
EUROPA2 : Plan Database Services for Planning and Scheduling Applications

Tania Bedrax-Weiss* and Jeremy Frank and Ari J6nssoni and Conor McGann’
Computational Sciences Division

NASA Ames Research Center

Moffett Field, CA 94035-1000
(bachrnann,tania,frank,ajonsson,cmcgann} @email.arc.nasa.gov

Mailstop 269-4 ,

Abstract

NASA missions require solving a wide variety of planning
and scheduling problems with temporal constraints; simple
resources such as robotic arms, communications antennae
and cameras; complex replenishable resources such as mem-
ory, power and fuel; and complex constraints on geometry,
heat and lighting angles. Planners and schedulers that solve
these problems are used in ground tools as well as onboard
systems. The diversity of planning problems and applications
of planners and schedulers precludes a ”one-size fits all’’ so-
lution. However, many of the underlying technologies are
common across planning domains and applications. We de-
scribe CAPR, a formalism for planning that is general enough
to cover a wide variety of planning and scheduling domains
of interest to NASA. We then describe EUROPAz , a soft-
ware framework implementing CAPR. ELROPAz provides
efficient, customizable Plan Database Services that enable
the integration of CAPR into a wide variety of applications.
We describe the design of EUROP.42 from the perspective of
both modeling, customization and application integration to
different classes of NASA missions.

Introduction
Inspired by NASA’s missions that require solving a wide va-
riety of planning and scheduling problems, each of which
must be integrated into different operating environments, we
set out to formalize and implement a planning framework on
which many of these mission scenarios can be built. Our
intuition is that many other real-world problems are sim-
ilar and that such a framework will be widely applicable.
The Remote Agent Experiment (RAX) on the Deep Space 1
Spacecraft (Muscettola et al. 1998), (Jbnsson et al. 2000)
featured a planner on board a spacecraft that required rea-
soning about accumulated thrust, spacecraft attitude relative
to navigation aids, and the state of hardware resources like
cameras. The EO-1 Sciencecraft experiment (Tran et al.
2004) is another onboard planner that must reason about on-
board memory and CPU resources, comnunications oppor-
tunities to replenish memory, and options for satisfying sci-

‘ Q S S Group, Inc.
tAoti?ors listed in dphabeticd order. ’ USU-XACS

Copyright @ 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

ence goals. Controllers onboard terrestrial Unmanned Au-
tonomous Vehicles (UAVs) such as Rotorcraft (Whalley et
al. 2003) must reason about the state of communication sys-
tems, onboard payloads such as imagers, and how image ac-
quisition constrains intended maneuvers such as banks and
ciimbs, in the face of complex fiight dynamics. Autonomy
systems (Dias, Lemai, & Musceiioia 2003), (Despoiiys &
Ingrand 1999) as well as ground tools (Bresina et al. 2003)
for robots like the Mars Exploration Rovers (MER) require
reasoning about thermal models, available power and re-
maining memory, as well as the location of the rover rel-
ative to intended science targets and how to choose from
among available science operations. h a g e Processing plan-
ning (Golden et al. 2003) requires reasoning about feasible
image manipulation operations, available web services, as
well as the state of underlying computer file systems, in-
cluding the location of inputs and outputs of processing op-
erations.

The diversity of planning problems and applications of
planners and schedulers precludes a “one-size fits all” solu-
tion. Different planning paradigms apply more naturally to
different planning problems, and different applications re-
quire different planning services. For example, planetary
rover domains require one form of path planning, U.4Vs re-
quire quite different forms of path planning, while satellite
domains such as EO-1 do not require path planning at all.
Path planning generally requires reasoning about concepts
that are immutable with respect to time, and so does im-
age processing. Although domains such as EO- 1, MER, and
RAX require reasoning with resources, EO- 1 and MER fea-
ture onboard memory resources, while the RAX does not.
In either of these caces, reasoning about time is important.
Furthermore, in onboard systems such as spacecraft, UAVs
and rovers, planner response time may preclude expensive
algorithms that guarantee optimality. Additionally, some
applications require that the planner provide incomplete so-
lutions, such as those where the planner interfaces with an
kiLzlligcnt execiifii;e t h t is able :o “fill in :he blznks”. Hu-
man operators or other autonomous sub-systems may look at
plans, and request changes or explanations, ultimately lead-
ing to new planning problems.

Despite the considerable diversity of planning problem
classes, planners and applications, there is considerable
commonality among planning and scheduling problems,

.-+ 11.

%

c
percepts Executive Commands

Restrictions

Restrictions Planning
& Relaxtaionr

Insertions.
Deletions.

Restrictions

Restrictions
61 Relaxtaions

Restrictions
Part ia l & Relaxtaians & Relaxtaions Plan (PI Part ia l Part ia l
Planning Planning Plan (0) Commands Planner

b) Mixed I n i t i a t i v e Planner c) Plan-based Executive with
On-Board Replanning

a) Batch Planner

Figure 1: Sample Plan Database Applications

solvers and applications. This commonality can be ag-
gregated into a set of plan services that we call the Plan
Database that are provided to build such applications. Con-
sider the scenarios illustrated in Figure 1. The first is an
application of automated planning where the input planning
problem is solved by a Planner to produce an acceptable
partial plan. The role of the Planner is to perform the search
steps for resolving flaws. Thus it interacts with a partial plan
by imposing and retracting restrictions. All operations are
made on the Plan Database which stores the partial plan.
The second is an application of automated plannin, 0 in . con-
cert with a User. The User may introduce goals into a plan,
and change or undo decisions previously made by a Plan-
ner. Additionally, a User may employ a Planner to work on
the current partial plan. In this case changes are also made
in response to queries and operations on the Plan Database.
In the last figure, planning technology is deployed for plan
execution. A partia! plan may be used by ZCQ Executive for
execution. In such a scenario, the partial plan is updated
throughout execution. The Executive may employ incom-
plete search to refine the partial plan as it goes. A Planner
may be employed to repair a plan or develop a refinement of
the plan as the mission progresses. In each of the cases de-
scribed, clients (i.e. Planner, User, Executive) leverage the
services of a common server, the Plan Database.

