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SUMMARY

The effect of the location of transition on the heat transfer to the
turbulent incompressible boundary layer is analyzed. The analysis indi-
cates that considerably higher heat-transfer rates may occur for some
distance downstream if the transition is very late. The results of a
limited experimental investigation are in substantial agreement with the
results of the analysis.

If the extent of the transition region is known, the analysis also
allows adequate prediction of heat-transfer coefficients within the tran-
sition region. The nature of this analysis is such that it should pre-
dict local shear coefficients in the transition region equally well.

INTRODUCTION

This report is the last of a series of four covering a three-year
investigation of heat transfer through the turbulent incompressible
boundary layer with arbitrary wall-temperature variation (ref. 1). The
first report describes the experimental apparatus and presents results
of experiments with constant wall temperature (ref. 2). The second re-
port gives the results of experiments and analyses for a step temperature
distribution (ref. 3). 1In the third report the step-function analysis is
used as the basis for predicting heat-transfer rates in several cases
where the plate is nonisothermal (ref. 4). These predictions are com-
pared with experiments, and good agreement is found; and a simple method
for handling problems where the wall temperature varies in an arbitrary
manner is presented. In the present report an analysis of the effect of
the location of transition on heat transfer in the turbulent boundary
layer downstream is presented and compared with experiments.

Experiments have shown that delayed transition from a laminar to a
turbulent boundary layer results in higher heat-transfer rates in the



turbulent boundary layer than would be obtained if the boundary layer
were turbulent from the leading edge (e.g., ref. 5). This is believed
to be due to two effects. The first is a hydraulic effect; that is, the -
turbulent boundary layer behaves as if it had originated at some point
downstream of the leading edge of the flat plate. The second is a
thermal effect; that is, the heat-transfer rates in the laminar layer
preceding the turbulent layer are much lower than those that would occur
over the leading portion of the plate in a turbulent layer. Thus, the
energy in the turbulent layer after transition is considerably less than
it would have been if the layer had been turbulent from the start. Be-
cause of the combination of these effects, considerably higher heat-
transfer rates may occur in the turbulent part of the boundary layer for
some distance downstream if the transition Reynolds number is high.

An attempt has been made to predict analytically the effect of a
late transition, based on the notion of separate contributions of hydrau-
lic and thermal effects. The limited amount of experimental data ob-
tained in this investigation for a variable transition Reynolds number
is correlated quite adequately on the basis of this analysis. However,
it was not possible to delay transition to Reynolds numbers above 400,000
in the available wind tunnel. Consequently, complete confirmation of the
analysis must await the availability of experimental data for higher tran- “
sition Reynolds numbers.

Since the length of the transition region is generally about the
same gs the length of the laminar region, estimations of heat transfer in
the transition region are often desired. If the extent of the transition
region is known, the local Stanton numbers in the transition and turbu-
lent regions may be determined by employing the abrupt-transition anal-
ysis as a point concept. This concept assumes that the flow at a given
point is either laminar or turbulent and that the average condition of
the flow at a prescribed distance from the leading edge can be represented
by the value of an intermittency factor that prescribes the fraction of
the flow that is turbulent. The known expressions for laminar and tur-
bulent heat-transfer coefficients are then assumed to hold at each point,
and the mean coefficient is found as a weighted average. The heat-
transfer coefficlents found in this manner agree well with the data ob-
tained with natural transition in the present investigation. It is be-
lieved that the method should work equally well for predicting local shear
coefficients in the transition and turbulent regions.

This investigation was carried out at Stanford University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.
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SYMBOLS
location of start of transition, ft
location of end of transition, ft
local friction factor, Tw/(puS/Z)
laminar friction factor
turbulent friction factor
specific heat at constant pressure, Btu/(1b)(°F)
Stiurb (Reys Reg)/Sty, 4 (Rey;0)
free-stream mass velocity, pu,, 1b/(hr)(ft)

local convective heat-transfer coefficient, q;[At,
Btu/(hr) (sq f£t) (°F)

thermal conductivity of fluid, Btu/(hr)(ft)(°F)
unheated starting length, ft

probability distribution function for location of transi-
tion, P(Reg)

Prandtl number, ucp/k

heat flux at wall, Btu/(hr)(sq ft)
Reynolds number at abrupt transition
Reynolds rumber based on x, Gx/p
Reynolds number based on
location of virtual origin, ft

local Stanton number, hZ/ch

laminar Stanton number

local Stanton numbers on isothermal plate for turbulent
boundary layer after abrupt transition at s
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St(Re, ;0)

turbulent Stanton number

location of abrupt transition, ft

average location of abrupt transition, ft
absolute wall temperature, °R

absolute free-stream temperature, °R

t. - OoF

W ‘%0 2
At for fictitious part of turbulent layer, OF
mean temperature of heated strip, OF

ty - tws oF

wall temperature, °F

free-stream temperature, °F

velocity in boundary layer, ft/sec

free-stream velocity, ft/sec

flow rate, lb/hr

distance from leading edge, ft

distance from wall, ft

coordinate normal to x and Yy, ft

fraction of boundary layer at x that is turbulent,
B(Rey)

boundary-layer thickness, ft
laminar-boundary-lgyer thickness at a, ft

turbulent-boundary-layer thickness at b, ft

e}
momentum thickness, f (ubz/um) [l - (ubz/um)]dy, 't
0
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" viscosity, 1b/(hr)(ft)

