Space Electronics
A challenging world for designers

Christian Poivey
Kenneth A. LaBel
NASA-GSFC

Designing Electronics for Space

- Low power
- High reliability
- Harsh environment
 - Thermal
 - Mechanical
 - Electro-magnetic
 - Radiation
Outline

- The Space Radiation Environment
- The Effects on Electronics
- The Environment in Action
- Hardening Approaches to Commercial CMOS electronics
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion

Atomic Interactions
 - Direct Ionization

Interaction with Nucleus
 - Indirect Ionization
 - Nucleus is Displaced

Outline diagram

Space Radiation Environment

Deep-space missions may also see: neutrons from background or radioisotope thermal generators (RTGs)
Atmosphere and terrestrial may see GCR and secondaries

Outline diagram
Sunspot Cycle:
An Indicator of the Solar Cycle
after Lund Observatory

Length Varies from 9 - 13 Years
7 Years Solar Maximum, 4 Years Solar Minimum

Solar Particle Events
- Cyclical (Solar Max, Solar Min)
 - 11-year AVERAGE (9 to 13)
 - Solar Max is more active time period
- Two types of events
 - Gradual (Coronal Mass Ejections - CMEs)
 - Proton rich
 - Impulsive (Solar Flares)
 - Heavy ion rich
- Abundances Dependent on Radial Distance from Sun
- Particles are Partially Ionized
 - Greater Ability to Penetrate Magnetosphere than GCRs
Solar Proton Event - October 1989

Proton Fluxes - 99% Worst Case Event

Free-Space Particles: Galactic Cosmic Rays (GCRs) or Heavy Ions

- Definition
 - A GCR ion is a charged particle (H, He, Fe, etc)
 - Typically found in free space (galactic cosmic rays or GCRs)
 - Energies range from MeV to GeVs for particles of concern for SEE
 - Origin is unknown
 - Important attribute for impact on electronics is how much energy is deposited by this particle as it passes through a semiconductor material. This is known as Linear Energy Transfer or LET (dE/dX).

CREME 96, Solar Minimum, 100 mils (2.54 mm) Al
Trapped Particles in the Earth's Magnetic Field: Proton & Electron Intensities

AP-8 Model

- \[E_p > 10 \text{ MeV} \]

AE-8 Model

- \[E_n > 1 \text{ MeV} \]

A dip in the earth's dipole moment causes an asymmetry in the picture above:
The South Atlantic Anomaly (SAA)

L-Shell

- Solar Cycle Effects:
 - Modulator and Source

- **Solar Maximum**
 - Trapped Proton Levels Lower,
 Electrons Higher
 - GCR Levels Lower
 - Neutron Levels in the Atmosphere
 Are Lower
 - Solar Events More Frequent &
 Greater Intensity
 - Magnetic Storms More Frequent --
 \(> \) Can Increase Particle Levels in
 Belts

- **Solar Minimum**
 - Trapped Protons Higher,
 Electrons Lower
 - GCR Levels Higher
 - Neutron Levels in the Atmosphere
 Are Higher
 - Solar Events Are Rare

Light bulb shaped CME

courtesy of SOHO/LASCO C3 Instrument
Outline

- The Space Radiation Environment
- The Effects on Electronics
- The Environment in Action
- Hardening Approaches to Commercial CMOS electronics
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion
 - Atomic Interactions
 - Direct Ionization
 - Interaction with Nucleus
 - Indirect Ionization
 - Nucleus is Displaced

Radiation Effects and Spacecraft

- High energy particles loose energy when they cross electronic parts materials and cause radiation effects
 - Long-term effects
 - Total ionizing dose (TID)
 - Displacement damage
 - Transient or single particle effects (Single event effects or SEE)
 - Soft or hard errors
Total Ionizing Dose (TID)

- Cumulative long term ionizing damage due to protons & electrons
 - Incident particles transfer energy to material through electron hole creation. Holes are trapped within devices' oxides or the interfaces oxide/silicon.

- Effects
 - Increase of Leakage Currents
 - Degradation of logical input levels and noise margin
 - Degradation of fan out
 - Degradation of propagation delays
 - Functional Failures

- Unit of radiation: dose in Gray or rad
 - 1 Gray = 100 rad = 0.01 J/Kg

TID-induced threshold voltage shifts effects in CMOS devices

\[\Delta V_T \propto t_{ox}^2 \] (After Mc Garrity)

When \(t_{ox} < 5 \text{ nm} \), significant hole tunneling out of the gate oxide occurs, resulting in negligible number of remaining holes: \(\Delta V_i \sim \Delta V_h \sim 0 \)
TID-induced intra device edge leakage

- Primary Electron Current Flow
- Polysilicon Gate
- Field Oxide
- n+ Source
- Edge Current Components