We have created a robust formal framework called Con-
straint Planning with Resources (CAPR) that supports many
commonly used representational primitives and reasoning
engines. We describe this formalism in the next section of
the paper. This formal framework provides the underpin-
nings for the Plan Database, called the Extensible Universal
Remote Operations Architecture (EUROPA2). This idea is
similar to the approach taken by the CLARATy robotics con-
trol architecture (Nesnas et al. 2003) or MDS (Dvorak et al.
2000), as well as constraint reasoning systems such as ILOG
(ILOG 1996).

Appliczttions wi!! reqnire customization of the Plm
Database to support only those primitives needed by the do-
main (e.g. time, resources), and to implement an appropriate
planner (e.g. an optimizing planner versus one with real-
time guarantees). We describe how to build domain models
for EUROPAz as well as how to build custom planners. In
the final sections of the paper, we discuss related work, and
conclude with a discussion of our future plans.

Constraint-Based Planning with Resources
In this section we describe Constraint Based Planning with
Resources (CAPR). CAPR is a modification of Constraint-
Based Attribute and Interval Planning (CAIP) (Frank &
J6nsson 2003), a formalism that employs variables and con-
straints as First-class objects to desciibe coqjlex planniiig
dsmains. CAPR relaxes scme cf the mcre :estr;cd~ve 2s-
sumptions made in CAIP, resulting in a more generally ap-
plicable formalism. In particular, we include general re-
sources as first-class citizens in the planning formalism, and
separate subgoaling and causal models from the resource
model. We will show later that we lose none of the repre-
sentational power of C A P by having made these changes.

We first describe the formalism in grounded terms, in
which all primitives are predicates. We then provide a more
easily managed formalism using constraints and variables as
primitives.

Grounded case
A token is a logical statement of the form
holds(s,e,p(al: ..., ak))where t , < t , are start and
end times, p is a predicate symbol and a l , ..., ak are
parameter values. Tokens generalize actions and state, and
merely assert that some property of interest is true for a
period of time.

A resource R is defined by a tuple (ZR: I R , LR) where i is
the initial level, 1 is the minimum level, L is the maximum.

A transaction is a numerical change in a resource over a
specified interval. It is defined as a tuple (R: s, e, 6) where
R is a resource, s 5 e are times, and 6 is a function mapping
timepoints t , t E [ts, te], to numerical values.

An instantaneous transaction is a transaction where t , =
t, and is referred to as (R, t , 6) .

A conjguration rule is an implication of the form T +
Cl V C2 V . . . V C,, where T is a token and each Ci is a
conjunction of the form Si,l A . . . A where each si,j is
either a token or a transaction.

Definition 1 A planning domain D is a tuple (T, R: C) ,
where I is a set of toobiis, R is a set of resources, and C
is a set of configuration rules.

Definition 2 A resource profile for a given plan P and re-
source (i ~ , l ~ , LR)from the domain for that plan is afunc-
tion XR (t) defined as follows:

We first define a cumulative impact finction A, for each
transaction T, in P as follows:
- I f T, is a non-instantaneous transaction , define A, as

the integral of 6, defined as A,(t) = 0 for t < t,,
A,(t) = J,=t, 6 (~) for t E [t s , t e] and &(t) =

J::,, 6(T) for t > t,.

; f t < t,, andA,jt j = 6 j t) g t 2 ts.

t

- I f T, is a instantaneous transaction, define A, (t) = 0

Then, for each time point t, XR(t) = E, b,(t).
A resource profile XR(t) for a resource (i ~ , l ~ , LR) and plan
P is valid if 1-9 5 XR(t) 5 LR for all timepoints t .

A partiai plan is a set of tokens aiong with the appiicabie
transactions defined by the domain rules.

A partial plan Q is an exrension of a partial plan P if each
token in P can be mapped to a matching token in Q.
Definition 3 A partial plan P is valid ij?

for each token T in P, and for each conjguration nile
T =+ C1 '4 . . . LI C,, t h e z exists a j' E [l, z] such that
where C - 3 = Si,: A . . .A. Si ,k , , ench cf the tokens and
transactions $1,. . . , S+ are in P.
the resource profile for every resource is valid

Aplanning problem is a pair, (V, P) where D is a planning
domain and P is a partial plan. A solution to the planning
problem is a plan Q that is a valid extension of P.

Lifted case
The grounded formalism is inconvenient since it may require
large numbers of token descriptions and rules. It is more ef-
fective to compress these definitions by using variables and
constraints as the primitive elements of the planning domain
descriptions.

A domain is a list of primitive values. A predicate de$-
nition is a tuple (p , &> ..., Dk) consists of a predicatep and
a (possibly empty) set of domains, which define the number
of arguments and the argument domains for the predicate.

A resource definition, like before, is a tuple
(ZR? 1 ~ , LR) where i is the initial level, 1 is the mini-
mum level and L is the maximum.

A token specifies a predicate instantiation holding
over a period of time. Formally, a token is a tuple
(s? e, p , a l , ..., ak) where s and e are temporal variables, and
each ai is a variable whose domain is restricted to Di. (Note
that a duration variable d can be defined for convenience, but
is not necessary.) We distinguish the domain of a variable ai
in a token as domain(ai), as opposed to a domain used in
a predicate definition.

A transaction is a defined by (R: s, e, 6) as before, except
that R: s and e are variables. Instantaneous transact' Lions en-
force the constraint s = e.

A compatibility is a way to represent iarge coiiections of
configuration rules compactly. It is an implication of the

(p , El, ..., E k) , where p appears in a planning domain pred-
icate definition (p, D1, . . . , Dn) such that Ei C Di. Each
Bi is a conjunction of the form S ~ J A . . ' A Si,k, where each
5'i.j is of the form: Gi,j; Ci,j where Gi,j is a predicate or a

form H =+ B1 V B2 V V = B,. The head H is a tuple

transaction, and C,,j is a set of constraints relating variables
in the head predicate and Gi,y. A token (5 ; e p , c ; , ..., c;)
matches a compatibility head (q, E l , . .., Ek) if p = g and
Vi, domain(ai) Ei.

A planning domain is a tuple (P; 72; C) where P is a set
of predicate definitions, 72. is a set of resource definitions,
and C is a set of compatibilities.