3 distance from virtual origin, ft

P fluid denmsity, lb/cu ft

o variable of integration

Ty shear stress at wall, 1b/sq ft

w standard deviation of s from mean transition-point loca-
tion, ft

TRANSITION MODEL

Although a great deal is known about the heat-transfer and skin-
friction characteristics of laminar and turbulent boundary layers, very
little is known about heat transfer in the region of transition that ex-
ists between the turbulent and laminar regimes, or about the effect that
the location of the transition region has on heat transfer and skin fric-
tion in the turbulent layer after transition. In order to estimate the
effect of transition-point location on turbulent heat transfer for en-
gineering design calculations, one of the following three assumptions
has usually been made: (l) The turbulent layer behaves as if it had
started at the leading edge; (2) it behaves as if it had started at a
"transition point;" or (3) the turbulent layer after transition has the
same thickness as the laminar layer before transition. The heat-transfer
rates and friction factors determined by these approximate treatments
will not be too much in error, if the point under consideration is very
far downstream of the transition region and if transition ends at rela-
tively low Reynolds numbers. In some applications, however, the transi-
tion may be quite late; not infrequently it extends to Reynolds numbers
in excess of 107, and in such a case the late transition may cause a con-
siderable increase in the turbulent skin friction and heat transfer for
a surprisingly large distance downstream of transition. A realistic
analysis of the transition effect is therefore needed; the analysis should
be supported by experimental data, since assumptions will be required by
the nature of the problem.

In making an analysis of the transition effect, it is important that
a reasonable model of transition be employed. The recent experiments of
Schubauer and Klebanoff (ref. 6) indicate that the laminar boundary layer
on a flat plate becomes turbulent quite suddenly at various "spots" on
the plate. The location of these spots of "abrupt" transition varies with
time, but the amount of the boundary layer that is turbulent at any dis-
tance downstream of the leading edge seems to depend only on the distance.
These observations suggest a model of the transition phenomena that should



be suitable as the basis for an analysis of the effect of the location
of transition on heat transfer and skin friction. This model is shown
by figure 1. The flow is divided into "slabs," and the flow in each
"slab" is assumed to be independent of the flow in the other slabs. In
each slab, transition occurs abruptly at some point, and the location of
the "local abrupt transition” differs from slab to slab. However, if

the slabs are made very thin, the locus of the transition points becomes
a continuous curve, as is indicated by figure 1. It will be assumed that
this curve is invariant in time. This assumption is in contradiction
with the observations of Schubauer and Klebanoff, but since a statistical
approach will be taken in the analysis no serious error should result.
Well downstream of the transition locus, the effect of the variation in
the location of the transition point will be smoothed out, and the local
Stanton numbers and friction factors should approach the values for a
boundary layer that is turbulent from the leading edge.

By examining this model statistically, it is possible to derive ex-
pressions for the local heat-transfer rate and skin friction that apply
over the entire length of the plate. The Stanton number may be expressed
in terms of the Stanton number for a laminar boundary layer, the Stanton
number for a turbulent boundary layer undergoing an abrupt two-dimensional
transition, and the fraction of the flow that is turbulent at any point
x downstream of the leading edge. A similar expression can be derived
for the local friction factor.

The location of transition in any slab will be denoted by s; s
may be described by a probability distribution P(s) where P(s)ds
represents the probability that transition occurs between s and s + ds.
The probability that, at any point x, the flow in a given slab will be
turbulent will be denoted by B(x), the intermittency factor; B(x) is
also the fraction of the boundary layer that is turbulent at x. The
fraction of the boundary layer that is laminar at x 1is taken as
1 - B(x). Since PB(x) is the probability that transition has occurred
before x, B(x) is related to P(s) in the following manner:

X
B(x) = f P(s)ds (1)
0
Moreover, since the boundary layer eventually is entirely turbulent,

Blo) = 1 = fm P(s)as (2)

0

The mean location of transition is defined by

Sy = .4. sP(s)ds (3)
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where s, represents the average location of transition. Note that if
P(s) is symmetric, then s, will be the symmetry point; and, for approx-

imately normal distributions, the maximum value of P(s) will be P(sy).
The rate of heat transfer to a turbulent slab of the boundary layer
will depend on the usual flow parameters, the location of the point in

question (x) and the location of the ebrupt transition (s). This depend-
ence may be indicated by writing

Wb = Lurn (¥58) (4)
The average heat-transfer rate for all of the turbulent slabs at any lo-

—"urb(x)' Since q"(x;s)P(s)ds is the contri-

cation x is defined as qt

bution to the heat flux at location x due to all slabs that went tur-
bulent between s and s + ds, it follows that the total contribution
to the heat flux at x from all slabs that are turbulent is

X
BM%NM=4~%mmm%m (5)

Similarly, the average heat-transfer rate for all of the laminar slabs
at any location x is

T = B (%) (6)