Thin oxide Boundary (not shown)

Edge Leakage (EL)

Edge Leakage – Basic Mechanism

- NMOS
- After Irradiation
- Thin t_{ox}
- Med. t_{ox}
- Thick t_{ox}

V_G
Example of Edge Leakage for 0.36/0.18 μm NMOS Transistor

Inter device isolation-oxide leakage

- Inversion of field oxide results in leakage path between N+ contact (Vdd) in the N- well and N+ source (GND)
- Field oxide leakage paths can also span N+ source/drain regions between adjacent N- channel transistors

(After Alexander)
Example of TID degradation for 0.18 μm CMOS SRAM

SRAM, CMOS 0.18 μm process

- No significant degradation up to 90 krad-Si
- Sufficient for most space applications, typical dose levels:
 - Geostationary Orbit, 10 years: 50 krad-Si
 - Low Earth Orbit, 5 years: 20 krad-Si

Displacement Damage (DD)

- Cumulative long term non-ionizing damage due to protons, electrons, and neutrons
 - Incident particles transfer energy by elastic or inelastic collisions with atoms of the devices material (Silicon). Structural defects are created on the crystallographic structure.

- Effects
 - Minority carrier lifetime in the semiconductor is decreased
 - Increase leakage currents
 - Decrease gain of bipolar transistors
 - Important for opto-electronics and linear bipolar devices, not significant for CMOS devices.

- Unit of radiation:
 - equivalent fluence for a selected electron or proton energy in particles/cm²
DD damage example, CCD

(After Hopkinson RADECs 03 short course)

Single Event Effects (SEEs)

- **Ionizing effect caused by a single charged particle**
 - Heavy ions
 - Direct ionization
 - Creation of a very dense plasma of electrons hole pairs
 - The pairs that do not recombine are separated by the junction electric field, and a current spike is generated.
 - Protons for sensitive devices
 - Nuclear reactions for standard devices
 - Unit of radiation:
 - LET (Linear Energy Transfer) in MeV cm²/mg
 - If the LET of the particle (or reaction) is greater than the amount of energy or critical charge required, an effect may be seen
Single Event Upset (SEU)

When SEU current I_{SEU} exceeds restoring current from cross-coupled inverter such that the node voltage drops below $V_D/2$ for too long, an upset occurs.

SEU trend on SRAM

- At fixed voltage SER decreased by 13% per generation.
- At the nominal voltage for each generation (14% scaling per generation), the SER sensitivity has increased by about 8% per generation.

After Hazucha, IEDM 03
Single Event Latchup (SEL) in CMOS circuits

Latchup can cause circuit lockup and/or catastrophic device failure.

- If an energetic particle produces $I_1 > I_L$, $\beta N > 1$ and $V_{DD} > V_H$, then latchup will occur.
- As technology scales, $V_{DD} < V_H$ and latchup is no longer a problem.
- Epi reduces R_e to increase latchup threshold.

Single Event Transient (SET)

- Voltage transients can propagate through combinatorial logic.
 - Indistinguishable from normal signals.
 - Incorrectly latched if arrive at clock edge.
- Errors rates now depend on clock frequency.
- Total error rate is the sum of the SEU + SET contributions.

Total Error = SET + SEU
Other Single Event Effects

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Effect Description</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Event Upset (MEU)</td>
<td>Several bits corrupted by a single particle</td>
<td>Memories</td>
</tr>
<tr>
<td>Single Event Functional Interrupt (SEFI)</td>
<td>Loss of normal operation</td>
<td>Complex devices with built-in state machine/control sections</td>
</tr>
<tr>
<td>Single Event Burnout (SEB)</td>
<td>High current condition</td>
<td>BJT, N channel power MOSFETs</td>
</tr>
<tr>
<td>Single Hard Error (SHE)</td>
<td>Stuck bit</td>
<td>Memories</td>
</tr>
<tr>
<td>Single Event Gate Rupture (SEGR)</td>
<td>Rupture of gate dielectric</td>
<td>Power MOSFETs, flash PROM.</td>
</tr>
<tr>
<td>Other events</td>
<td>SESB, HCA,</td>
<td></td>
</tr>
</tbody>
</table>

Transient propagation in CMOS

- If transient pulse width is greater than critical width, the pulse will propagate indefinitely through combinatorial logic.
- For pulses shorter than the critical transient width, the transient will be attenuated.
- Critical width decreases with feature size
 - Estimate of heavy ion transient pulse width is 100-200 ps
 - SETs important for CMOS at or below 0.25 μm technology node

![Inverter Chain Infinite Propagation](after_mavis_ewrh_04)

After Mavis, EWRH 04

![Feature Size vs. Critical Transient Width](after_mavis_ewrh_04)

