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Summary 
 
 This report presents the test results of the Swift Start algorithm in single-flow and multiple-flow 
testbeds under the effects of high propagation delays, various bottlenecks, and small queue sizes. 
Although this algorithm estimates capacity and implements packet pacing, the findings were that in a 
heavily congested link, the Swift Start algorithm will not be applicable. The reason is that the bottleneck 
estimation is falsely influenced by timeouts induced by retransmissions and the expiration of delayed 
acknowledgment (ACK) timers, thus causing the modified Swift Start code to fall back to regular 
transmission control protocol (TCP). 
 
 

Introduction 
 
 The slow start algorithm (ref. 1) is used at the beginning of a transmission control protocol (TCP) 
connection to probe a network capacity and to establish a self-clocking process. Slow start probes the 
network by transmitting packets at 1.5 to 2.0 times the rate of acknowledged data in each round trip until 
the congestion window has reached the slow start threshold or a dropped packet has occurred. With this 
growth pattern in a high-bandwidth-delay product (BDP) environment, TCP may take several seconds to 
transmit at the maximum rate allowed in the network. For small transfers, as in command strings or small 
files, TCP may have completed sending all the data before reaching the full capacity of the network. Also, 
the number of packets being released into the network exponentially increases in large bursts during the 
slow start phase, causing the buildup of a queue in bottleneck routers. In a network with a high BDP, 
these router queues may be smaller than the maximum TCP window, which leads to the dropping of 
packets and poor overall performance.  
 With a goal of solving these startup problems, BBN Technologies designed an algorithm called Swift 
Start (ref. 2), which is a combination of packet-pair and packet-pacing techniques. Packet pair is based  
on the spacing between two initial acknowledgments (ACKs) from data that have been sent in immediate 
succession. The algorithm provides an estimation of the current network bandwidth, thus allowing a TCP 
connection to obtain the network capacity much faster than slow start. Packet pacing is a technique that 
uses an estimated round-trip time (RTT) to spread out packets across an RTT, avoiding bursts of packets 
that are released to the network, and to establish an initial self-clocking process. 
 Since limited testing had been done by BBN Technologies, the goal of the project reported herein  
was to fully evaluate the Swift Start code in a testbed environment using variables of file size, bottleneck 
link, delay, and fraction of capacity estimation in a single-flow transfer. The code was examined under 
the influence of different rates of user-datagram-protocol (UDP) background traffic inserted in the link.  
In the initial testing, we found and corrected some coding flow problems with the capacity estimation and 
pacing section in the BBN code. By testing the modified code, the results showed that capacity estimation 
helps to improve the throughput in small and moderate file transfers of the single-flow testing, but the 
code needs further changes to perform better in long file transfers and in a multiple-flow environment. 
The pacing-only tests showed dropped packets later in the connection as compared with regular TCP, 
which proved that the bursts of packets sent in TCP caused the network routers to be overloaded sooner 
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than with pacing only. On the other hand, although packet pacing reduced the large buffering requirement 
in routers, there were higher latencies in packet transfer and more retransmissions in the pacing-only  
tests as compared with TCP tests. Therefore, consistent with the result found in reference 3, the average 
throughput of the pacing-only technique in the test was about equal to or lower than regular TCP 
throughput.  
 The following sections of this report discuss the problems found in the Swift Start code, the testing  
of the code and the modifications made to it, the testbed configurations, test variables, and results of  
the single- and multiple-flow tests. The conclusions and recommendations for future work may help to 
improve the performance of Swift Start. 
 Appendix A contains a glossary of terms used herein and appendix B presents the calculated values  
of the congestion control window. 
 
 