The total local heat-transfer rate at x for both the laminar and tur-
bulent portions of the flow is therefore the sum of the laminar and tur-
bulent contributions:

) = [L - B|E) 0 + BT x3) (7)

By dividing by suitable constants and using equations (1) and (S5), this
relation may be written as

Rey
st(x) = [1 - B(X)]Stlam + é Sty urp (RexsRe ) P(Reg) dReg (8)

Similarly, for the friction factor,

Rey
Ce(x) = [1 - B(X)] Celam * .{ Cr turb(RexsRe ) P(Reg)dReg (9)



Therefore, if the local Stanton numbers for a turbulent boundary layer
after an abrupt transition are known, and if the fraction of the flow
that is turbulent at any point =x 1is known, the local gkin friction and
heat transfer for the nonabrupt transition can be determined by perform-
ing the integrations of equations (8) and (9). It should be noted that
this statistical approach allows calculation of the local Stanton numbers
and friction factors in all the laminar, transition, and turbulent regions
of the boundary layer.

B(x) for "Abrupt" Transition
If the boundary layer is tripped at a relatively low Reynolds num-

ber in such a way that transition occurs abruptly at the same value of
X across the entire plate, B(x) is simply a "jump function," and

i

0 x < s

B(x)
B (x)
In this case the probability density is discontinuous (a "pulse" of unit

area), and the integrals must be evaluated in the Stiltjes sense, which
gives

1 X 28

St(x) = Stygm(Rey) X < s
St(x) = Sty p(ReysRe,) X 2>s
Cf(x) = cf,lam(Rex) X <s
Ce(x) = Cf,turb(Rex;Res) X >s

where g 1s the location of the abrupt transition.

B(x) for "Natural" Transition

The data of Schubauer and Klebanoff (ref. 6) indicate that, for
natural transition, B resembles an error integral. If the parameters
of the error curve were known, the integrals could, in principle, be
evaluated. Unfortunately, the form of the abrupt-transition Stanton num-
ber expression is such that the integrations may not be performed in
closed form. However, for values of x > s the integrals may be approx-

m
imated by replacing s by s in the expression for the abrupt-

m
transition Stanton number. The justification of this is demonstrated by
the following sketch:
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St(Rex;Resm)

St(Rey ;Re,) 5t (Rey;0)
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This sketch shows the values of the Stanton numbers that would obtain
at x for various locations of the abrupt transition. If x exceeds
sy, then St(Rex;Resm) lies between St(Re,;0) and St(Rey;Re,), and a

reasonable approximation is

Re Re

p.4 X
{ Styurp (ReysRe ) P(Re ) dRe, ~ ‘o/ Styurp (ReysReg JP(Reg)dRe

Re
X
— St M. D \ / P/R- )dRe
= PPurb VT sy A \Beg s

= B(Rex)Stturb(ReX;Resm) x>s

(10a)

For values of x less than s, this approximation has no meaning, and
thus another approximation must be used. For x < s, the guantity

Stiurp (Rex;Re,) will be approximated by

St(Rex5Resm-2w)

where ® 1is the standard deviastion of s from the mean transition-point
location. This approximation will be used in the range (sm— aw) < x < Spys
and leads to

Re

X
{ Sty urp (ReysRe )P(Reg) dReg = B(x)Sty, (ReyjRe - Rey)

(s - 20) < x < s (10b)
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In the laminar region (i.e., for x < (s - 2w)), B is small (B < 0.03),

and thus the turbulent term may be neglected entirely. To summarize,
then, the local Stanton number may therefore be approximated by

St(x) = Sty gn(Rey) x < (sy - 2wm) (11a)
st(x) = (L - B)Sty (Re ) + BStL . (Reys Resm -'Rem) (s - ) < x <5 (11p)
st(x) = (1 - B)Stlam(Rex) + BStturb(Rex; Resm) x > sy (11c)

Similar expressions for the local friction factor may be obtained:

Ce(x) = Cf’zam(ReX) x < (s - 20) (12a)
Cf(x) = (1 - B)Cf,lam(Rex) + Bcf,turb(Rex;Resm - Re2w) (sm - 2w) < x < S (12v)
Ce(x) = (1 - B)Cr g am(Rey) + BCf)turb(Rex;Resm) X > sy (12¢)

Assuming that the function P(x) is known, it is necessary only to
obtain expressions for the local Stanton number and friction factor for
a turbulent layer that underwent transition abruptly at Reg. An anal-

ysis leading to such expressions is presented herein.

