
Melissa Molnar
Ohio University, Athens, Ohio

C. John Marek
Glenn Research Center, Cleveland, Ohio

March 2005
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at 301–621–0134
- Telephone the NASA Access Help Desk at 301–621–0390
- Write to:
  NASA Access Help Desk
  NASA Center for AeroSpace Information
  7121 Standard Drive
  Hanover, MD 21076

Melissa Molnar
Ohio University, Athens, Ohio

C. John Marek
Glenn Research Center, Cleveland, Ohio

Prepared for the
Fourth Joint Meeting of the U.S. Sections
sponsored by The Combustion Institute

National Aeronautics and
Space Administration

Glenn Research Center

March 2005
This work was sponsored by the Low Emissions Alternative Power Project of the Vehicle Systems Program at the NASA Glenn Research Center.

Melissa Molnar
Ohio University
Athens, Ohio 45701

C. John Marek
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (>1×10^{-20} moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction.

The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H₂ and NOx are obtained for H₂/air fuel and for the H₂/O₂.

A similar correlation is also developed using data from NASA’s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R² are obtained.

Introduction

Hydrogen is the fuel of the future. Iceland is converting their economy to hydrogen and several countries (United States, Germany, Australia, Mexico, China, Canada, Japan, and Russia) are strongly interested in the technology because of global warming concerns from CO₂ and the unlimited supply of hydrogen from water conversion. It is important to have a simple, quick
method of computing the chemical rates for prediction of times of conversion and for the design
of combustors. Accurate chemical kinetic mechanisms exist for hydrogen reaction, but they
involve as many as 21 chemical steps with the production of intermediate species like OH, HO2,
H and O atoms with H2O2 as an intermediary. We have used the H2 mechanism of S.L. Hwang
et al. (ref. 1), as the basis of this report. No changes in the hydrogen mechanism were made in
switching from H2/Air to H2/O2. We have taken a forty-two step mechanism for the production
of nitrogen oxides from Gri-Mech 2.1 without the carbon reactions, used in reference 2, and
correlated the formation rate of nitrogen oxides in the presence of hydrogen by a similar two-
time step method. Any detailed mechanism could have been used to compute the chemical
kinetic time constants.

Large mechanisms with many intermediate species and very fast radical reactions cause the
equations to be stiff (extremely fast compared to the overall rate, requiring a large number of
small time steps), making them very difficult to integrate. Calculations for these extensive
mechanisms are repetitive and complex. Using the simplified kinetic scheme developed here to
calculate the two chemical kinetic times greatly reduces the amount of time required to compare
kinetic reaction times with turbulent mixing times and will reduce the time required to obtain a
converged solution. The advantage of extracting the chemical kinetic time for only the species of
interest from a detailed computation is that we have only the differential equations of interest to
solve, resulting in a much smaller set of equations.

The hydrogen reactions are about seven times as fast as hydrocarbon fuels and the reactions
require small time steps to integrate accurately. We have used the NASA Glenn GLSENS
kinetics code (ref. 3) to integrate the progress of the reaction accurately. The classical methods
were used to compute over two thousand cases at constant T and P. Then the results were
correlated with a simple two-time step approach to predict the chemical kinetic time constants.
The derived method involves only the principal species H2, and H2O and NOx for nitrogen
oxides, species which are predicted routinely by computer codes. We do not require tracking the
intermediate free radicals, as the kinetic times in step one before the radicals become large are
practically constant and in step two are related to the instantaneous H2, O2, and H2O
concentrations.

We have also curve fitted the equilibrium temperature T4 using data generated by the NASA
Chemical Equilibrium Application code (CEA) to an exponential equation.

The NASA detailed kinetics code (GLSENS) (ref. 3), was used to integrate the system of
equations at constant temperature and pressure, at over 2000 initial conditions to derive the rate
expressions. We have massively correlated the output from GLSENS, into simple exponential
expressions for the chemical kinetic times using the Excel regression routines. It may be
reasoned that the presented equations are only as good as the overall mechanism that calculates
the data. However, performing the calculations in the conventional manner is also only as good
as the mechanism equations and constants that go into them.