Swift Start Implementation Problems 
 
 The Swift Start code was obtained from BBN Technologies (ref. 2) and consisted of modifications to 
the TCP stack of a FreeBSD version 4.1 operating system kernel. However, after compiling the modified 
FreeBSD kernel with the Swift Start changes, it was noted that there were some coding logic problems 
with the capacity estimation and pacing sections.  
 For the capacity estimation, the code originally captured the synchronize-sequence-numbers-flag 
(SYN) packet as the first data packet, and also the SYN ACK packet as the first ACK, which 
consequently led to the incorrect calculation of the time interval between the acknowledgments (called 
delta). Since the delayed ACK option was used and an initial TCP window of four packets was set, the 
delta was supposed to be the time difference between the acknowledgement of the first two packets 
(th_ack_1) and the acknowledgment of the last two packets (th_ack_2). Instead, the original code 
computed the delta as the time difference between the SYN ACK and the th_ack_2, which then made the 
delta value much larger than the correct value. Because of this miscalculation, the capacity estimation 
window (ce_cwnd), which equaled (SegSize × RTT/delta) (ref. 2), was estimated to be less than the 
current send congestion window (snd_cwnd), and the code was written to use the value of snd_cwnd for 
the second RTT. As shown in figure 1, only six packets are paced out in the second RTT instead of 216 
packets per the theory for a 5-Mbps bottleneck link with a 500-ms delay and a packet size of 1448 bytes.  
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 To correct this problem, the code was modified to capture the first data packet as the start sequence 
instead of the SYN packet. This modification helped to correctly compute the delta as the difference 
between the time stamps of the actual th_ack_1 and th_ack_2. The RTT was then calculated as the time 
interval between the first packet sent and the th_ack_1 received. To obtain a more accurate estimation of 
capacity, we also changed the method of calculation to use a byte-based count derived from the packet 
sequence number instead of using packet counting as in the original code1. In addition, code was added to 
abort the capacity estimation if there were any retransmissions and/or if the delay timer expired after 
getting the th_ack_1 but before the arrival of the th_ack_2. If either of these two conditions had occurred, 
there would not have been a correct estimation of the bottleneck bandwidth. Furthermore, we changed the 
code to abort the pacing if the ce_cwnd was estimated as less than or equal to the current snd_cwnd 
because pacing just the last three of six packets in the second RTT2 would not make a significant 
difference between slow start and pacing.  
 Besides the problem with capacity estimation, there were also problems with the pacing performance. 
First, the pacing process was starting too early before the ce_cwnd was computed. Because of this start, 
after the th_ack_1 was received, the pacing code used the current snd_cwnd to pace the first three packets 
of the second RTT. As a result, there was a timing gap between the first two packets and the third packet, 
as shown in figure 2. 
 

 
 

 Second, after sending all the packets as calculated in the ce_cwnd, the pacing did not stop and slow 
start was not invoked. To correct these problems, we modified the code to start pacing only when the 
calculated ce_cwnd had been defined and to stop pacing when a number of packets up to the value of the 
ce_cwnd had been sent. In addition, at the end of pacing, we decreased the snd_cwnd to account for the 
number of ACKed packets to accommodate for the ACKs that arrived during the pacing. Without this 
adjustment, TCP would have sent a burst of packets at the end of the pacing. 
 

                                                 
1The original BBN code used a calculation for ce_cwnd based on a segment size of 1448 bytes, the size of one packet. However, during the  
delta interval, two packets are sent (2896 bytes), not 1448 bytes as indicated in the BBN code. For the inadequate size of 1448 bytes of data,  
the ce_cwnd will be calculated to be smaller than expected, thus underestimating the bottleneck bandwidth. Accordingly, we changed the code  
to use a byte-based count method for a more accurate calculation of ce_cwnd. 
2The first three packets were already sent in response to the th_ack_1 before the ce_cwnd was calculated. 
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 Figure 3 shows the first few seconds for a 1-MB file transfer at a 5-Mbps bottleneck with a 500-ms 
delay after all the aforementioned modifications to the capacity estimation and pacing had been made.  
In the plot, the packets are paced nicely in the second RTT and then slow start became involved at the 
beginning of the third RTT. 
 
 

Test Results 
 
 In both single- and multiple-flow testing, the FreeBSD version 4.1 kernel was used with Swift Start 
patches applied, and different ports were assigned to switch between the TCP (Reno) and Swift Start tests.  
 
 

Single-Flow Testing 
 

 Single-flow testbed configuration.As shown in figure 4, the testbed environment for the single-
flow tests consisted of two separate networks, a terrestrial and a space network. The two networks were 
interconnected via several unique asynchronous transfer mode (ATM) virtual circuits passing through an 
Adtech SX/14 channel simulator. The SX/14 allows the insertion of time delays and random bit errors in 
the network flows. The networks on each side of this Adtech channel consisted of a CISCO 7100 router 
and a CISCO 2900 catalyst Ethernet switch. The catalyst switches served as the local area networks 
(LANs) connecting to transfer senders, receivers, or analyzers for the tests. In addition, on the sending 
side of the network, a Fore ASX−200BX ATM switch was added into the network before the Adtech 
channel simulator to assure a constant bit rate (CBR) because the CISCO routers could only guarantee  
an unspecified bit rate (UBR), not a constant one. 
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 Hosts on the CISCO switches were connected either to an active port to allow the system to 
participate in a traffic flow or to a mirrored port to allow the system to analyze traffic to and from a 
specific host. In addition, hosts on each LAN were configured with two physical interfaces: the first  
was used for external access during the tests to avoid impeding traffic flows that were being analyzed;  
the second was used only for the actual test flow that was being measured and analyzed. 
 The receiving and sending hosts were set up with the FreeBSD version 4.1 operating system, whereas 
already established hosts with the NetBSD version 1.5 operating system were used as the monitoring and 
analyzing machines for the traffic flows. 
 The BBN Swift Start source code kernel patch was applied to the FreeBSD sending and receiving 
machines. In addition to applying BBN’s patches to the TCP stack of the FreeBSD kernel source and 
defining new kernel options related to this capacity estimation and pacing algorithm, the kernel option 
“HZ” was set to 1000 (1 ms). This option allowed a finer timer granularity, which would then affect the 
calculation of delta. Other FreeBSD options and variables that changed from their default are presented  
in table 1. 
 