DCSRH - Space Radiation Effects presented by Christian Poiray, Bordeaux, France, November 25, 2004
Outline

- The Space Radiation Environment
- The Effects on Electronics
- The Environment in Action
- Hardening Approaches to Commercial CMOS electronics
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion

Atomic Interactions
 - Direct Ionization
Interaction with Nucleus
 - Indirect Ionization
 - Nucleus is Displaced

Outline Image:

Radiation Effects on Electronics and the Space Environment

- Three portions of the natural space environment contribute to the radiation hazard
 - Solar particles
 - Protons and heavier ions
 - SEE, TID, DD
 - Free-space particles
 - GCR
 - For earth-orbiting craft, the earth's magnetic field provides some protection for GCR
 - SEE
 - Trapped particles (in the belts)
 - Protons and electrons including the South Atlantic Anomaly (SAA)
 - SEE (Protons)
 - DD, TID (Protons, Electrons)

Radiation Effects Image:

SAA and Trapped Protons: Effects of the Asymmetry in the Proton Belts on SRAM Upset Rate at Varying Altitudes on CRUX/APEX

Background environment and solar events SRAM upset rate versus time on Orbview-2 SSRs
Recent Solar Events –
A Few Notes and Implications

- In Oct-Nov of this year, a series of X-class (X-45) solar events took place
 - High particle fluxes were noted
 - Many spacecraft performed safing maneuvers
 - Many systems experienced higher than normal (but correctable) data error rates
 - Several spacecraft had anomalies causing spacecraft safing
 - Increased noise seen in many instruments
 - Drag and heating issues noted
 - Instrument FAILURES occurred
 - Two known spacecraft FAILURES occurred
- Power grid systems affected, communication systems affected...

SOHO LASCO C2 of the Solar Event
Solar Event Effect - Solar Array Degradation on CLUSTER Spacecraft

Many other spacecraft noted degradation as well.

Science Spacecraft Anomalies During Recent Solar Events

<table>
<thead>
<tr>
<th>Type of Event</th>
<th>Spacecraft/Instrument</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous Processor Resets</td>
<td>RHESSI</td>
<td>3 events; all recoverable</td>
</tr>
<tr>
<td></td>
<td>CLUSTER</td>
<td>Seen on some of 4 spacecraft; recoverable</td>
</tr>
<tr>
<td></td>
<td>ChipSAT</td>
<td>S/C tumbled and required ground command to correct</td>
</tr>
<tr>
<td>High Bit Error Rates</td>
<td>GOES 9,10</td>
<td></td>
</tr>
<tr>
<td>Magnetic Torquers Disabled</td>
<td>GOES 9, 10, 12</td>
<td></td>
</tr>
<tr>
<td>Star Tracker Errors</td>
<td>MER</td>
<td>Excessive event counts</td>
</tr>
<tr>
<td></td>
<td>MAP</td>
<td>Star Tracker Reset occurred</td>
</tr>
<tr>
<td>Read Errors</td>
<td>Stardust</td>
<td>Entered safe mode; recovered</td>
</tr>
<tr>
<td>Failure?</td>
<td>Midori-2</td>
<td></td>
</tr>
<tr>
<td>Memory Errors</td>
<td>GENESIS</td>
<td>19 errors on 10/29</td>
</tr>
<tr>
<td></td>
<td>Many</td>
<td>Increase in correctable error rates on solid-state recorders noted in many spacecraft</td>
</tr>
</tbody>
</table>
Science Instrument Anomalies During Recent Solar Events

<table>
<thead>
<tr>
<th>Type of Event</th>
<th>Spacecraft/Instrument</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Failure</td>
<td>GOES-8 XRS</td>
<td>Under investigation as to cause</td>
</tr>
<tr>
<td></td>
<td>Mars Odyssey/Marie</td>
<td>Under investigation as to cause; power consumption increase noted; S/C also had a safehold event – memory errors</td>
</tr>
<tr>
<td></td>
<td>NOAA-17/AMSU-A1</td>
<td>Lost scanner; under investigation</td>
</tr>
<tr>
<td>Excessive Count Rates</td>
<td>ACE, WIND</td>
<td>Plasma observations lost</td>
</tr>
<tr>
<td></td>
<td>GALEX UV Detectors</td>
<td>Excess charge – turned off high voltages; Also Upset noted in instrument</td>
</tr>
<tr>
<td></td>
<td>ACE</td>
<td>Solar Proton Detector saturated</td>
</tr>
<tr>
<td>Upset</td>
<td>Integral</td>
<td>Entered Safe mode</td>
</tr>
<tr>
<td></td>
<td>POLAR/TIDE</td>
<td>Instrument reset spontaneously</td>
</tr>
<tr>
<td>Hot Pixels</td>
<td>SIRTF/IRAC</td>
<td>Increase in hot pixels on IR arrays; Proton heating also noted</td>
</tr>
<tr>
<td>Safe Mode</td>
<td>Many</td>
<td>Many Instruments were placed in Safe mode prior to or during the solar events for protection</td>
</tr>
</tbody>
</table>