ABRUPT-TRANSITION ANALYSIS

In the abrupt-transition analysis it is assumed that the turbulent
boundary layer behaves hydrodynamically as if it "started” at some "vir-
tual origin" (see fig. 2(a)). The location of this virtual origin, wnich
will be denoted by r, is determined by applying the momentum and conti-
nuity theorems to the transition region (fig. 2(a)). The friction fac-
tors for the turbulent layer may then be calculated from equations for
boundary layers that are turbulent from the leading edge, if the Reynolds
number is based on the distance x - r. The local Stanton numbers for
the turbulent layer could be calculated in the same manner, except that,
if the plate is isothermal, the total heat transferred to the laminar
layer before transition exceeds what would be transferred to the ficti-
tious turbulent layer upstream of transition, and consequently the con-
servation of energy condition could not be satisfied for the transition
control volume. However, by allowing the plate temperature to be higher
in the fictitious portion of the turbulent layer, the energy condition
can be satisfied. The "equivalent thermal problem" is shown in figure
2(b). The local Stanton numbers for this equivalent problem may be deter-
mined by employing nonisothermal heat-transfer theory (see refs. 3 and 4).
This approach allows momentum, continuity, and energy conditions to be
satisfied at the abrupt transition, and thus the analysis has a firm
physical basis.

CRAT
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Equivalent Hydrodynamic Problem

Consider a laminar boundary layer flowing over a flat plate as shown
by figure 2(a). A transition region extends over a small distance dx
from a, where the flow is purely laminar, to b, where a fully developed
turbulent boundary layer exists. The laminar-boundary-layer thickness at
point a will be denoted by Sa, and the turbulent-boundary-layer thick-

ness at b by sb' The local wall shear stress in the transition region
is TW(X). The turbulent boundary layer is assumed to behave hydrodynam-

ically as if it had originated at the virtual origin r; dx is small so
that the shear stress may be considered constant.

Application of the momentum theorem to the control volume aa'b'b
yields

5 By
7 ol dy + uz( -8 ) +uw = wl dy + T dx (13)
b publ Y P ) 6b a o a'b' b P bl W
(aa') (bb')
Here LAY is the mass-flow rate across the surface a'b' +that enters

the control volume with a velocity component in the x-direction of u,-
Use of the equation of continuity for the same control volume gives

5 o

a %p
Py dy + ump(ﬁ»b - Sa) + Worpr = f puy dy (14)
O(aa') O (bp)

Multiplying equation (14) by u_ and combining with‘(lS) give
* 2 " 2
[ (pupyu, - pup;)dy - A (Pupyu, - Pupyldy = 7, ax  (15)

Using the definition of the momentum thickness € and dividing by puz
reduce this to

o
3

(16)

6 - 0, =

£
8 v

™

where Ga and Gb are the laminar and turbulent momentum thickuescee at

a and b, respectively. Since dx is small, the term involving the
shear stress is of higher order and may be neglected. Thus, equation
(16) reduces to

6, = & (17)



12

Equation (17) is the criterion used to define the virtual origin of the
turbulent boundary layer. Both continuity and momentum are satisfied by
the condition of equation (17).

The velocity profile in the laminar boundary layer may be approx-
imated by (ref. 7, p. 69)

Yb1 _ 3y 1(2)5
Uy 29 2

(18)

Thus, the laminar momentum thickness at point a may be evaluated as

follows:
1
= |

3 o - = o3 - 9 0% + 3 o - = o®) do
D 2 4 2

2

39
= 2% (19)

For the turbulent boundary layer in the range of Reynolds numbers found
at transition, a good approximation to the velocity profile is

)l (2

Evaluation of the turbulent momentum thickness at b gives

5, [l (01/7 ) 02/7)da

== 8 | (21)

Substituting equations (19) and (21) into (17) yields

it

%

-2—79 = 1.433 (22)
a

The momentum equation of the turbulent incompressible flat-plate
boundary layer may be written as

= CRE
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Substitution of the laminar velocity profile (eq. (18)) into equation
(23) leads to (ref. 7, p. 69)

B,

-0.5
— = 4.64Re; (24)

For turbulent flow in the range 10° <Rey < 107, the local friction fac-
tor can be given by the Blasius formula (see ref. 7, p. 117), as

=0.25

Ce
— = 0.0228Reg (25)

Substituting equations (20) and (25) into (23) gives an expression for
the turbulent-boundary-layer thickness:

= 0.0376Re; " 2 (26)

v O

Here £ is measured from the virtual origin of the turbulent layer,
point =xn. Assuming that the turbulent layer after transition behaves as
if it had originated at the virtual origin r, equation (26) then gives

5y -0.2

—— = 0.376Re; " (27)

By letting dx become very small, a approaches b, and, in the limit,
combination of (22), (24), and (27) results in

-0.375
Re, = Res(l - 36.3Reg ) (28)

where Reg = Rey = Rey. Equation (28) defines the location of the vir-
tual origin of the turbulent boundary layer.

Effect of Transition-Point Location on Local
Turbulent Friction Factors

As shown by reference 7 (p. 117), combination of equations (20),
(23), and (25) results in the following relation for the turbulent fric-
tion factor:

Ce(Re; ;0)
-EL—Eéi—— = o.ozesneg°°2

(29)
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where again ¢ 1is measured from the virtual origin of the turbulent
layer. Since the boundary layer behaves as if it begins at r, the
friction factor at some point x may be determined from (28) and (29)
as

Cr(Re, ;Re,)
f x1 s -0.2
~—————— = 0.029€Re, ..
- 0.0296Re=02 |1 - 25 (1 _ 36.38e-0-375)|"0-2 (30)
— - ex - Rex - . es

The term before the bracket in equation (30) is the local friction coef-
ficient that would occur if the boundary layer had been turbulent from
the leading edge of the plate, and thus the bracketed term can be viewed
as a correction that incorporates the effect of the actual location of
transition on skin friction. Equation (50) is shown by figure 3. Note
that a considerable increase in the friction factor may be expected if
the transition Reynolds number is relatively high, but that the effect
is small if transition occurs close to the leading edge of the plate.

