Academic. 2000.

[1 IO] Lygeros, J., Godbole, D.N. and Sastry, S. Verified Hybrid Controllers for Automated
Vehicles. IEEE Transactions on Automatic Control, 43(4), April, 1998.

[1 1 I] Lynch, N.A. and Tuttle, M.R. Hierarchical Correctness Proofs for Distributed
Algorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing, ACM, Pages 137- 15 1, August 1987.

[I 121 Lynch, N.A., Segala, R and Vaandrager, F.W. Hybrid YO automata. Information and
Computation, to appear. Available as Technical Report MIT-LCS-TR-827d, MIT
Laboratory for Computer Science, Cambridge, MA 02139, January 13,2003.

[I 131 Mahony, B. and Dong, J.S. Timed Communicating Object Z. IEEE Transactions on
S o h a r e Engineering, 26(2): 150-1 77, Feb 2000.

[I 141 McIlraith, S. Modeling and Programming Devices and Web Agents. In Proceedings of
First International Workshop on Formal Approaches to Agent-Based Systems. Springer,
LNAI 1871. Greenbelt, MD, April 2000.

[1 151 Mentges, E. Concepts for an agent-based fiamework for interdisciplinary social science
simulation. Journal of Artificial Societies and Social Simulation, 2(2), 1999.

I
i '.
i
I
I .

[1 161 Menzies, T., Cukic, B., and Singh, H. Agents Talking Faster. In Proceedings of First
International Workshop on Formal Approaches to Agent-Based Systems. Springer, LNAI
187 1. Greenbelt, MD, April 2000.

[I171 Meyer, J.J., de Boer, F., van Eijk, R., Hindriks, K. and van der Hoek, W. On
Programming KARO Agents. In Cunningham, J. Gabby (Ed.), Proc. Int. Conf. on Formal
and Applied Practical Reasoning (FAPR2000). London: Imperial College.

[1 181 Milner, R Communication and Concurrency. Prentice-Hall, 1985.
[I 191 Milner, R A Calculus of Communicating Systems. LNCS, Vol. 92. Springer-Verlag,

Berlin, 1980.
[I201 Milner, R., Parrow, J. and Walker, D. A calculus of mobile processes, part UII. Journal

of Inforamation and Computation, 1001-77, Sept. 1992.
[I211 milner, R, Parrow, J. and Walker, D. A Calculus of Mobile Processes, Parts I and 11.

Journal of I n f i i o n and Computation, 1OO:l-77,1992.
[122] Moller, F. and Stevens, P. Edinburgh Concurrency Workbench User Manual.

httpdfwww.dcs.ed.ac.uWhome/cwb/.
[1231 Muthiayen, D. and Alagar, V.S. Formalizing UML for Rigorous Software Development.

In Proceedings of the OOPSLA'98 Workshop on Formalizing UML. Eds, Andrade, L.,
Moreira, A., Deshpande, A. Stuart Kent, S. 1998.

[I241 Nayak, P. Pandurang, et al. 1999. Validating the DSI Remote Agent Experiment. In
Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics and
Automation in Space (iSAIRAS-99).

[125] Nicola, R.D. and Segala, R A Process Algebraic View of I/O Automata. Theoretical
Computer Science, 138:391423,1995.

[I261 Oechslein, C., Klugl, F., Herrler, R. and Puppe, F. UML for Behavior-Oriented Multi-
Agent Simulations. In: Dunin-Keplicz, B., Nawarecki, E.: From Theory to Practice in
Multi-Agent Systems. LNAI; Second International Workshop of Central and Eastern
Europe on Multi-Agent Systems, CEEMAS 2001 Cracow, Poland, September 26-29,2001,
Revised Papers, Springer 2002, Heidelberg.

[I271 WPSLA'98 Workshop on Formalizing UML. Why? How? Addendum to the 1998
proceedings of the conference on Object-oriented programming, systems, languages, and
applications. Vancouver, B.C., Canada. October 18, 1998.