A resource envelope for a given plan P and resource
li = (i ~ , 1R, L R) is a pzii of :iiiiztions L m a z , ~ (t) and
Lmin,R(t) which are defined as follows: Let Q1, Qa: . . . be
the set of all grounded extensions of P. Let X&(t) be the re-
source profile for Qi. Then L m a z , ~ (t) = maxi Xk(t) and
LTnin,~q(t) = mini A k (t) . A resource envelope is vaiid
if LR I Lrnin,R(t) I LR and 1~ I L a z , R (t) 5 LR for
all times t. A resource envelope is , violated if either
Lrnaz,R(t) < ZR or Lmin,R(t) > LR for some t. A resource
envelope is undetennined if it is neither valid nor violated.

A constraint c is a relation among the values of a set
of variables ai ... a k ; that is, .c C d o m a i n (a 1) x ... x
domain(ak). A constraint c is satisfied if all possible in-
stantiations of its variables yield assignments in the relation
13. A constraint c is violated if no instantiation of its vari-
ables yields an assignment within the relation L. Finally, a
constraint is undetermined if it is neither satisfied nor vio-
lated.

A partial plan is a set of tokens and a set of constraints.
Each token in a partial plan is either supported or unsup-
ported. A token T is supported if for every compatibility
where the head matches with T, the compatibility has at least
one disjunct Bi such that for each conjunct Gi-j; Ci,j in Bi,
the plan contains a token that matches Gi,j and has all corre-
sponding constraints in Any token that is not supported
is unsupported. Finally, a given partial plan P, defines a set
of resource transactions, and associated resource envelopes.

A partial plan P is complete if all tokens are supported. A
partial plan P is valid if the resulting resource envelopes are
valid, and all constraints in P are satisfied.

A planning problem is a planning domain and a partial
plan r" from that domain. A solurion to the planning prob-
lem is a complete and valid plan Q that is an extension of
P.

Decision Model and Completeness results
We next describe the flaw mechanisms and the associated
search path options. In backwards chaining, unsatisfied pre-
conditions are flaws that must be resolved before achieving
an complete plan. In POCL planning, the flaws are open
conditions and unresolved threats. In CAPR, flaws are ei-
ther undetermined constraints, undetermined resources, or
unsupported tokens. As we will see below, flaw resolution
for all three of these cases is accomplished by constraining
the domain values of variables.

Undetermined constraints: Suppose we have a partial
plan P with a variable v in a constraint c that is undeter-
mined. Nomd_!!y, uxssigned vwkbles are sixply assigned
single values until constraints are known to be satisfied.
However, it is possible to proceed by imposing constraints
that restrict variables' values.

Undetermined resources: Suppose we have a partial plan
P with a resource that is undetermined. In most cases it
is too expensive to calculate Lmas,R(t) and L m i n , ~ (t) , be-
cause it would require calculating all of the grounded ex-
tensions Qi. Thus we must bound above L m a z , ~ (t) and
bound below Lmin,R(t) to determine validity. When all
transactions are grounded we can determine Lmaz,R(t) and
L Y i n , ~ (t) ; for this reason, flaws on resources are usually

pose the problem is such that no incomplete token decisions
will ever arise as flaws are resolved. In this case, we are
left with a scheduling problem. If we further restrict our-
selves to the case of schedcbg instantasecus transactions,
we can use techniques such as those described in (Frank
2004; Muscettola 2002) to tightly bound L m a s , ~ (t) and
L m i n , ~ (t) . In some circumstances, partial orders of trans-
actions are sufficient to guarantee that the resource is prov-
ably valid. For these cases, flaw resolution can be accom-
plished by only ordering transaction timepoints.

Uxszpperted tokens: Finz!!y, suppose we have a partial
plm- P with a tokeg T =(s, e, p ? al, ..., ak) that is unsup-
ported. There is at least one rule whose head unifies with
(matches) T. For each such rule, one of the disjuncts Bi
must be chosen in order to satisfy the rule. This can be
thought of as a value choice for a variable. Each disjunct
consists of a conjunct Gi,?; C,,j where Gi,j is apredicate de-
scription or transaction. If Gi,j is a transaction, a resource
must be chosen for the transaction; this too is a variable
choice. If Gi,? is a token, then let V be the set of tokens
that can be unified with G+, along with one extra element,
T, representing the use of a new token. Then, the decision
to be made is which e!emei;t of V to select. Once again,
this can be viewed as a variable choice. Note that only if T
is chosen, resulting in a new token, will any new compati-
bilities apply to tokens in the plan P. However, if Gi,j is
unified with V E V , all the constraints in Ci,j are added to
constrain the variables in V and T. These constraints gener-
alize causal links in the same manner as CAP.

Completeness results: We are now ready to show that this
decision model is sufficient for solving planning problems
in CAPR. As was true in the CAIP framework (Frank &
JBnsson 2003, there may be solutions to a planning problem
that are not reachable given the domain description and the
decision model. However, we can still prove that there is a
plan that is a complete and valid extension of the domain de-
scription and decision model such that the unreachable plan
is an extension of this plan. This situation arises because
there is nothing in the formalism to prevent adding arbitrary
tokens that don't have compatibilities associated with them.

Theorem 1 Given a finite planning domain (P: R, C) and
a finite length partial plan P. Assume that Q is a complete
and valid finite length extension of P. Then, there exists a
plan R, that is a complete and valid extension of P such that
a sequence o f j a w resolutions transforms P into R, and Q
is ax zxtensiw of R.
Proof 1 As in (Frank & Jdnsson ZOOS), we will use Q as a
"heuristic" to describe how to transform P into Q. While

saiijfreij by asjigring $anjaciioii iiiqjoiiji vzi&,leej, S q j -

applicable.

I f a token T of P is unsupported, there is a supported
token V in Q that matches T ; use this token to satisfi
T , either by choosing a disjunct B,, by satisbing a con-
junct s?,?; with an existing matching token in P, or by
adding a new token to P.
I f a variable u is unassigned, there is a matching vari-
&le 3 i!z &; gse rhis ygrigble lo gsston 0 . - . thp .- I I & ~ ofti.
Note that this covers the case of deciding which available
resource a transaction is assigned to.
I f a constraint among variables in P has not been im-
posed, use Q to impose that coiistriiint. Nste tha: this
covers the case of ordering tirnepoints.