The two-time step approach was used successfully by Molnar and Marek in reference 2 for
Jet-A and methane. The two-time step approach is used because the free radicals OH, etc.,
catalyze the reactions and act as important intermediates. The principle reaction for water
production is OH through the reaction

\[ \text{H2 + OH} = \text{H2O + H} \] (1)
We think that the more water that is present in the reactor then the more OH would be present accelerating all of the reactions. So H₂O can be used as an indicator of the OH present.

The report will present the section Mixing/Kinetics, Model Equations, Equilibrium Fits, Determination of the Chemical Kinetic Time, and the Chemical kinetic time equations for both the H₂/air and the H₂/O₂ mixtures. The principal difference in the conditions is in the maximum range of pressures and temperatures considered, see Table Input, and the lack of the diluent nitrogen for the H₂/O₂ condition. Comparisons of the correlations for different fuels and a comparison of NOₓ production data from reference 2 is given.

**Mixing Times Versus Chemical Kinetics Times**

Reaction rates are kinetically limited at low temperatures and mixing limited at very high temperatures. According to the Magnussen model (ref. 4), the fuel oxidation rate will be determined by the maximum of either the chemical kinetic time or the turbulent mixing times of the fuel and air. However, for large numerical solutions it is very tedious to use detailed classical calculations to compare both the kinetic and turbulent mixing times to determine the limits of the reaction. Detailed chemical kinetic schemes are extremely time consuming for two- and three-dimensional computer calculations for combustors.

The Magnussen model (ref. 4) proposes that the maximum of either the turbulent mixing or the chemical kinetic times will be the limiting factor of a chemical reaction. This model could be explored by numerically calculating both times to compare them. However, using detailed mechanisms, this is a long and tedious process. The calculations would be extremely complicated for the detailed chemical kinetic time. By using the equations presented here to determine the chemical kinetic times and using conventional numerical methods to determine mixing times, the Magnussen model can be applied in a much more convenient way.

\[
\text{Net rate } \sigma_r = \min\left( \frac{A\varepsilon}{k} y_{f\text{uel}}, \frac{A\varepsilon}{k} y_{oxygen} \right) \]  

(2)

Where \( \frac{k}{A\varepsilon} \) equals the turbulent mixing time, \( \tau_m \), with \( k \) being the turbulent kinetic energy, \( \varepsilon \) is the dissipation rate, \( y \) is the mass fraction, and \( r_f \), is the stoichiometric coefficient written on a mass fraction basis. The mixing constant, \( A \), is usually given as 4.0. The factor \( \frac{y_{f\text{uel}}}{\sigma_{\text{kinetic}}} \) is the chemical kinetic time \( \tau_c \) computed in this report from the correlations presented.

In order to obtain the chemical source term \( \sigma_r \), a comparison is made of the mixing rate, \( \frac{1}{\tau_m} \) and the chemical kinetic rate \( \frac{1}{\tau_c} \), and the lowest rate or the longest time is used in the expression (see fig. 1). This may also be represented by the following relationship:

\[
\tau = \max(\tau_m, \tau_c) \]  

(3)
With the approach derived here, a simple direct comparison can be made between the mixing and chemical kinetic times and the minimum rate used for the computation.

**Model Equations**

The following equations can be used to model the chemical system.

\[ \text{H}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{H}_2\text{O} \quad \text{(S1)} \]

\[ \frac{1}{2} \text{N}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{NO} \quad \text{(S2)} \]

The following first order reaction was used to represent the rate of fuel burning. We compute the net reaction time so we do not worry about the forward and reverse processes, only the net process. We assume that the fuel goes to zero at the end of the reaction and that the NOx increases linearly and it is far from equilibrium. (In this report, \( t \) and \( \tau \) are given in milliseconds, except \( \tau_{\text{NO}_x} \) which is in \( \frac{\text{gmoles}}{\text{cc mols}} \), while concentrations are given in gmoles/cc):

\[ \frac{d\text{H}_2}{dt} = -\frac{c\text{H}_2}{\tau_{\text{H}_2}} \quad \text{(4)} \]

\[ \tau_{\text{H}_2} = -\frac{c\text{H}_2}{\sum \left( \frac{d\text{H}_2}{dt} \right)} \]

OR if \( \tau_{\text{H}_2} \) is constant:

\[ \text{H}_2 = \text{H}_2^0 e^{\left( \frac{-t}{\tau_{\text{H}_2}} \right)} \]

For a constant \( \tau_{\text{H}_2} \), the fuel concentration is then represented by a simple exponential decay expression, where \( \text{H}_2^0 \) is the initial fuel concentration.