TABLE 1.OPTIONS AND VARIABLES FOR FreeBSD KERNEL SOURCE 
Kernel 
 NMBCLUSTERS, byte ........................................................................32 768 
 MAXMEM, byte .......................................................................... 400 × 1024 
Sysctl 
 kern.ipc.maxsockbuf, byte...............................................................7 340 032 
 debug.bpf_bufsize, byte........................................................................32 768 
 net.inet.tcp.sendspace, byte .............................................................3 125 000 
 net.inet.tcp.recvspace, byte..............................................................3 125 000 
 net.inet.tcp.local_slowstart_flightsize, packets............................................. 4 

 
 
 The NetBSD monitoring machines on each side ran the commonly used tcpdump (ref. 4) software to 
capture packet information about the test flows and then tcptrace (ref. 5) and xplot (ref. 6) to analyze and 
display the packets. Bottleneck links of 5 and 20 Mbps were set up using a UBR-limited circuit on the 
ATM interface of the sending CISCO router and a CBR-limited circuit on the Fore switch. The CBR-
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limited circuit could not be used solely for the tests because it had a strict limitation on the speed of the 
data transfers and caused errors during reassembly of the ATM packets. As a result, hardly any packets 
were able to pass through this CBR link without being retransmitted in this condition. For the 500-kbps 
bottleneck link, a UBR-limited circuit was still used in the sending CISCO router, but the CBR in the 
Fore switch on the receiver side was set to a full pipe flow to avoid the problem in reassembly of the 
ACKs on the return link for this slow link. 
 Table 2 presents the variables for the Swift Start code and the regular TCP. 
 

TABLE 2. TEST VARIABLES FOR SWIFT START AND TCP 
Delay, ms................................................................................................100, 500 
Bottleneck rate, Mbps............................................................................0.5, 5, 20 
File size, MB  
 For bottlenecks of 5 and 20 Mbps ...............................................................50 
 For bottleneck of 500 kbps..........................................................................20 
 For bottlenecks of 5 and 20 Mbps and 500 kbps ...........................................1 
Gamma (Swift Start tests only) ....................................................................1,4,8 

 
 
 Evaluation of capacity estimation.As indicated in the BBN report (ref. 2), although the packet-pair 
approach was used in the Swift Start code for estimating the bottleneck bandwidth, BBN was aware of 
some problems that might occur with this algorithm in real networks, that is, ACK compression (ref. 7) 
and extra time introduced by the delayed ACK timers.  
 The packet-pair performance was evaluated by itself by first running single-flow tests through the 
network without any other traffic. Based upon our own internal logging, most of the estimated values of 
ce_cwnd were acceptable. It was noted during the tests that the estimations of the RTTs increased as the 
speed of the bottleneck link decreased. Since the packets needed extra time to send through the slower 
bottleneck link (e.g., for a 500-ms delay), the RTTs calculated in the Swift Start code appeared to be 
about 3 to 4 ms, 6 to 7 ms, and 50 to 52 ms longer as compared with the RTTs directly defined in the 
hardware for the bottleneck links of 20, 5, and 0.5 Mbps, respectively. Furthermore, since a 1-ms clock 
was used and the RTT, delta, and ce_cwnd were defined as integers in the tests, the estimation values of 
the RTT and delta were computed in milliseconds whereas the values of ce_cwnd were rounded off to the 
next lower integer. 
 The test variables presented in table 2 were used to perform 15 tests for each file size. Observe that 
the ce_cwnd was estimated 90 times (15 test runs with 2 file sizes and 3 gamma values) at each delay for 
each bottleneck link. Table 3 summarizes the number of ce_cwnd estimations and their percentage of the 
estimated ce_cwnd in comparison with the calculated values presented in appendix B. The percentage of 
estimated values as compared with the calculated values is computed by the following formula: 
 