Since Q isjnite and P, at each stage, is a subset of Q, the
process halts with a complete plan R. And, since the set of
constraints in P, at each stage, are a subse: of those in Q,
constraint validity is obvious. The only remaining part is to
show that all resources are valid in P. First, it is easy to see
that a resource in P cannot be violatzd, as Q is an exten-
:inn ef ? end the *pro@? ts dejked b ~ s e d OE LZ!! ex?en.sion.s.
Second, the resource cannot be neither violated nor valid,
as that will give rise to jaws and the process does not halt
until there are no otherjaws. So, the resource envelopes
must also be valid. Thus, R is a complete valid extension
of P, and is a subset of Q; thus any tokens, constraints or
transactions in Q can be added to R with impuni9.

EUROPAa
In order to successfully deploy CAF'R in many different con-
texts, we Zdopt h e strategy of providing a Plan Database
motivated by the CAPR formalism. The Plan Database pro-
vides services that support description of planning domains,
allow implementation of a wide variety of planners and
schedulers, as well as provide information about the plans
as well as the planning process to applications. These ser-
vices include:

0 Domain modeling: for describing planning domains

Partial plan representation: for maintaining partial plans

0 Flaw generation: for generating flaws from a partial plan

Flaw resolution: for resolving flaws in a partial plan

0 Plan assessment: for determining plan completeness or
violations

Constraint propagation: for propagating the consequences
of constraints

To meet the needs of missions and research projects, the
design of the Plan Database must meet the following critical
design goals:

Efficiency - ensure low latency for operations and queries.

0 Flexibility - ensure services can be selected and flexibly

Extensibility - ensure services can be enhanced to meet

integrzted.

the needs of research or mission applications.

j We have implemented EUROP.42, a Plan Database that
meets these requirements. To illustrate EUROPA2 we
present a planning domain loosely based on the MER mis-
sion. We assume the application in question is one of pro-
ducing daily activity plans for operation of a planetary sur-
face robot named Rover. Rover is a mobile robot equiped
with a range of instruments to sample and study a geolog-
ical site. A Rover processes plans. for taking rock samples

board a battery, and can replenish its energy levels using so-
lar power.

in various icjcauons within a given survey area. it has 011

Planning Domain Cescriptioiis with NOZL
Planning domain descriptions for EUROPA2 are written in
New Domain Description Language (NDDL). In this section
we will describe NDDL and show how the syntax translates
to the CAPR formalism.

Rooted in the formal framework of C U R , NDDL pro-
vides an object-oriented syntax and semantics that makes it
convenient to express sophisticated relatiomhips hqong el-
erxzts cf a wrtial g!an. There r nuzher of ..ldidon.l
capabilities h NDDL which offer greater convenience and
or efficiency for the modeler.
Predicates A predicate in CAPR defined as
(p : D1, ...: Dk) is directly described in NDDL. For ex-
ample, a Rover might be at a Locarion, or it might be
moving from one location to another. The predicate Ar can
be introduced with:
predicate Xt{Rover r ; Location 1;)

where r and 1 refer to the set of all rovers and the set of
$1 locations respectively. Similarly we can introduce the
predicate Going:

predicace Goinq(3over r;
Location from;
Location to;}

Rover and Location are user-defined types which may be
expressed using enumeration:
enum Rover {spirit, opporzuni:y}

or through the more expressive use of an abstract data
type, or class:

class Xover {}
class Location {

int x;
int y;
;ocation(int 2, int . y) {

x = 2;

y = .y;

}

Thus, class describes an unchanging object. Iiistznces of
}

classes, Le. objects, may be introduced thus:
Rover spirit = new Rover();
Rover opportunity = new Rover();
r,?,..tinn ?^^b - P̂._. T - - : * : - - ! 7 7 > -

Locailion hiil = new Location(2, 3;;
Location lander = new Location (5 , 8) ;
Location martian-cicy = new Location(8, 6) ;

---,. I_____ i ..,-, L;,

For convenience, predicates may be defined directly on
a class. Predicates introduce time-varying properties of a
class. The set of instances of that class are implicitly a pa-
rameter of the predicate, and are accessed through the built-
in variable object. Thus we may concisely restate our predi-
cate definitions by augmenting the Rover class:
class Rover {

predicate AttLocation 1;)
predicate GoLnq(Location from;

Locztion to;}

1
Compatibilities Suppose that Rover is not permitted to go
to the same location it is leaving. Furthermore, suppose
that every Going must be followed by an kt and vice versa.
To express these domain rules, we introduce a compatibility
for each predicate. Recall that a token is defined in CAPR
as (s, e ,p , a l : ..., Q) . The compatibility for At given be-
low shows the two Going subgoals with constraints imposed
on their predicate parameters (including the previously de-
scribed implicit object variable) and its srurr and end vari-
ables.
Rover::At{

/ / Reqoire a Going token on same
/ / object which succeeds this token
subgoal (Going go) ;
eqlgC.start, end); / / Equate tinepoints
eq(gO.from, 1); / / Equate parameters
eq (go. object, object) ;
/ / Require a Going token on same
i / object which precedes this token
snbgoal (Going 91) ;
eq(gl.end, scart); / / New constraint
eq(gl.to, 1); / / New constraint
eq!gl.object, object);

}

NDDL directly supports specifying temporal constraints
with Allen relations auGgnented with metric time. We use
the Allen relations directly as shorthand for creating a sub-
goal token with the associated temporal constraints. Fur-
thermore, we can use the object variable to specify the
constraint that the A t token must be on the same object as
the Go ing token. We thus express the compatibilities for
Going more concisely as follows:
Rover::Going(

.neq(to, from); / / to I = from
meets(object.At aO);
eq (aO. 1, to) ;
methy(object.At all;
eq(al.1, f r o m) ;

}

Suppose the Rover could either go to another location or
stay at the current location and take a panoramic image. In
NDDL we model this by using a disjunctive rule where we
explicitly create a boolean variable to represent the disjunc-
tion.
Rover::At{

/ / dis;unctive rille for successor
/ / token: false implies Going, true
i i impiies lakelmg
5001 next;
if (next==false) {

meets(object.Going g o) ;

ecIg0.:ron, 1);

}
if (next==true) {
meets (object . lakerail 10) ;

1

Resources and Transactions To illustrate the use of re-
scGrces i:: NDDL, -e intredxe 2 b ~ e r y which s t e r ~ ~ en-
ergy produced from solar panels and allows energy to be
consumed by rover activities.
class Rover {