[128] Osbome, M.J. An Introduction to Game Theory. Oxford University Press, 2003.
[I291 Padgham, L. and Lambrix, P. Agent Capabilities: Extending BDI Theory. In Proceedings

of Seventeenth National Conference on Artificial Intelligence - AAAI 2000, Aug 2000, p

[I301 Papasimeon, M. and Heinze, C. Extending the UML for Designing JACK Agents. In
Proceedings of the Australian Software Engineering Conference (ASWEC Ol) , Canberra,
Australia, August 26-27,2001.

[I311 Parsons, S. Gymtrasiewicsz, P. and Wooldridge, M. Game Theory and Decision Theory
in Agent-Based Systems. Kiuwer, 2002.

[I321 Peterson, J. L. Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood
Cliffs, N. J. 198 1.

[1331 Petri, C.A. Kommunikation mit Automaten. Bonn: Institut fiir Instrumentelle
Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition, New York: Griffiss Air Force
Base, Technical Report RADC-TR-65--377, Vol. 1, 1966, Pages: Suppl. 1, English
translation.

68-73.

47

[134] Pierce, B.C. and Turner, D.N. Pict: A programming language based on the pi-calculus.
In Proof, Language and Intemacion: Essays in Honour of Robin Milner. Editors G. Plotkin,
C. Stirling, and M. To&. 1999.

[1351 Pnueli, A. The Temporal Logic of Programs. Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, 1977, pages 46-67.

[I361 Prior, A.N. 1957. Time and Modality. Oxford: Oxford University Press.
[I371 Rao, A.S. Agentspeak&): BDI Agents speak out in a logical computable language. In

Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a
Multi-Agent World. Editors, W. Van de Velde and J. W. Perram. Springer-Verlag, LNAI
Volume 1038.1996.

[1381 Rao, AS. and Georgeff, M.P. BDI Agents: From Theory to Practice. Proceedings of the
First International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, CA.
June, 1995.

[139] Rao, A.S. and Georgeff, M.P. Modeling Rational Agents within a BDI-Architecture.
Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR'91). Editors James Allen and Richard Fikes and Erik
Sandewall. Morgan Kaufmann, 1991.

[140] Reed, G.M. and Roscoe, A.W. Metric Spaces as Models for Real-Time Concurrency. In
Proceedings, Workshop on the Mathematical Foundations of Programming Language
Semantics, pp 33 1-343, Lecture Notes in Computer Science, Vol. 298, Springer-Verlag,
1987.

[141] Reif, J. and Wang, H. Social Potential Fields: A Distributed Behavioral Control for
Autonomous Robots. In Proceedings of WAFR'94. San Francisco, California, February
1994.

[142] Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed Behavioral Model.
Computer Graphics, 1987,2 1 (4), pp 25-34.

[143] Rilee, M.L., Boardsen, S.A., Bhat, M.K. and Curtis, S.A. Onboard Science Software
Enabling Future Space Science and Space Weather Missions. 2002 IEEE Aerospace
Conference Big Sky, Montana, 9- 16 March 2002.

[144] Roscoe, A.W., et al. Hierarchical compression for model-checking CSP or How to check
10A20 dining philosophers for deadlock. Proceedings of the TACAS symposium, 1995.
Springer Verlag, LNCS 1055

[145] Rouff, C., Rash, J., Hinchey, M. Experience Using Formal Methods for Specifying a
Multi-Agent System. Sixth E E E International Conference on Engineering of Complex
Computer Systems (ICECCS 2000) September 11-15,2000.

[I461 Rowe, G.W. Game Theory in Biology. In Physical Theory in Biology: Foundations and
Explorations. Edited by Lumsden, C.J., Trainor, L.E.H. and Brandts, W.A. World
Scientific, 1997.

[1471 Rudnianski, M. and Bestougeff, H. Modeling Task and Teams through Game Theoretical
Agents. In Proceedings of First International Workshop on Formal Approaches to Agent-
Based Systems. Springer, LNAI 1871. Greenbelt, MD, April 2000.

[148] S. Chalmers and P.M.D. Gray. BDI Agents and Constraint Logic. AISB Journal Special
Issue on Agent Technology, 1(1):2140,2001.

[1491 Savage, M. and Askenaki, M. Arborscapes: A Swarm-based Multi-agent Ecological
Disturbance Model. Working paper 98-06-056. 1998. Santa Fe, NM: Santa Fe Institute.