Estimated ce_ cwnd
Calculated ce_ cwnd

 × 100 1b g
 
Percentage values greater than 100 indicate that the ce_cwnd has been overestimated for that test; 
otherwise, they are underestimated as compared with the calculated ce_cwnd values. The third column 
(number of test runs) gives the number of tests that have estimated ce_cwnd values at the indicated 
percentage as compared with the calculated values. For instance, with a 20-Mbps bottleneck link at a 500-
ms delay, there are 70, 4, and 16 test runs that have estimated ce_cwnd values of 116.50, 116.70, and 
58.30 percent, respectively, as compared with the calculated value.  
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TABLE 3.PERCENTAGE OF TIMES CAPACITY ESTIMATION  

CONGESTION WINDOW (CE_CWND) IS MET 

Bottleneck link Delay, Number of test runs Percent of estimated 
rate, ms  ce_cwnd 

Mbps    

20 500 70 116.50 
  4 116.70 
  16 58.30 
 100 79 119.30 
  5 59.70 
  6 59.10 

5 500 60 94.00 
  20 93.80 
  9 117.50 
  1 78.20 
 100 56 98.20 
  27 99.20 
  1 81.90 
  5 123.90 
  1 125.10 
0.5 500 38 104.20 

  6 104.40 
  14 102.10 
  1 111.60 
  1 106.60 
 100 23 142.80 
  1 141.90 
  3 139.90 
  2 139.00 
  1 143.70 

 
 
 As shown in the preceding table, there are 90 ce_cwnd estimations each for bottleneck links of 20 and 
5 Mbps. However, there are only 60 and 30 estimations for a bottleneck link of 500 kbps at delays of 500 
and 100 ms, respectively. Sixty runs are for the gamma values of 1 and 4 at a 500-ms delay, and 30 runs 
are for a gamma of 1 at a 100-ms delay3. With this slower link, when the gamma is set at 8 for a 500-ms 
delay and the gamma is set at 4 and 8 for a 100-ms delay, the estimated ce_cwnd values are smaller than 
the values of the current snd_cwnd. As a result, as indicated in the preceding section, these estimated 
values were not used. In these cases, the code used the values of the current snd_cwnd and then normal 
slow start was invoked since pacing was aborted.  
 For each delay, the majority of the estimations were more accurate as the speed of the bottleneck link 
became lower, except for the 100-ms delay at 500 kbps. For the slower bottleneck link, the time interval 
between the first two ACKs (delta) was larger compared with that of the faster bottleneck link, and the 
estimated ce_cwnd values were less sensitive to the variation of this delta. For instance, at a 20-Mbps 
link, when the estimated delta equaled 1 ms, the value of the estimated ce_cwnd could be doubled as 
compared with that of ce_cwnd when the delta equaled 2 ms. However, for the 5-Mbps link, the ce_cwnd 

                                                 
3Gamma is a configurable value that is used to help protect against an overestimate from the packet-pair algorithm. A higher value of gamma will 
give a smaller estimate of the bottleneck bandwidth. The greater the certainty of the actual speed of the bottlenecks in the network, the lower the 
value of gamma that can be set. 
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with a delta of 4 ms was only 1.25 times greater than that with a delta of 5 ms. As a result, the variation 
among the estimated values in this 5-Mbps bottleneck link was not as large as compared with that of a  
20-Mbps bottleneck. As shown in table 3, there is a bigger gap between the percentage values of the 
estimated ce_cwnd (116 and 58 percent at a 500-ms delay) for a 20-Mbps bottleneck link as compared 
with those gaps in the slower bottleneck link (117 and 78 percent in a 5-Mbps bottleneck link and 111  
and 102 percent in a 500-kbps bottleneck link at a 500-ms delay).  
 Except for the 100-ms delay at a 500-kbps bottleneck link, the percentage of the majority of the 
estimated ce_cwnd values is in the range of 98.2 to 119.3 percent as compared with the calculated 
ce_cwnd values. For the 100-ms delay at a 500-kbps link, the extra approximately 50 ms in the RTT 
estimation (as mentioned earlier in this section) make the estimated ce_cwnd about 140 percent of the 
calculated values. Also, note from table 3 that with this speed of bottleneck link, these extra 50 ms in the 
RTT do not have as great an impact on the estimated ce_cwnd values at a 500-ms delay as they do at a 
100-ms delay.  
 Performance comparison of Swift Start and regular TCP.As expected, since the estimated 
bottleneck bandwidths (ce_cwnd) define the number of packets to be sent in the second RTT for the Swift 
Start tests, the Swift Start tests sent out more packets in the first few RTTs than did the regular TCP, but 
dropped packets occurred earlier during the Swift Start transfers than they did in the regular TCP tests. 
This condition is an advantage for a short-file-size transfer, as discussed later in this section. Table 4 
shows the Swift Start versus TCP time and number of packets sent for the three bottleneck links. As seen 
in the table, Swift Start sent many more packets during the first few seconds of the transfers as compared 
with the slow start performance of TCP (e.g., note the 5- and 20-Mbps bottleneck links under a 500-ms 
delay). This result is in agreement with the goal that Swift Start be designed to improve performance in a 
high-bandwidth-delay product environment.  
 