. . .
Aesource battery;
Rover () {

. . .
battery = new Eattery(l0, 3, 30);

1

Now declare a predicate for power generation:
predicate generatePower{Resource r;

: h a t zate;}

and define a rule linking it to transactions on a resource.
Note that the current EUROPA2 implementation is limited
to handling instantaneous transactions. Consequently, trans-
actions are typically defined as occumng at the start or end
of tokens. Instantaneous transactions in CAPR are defined
by (R: t ! 6) and are identical in NDDL:
qenerate?ower(

/ / produce transaction at the end
ends(r.iransaction tx);
/ / relation to derive instantaneuos
/ / chance from rate and duration
calc?roduction(tx.quanticy,

rate, start, end);

1
Finally, the compatibility for Going can be augmented

with a consumption transaction on the battery where the
quantity is based on the distance travelled:

subgoal(oDject.battery.transaction tx);
calcCons.m.pEion (tx . quant it y, from, to) ;
/ / Consune at the beginning
eq(tx.start, start);

A common special case of resources is the unary resource
specd!ying a mutual exclusion between states and actions
that cannot occur simultaneously. In the Rover example, At
and Going tokens are temporally mutually exclusive for any
given Rover instance. To accomplish this, we embed a Re-
source iato the Rover class in accordance with the definition
(iR, 1R, LR) :
class Rover {

...
Resource mutex;
Rover () {
mutex = new Resource(l, 0, 0);

1

Now, we append an appropriate transaction requirements
}

to our existing compatibilities.

c
. . .
/ / Cor.sume at the begir.nning
subgoa l (Resource . t r ansac - ion txO);
eq (txO .object, objecc .ip~ueex) ;
eq(txO.time, star:);
eq(txO.quancity, -1);
/ / Produce at the er.c
subgoal(Resource.transactLon txl);
eq(txl.object, object.nutex);
eq(txl.time, end);
ea: (tx2. quantity, 1) ;
. . .

Timelines In CAIP, Timelines were constructs used to en-
sure that a set of predicates were mumaliy exclusive, as well
as ensuring that one of these predicates held at any time in
valid plans. In CAPR, and subsequently, EUROPA2 , time-
lines are no longer first class members of the paradigm.
However, the nohon of ensuring mutual exclusion among
predicates is very common. Therefore, it’s useful to have
a convenient short-hand for defining classes, where all their
tokens are mutually exclusive. This is done by declaring a
class as m extex im cf a special cszstrxt called a Tixe-
line. Using this construct is exactly the same as defining
mutual exclusion unary resources and appropriate resource
transactions, but is more concise and can be implemented
efficiently. In our example, the use of Emeline gives a more
concise model:
class Rover excends Timeline {

predicate At{Socation 1;)
predicate Going{Location from;

Resource battery;
Rover (1 {

Location to;}

battery = new 3arcery(i0, 3 , 30);

1
}

Static Objects Other useful features offered by NDDL
are local compatibility variables, and the use of classes to
capture information that is static over time. These features
prove useful in the Rover planning domain where a further
restriction is imposed such that only some paths in the sur-
vey area are traversable. The abstract data type for the set of
paths can be specified as:
class Path {

Location locl;
Location loc2;
Path (Location -11.

l0Cl = -11;
loc2 = 2 2 ;

Locarion -12) {

}

and the set can be populated with instances using object
}

allocation e.g.:
Path p l = new Path (rock, hill) ;
path p 2 = new Path (hill, lander) ;
Path p3 = new Pathhartian-city, lander);

An additional rule can be introduced for the Going predi-
cate to enforce the path existence requirement:
Rover: :Going{

Path p : {

-4
I n s e r t e d

’ I n s e r t e d b y by ExecutLon
E x t e r n a l C l i e n t o f a C o m p a t i b i l i t y

[a c t i v a t e I rnerqe

t +
A c t i v e I n a c t i v e Merged

c a n c e l c a n c e l

eq(p.10~1, f r o m) ;
eq (p . l oc2 , t o) ;

J
1

The variable p is comparable to a predicate parameter
variable, though it is only introduced locally in a rule, and
need not be grounded in a complete partial plan. The ini-
tial values for p wiII be p l , p2, and p3. These values will
be filtered through constraint propagation. Should there be
no path, the domain of p will be empty and a violation will
occur.

Partial Plans in EUROPA2
In this section we discuss the representation and manipula-
tion of partial plans in EUROPAz .

Tokens and Open Conditions A partial plan for the rover
planning domain is created with the following statement:
goa l (Rover .Going G) ;

This introduces a token G for the predicate Going de-
fined on the class Rover. The results is the partial plan
p = {{G},{}} . All tokens in a partial plan are repre-
sented as Active Tokens in a EUROPAz plan database. All
Open Conditions can be inferred from the partial plan
and the model. Open Conditions are represented in a
EUROPAzplan database as Inacrive Tokens. Figure 2 il-
lustrates the states and transitions of tokens in EUROPAz .
As is the case with G, a token is Active immediately when
introduced by an actor external to the plan database. Alter-
natively, a token is initially Inactive when introduced by a
compatibility. As described in the previous section on the
decision model, an Inactive Token must be resolved by ei-
ther merging it with an existing Active Token (i.e. choosing
a resolver from the set of tokens in the plan V) or by in-
serting it into the partial plan via activation (i.e. using the
resolver T).

With G the following variables are introduced to the Plan
Database. The default variables of G are introduced with all
tokens:

start - the start time for the token. In this example the
domain is [- i d +infj.

0 end - the end time for the token. In this example, the
domain is [-inf +infl.
duration - the duration of the token. This does not add any
new information to the definition of a token since it can
be derived from the start and end variables but it proves
convenient. In this example, the domain is [I +infl.

Figure 3: Plan database elements for partial plan { { G I { } }

0 objecr - the implied variable arising from the definition of
the predicate on a class or a transaction on a resource. In
this example, the domain is populated with all instances
of the Rover class Le. {spirit, opportunity}.
state - annotation for the state of a token. An Inactive To-
ken has a domain of {Active, Merged}. A Merged %ken
has the singleton domain Merged. The domain for G is a
singleton {Active}. The operations to activate or merge a
token constrains this variable.