The nitrogen oxide formation rate, a species important for combustor emissions, was modeled as a simple zero order expression.

\[ \frac{d\text{NO}_x}{dt} = \frac{1}{\tau_{\text{NO}_x}} \quad \text{(5)} \]

OR if \( \tau_{\text{NO}_x} \) is constant

\[ \text{NO}_x = \frac{t}{\tau_{\text{NO}_x}} \quad \text{(6)} \]

\( \tau_{\text{NO}_x} \) has units of \( \frac{\text{gmoles}}{\text{cc mols}} \).
Determination of Chemical Kinetic Time

Using equations (4) and (5) above, the dependent chemical kinetic times ($\tau_{\text{Fuel}}$, $\tau_{\text{NOx}}$) can be easily computed and correlated against several independent variables using the Excel regression routines. The integration was performed for 1256 cases for the H$_2$/air and 2808 cases for the H$_2$O$_2$ conditions shown below:

TABLE-INPUT: INITIAL CONDITIONS FOR COMPUTATIONS

H$_2$/Air Inlet Conditions:
Equilibrium H$_2$/Air
H$_2$(g) = 294.44 K
Air = 294.44 K, 589.89 K, 922.22 K, 1255.55 K
Pressure = 1, 20, 40, 60 atm
Lean equivalence ratios = 0.2 to 1.0 increments of 0.1
Rich equivalence ratios = 1.05, 1.1 to 2.0 increments of 0.1.
Initial conditions for chemical kinetic times for H$_2$/Air
Temperature = 1000., 1500., 2000., 2500. K
Pressure = 1, 10, 20, 30, 40 atm
Lean equivalence ratios = 0.3 to 1.0 increments of 0.1
Rich equivalence ratios = 1.05, 1.1 to 2.0 increments of 0.1

H$_2$/O$_2$ Inlet Conditions:
Equilibrium H$_2$/O$_2$
H$_2$(g) = 30., 100., 200., to 500. K increments of 100. K
O$_2$(g) = 50., 100., 150. K
Pressure = 1, 50, 100, 200, 300, 400 atm*
Lean equivalence ratios = 0.1 to 1.0 increments of 0.1
Rich equivalence ratios = 1.05, 1.1, 1.2 to 3.0 increments of 0.2
Initial conditions for chemical kinetic times for H$_2$/O$_2$
Temperature = 1000., to 4000., increments of 500, then 5000. K
Pressure = 0.5, 1., 10., 50., 100., 200., 300., 400. atm
Lean equivalence ratio = 0.1 to 1.0 increments of 0.1
Rich equivalence ratio = 1.05, 1.1, 1.2 to 3.0 increments of 0.2
* These conditions are for advanced rocket combustors (ref. 5).

Time steps for step 1 was integrated to a water concentration of $1 \times 10^{-20}$ and time step 2, the instantaneous chemical kinetic times were computed to 0.1 ms. The output for time step 2 is every integration step after the water concentration was above $1 \times 10^{-20}$, with up to 20 points tabulated per case. The total number of points could exceed 20 000. Microsoft Excel (Microsoft Corporation, Redmond, WA) can handle up to 65 000 points.

The supplied kinetic mechanism was used for the full range of conditions without modification. Even though the mechanism was tested to a temperature of 3 000 K and 4 atm, we felt that the mechanism would extrapolate and give reasonable results for design since nothing else was available at the high temperature and high pressure conditions. The differences between
the H₂/air and the H₂/O₂ is the absence of nitrogen in the H₂/O₂ set, and in H₂/O₂ the maximum
temperatures were twice that of H₂/air and the maximum pressures were an order of magnitude
higher. We computed and correlated the chemical kinetic times over the full range of conditions.
For all time steps, calculations were performed isothermally using GLSENS for each
condition over a time of 0 to 3 ms. By computing the progress isothermally, the chemical rate
constants were nearly fixed and averaged over the total time for step one and instantaneous
chemical kinetic times were computed for step two:

\[ \frac{1}{\tau_{\text{average}}} = \frac{1}{\tau_{\text{total}}} \int \frac{dt}{\tau_{\text{instantaneous}}} \]  