TABLE 4.COMPARISON OF NUMBER OF BYTES SENT AT SPECIFIC INTERVALS BY  
SWIFT START AND TCP 

Test condition Swift Start TCP 
 Gamma  
 1 4 8  

Delay, 500 ms 
Bottleneck link, Mbps 20 20 20 20 
Time, sec 2 2 2 2 
Number of bytes sent 3 091 481 887 625 457 569 47 785 
Bottleneck link, Mbps 5 5 5 5 
Time, sec 4 4 4 4 
Number of bytes sent  2 481 873 1 339 401 697 937 194 033 
Bottleneck link, kbps 500 500 500 500 
Time, sec 25 25 25 25 
Number of bytes sent 2 098 100 a1 953 352 Same as TCP 1 998 241 

Delay, 100 ms 
Bottleneck link, Mbps 20 20 20 20 
Time, ms 900 900 900 900 
Number of bytes sent  2 337 073 1 585 561 981 744 262 088 
Bottleneck link, Mbps 5 5 5 5 
Time, sec 3 3 3s 3 
Number of bytes sent  2 423 953 2 143 941 a1 938 873 2 079 329 
Bottleneck link, kbps 500 500 500 500 
Time, sec 25 25 25 25 
Number of bytes sent  a2 183 585 Same as TCP Same as TCP 2 186 481 
a Fewer number of packets sent than in regular TCP tests during same amount of time. 

 
 
 In table 4, note that the Swift Start test byte values that are marked with the footnote “a,” had sent 
fewer numbers of packets than were sent in the regular TCP tests during the same amount of time. In 
these cases, the ce_cwnd was estimated to be six packets, which is equal to the number of packets that 
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slow start sent out in the second RTT. However, since the first three packets were burst out in response to 
the first ACK, only the remaining three packets of these six were paced, and the last packet was paced 
near the end of the RTT. This action caused a delay in sending compared with the stacked-up packets 
during the slow start of the regular TCP. Those tests with the estimated ce_cwnd equal to less than the 
current snd_cwnd (five packets) were performed by regular TCP; no pacing was performed in these cases. 
 

 
 

 Figure 5 compares the throughput of Swift Start and TCP. The throughput of Swift Start does not 
indicate a significant advantage over TCP when the file size is defined large enough such that the router 
queue overflows, thus causing some dropped packets and the transfers continue to process for a time in 
the recovery phase. Files of 50 MB were used for 5- and 20-Mbps bottleneck links in these tests, and files 
of 20 MB were used for a 500-kbps bottleneck link. With these large file sizes, the Swift Start throughput 
was a little higher than the TCP throughput when the bottleneck link rate was set to 20 Mbps for a 100-ms 
delay and was also higher at a 5-Mbps bottleneck for a 500-ms delay at all tested values of gamma (1, 4, 
and 8). For the 20-Mbps bottleneck link at a 500-ms delay, the throughput of the Swift Start tests was 
slightly better than that of TCP only when the gamma values were set to 1 and 4. On the other hand, the 
TCP throughput was a little higher than that of the Swift Start at a bottleneck link rate of 5 Mbps with a 
delay of 100 ms. With the small bottleneck link of 500 kbps, the throughput of Swift Start and TCP was 
very similar for all values of the tested gamma values and propagation delay.  
 However, for the smaller file size of 1 MB, when the queuing overflow condition had not yet been 
reached, the throughput of Swift Start exceeded that of the TCP in 5- and 20-Mbps bottlenecks with a 
500-ms delay because there were more packets sent in the first few RTTs of the Swift Start tests, as 
described at the beginning of this section. In the 5-Mbps bottleneck at a 100-ms delay, the Swift Start  



NASA/TM—2004-212938 10

 
throughput was slightly better than that of the TCP when the gamma values were 1 and 4. For the slower 
bottleneck link of 500 kbps, the throughput of this smaller file was about the same in the Swift Start and 
TCP tests. Figure 6 shows the average throughput versus the three settings of gamma for a 1-MB file in 
the Swift Start and TCP tests.  
 