Equivalent Thermal Problem

Reference 2 shows that the local Stanton number for an isothermal
plate and a purely turbulent boundary layer 1s given by (neglecting
temperature-dependent fluid-properties effects)

0.2

Stp(Reg;0)PrO % = 0.0296Re; (31)

where ¢ i1s measured from the virtual origin of the turbulent layer.
The heat-transfer rate after an abrupt transition could be determined
from this relation, with the Reynolds number based on the distance

x - r, if it were not for the fact that the heat transfer over the lam-
inar portion of the boundary layer differs from what would be trans-
ferred to the turbulent layer in the distance from the virtual origin to
the transition point. As a consequence, the condition of conservation
of energy for the control volume aa'bd'b (for dx small) cannot be sat-
isfied if, in the equivalent thermal problem, the plate temperature is
held constant. In order to allow the energy condition to be satisfied,
it is necessary to adjust the plate temperature in the fictitious turbu-
lent region before transition. It will be assumed that the plate temper-
ature is constant over the fictitious turbulent region, and the value of
this constant will be selected so that the total energy transferred to
the laminar layer before transition equals that which would be trans-
ferred to the fictitious part of the turbulent layer; that is, the part
between the virtual origin and the real transition location. The heat
transfer to the fictitious turbulent region may be determined from

[of212974
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equation (31), and the heat transfer to the laminar layer may be found
from the well-known Pohlhausen solution,

st, r2/3 _ 0.332Re;0"° (32)

amF

The condition that the total heat transfers are equal may be written as

S
f AtGe (o. 352pr=2/ 3Re 0" S)d.x
0 P X

S-I
- f At Ge (0.0296Pr'0'4ReEO' Z)dg (33)
o

The indicated integrations lead to the result that

At -0.27
& = 1.012Pr (34)

Note that, for fluids with Prandtl numbers less than unity, the temper-
ature difference in the hypothetical turbulent region between the vir-
tual origin and the transition point is greater than the actual temper-
ature difference, indicating that the total heat transfer in the laminar
portion is greater than in the hypothetical turbulent region. This is
possible because the fictitious turbulent region is much shorter than
the actual laminar region.

Local Stanton Numbers After Abrupt Transition

The heat-transfer rates downstream of the abrupt transition may be
determined by applying the methods of superposition described in refer-
ence 4 to the equivalent thermal problem. Reference 4 shows that the
local heat-transfer rate due to a series of steps in the wall temperature
may be determined simply by summing the heat-transfer rates due to each
step. Reference 3 shows that the heat transfer to a turbulent boundary
layer for'a plate that is unheated from the leading edge to 1 and main-
tained at constant temperature thereafter is given by

9/10(-1/9
%ﬂ—? = [1 - (%) ] (35)

where £ 1is measured from the leading edge. Thus, addition of the heat-
transfer rate due to a step of height At' at the fictitious leading
edge and the heat-transfer rate due to a step of height (A¢ - At') at a
distance (s - r) downstream of the fictitious leading edge yields the
following result:
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-0.2

-o.
St At = 0.0296Pr 0" *Re 0,

At

X - T

-1/9
+ 0.0296Pr~0+ 4Re;0; 2 [ - (—S—;—>9/lo] (at - at')  (36)

By using equation (28) to eliminate r, equation (36) may be reduced to

-0.2
St(Re_;Re_) Re 0.
wBes) [ _ Reg (1 i 36.33e;°'575)

StTZReX,-o) Re

X

x |1.012pr 0 27 4 (1 - 1.012Pr‘°'27>

1/9
Re 9/10

36.3 —2 Re 0370

ReX S
X {1 - =S
1-=—=(1- 36.3Re'o'375>

Rex S

= F(Re,;Reg) (37)

where St(Rex;Res) is the local Stanton number for the turbulent part of

a boundary layer that is laminar from x =0 to x = s and undergoes
abrupt transition to a turbulent boundary layer at s; and StTCReX;O)

is the local Stanton number for a boundary layer that is turbulent from
the leading edge, where x =0 (as given by eq. (31) or an equivalent
expression). Note that, as ReS/Rex approaches zero, the local Stanton

number approaches the value for a boundary layer that is entirely turbu-
lent, and this is the correct limiting behavior. At the transition point
the analysis indicates that the local Stanton number is -x, and this is
due to the discontinuity in the wall temperature in the equivalent thermal
problem. Equation (37) is plotted for Pr = 0.7 in figure 4. Note that
there is a considerable overshoot of the asymptotic curve (eq. (31)) if
the transition occurs at a high Reynolds number; the local heat-transfer
coefficient may be nearly twice as high as the values predicted by the

usual turbulent equation for Reg = 108. At high transition Reynolds

numbers the effect of transition location is very important and the in-
crease in Stanton numbers persists well downstream of transition. It is
probable that the increase in the local Stanton mumbers and friction fac-
tors is less if the transition occurs over a longer region, but it is
evident that the effects of transition location are too large to be over-
looked in many applications. The abrupt-transition analysis provides an

c66¥v
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v "upper limit" on these effects and is also useful in its own right in
evaluating experiments where the boundary layer has been deliberately
"tripped" in a two-dimensional manner.