A8

[l50] Schuman, S.A. and Pitt, D.H. Object-oriented subsystem specification. In L. G. L. T.
Meertens, editor, Program Specification and Transformation, pages 3 13--34 1 . North-
Holland, 1987.

[151] Schwartz, R., Shor, P., Prevelige, P., and Berger, B. Local Rules Simulation of the
Kinetics of Virus Capsid Self-Assembly. Biophysics, 75:2626-2636, 1998.

[152] Shehory, O., Sarit, K., and Yadgar, 0. Emergent cooperative goal-satisfaction in large-
scale automated-agent systems. Artificial Intelligence, 1999.

11531 Shen, C.Y.L. Behavior Modeling for Mobile Agents. UCI Undergraduate Research
Journal, 1998.

[154] Sing, M. and Asher, N. Towards a formal theory of intentions. In Logics in AI, Editor
van Eijck, J. Springer-Verlag, LNAI Vo1478, pp 472-486. 1990.

[155] Singh, M., h a n d , R., and Georgeff, M. Formal Methods in DAI: Logic-Based
Representation and Reasoning. In Multiagent Systems: A Modem Approach to Distributed
Artificial Intelligence. Edited by Weiss, G. The MIT Press. 1999.

E1561 Smith, M. Formal verification of TCP and T/TCP, Ph.D. Thesis. MIT, Department of
Electrical Engineering and Computer Science. September 1997.

[157] Sowmya, A. and Ramesh, S. Extending Statecharts with Temporal Logic. IEEE
TransaCtions on Software Engineering, Vol24, No 3, March 1998, pp 216-229.

[1581 Spears, W. and Gordon, D., ‘‘Using artificial physics to control agents,” in Proceedings of
the IEEE International Conference on Information, Intelligence, and Systems, November,
1999, Charlotte, NC.

[1591 Spivey, J. M. The Z Notation: A Reference Manual. Prentice Hall, Hemel Hempstead,
2nd edition. 1992.

[160] Sumpter, D.J.T., Blanchard, G.B. and Broomhead, D.S. Ants and Agents: A Process
Algebra Approach to Modelling Ant Colony Behaviour. Bulletin of Mathematical Bilogy.

[1611 Surka, D., Campbell, M., Schetter, T. Controlling Multiple Satellite Constellations Using
the TEAMAgent System. In Proceedings of First International Workshop on Formal
Approaches to Agent-Based Systems. Springer, LNAI 1871. Greenbelt, MD, April 2000.

[162] Tadashi Araragi and Paul Attie and Idit Keidar and Kiyoshi Kogure and Victor
Luchangco and Nancy Lynch and Ken Mano. On Formal Modeling of Agent
Computations. In Proceedings of First International Workshop on Formal Approaches to
Agent-Based Systems. Springer, LNAI 1871. Greenbelf MD, April 2000.

[1631 The dMARS V 1.6.1 1 System Overview, Technical Report, Australian Artificial
Intelligence Institute (AAII), 1996.

11641 To&, C. Describing social insect behaviour using process algebra. Transactions on
Social Computing Simulation. 1991.227-283.

11651 Tomlin, C., Pappas, G. and S a w , S. Conflict Resolution for Air Traffic Management:
A Case Study in Multi-Agent Hybrid Systems. IEEE Transactions on Automatic Control,
43(4), Apd, 1998.

[16q Uselton, A.C. and Smolka, S.A. A Process Algebraic Semantics for Statecharts via State
Refinement. In Proceedings of IFIP Working Conference on Programming Concepts,
Methods and Calculi (PROCOMET), June 1994. (a)

[167] Uselton, A.C. and Smolka, S.A. A Compositional Semantics for Statecharts using
Labeled Transition Systems. Proceedings of CONCUR’94 - Fifth International Conference
on Concurrency Theory. Uppsala, Sweden, August 1994. (b)

2001,63,951-980.

49

[168] Valk, J. Generic Theorem Provhg. Master's Thesis, Delft University of Technology,
1998.