Multiple-Flow Testing 
 
 Observations.The multiple-flow tests began using the same single-flow testbed with the bottleneck 
link set to 20 Mbps at a 500-ms delay. One 50-MB TCP flow was transferred followed by one Swift Start 
flow of the same size, and then the order was reversed so that the Swift Start flow started first followed by 
the regular TCP flow. All performed between one pair of sender and receiver machines. In both tests, the 
throughput of the flows was a little lower as compared with that of their single-flow tests. However, the 
ce_cwnd under Swift Start was still estimated as in single flow, which indicates that the network was not 
heavy congested. Therefore, there was no advantage seen for the Swift Start throughput over TCP with 
this setup.  
 With the same testbed at a 5-Mbps bottleneck link and a 500-ms delay and using a UDP rate-based 
flow of 5 Mbps via iperf (ref. 8) as background traffic sent from sender to receiver, a Swift Start flow 
overestimated the RTT (getting ~1600 ms). However, the delta was estimated to be the same as it was  
for the single-flow tests without any traffic. These estimations of RTT and delta led to a larger estimated 
bandwidth for the bottleneck link. Also, in this setup, sometimes the Swift Start flow would time out at 
the beginning of the transfer with the result that no capacity estimation or pacing was invoked since  
the estimation was false. Additional testing was performed for a background traffic of UDP rate-based 
transfers at 4 Mbps in both directions between the sender and receiver, but the RTT was still over-
estimated in the Swift Start tests. 
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 Configuration for multiple flow.Based upon the observations of the preceding section, it was 
suspected that there is a deep queue inside the router. Ping tests were run to observe the RTT, but the 
queuing continually increased even past 2000 ms. It is believed that the reason for a large quantity of 
packets being queued is the way the router manages its system buffer pool; that is, the router creates more 
buffers if the interface buffers are full. As the result, a new testbed that allows us to control the buffer was 
created for the multiple-flow tests using the same pair of sender and receiver FreeBSD machines as used 
in the single-flow tests. Both machines were connected to a third FreeBSD machine that ran dummynet 
(ref. 9) between the first two machines. Dummynet was chosen as the network simulator as it could 
specify the speed of the bottleneck, delay, and queue size for the link. The same sender and receiver 
machines on each side of the dummynet were also used to capture traffic information for analyzing the 
packet flow instead of using entirely separate monitoring machines such as those in the single-flow tests. 
Figure 7 shows the testbed configuration for the multiple-flow tests and table 5 gives the variables for the 
multiple-flow tests. 
 

 
 
 

TABLE 5.VARIABLES FOR MULTIPLE-FLOW TESTS 
Delay, ms........................................................................................................500 
Bottleneck rate, Mbps.........................................................................................5 
Bottleneck queue, slots...........................................................................5, 20, 50 
Background traffic, Mbps UDP......................................................................2, 4 
File size, MB ....................................................................................................50 
Gammaa ........................................................................................................1,4,8 
Kernel......................................Capacity estimation and pacingb and pacing only 
aOnly for tests with capacity estimation and pacing kernel. 
bSame kernel as that used in single-flow tests. 

 
 