&
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RESULTS AND DISCUSSION
Comparison of Abrupt-Transition Analysis
with Heat-Transfer Experiments

Using the flat-plate test equipment described in reference 2, a
series of test runs were made in which abrupt transitions were stimulated

at Reynolds numbers ranging from O.llxlO5 to 2.6X105. In these runs
transition was stimulated by a l/z-inch-wide strip of fine (414 grit)
emery cloth, which was cemented to the plate at the desired point. A
series of tests with different grits indicated that the 414-grit cloth
had no appreciable "roughness effect” on the turbulent heat transfer
downstream of the trip. In addition, one run was made in which the bound-
. ary layer was allowed to undergo natural transition. In this run transi-

tion was not abrupt but started at a Reynolds number of about 2X10° and

. appeared to be complete by a Reynolds number of 6x10°. The data from
these tests are shown by figure 5 and are tabulated in table I. Refer-
ence 2 shows that effects of temperature-dependent fluild properties may
be lumped into a temperature ratio and that the local Stanton number for
a purely turbulent flow may be determined from

-0.4

i
stoPrO % = 0.0296re;”" ? (T—W> (38)
0

where the fluid properties are to be evaluated at the free-stream temper-

ature. Thus, the data are plotted in the form St(TW/TOO)O‘4 against
Rey. Note that the data do tend to overshoot the limiting relation (38)

and that the effect is greatest for the most delayed transitions. These
are characteristics predicted by the foregoing abrupt-transition
analysis.

The experimental data from these runs are compared with the analysis
in figure 6. The analysis appears to correlate the abrupt-transition data
very well. The natural-transition data were corrected with the abrupt-

transition analysis, based on a transition Reynolds number of 4X105, which
is approximately in the middle of the transition region. Only the fully

. turbulent data (Re, > 6x10°) are shown in figure 6 for the natural-

transition run. In spite of the fact that the transition is not abrupt,
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the correction of the natural-transition data by the abrupt-transition
analysis appears to be adequate. Thus, it seems that the abrupt-

transition analysis may be used in estimating the effect of transition-
point location for natural transitions if the Reg 1is evaluated some-

where in the middle of the transition region.

Comparison of Natural-Transition Heat-Transfer
Data with Statistical Predictions

By use of the abrupt-transition analysis (eq. (37)), the Pohlhausen
laminar solution (eq. (32)), and the statistical prediction of the local
Stanton numbers given by equations (ll), the local Stanton numbers for
the natural-transition run were predicted. The function B(Re,) was

taken as an error integral, as is suggested by the results of Schubauer
and Klebanoff (ref. 6):

R
®x 1 -(Rex - Reg )2
m
B(Rex) = ——— exp dRe,
2
RewW/Zn ZRew
Examination of the heat-transfer data for the natural-transition run in-
dicates that transition begins to be important at about Rey = 2XlO5 and
that the boundary layer is almost entirely turbulent by ReX = 6X105.

Thus the mean, Resm, is about 4X105. By taking Rew as 105, the value
of B 1is about 0.025 at Rex = leO5 and about 0.975 at Rey = 6X10°.
As this is the approximate extent of the transition region, Re, was

taken as lO5 in the predictions for the local Stanton number. The data
are compared with the statistical predictions in figure 7. The predic-
tions appear to be quite good, even in the transition region. Since the
abrupt-transition analysis indicates that the local turbulent Stanton
number at the transition is -w, the predictions have singularities at
Re,, and Resm (see egs. (11a), (11b), and (37)). Since this is an

artificiality introduced by the approximations of equations (lO), the
predictions are not shown in the neighborhood of the singularities. The
influence of the singularity extends only over a small region, however,
as may be seen by examination of figure 4. Thus, it seems that the sta-
tistical model, together with the abrupt-transition analysis and the dis-
tribution function B, provides a method for calculating the heat trans-
fer in the transition region and the effect of the location of transition
on the turbulent heat-transfer rates if the location and spproximate
extent of the transition region are known.

faladal -
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CONCLUDING REMARKS

An analysis has been made that allows the prediction of the effect
of the location of transition on the heat transfer to the turbulent bound-
ary layer. The analysis assumes that the boundary layer undergoes an
abrupt transition at some point downstream of the leading edge. The
"patching" of the laminar and turbulent layers at the transition "point"
is such that the momentum, continuity, and energy theorems are all satis-
fied. The abrupt-transition data of the present investigation are in
good agreement with the analysis. Unfortunately, these data were ob-
tained over only a limited range of transition Reynolds numbers, and thus

"the analysis lacks experimental confirmation in the range where the ef-

fect is largest. The abrupt-transition analysis may be used to predict
the local turbulent Stanton numbers after a natural transition if the
"transition Reynolds number" is evaluated in the middle of the transition
region. If the extent of the transition region is known, it may be as-
sumed that the function B(Rex) is an error integral; then the statisti-

cal treatment may be used to calculate the heat transfer to both the tran-
sition and turbulent portions of the boundary layer. In this manner an
estimate of the local heat-transfer coefficient can be made that is in
good agreement with the experimental data for all types of flow.