The parameter variables introduced depend on the predicate
description of the token. In this case, since G is an instance
of the Going predicate, we introduce the following:

from - the location the rover is leaving from. In this ex-
ample the domain is populated with all instances of the
Location class i.e. {rock,hill,lander.martian-city}.
to - the location the rover is going to. In this example the
domains are identical.

Constraints Further requircments can be imposed in the
initial partial plan. For example, spirit must be at location
rock at time 0:
/ / In t roduce token A

coal (Rover.At A) ;

/ / Coxs t r a in l o c a t i o n v a r i a b l e
eq(3.1, rock); / / c0
/ / Cons t r a in objec: v a r i a b l e
eq (A.ob jecz , spirit); / / c i
/ / Cons t r a in s t a r t <= 0 <= end
l e q (A . s t a r t , 0); / / c2
l e q (0 , A .end) ; / / c 3

Taken together, this partial plan, p , is given by the tuple

Inference with Corr?patibi!ities Compatibilities are only
matched with active tokens. A simplified version of a pre-
viouosly described compatibility for Rover::Going is listed

({GA}, {cO, c l , c2, ~ 3)) .

below:
0. Aover::Goinc{
i . n e q (t o , f r o n i ; / / TO ! = from
2 . neeLs(o5jecr.At h i ;

3. ec(A.1, io);
4. subaoa:(ob;ec~.5ar_ery.:ransictlon 1);
5. eq(T.start, scar:);

6 . 1

ately upon introduction of G to the partial plan. Execution of
the body yields an open condition A, a set of constraints and
a single transaction T. These elements, and the relations be-
tween them, are illustrated in Figure 3. The relations are an-
notated with line numbers indicating where they arise from
explicit declarations in the compatibility. Line 1 produces
a constraint among the parameter variables of G. Line 2 in-
troduces the open condition A. It also imposes an equality
constraint between the object variables of G and A. Line 3
equates the parameter variables A.1 and G.to. Line 4 requires
a new transaction Tin the database. EUROPAz does not cur-
rently support interval transactions, so we also generate an
implicit constrdni eij-tafing T:si~?i? and r e i d . Finalky, Line
5 equates the start times of G and T. Note that disjunctive
compatibilities are modeled by variables, so these variables
would be introduced as flaws when matching a compatibil-
ity to an Active token, and only when these variables are
decided do we introduce the corresponding tokens and con-
straints.

The head of the ahove c m p t i h i m y is matched immedi-

Flaw Generation and Resolution
CAPR identifies flaws as undetermined resources, un-
supported tokens, and undetermined constraints. In
EUROPAz these translate to resource, token, and variable
flaws respectively. Queries and events are provided so that
clients can readily access flaws from the Plan Database.
Events provide immediate access to changes within the Plan
Database, but require clients to subscribe in order to receive
the updates. For exampIe, when 2n Inactive token is in-
serted into the plan database through execution of a com-
patibility, a message to that effect is posted to any registered
clients. Similarly, as variables are introduced, restricted or
relaxed, clients may observe these events and synchronize
their flaw state accordingly. Furthermore, events are raised
as resource profiles become valid or undetermined. Alterna-
tively, clients may simply query the database for the current
set of all unbound variables, open conditions and undeter-
mined resources.

The following methods of resolution are provided in
EUROPAz for each category of flaw:

Resource Flaw - a transaction may be constrained to a
resource by assigning or constraining its object variable.
Alternatively, transactions may be ordered with respect to
Otkkei transactions on the rescurce by posting constraints
on timepoints.
Token Flaw - inactive tokens required by each unsup-
ported token must be activated or merged. The former
is simply a restriction to the state variable of the inac-
tive token to the value Active. The latter can be accom-
plished with a restriction to the state variable domain to

Y

Merged and the posting of equality constraints between
the matched variables of the inactive token and the target
active token with which it is to be unified. However, a
more efficient operation is provided which eliminates the
need for equality constraints. This provides significant
performance advantages as it reduces the growth rate of
the resulting constraint network.
Variable Flaw - unbound variables are resolved by assign-
ing values directly or restricting values with constraints.

Plan Assessment
Some applications may have different models of interaction
with ETu.CIPA2 and wiii want io impose relaxations on thc
set of flaws that should be resolved by the planner. For ex-
ample, imagine a multi-agent system where each planning
agent shares a single model, yet each is specialized to re-
solve flaws only in a sub-domain of expertise. Each plan-
ning agent would inspect the shared database and work on
those flaws it knows how to resolve. Each planning agent
would be done planning when it finished resolving all the
fiaws i: needs to resdve. EUZOPA2 prcvides a Eexibk de-
cision management framework to filter the set of flaws that
need to be resolved for a partial plan to be complete. Se-
mantically, these operations amount to a relaxarion of the
strict interpretation of the set of flaws in a plan. The filtering
criteria allow clients to indicate:

temporal restrictions - all flaws outside a given planning

predicate restrictions - all flaws derived from a given set

0 variable restrictions - variable flaws on a given set of dy-

custom restrictions - specialized filter conditions may be

horizon are excluded.

of predicates are excluded.

namic and/or infinte variables are excluded.

developed and integrated as needed by the client.

Constraint Propagation
EUROPA2 is built upon the constraint propagation infras-
tructure illustrated in Figure 4. The model statement:
calcconsumprion (t x . q u a n t i t y , from, to) ;

introduces a Constraint with the ConstrainedVariables
Tquantity, ?om, and to. Each constrained variable has a
domain which is propagated. A change in a domain triggers
a message in the variable, which is passed on to the Con-
straintEngine. Each constraint is registered with a Propaga-
tor allowing customized propagation strategies for different
constraints. This framework allows for sepcialized domains,
constraints, variables and propagators to be integrated in an
open and flexible manner. The framework borrows heav-
ily from the design of the CHOCO kernel (Laburthe & the
OCRE iiesearch Group 2OOij. EUXOPA2provides a li-
brary of useful constraints together with a default propaga-
tor which delegates constraint enforcement to each individ-
ual constraint. It also includes a resource propagator which
propagates transaction loads on resources, and a temporal
propagator which propagates temporal constraints using a
simple temporal network.

.
I \
I \ I

Abstract
Domain C o c s t r a i n t

Figure 4: Constraint Propagation Framework

C o n s r r a i n t

Figure 5: System Diagram - preliminary

EUROPAz Architecture
We now describe the overall EUROPA2 System Architecture
and discuss how it accomplishes design goals described ear-
lier.