(7)

The chemical kinetic time was determined as a unique value of temperature, pressure, and
instantaneous mole fractions of fuel and water. GLSENS computes the cumulative rate of
reaction for each species from all equations in the mechanism, so it is a simple matter to then
compute the chemical kinetic time for each species.

\[ \frac{dcH_2}{dt} \bigg|_{\text{total}} = \sum \frac{dcH_2}{dt} \bigg|_i \]  

(8)

For the fuel equation (4) the chemical kinetic time is given as

\[ \tau_{H_2} = -\frac{cH_2}{\sum \left( \frac{dH_2}{dt} \right)} \]  

(9)

This simple calculation was done using additional steps in Subroutine Out2 in the GLSENS
code (see appendix B). Values for the chemical kinetic time were calculated for each
concentration at each output time and each set of conditions. For time step 1, the trapezoidal rule
(using 1/τ) was used to average the chemical kinetic time to calculate the best value for each set
of conditions and the final numbers regressed over the complete set of cases to obtain the final
correlation.
A correlation could then be developed that determines the chemical kinetic time as a
function of the initial overall cell fuel/air ratio, pressure and temperature. The data was correlated
using the same method as previously mentioned for the equilibrium equations. Two correlations
for each step for each of the two species, one for the lean side and one for the rich side, were
obtained. This results in a total of 4 H₂ correlations for H₂/air and 2 H₂/O₂ correlations. As OH is
formed, the reaction rates get faster and the chemical kinetic time gets smaller. The chemical
kinetic time was correlated using two different steps to increase the accuracy of the calculation.
Step one is an average chemical kinetic time taken over 3.0 ms. Step two is an instantaneous
value that depends on the instantaneous amounts of fuel, water, and oxygen. Since we were not
tracking the radical concentrations, we were using H₂O to indicate the state of the radical
species. In other words for the reactions

\[ H_2 + OH = H_2O + H \]  

(10)
N + OH = NO + H etc. \hspace{1cm} (11)

The radicals could be correlated with H$_2$O because of the first reaction.

The user would switch from step one to step two when the molar concentration of water is greater than $1 \times 10^{-20}$ moles/cc. This value was chosen arbitrarily as a simple switch to transition when the rates accelerated. Step two can not be used with small concentrations of water because if the value of the water concentration was zero, the entire correlation time would go to zero and the rate would be computed as infinity.

### H$_2$ Kinetic Scheme For Step 1 (Average) and Step 2 (Instantaneous) Methods

The following is GLSENS input for the 21 step, 8 species mechanism from reference 1 and the 42 step NO equations from GRI-Mech 2.1, without the carbon reactions from reference 2 that were used for the H$_2$ calculations for a total of 63 mechanism steps and 15 species.

```
TAPE
NEW H2 MECHANISM OF S.M.Hwang, et. al. (reference 1)
&RTYPE GLOBAL=.TRUE.,GRONLY=.FALSE. &END

H O2 = OH O 6.73E+15 -0.499 26671.6
O H2 = OH H 5.06E+04 2.67 6289.2
OH H2 = H2O H 2.16E+08 1.510 3430.0
O H2O = 2.0O H 4.51E+04 2.7 14551.4
O O = O2 M 1.00E+17 -1. 0.0
THIRDBODY
H2O 18.5 H2 2.9 O2 1.2 END
THIRDBODY
H H = H2 M 6.4E+17 -1. 0.0
THIRDBODY
H2O 12.0 H2 4.0 H 26. END
H O = OH M 6.2E+16 -0.6 0.0
THIRDBODY
H2O 5. END
H OH = H2O M 8.4E+21 -2. 0.0
THIRDBODY
H2O 16.25 H2 2.5 END
H O2 = HO2 M 5.55E+18 -1.15 0.0
THIRDBODY
H2O 21.3 H2 3.33 O2 1.33 END
HO2 H = OH OH 8.4E+13 0.0 635.0
HO2 H = H2 O2 2.5E+13 0.0 693.1
HO2 H = H2O O 5.0E+12 0.0 1410.1
HO2 O = O2 OH 2.0E+13 0. 0.
HO2 OH = H2O O2 2.0E+13 0. 0.
HO2 HO2 = H2O2 O2 1.3E+11 0. -1630.0
HO2 HO2 = H2O2 O2 4.2E+14 0. 11999.5
M H2O2 = 2.0OH M 1.2E+17 0. 45506.7
THIRDBODY
H2O 6.0 O2 0.78 END
H2O2 H = HO2 H2 1.7E+12 0. 3776.3
```
The hydrogen mechanism was not changed for the H2/O2 calculation. Note, some reactions are bimolecular and some are trimolecular expressions so the kinetics code GLSENS was used instead of LSENS. However, the GLSENS code follows the method of LSENS developed by Radhakrishnan (ref. 6).
H₂/Air Equilibrium