Multiple-Flow Test Results 
 
 Testing with capacity estimation plus pacing kernel.Using the test variables given in table 5,  
15 tests at a 500-ms delay of Swift Start or TCP were performed back to back for each queue size with 
background traffic of 2 or 4 Mbps. Although a UDP background flow was created in both forward and 
return links via iperf, some ACK compressions still occurred, resulting in overestimated ce_cwnd values. 
In addition, when using a bottleneck queue of 5 slots, the delayed ACK timer expired before the delta 
could be calculated, which caused the Swift Start algorithm to abort and the transfer to fall back to  
the regular TCP slow start, per written in the kernel code. 
 Also, when the 2- and 4-Mbps UDP background traffic flows were inserted in the link with a 
bottleneck bandwidth of 5 Mbps, it was expected that Swift Start would give the estimation for the 
available bandwidths of 3 and 1 Mbps, respectively. However, it is likely that the capacity estimation 
algorithm in the Swift Start code was estimating the total bandwidth of the bottleneck link and not the 
available bandwidth remaining after the link became congested. 
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 In general, all the bandwidth values were overestimated when gamma was set to 1 for both rate 
settings of the UDP background traffic (2 and 4 Mbps). With a gamma of 1, the majority of the estimates 
of bandwidth values were in the range of 3.3 to 4.6 Mbps and 3.8 to 4.6 Mbps with 2- and 4-Mbps 
background traffic, respectively. For gammas of 4 and 8, most of these estimated values were about 1 to 
1.4 Mbps and 0.3 to 1 Mbps for both UDP background traffic. Figures 8 to 13 show the estimated 
bandwidth values with the two background traffic rates. As shown in these figures, in each set the 
estimated values of bandwidth that are much higher than the majority are caused by the ACK 
compressions. For example, the dissimilar estimated rate at 23 Mbps in figure 9 is caused by ACK 
compression. 
 By using a 2-Mbps background UDP traffic, the average throughput of the Swift Start tests was 
slightly higher than that of the TCP tests for most of the settings, except when the bottleneck queues were 
set to 5 and 20 slots and the gamma was equal to 1. For these settings, the average throughput of the Swift 
Start tests was a little lower than the TCP tests since the overestimated bandwidth described above had a 
greater impact on the throughput of these smaller queue tests as compared with the bigger queue tests of 
50 slots. With a background UDP traffic of 4 Mbps, the average throughput of the Swift Start tests was 
slightly lower than the TCP throughput for queue sizes of 5 and 50 slots but was a little higher than that of 
TCP with a queue size of 20 slots. Figures 14 and 15 show the average throughput of Swift Start and TCP 
with 2- and 4-Mbps UDP background traffic, respectively. 
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 Testing with pacing only.In this kernel, capacity estimation was not used, and six packets were 
purposely paced out (same number of packets sent in slow start) in the second RTT. However, because of 
time constraints, we were unable to achieve a smooth pacing of the three pairs of packets (pacing sending 
a pair at a time in a 2-2-2 pattern) during the RTT. To obtain this even pacing, a considerable amount of 
modification to the pacing algorithm in the Swift Start code would have been necessary. Eventually, a 
pacing pattern flow of 2-1-2-1 packets was used for this test.  
 Throughout the tests using this pacing-only kernel, we observed that because of the bursts in slow 
start, the TCP tests dropped packets earlier in a connection as compared with the Swift Start tests. 
However, since the congestion window of Swift Start at the time the dropping occurred was larger than 
that of TCP, there were more overshoot packets in Swift Start tests as compared with TCP. That would  
be one of the reasons why there were more retransmitted packets in the Swift Start tests than there were  
in TCP, particularly for queue sizes of 20 and 50 slots. This retransmission resulted in the Swift Start 
average throughput being a little lower and about the same as compared with the average throughput of 
the TCP tests with 2- and 4-Mbps UDP background traffic, respectively. Figure 16 shows the average 
throughput of Swift Start and TCP using the pacing-only kernel. 
 

 
 

Recommendations 
 

 As mentioned previously, changes will need to be made to the Swift Start code that was provided by 
BBN Technologies in order to correct some flaws in the capacity estimation and pacing routines. Also, 
additional code is needed to stop the use of the estimated cwnd and to revert to the use of regular TCP  
in some conditions where the estimated ce_cwnd values would not be accurate, such as when the delayed 
ACK timer expired and retransmissions occurred before the delta was defined.  
 For large-file-size tests, after some dropped packets occurred followed by a recovery period, the 
advantage of Swift Start early in the connection was diminished because of the additive increase and 
multiplicative decrease algorithm of TCP. In this case, the cooperation of a less conservative method to 
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dropped-packet algorithms, such as scalable-TCP (ref. 10) or high-speed-TCP (ref. 11), in addition to the 
Swift Start algorithm may improve performance.  
 Several suggestions for handling multiple-flow conditions follow: 
 
 1.  In light of the fact that the network usage fluctuates, continuously probing and estimating the 
available bandwidth would be helpful to correctly estimate the current network bandwidth.  
 2.  A less conservative reaction to dropped packets may help to improve the Swift Start performance 
in a congested network. 
 3.  With regard to the finding that all the ce_cwnd values with a gamma of 1 were overestimated,  
a gamma value of 4 or higher should be used in a heavy traffic environment (such as in the 4-Mbps 
background UDP traffic in the test). 
 