Figure 5 describes the internals of the EUROPA2Plan
Database operating as a server to one or more clients.
The server is an assembly of EUROPAz components inte-
grated for the needs of the particular application. The PZun
Database provides a facade for interacting with the server at
the abstraction level of primitives in CAPR i.e. tokens, trans-
actions, constraints, resources, variables. The Constrainr
Engine and related components are utilized to propagate re-
lations among variables and detect violations. Standard and
customized constraints and propagators can be freely inte-
grated or omitted. The Rules Engine is triggered by changes
in the partial plan i.e. token activation and variable binding.
The Schema is the in-memory store for the domain model.
It is used by the plan database to enforce type restrictions
and by the rules engine to match and execute compatibilities.
EUROPA2 includes a chronological backtracking planner as
a standard client component, though many applications de-
velop their own clients. The Decision Manager uses a flaw
filter specification to manage the set of flaws for a client.

Customizability EUROPA2 is highly customizable. If a
problem does not require resources, support for resources
may be ommitted. If a problem does not require compat-
ibilities (e.g. a scheduling problem), the rules engine can
be omitted. If temporal constraints are not important in a
problem, the temporal propagator may be removed andor

replaced with the default propagator. Only required con-
straints need to be registered. This form of customization
is useful as it allows systems to avoid incurring costs for
components that are not required. EUROPA2 also provides
a language to customize the system for new domain mod-
els. Furthermore, heuristic and flaw specifications are also
provided. Finally, an open API ensures flexbility in how
EUROPA2 is integrated.

Extensibility EUROPA2 is highly extensible. As new
problems are encountered, or new algorithms are developed,
there are many ways to integrate new capabilities as special-
ized components e.g. constraints, propagators, resources.
This is essentia! for sgccess in research and mission deploy-
meflts.

Speed EUROPAz has produced significant gains in speed
over EUROPA. The primary contributors to the improve-
ment arise from:

fast interfaces & specialized implementations. The ability
to tune implementations using inheritance provides speed
improvemnts in key areas such as operations on domains.
efficient merging. Resolving open conditions by merg-
ing is an important operation governing the efficiency of
the system. EUROPA2 accomplishes this with an algo-
rithm that avoids redundant constraints arising in the plan
database.
incremental relaxation. When relaxing a variable (e.g.
retracting a decision), EUROPAz uses localized propaga-
tion to relax reachable variables in the constraint graph.
direct support for static facts. EUROPAz uses objects to
capture static facts. We provide a means to naturally ref-
erence or require objects through variables and the pat-
tern for existential quanitification. EUROPA used single
predicate timelines to capture this information, incurring
a high overhead and compounding the problems of ineffi-
cient merging.

Future Work
We have presented a formalization of constraint-based plan-
ning with resources and described EUROPA2 a framework
that implements the formulation. The current implernenta-
tion of EUROPA2 is being used by the Intelligent Systems
Program to demonstrate advanced robotic capabilities in the
field. We have plans to make this software available for
use in research and mission deployments. We are currently
working on many extensions. On the theoretical side, we
plan to develop domain independent heuristics for resource-
cognizant planners. The main challenge is the identification
of useful heuristics and the translation of static CSP heuris-
tics into a dynamic CSP setting. We also plan to work on
obtaining soundness and completeness results foi diEerent
subgoaling configurations. We know that there is a rela-
tionship between the theory behind the languages of PDDL,
TAL, NDDL, and SAS+, and we plan to identify and de-
scribe the relationship so that we can better understand how
EUROPA2 compares to these systems.

We plan to extend our modeling language in two ways: 1.

provide better modeling support for time-invariant relation-
ships; 2. provide means to describe optimization criteria.
Some of the domains, such as the image processing domain
require the specification and reasoning about relationships
that are immutable with respect to time. We currently pro-
vide the means only to specify data but relationships among
the data are assumed to change with respect to time. Further-
more, many planning applications require not only finding a
piali but finding a -1-- .-.:..L ---- _^. plul W l L l l 1cspcC.1 io LGI L a 1 1 U p L I I I l l L ~ L l u l l

criteria. We plan to extend NDDL to allow describing op-
timization criteria such as minimize makespan or minimize
resource consumption.

Finally, we have numerous p l x s for extezding sur i m
plementation. We plan to extend the set of planning ser-
vices provided to include domain analysis techniques such
as reachability. We are already working on a PDDL front-
end for EUROPA2. Furthermore, we plan to extend the set
of services provided by adding direct support for lifted local
search planning; more specialized constraint reasoners; and
hybrid solvers. The current EUROPAz implementation has
been designed to deal with consistent as well as inconsistent
states but only a backtracking planner has been implernented
to date. We need to extend the notion of flaws to include vi-
olations to be able to handle local search methods, and test
whether the implementation holds.

. . .
_--Ac:- ^_I ._.-^..^_

Related Work
EUROPAzis certainly not the only planner that can plan
with resources and express resources as first class citi-
zens. IxTeT already plans with resources, however, IxTeT
requires modeling state changing properties as attributes.
EUROPA2 allows the expression and reasoning of arbitrary
objects, not just objects that behave like attributes. IxTeT,
however, provides more reasoning support for resources
than CAPR in that they define how to prune "dominated"
transaction ordering decisions: 1) they use some graph the-
ory to infer that only certain decisions are necessary, then
2) eliminate "dominated" decision (e.g. if a < b + c < b
then a < b is not considered.) However, we were unable
to find soundness and completeness proofs of planning with
resources in IxTeT.

ZENO (Pemberthy & Weld 1994) is a sound and com-
plete planner that handles actions with temporal quantified
preconditions and effects. ZENO can reason about deadline
goals, piecewise-linear continuous change, external events
and, to a limited extent, simultaneous actions. In particular,
actions are allowed to overlap in time only when their effects
do not interfere. From what we can tell, there is no special
purpose reasoning on constraints, and instead, variable as-
signments ensure that non-linear equations reduce to linear
equations. In contrast, EUROPAz provides 1. a language for
expressing declarative resources, 2. ability to express richer
types of resources, and 3. ability to handle any type of con-
straint.