Equilibrium correlations were generated by using Microsoft Excel to perform a multivariate linear regression on the large data set generated by the CEA program of reference 7. (The detailed procedure describing the regression used for both equilibrium and finite rate chemical times can be found in appendix A). CEA has a plot option for direct tabulation of the output data, for ‘f/a, P, T4 H2O, NO’. Although the equilibrium correlations were not usually used in the calculation of the chemical kinetic times, we feel that these equations could still be very useful for other calculations of T4 in well stirred reactors or plug flow calculations. Table 1 shows the H₂ equilibrium correlations for T4, and NOₓ for both the lean and rich cases. The exponential function did not correlate the complete data over the total equivalence ratio from 0.2 to 2.0, because of the peak in the values at the stoichiometric conditions. We chose to correlate the values from lean (φₒ = 0.2 to 1.) and then rich from (φₒ >1.0 to 2.0). A similar approach was used for the chemical kinetic times. Figure 2 is a parity plot showing the strength of the lean T4-H₂/air equilibrium correlation. This plot shows a minimal amount of scatter, mostly at an equivalence ratio of 1.0, indicating a good correlation (R² values greater than 0.9). R² is based on the logarithm of the variables (see appendix A). Using the logarithms, the errors are relative errors so errors at the small times are weighted equally to errors at large times. An R² of one is a perfect correlation. Although the scatter looks large for some parity plots, the mean error looks good over the 1000 points. The correlation is very good over a variable range of seven orders of magnitude. Note that the units of NOₓeq are mole fraction. This parity plot is typical of all the variables because of the good R² values obtained. The lean T4 and NOₓ equations were correlated over the complete temperature, pressure and phi range of independent variables in the Table Input.

\[ T4 = A(P)^a(T3)^b(\phi_o)^c \]  \hspace{1cm} (12)

\[ \text{NOx}_\text{eq (mole fraction)} = A(P)^a(\phi_o)^b \exp\left[ \frac{E}{T4} \right] \]  \hspace{1cm} (13)

Although these equations seem complex, they are simple to program and use. Calculations can even be done on a hand calculator.

<table>
<thead>
<tr>
<th>T4 eq Equations</th>
<th>A</th>
<th>Pressure</th>
<th>T3</th>
<th>( \phi_o )</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean T4</td>
<td>476.9</td>
<td>0.00419</td>
<td>0.261</td>
<td>0.432</td>
<td>0.936</td>
</tr>
<tr>
<td>Rich T4</td>
<td>1217.0</td>
<td>0.00727</td>
<td>0.120</td>
<td>-0.243</td>
<td>0.962</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOₓ eq Equations</th>
<th>A</th>
<th>Pressure</th>
<th>( \phi_o )</th>
<th>1/T4</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean NOₓ eq</td>
<td>0.616</td>
<td>-0.0153</td>
<td>-0.810</td>
<td>-11382.3</td>
<td>0.977</td>
</tr>
<tr>
<td>Rich NOₓ eq</td>
<td>21168.</td>
<td>-0.475</td>
<td>-4.080</td>
<td>-39583.4</td>
<td>0.991</td>
</tr>
</tbody>
</table>
Chemical Kinetic Times for H₂/Air