[169] Valk, J., Tonino, H. Bos, A. and Witteveen, C. Automated Theorem Proving for the
KARO-architecture. Foundations and applications of Collective Agent Based Systems
(CABS). In ESSLLI 99 Workshop, Utrecht, 1999.

[170] van de Mortel-Fronczak, J.M., Rooda, J.E. and de Greeff, L.A.J. Real-time Concurrent
Programming as a Structured Approach to Modelling of Manufacturing Systems. In R.D.
Scbf l et a1 (eds.), Proceedings of FAIM'95, Stuttgart, Germany, June 1995, pp. 247-258.

[171] van Linder, B., van der Hoek, W. and Meyer, J-J. Ch. Formalizing abilities and
opportunities of agents. Fundamenta Informaticae, 34(1,2):53-101, 1998.

11721 Victor, B. and Moller, F. The Mobility Workbench - A Tool for the Pi-Calculus.
Technical Report DOCS 94/95, Department of Computer Science, Uppsala University,
Sweden, 1994.

[1731 Vollmer, J. and Hoffart, R. Modula-P, a language for parallel programming: Definition
and implementation on a transputer network. In Proceedings of the 1992 International
Conference on Computer Languages ICCL'92, Oakland, California, pages 54-64. IEEE,
IEEE Computer Society Press, April 1992.

[1 741 Vollmer, J. and Hoffart, R. Modula-P, a language for parallel programming: Definition
and implementation on a transputer network. In Proceedings of the 1992 International
Conference on Computer Languages ICCL'92, Oakland, California, pages 54-64. IEEE,
IEEE Computer Society Press, April 1992.

[1 751 von Neumann, John. Theory of Self-Reproducing Automat. University of Illinois Press,
Urbana, Illinois. 1996. Edited and completed by Burks, A.W.

[1 761 Wagner, G. The Agentabject-Relationship Meta-Model: Towards a Unified Conceptual
View of State and Behavior. Infomation Systems 2 8 5 (2003), pp. 475-504.

E1771 Walker, D. Objects in the pi-calculus. Journal of Information and Computation,

11781 Weiss, G. Multiagent Systems: A Modem Approach to Distributed Artificial
Intelligence. The MIT Press. 1999.

E1791 Weyns, D., Holvoet, T. A Colored Petri Net for a Multi-Agent Application. In
Proceedings of Second Workshop on Modeling of Objects, Components, and Agents.
Pages 121-140, Aarhus, Denmark, August 2002.

[I SO] Winfree, E. Simulations of Computing by Self Assembly. DI-MACS: DNA-Based
Computers, June 1998.

[1 811 Wooldridge, M. A Logic of BDI Agents with Procedural Knowledge. Working Notes of
3rd ModelAge Workshop: Formal Models of Agents. Editor, Pierre-Yves Schobbens.
Sesimbra, Portugal. 1996.

[1 821 Wooldridge, M. Practical reasoning with procedural knowledge: A logic of BDI agents
with know-how, Practical Reasoning. Proceedings of FAPR'96 @. Gabbay and H-J.
Ohlbach, eds.), LNAI, vol. 1085, Springer Verlag, 1996, pp. 202-213.

[1831 Wooldridge, M. Reasoning about Rational Agents. Intelligent Robot and Autonomous
Agents Series. MIT Press, Cambridge, MA. 2000.

[1 843 Wrench, K.L. CSP-I: An implementation of communicating sequential processes.
Software-Practice and Experience, 18(6):545-560, June 1988.

[I 851 Wu, S.H, Smollca, S.A., and Stark, E.W. Composition and behaviors of probabilistic UO
automata. Theoretical Computer Science, 176(1-2): 1-38, 1997.

116(2):253-271, 1995-

[186] Xu, H. and Shatz, S.M. An Agent-based Petri Net Model with Application to
SellerBuyer Design in Electronic Commerce. In Proceedings of Fifth International
Symposium on Autonomous Decentralized Systems. Dallas, Texas, March 2001.

[187] Yan, Q., Shan, L., Mao, X. and Qi, Z.. RoMAS: a role-based modeling method for multi-
agent system. In Proceedings of Second International Conference on Active Media
Technology. May 2003.

51