Given the success of PDDL (Fox & Long 2003) in the
academic community, PDDL has been extended to cope
with problems of increasing size and complexity. However,
the extensions have been driven by the capability of plan-
ners that have participated in the competitions. PDDL thus,

is able to describe plan metrics, a capability that we plan
to include in EUROPAz . PDDL, however, has a process-
driven time semantics and is unable to deal with precondi-
tions that hold over specific intervals of time and effects that
can happen at arbitrary points during action execution. In
EUROPA2 resources are first-class citizens and can be fully
described declaratively, and relationships between other en-
tities in the plan and resources can be expressed as con-

fluents, which provide advantages and disadvantages. The
ability to represent numeric fluents means that planners can
then subgoal based on internal numeric states. However, it is
difficclt and 2wkwz.d to express a unified view of resources
and their properties, which means that planners cannot take
advantage of dedicated reasoning algorithms to solve prob-
lems with resources. PDDL is a stronger language for speci-
fying goals, e.g. it is possible in PDDL to express goals with
disjunctions. In EUROPA2 it is only possible to describe
goals in terms of whether they are required or optional, but
arbitrary formulae are not allowed.

The Coupled Layered Architecture for Robotic Auton-
omy CLAXATy, is an architecture with goals to: 1. Cap-
ture and integrate a wide range of technologies; 2. Lever-
age existing tools; 3. Leverage experience and tools of the
larger software development community; 4. Apply appropri-
ate design patterns to the domain; 5. Provide an infrastruc-
ture that enables rapid robotic development; and 6. Capture
experience of technologists implementations. The goals of
EUROPA2 are very similar. Having deployed the previous
generation of EUROPA2 in field tests and missions we have
learned that different missions require different functional-
ity, yet they require high performance. EUROPA2 is being
developed in order to support the development of generic
algorithms, reduce the need for recumng problems for ev-
ery deployment, simplify the integration of new technolo-
gies, use the same framework across deployments, increase
functionality by leveraging a more mature base. These are
the same motivations that drive CLARATy. CLARATY is a
two-layered architecture the first layer is the decision layer
that includes the planner, models, and heuristics. The sec-
ond layer provides the abstraction of the specific robot com-
ponents. The first layer is based on ASPENICASPER sys-
tem architecture which is similar to EUROPA2 's architec-
ture in that the search engine performs operations on an
activity database which in turn performs constraint propa-
gation over parameters and temporal constraints. ASPEN,
however, allows you to solve problems using local repair al-
gorithms only. We provide a framework where you should
able to implement a local repair planner and a chronological
backtracking planner using some the same components.

s k ~ i ~ t s . Ir; PEEL, - O C ~ ~ - - - O C I L J V U L L L I I ur nre -el-\emrnntnrl 'cy,,'ra"L'L"" h.7 L,, nn3rnor;r 11L.111r11u

Acknowledgements
We wish to thank the rest of the EUXOPA2development
team: Andrew Bachmann, Will Edgington, Michael Iatauro,
and Sailesh Ramakrishnan, for their important contributions
to this work. This research was supported by NASA Ames
Research Center and the NASA Intelligent Systems pro-
gram.

References Proceedings of the N th National Conference on ArtiJcial

Rresina, J.; Trinssc\n, -4.; Mc\rri_s, P; and !?ajar?, K. 3G63.
Constraint maintenance with preferences and underlying
flexible solution. In Constraint Programming Workshop
on Change and Uncertainty.
Despouys, O., and Ingrand, F. 1999. Propice-plan: To-
wards a unified framework for planning and execution. In

Dias, M.; Lemai, S.; and Muscettola, N. 2003. A real-time
rover executive based on model-based reactive planning. In
Proceedings of the International Conference on Robotics
and Automation.
Dvorak, D.; Rasrnussen, R.; Reeves, G.; and Sacks, A.
2000. Software architecture themes in ”jpl”’s mission data
system. In IEEE Aerospace Conference.
Fox, M., and Long, D. 2003. Pddl 2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research 20.
Frank, J., and J6nsson, A. 2003. Constraint based attribute
and interval planning. Journal of Consrrainrs 8(4).
Frank, J. 2004. Bounding the resource availability of par-
tially ordered events with constant resource impact. In Pro-
ceedings of the loth International Conference on the Prin-
ciples and Practices of Constraint Programming.
Golden, K.; Pang, W.; Nemani, R.; and Votava, P. 2003.
Automating the processing of earth observation data. In
Proceedings of the 7th International Symposium on Art$-
cia1 Intelligence, Robotics and Space.
ILOG. 1996. Ilog solver: User manual. Version 3.2.
Jbnsson, A.; Moms, P.; Muscettola, N.; .Rajan, K.; and
Smith, B. 2000. Planning in interplanetary space: Theory
and practice. In Proceedings of the Sth International Con-
ference on Artijcial Intelligence Planning and Scheduling.
Laburthe, F., and the OCRE Research Group. 2001. Choco,
a constraint programming kernel for solving combinato-
rial optimization problems. Available at http://www.choco-
constraints.net.
Muscettola, N.; Nay&, P.; Pell, B.; ; and Williams, B.
1998. Remote agent: To boldly go where no ai system
has gone before. Artijcial Intelligence 103(1-2).
Muscettola, N. 2002. Computing the envelope for stepwise
constant resource allocations. In Proceedings of the g th
International Conference on the Principles and Practices
of Constraint Programming.
Nesnas, I.; Wright, A.; Bajracharya, M.; Simmons, R.; Es-
tlin, T.; and Kim, W. S. 2003. Claraty: An architecture
for reusable robotic software. In Proceedings of the SPIE
Aerosense Conference.
Pernberthy, J., and Weld, D. 1994. Temporal planning with
continuous change. In Proceedings of the 12th National
Coiflerence on Art@cial Intelligence, 1010-1015.
Trm, 0.; Chieo, S.; Sherwood, R.; no, R. C.; Cichy, B.;
Davies, A.; and Rabbideau, G. 2004. The autonomous
sciencecraft experiment onboard the eo- 1 spacecraft. In

PrGceedings c;:,& 5:h Ezrcpear. Ccnf~rczce on Plannizg.

Intelligence.
Whalley, M.; Takahashi, M.; Schulein, G.; Freed, M.;
Christian, D.; Patterson-Hine, A.; and Harris, R. 2003.
The nasa army autonomous rotorcraft project. In Proceed-
ings of the American Helicopter Society 5gth Annual Fo-
rum, 61-677.