Selected Other Consequences

- Orbits affected on several spacecraft
- Power system failure
 - Malmo, Sweden
- High Current in power transmission lines
 - Wisconsin and New York
- Communication noise increase
- FAA issued a radiation dose alert for planes flying over 25,000 ft
Outline

- The Space Radiation Environment
- The Effects on Electronics
- The Environment in Action
- Hardening Approaches to Commercial CMOS electronics
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion

Atomic Interactions
 - Direct Ionization

Interaction with Nucleus
 - Indirect Ionization
 - Nucleus is Displaced

Hardening by design to radiation effects

Microcircuit Function

Macrocells
- ALU
- REGISTER
- etc.

Primitive Cells
- NAND
- NOR
- LATCH
- MUX
- etc.

Transistors
- NMOS
- PMOS

 Parasitics
- FOX transistors
- Edge transistors
- SCRs
- etc.

Layout:
- Guard band/Guard ring
- Spacing
- Body ties

Alexander, NSREC 96 short course
SEU hardening at primitive cell level

Increased Drive Current
- Increase drive current I_D (↑W)
- Increasing restoring current
- No speed penalty
- Area penalty $\propto I_D$

Resistive Coupling
- Decrease response time by increasing RC with feedback resistors
- Resistors are not an option at many commercial foundries
- Speed penalty
- Small area penalty

SEU hardening at macrocell level

- **Design enhancements:** deal with SEU occurring in primitive cells
 - Hardened data latches: DICE, HIT,...

- **Uses a 4-node redundant structure**
 - Stores data as 1010 or 0101
 - Relies on dual node feedback control
 - Two nodes must be struck simultaneously to generate an upset
 - Decrease in effective sensitive area
SEU hardening at macrocell level

- Design enhancements: deal with SEU occurring in primitive cells
 - redundancies

 - Triple Module Redundancy (TMR)
 Triple logic + vote
 - Reduce effective sensitivity
 - 2 latches must be struck simultaneously to get an error
 - Does not increase tolerance of individual latches
 - 3x-4x power/area

SEU/SET hardening at macrocell level

- By delaying clocks, transient can only be captured at 1 latch
 - Voted out
- Can delay data instead of clocks
- Sensitive to transients on clock line
- Area penalty ~ 3x - 4x
- Speed penalty: $1/f_{\text{eff}} = 1/f_0 + 2 \Delta T$
- Many variations on this concept
SEU/SET hardening at macrocell level

- Achieves equivalent of triple spatial redundancy by using same circuitry at three different times
- With appropriate ΔT, can be immune to upset from multiple node strikes
- Immune to transients on: data, clock, asynchronous control, and synchronous lines

Hardening at the function level

- Design enhancement to deal with errors occurring in macrocells
 - Redundancies and voting or lockstep
 - EDAC/Self checking

- Watchdog timer
EDAC example: Hamming code

- Parity evaluation of different bit combinations allows for m bit correct, n bit detection
- Can be used to correct/detect memory output
- Can be used to scrub memories
 - Time between scrubs determines max error latency

<table>
<thead>
<tr>
<th>Data Bits</th>
<th>Check Bits</th>
<th>Total Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2 to 4</td>
<td>4</td>
<td>6 to 8</td>
</tr>
<tr>
<td>5 to 11</td>
<td>5</td>
<td>10 to 16</td>
</tr>
<tr>
<td>12 to 26</td>
<td>6</td>
<td>18 to 32</td>
</tr>
<tr>
<td>27 to 32</td>
<td>7</td>
<td>34 to 39</td>
</tr>
</tbody>
</table>

Single Bit-Error Correct, Double Bit-Error Detect

Outline

- The Space Radiation Environment
- The Effects on Electronics
- The Environment in Action
- Hardening Approaches to Commercial CMOS electronics
 - CMOS devices vulnerabilities
 - Hardening approaches
- Conclusion
 - Atomic Interactions
 - Direct Ionization
 - Interaction with Nucleus
 - Indirect Ionization
 - Nucleus is Displaced

http://www.ssci.edu/hst/icosas/performance/anomalies/bigcr.html
Conclusion

- The radiation environment makes the design of electronics for space very challenging
- High total dose hardness levels can be achieved with state of the art technologies
- A variety of design techniques exist for mitigating SEE
 - Area, power, speed penalties depend on chosen mitigation approach
- New effects occur for each new technology generation