Stanford University,
Stanford, Calif., October 22, 1957.
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TABLE I. - EXPERIMENTAL HEAT-TRANSFER DATA
Strip G, Aty ay, hy, st 0.4| Rey G, Atg, ay, h,, st 7 \0.4| Rey
1o | op Btu Btu =103 St(;'vi) \10-6]— 12 | OF Btu slu .105’&(#) «10-6
(br)(sq rt) (nr)(sq rt) [(nr)(sq rt)(°F) 165 (hr)(sq rt) (nr)(sq £t) |(br)(sq ££)(°F) Cos
103 x1073 [
Natural transition; t, = 75.4° F; p_ = 0.0750 1lb/cu ft Re_ = 0.11x105%; t_ = 65.3° F; p_ = 0.0765 lb/cu ft
2 10.6 23.9 97.2 1.07 1.70{ 1.73 0.082 11.7 16.6 165 9.95 3.53) 3.57 0.092
3 10.6 24.4 75.7 3.10 1.21| 1.24 136 11.7 16.3 147 9.04 3.22] 3.26 .151
4 10.6 24.6 66.8 2.72 1.07| 1.08 .1886 11.7 16.3 138 8.48 3.02| 3.06 .206
5 10.6 24.2 66.1 2.73 1.07| 1.08 236 11.7 16.3 129 7.94 2.82 2.88 264
5 10.6 24.7 70.6 2.86 1.12| 1.14 286 11.7 16.2 124 7.65 2.72( 2.76 .319
7 10.6 24.8 88.6 3.58 1.41| 1.44 334)  11.8 16.1 120 7.48 2.64| 2.68 377
8 10.6 24.5 110.0 4.49 1.76 1.79 .385]  11.7 16.3 118 7.24 2.6 2.59 .433
9 10.6 23.8 136.1 5.77 2.27| 2.31 434]  11.7 16.3 121 7.40 2.62| 2.67 .489
10 10.6 24.2 147.9 6.11 2.41| 2.45 485 11.8 16.4 111 6.74 2.38| 2.41 .546
11 10.6 24.1 151.5 6.29 2.48| 2.52 533 11.8 16.4 108 6.61 2.34; 2.37 .601
12 10.6 24.0 155.0 6.46 2.53| 2.58 587 11.8 16.4 112 6.86 2.42| 2.45 660
13 10.6 23.9 155.5 6.51 2.55| 2.60 637 11.8 16.7 110 6.57 2.32| 2.35 715
14 10.6 24.2 156.7 2 11.8 16.6 107 6.46 2.23; 2.31 .77
15 10.6 24,2 151.5 2 11.8 16.4 109 6.67 2.35) 2.38 .827
16 10.6 24.4 156.4 2 11.8 16.4 107 6.54 2.31| 2.34 .884
17 10.6 24.7 150.9 2 11.8 16.9 108 6.38 2.261 2.29 939
18 10.6 24.5 144.3 2 11.8 16.9 105 6.20 2.19} 2.22 .995
19 10.6 24.4 139.6 2 11.7 16.9 102 6.01 2.13[ 2.1 1.048
20 10.5 24.6 141.5 2 11.8 16.7 101 6.07 2.14{ 2.17 1.104
21 10.5 25.0 141.8 2 11.7 16.8 104 6.17 2.19] 2.22 1.160
22 10.5 25.3 135.5 2 11.7 16.6 93 5.58 1.98 2.02 1.214
23 10,5 |es,1 132.6 2 11.7 16.9 99 5.84 2.07| 2.10 1.270
Re_ = 0.92x10%; t, = 0 Reg 1.3° F; p. = 0.0756 1b/cu ft
2 11.8 16.3 96.5 11.7 16.7 72.7 4.35 1.55] 1.56 0.092
3 11.8 16.1 171.3 11.7 17.5 50.9 2.91 1.04| 1.05 .150
4 11.7 16.1 137.7 1.7 16.3 159.2 9.77 3.48| 3.53 .205
5 11.8 16.1 131.8 1.7 16.5 149.2 9.04 3.22| 2.38 .261
& 11.8 16.2 125.4 11.7 16.7 138.9 8.32 2.97| 3.00 316
7 11.8 16.1 120.2 1.7 16.7 132.7 7.95 2:82| 2.88 .373
8 11.8 16.2 116.9 11.7 16.6 124.6 7.50 2.67| 2.70 .427
9 11.7 16.3 121.0 11.7 16.6 127.9 7.70 2.74| 2.77 .484
10 11.8 16.4 112.0 11.7 17.0 117.1 6.89 2.45| 2.48 .540
11 11.8 16.4 109.8 1.7 16.8 116.0 6.90 2.45| 2.48 .595
12 11.7 16.5 113.1 11.7 17.0 115.8 6.82 2.42] 2.45 .650
13 11.8 16.7 111.1 11.8 17.2 117.4 6.83 2.41| 2.44 .710
14 11.8 16.4 107.5 11.8 17.2 113.8 6.62 2.35{ 2.38 .765