 

Conclusions 
 
 The Swift Start algorithm was tested in single-flow and multiple-flow testbeds under the effects of 
high propagation delays, various bottlenecks, and small queue sizes. The conclusions are as follows: 
 For the capacity estimation feature, it was found that in the single-flow tests, the percentage of the 
majority of the estimated ce_cwnd values was acceptable. In addition, the fine granularity of the clock 
introduced a limit on the speed of the bottleneck link that could be tested. With the 1-ms granularity, it 
could not be tested for a bottleneck link rate higher than 23.168 Mbps (with a packet size of 1448 bytes) 
because the delta value would be smaller than 1 ms at these bottleneck links. Setting the clock granularity 
was tried at 0.5 ms, but right after pacing ended, the sender did not send out the packets in response to a 
few acknowledgments (ACKs) as soon as they arrived. Instead, the sender held off on these packets and 
sent them out in a burst when the next ACK came back. 
 For end-to-end performance based on the capacity estimation, in the single-flow tests the packets 
were sent faster at the beginning of Swift Start tests than in slow start tests. However, in the large-file-size 
tests, after some dropped packets occurred followed by a recovery period, the advantage of Swift Start 
early in the connection was diminished because of the additive increase and multiplicative decrease 
algorithm of transmission control protocol (TCP). The Swift Start throughput in this case did not show a 
significant benefit over regular TCP. On the other hand, Swift Start worked well in the tests with shorter 
file sizes when the buffer queue did not become overloaded. The average throughput of Swift Start in 
these small-file-size tests exceeded that of TCP in higher bandwidth-delay-product (BDP) scenarios, such 
as bottleneck link rates of 20 and 5 Mbps at a delay of 500 ms, and was slightly better or the same as the 
TCP throughput in the lower BDP cases. The result of the small-file-size tests was in line with the goal 
that Swift Start be designed to perform better under high BDP conditions as indicated in the previous 
report by BBN Technologies. 
 During the multiple-flow tests with the 2- and 4-Mbps user datagram protocol (UDP) background 
traffic inserted in the network, some ACK compression occurred, causing the ce_cwnd values to be 
overestimated. Also, with the small queue size of 5 slots, the delayed ACK timer expired before the 
th_ack_2 arrived in some tests, which then triggered the code to fall back to regular TCP handling. The 
result of the multiple-flow tests showed that there was no significant advantage in using Swift Start over 
TCP. When there was no capacity estimation due to the bursting behavior of slow start, TCP had dropped 
packets earlier in a connection as compared with the Swift Start pacing-only tests. However, there were 
more retransmitted packets in the Swift Start pacing-only tests than there were with TCP. Therefore, the 
Swift Start throughput was a little lower and about the same as TCP with 2- and 4-Mbps UDP 
background traffic, respectively. 
 In summary, because Swift Start was designed to attack the initial ramp-up problem of TCP, it held 
the promise of improving file transfers that do not overflow the network buffer (as in the 1-MB file 
transfers). However, the development of additional algorithms is needed to address the continuous 
estimation of bandwidth for long flows. 
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Appendix A 
Glossary 

 
 
ACK acknowledgment 

ATM asynchronous transfer mode 

BDP bandwidth-delay product 

BSD Berkeley Software Distribution 

CBR constant bit rate 

ce_cwnd estimated congestion window for capacity estimation 

delta time interval between th_ack_1 and th_ack_2 

gamma configurable value used to obtain a fraction of estimated congestion window 

LAN local area network 

RTT round-trip time 

SegSize size of a segment 

snd_cwnd congestion window that determines the number of packets sent  

SYN synchronize sequence numbers flag 

TCP transmission control protocol 

th_ack_1 ACK responses to first two packets of four initial packets 

th_ack_2 ACK responses to last two packets of four initial packets 

UBR unspecified bit rate 

UDP user datagram protocol 
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Appendix B 
Calculated Values of Congestion Control Window 

 
 
The values of the congestion control window are calculated based on the settings of the bottleneck link 
rates and delays. 
 
 

TABLE 6.CALCULATED VALUES OF CONGESTION CONTROL  
WINDOW FOR EACH BOTTLENECK LINK 

Test condition Gamma 
 1 4 8 
 Calculated value, bytes 
Bottleneck link rate, 20 Mbps    
Delay, ms    
 500 1 250 000 312 500 156 250 
 100 250 000 62 500 31 250 
Bottleneck link rate, 5 Mbps       
Delay, ms    
 500 312 500 78 125 39 062.5 
 100 62 500 15 625 7 812.5 
Bottleneck link rate, 0.5 Mbps       
Delay, ms    
 500 31 250 7 812.5 3 906.25 
 100 6 250 1 562.5 781.25 
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