15 11.8 16.5 103.6 11.7 17.5 109.6 6.25 2.21] 2.24 .820
16 11.8 16.5 103.9 11.8 17.1 112.86 6.58 2.23] 2.35 .880
17 11.8 16.5 105.0 11.8 17.3 109.3 6.32 2.23| 2.26 .935
18 11.8 16.5 102.7 11.8 1.5 111.5 6.44 2.27] 2.30 .991
19 11.8 16.6 99.7 11.8 17.4 108.1 6.21 2.19| 2.22 1.048
20 11.7 16.6 102.3 11.7 17.4 104.4 6.00 2,13 2.16 1.093
21 11.8 16.8 102.0 . 11.7 17.5 107.6 6.14 2.18] 2.21 1.150
22 11.8 16.7 94.3 . 11.7 17.7 99.8 5.61 1.99| 2.01 1.208
23 11.8 16.8 93.7 | 5.58 11.7 18.0 103.0 5.77 2.05{ 2.07 1.264
Re = 2.00%10%; t_ = 71.5° F; p_ = 0.0758 lb/eu ft Re = 2.60%10%; t_ = 64.0° F; p_ = 0.0766 1b/eu ft
2 | 117 17.8 76.2 4.38 1.3 1.55 [0.091| 11.7 18.2 78.0 4.28 1.52 1.55 0.092
3 11.8 18.4 58.2 3.16 1.12 1.14 .50 11.7 18.3 60.9 3.33 1.17{ 1l.21 .151
1 11.8 18.6 38.7 2.08 .74 .75 206 11.7 18.1 53.6 2.96 1.05{ 1.07 .208
5 11.8 17.3 165.4 9.57 3.39 3.44 262 11.7 18.3 50.5 2.78 .98 .99 264
6 11.8 17.4 151.0 8.68 3.07| 3.16 317 11.7 17.9 153.0 8.55 3.04/ 3,09 318
7 11.8 17.7 144.0 8.13 2.87| 2.91 373 11.7 17.9 155.2 8.68 3.08| 3.12 375
8 11.8 17.8 138.9 7.80 2.76| 2.80 428 11.7 18.1 147.5 8.15 2.89| 2.94 432
9 11.8 18.1 135.5 7.48 2.55| 2.56 484 11.7 18.1 146.3 8.09 2.88} 2.92 .487
10 11.9 18.1 122.2 6.76 2.38| 2.41 sae| 11.7 18.5 134.5 7.27 2.58| 2.62 .544
11 11.8 17.9 120.7 6.74 2.37] 2.41 598 11.7 18.3 130.7 7.14 2.54| 2,52 .600
12 11.8 18.0 121.2 6.74 2.36] 2.41 es6| 11.8 18.5 131.3 7.10 2.51| 2.55 862
13 11.8 18.3 120.4 6.58 2.32| 2.36 L711 11,7 18.6 130.2 7.00 2.49| 2.53 .710
14 11.8 18.1 118.4 6.55 2.32| 2.35 764 11.7 18.6 129.5 6.96 2.47| 2.51 .768
15 11.8 18.3 116.4 6.36 2.24] 2.27 .823| 11.7 18.5 123.0 6.65 2.36| 2.40 .824
16 11.9 18.0 111.8 6.21 2.18| 2.22 88l| 11.7 18.4 122.8 6.67 2.37| 2.41 .880
17 11.8 18.2 113.2 6.23 2.19| 2.22 935| 11.7 18.4 118.9 6.46 2.30| 2.33 .935
18 11.8 18.4 110.6 6.01 2,13 2.16 .985| 11.7 18.5 116.2 6.28 2.13| 2.1 .990
19 11.8 18.2 106.0 5.83 2.06| 2.09 1.040| 11.7 18.4 112.6 6.11 2.17| 2,20 1.049
20 11.8 18.1 103.7 5.72 2.03| 2.06 1.092) 1l1.7 18.4 109.7 5.95 2.12| 2.14 1.110
21 11.8 18.2 105.7 5.80 2.06| 2.08 [1.151| 11.7 18.3 112.5 6.15 2.18| 2.20 1.160
22 11.8 18.4 102.1 5.55 1.96( 1.99 1.210| 11.7 18.2 202.6 5.64 2.00| 2.03 1.216
23 11.8 18.7 104.8 5.60 1.98| 2.01 1.262| 11.7 18.5 105.3 5.70 2.01| 2.08 1.270

2l




//

N
&
Cs
[
4
[
e
4
Ji v
A\ 4
v
Q
/ Ve |V
e vy
v |
“\
v
[
o

Z)
|
LOCUS OF
I TRANSITIONS
|
Sm x
}
|
P(s) |
|
| .
0 Sm s
A
|
5 '
| —
O >

Figure 1. - Transition model.
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(a) Equivalent hydrodynamic problem.
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Figure 2. - Equivalent problems.
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