Step One Equations for H₂/Air

The following form of equation was used for the H₂ and NOₓ step one correlations:

\[ \tau = A(P)^a (\phi_o)^b \exp \frac{E}{T} \]  \hspace{1cm} (18)

where \( \tau \) is the chemical kinetic time in milliseconds, \( P \) is pressure in atm, \( f/a \) is the initial or overall mass fuel air ratio as in reference 2, and \( T \) is the temperature in Kelvin. The correlation is switched to Step Two when the water molar concentration is greater than \( 1 \times 10^{-20} \) moles/cc, see the next section.

The coefficients for each of the parameters in the correlations may be found in Table 3. R-square values have been included to demonstrate the strength of the correlation. R-squared is a measure of the error in the model; an R-squared value of one is ideal.

Since the radical and intermediate species concentrations are very small, the initial or overall fuel air ratio can be determined from the molar concentration of \( cH_2, cH_2O \) and \( cN_2 \) moles/cc as follows:

\[ \phi_o = \frac{f/a}{0.0292} \]  \hspace{1cm} (19)

Table 2.—Step One H₂/Air Chemical Kinetic Time Correlations

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>a</th>
<th>E</th>
<th>b</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂/Air</td>
<td>Lean</td>
<td>4.67E-5</td>
<td>-1.036</td>
<td>25068</td>
<td>0.539</td>
</tr>
<tr>
<td>H₂/Air</td>
<td>Rich</td>
<td>3.223E-5</td>
<td>-1.032</td>
<td>24223</td>
<td>1.832</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Lean</td>
<td>2.36E5</td>
<td>-1.670</td>
<td>45085</td>
<td>0.472</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Rich</td>
<td>1.831</td>
<td>1.484</td>
<td>49802</td>
<td>-5.91</td>
</tr>
</tbody>
</table>

All of the results presented here are correlated over the complete conditions listed in the Table Input, initial \( f/a \), temperature, and pressure of the reactor. Parity plots for the lean step one correlations have been created and may be found in figures 4 to 5. The x-axis contains values for the chemical kinetic time generated by the full mechanism GLSENS at each condition. The y-axis contains values calculated using the chemical kinetic time correlations above at the same set of conditions. This parity plot demonstrates how close the calculated value is to the full mechanism value and is a good measurement of the strength of the correlations. The rich parity plots are similar to the lean plots shown here and are not repeated.

Step Two Equations for H₂/Air

The following form of equation was used for both the Tau H₂ step two fuel and NOₓ correlations except for different constants. This form of the equation produced the best fit:
\[ \tau = A(P)^a (cH2)^b (cH2O)^c (\phi_o)^d \exp \frac{E}{T} \]  \hspace{1cm} (24)

where \( P \) is pressure in atm, \( cH2 \) is the instantaneous molar concentration of \( cH2 \) and \( cH2O \) is the instantaneous water concentration. We have preceded the symbol with a “c” to indicate molar concentration moles/cc was used and a “y” for mole fraction. Molar concentration is usually a primary variable of combustor computer codes. \( T \) is the mixture temperature in Kelvin. We have correlated to only the major species hoping that \( cH2O \) will track the minor species (OH, H, O, etc.) to allow good overall correlation and easy to use equations.

The coefficients for each parameter are given in table 3. Parity plots for the step two lean \( H2 \) correlations can be found in figures 6 and 7. These figures show considerable scatter for the fuel and small amount for NOx. The hydrogen mechanism used is difficult to model with the current equations as indicated by the scatter. However the correlations are good for design and large numerical calculations where kinetics are important.

<table>
<thead>
<tr>
<th>( H2/\text{Air} )</th>
<th>( A )</th>
<th>( a )</th>
<th>( E )</th>
<th>( b )</th>
<th>( c )</th>
<th>( d )</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>1.89E-14</td>
<td>0.605</td>
<td>18497</td>
<td>-0.803</td>
<td>-0.630</td>
<td>2.41</td>
<td>0.604</td>
</tr>
<tr>
<td>Rich</td>
<td>5.91E-34</td>
<td>3.80</td>
<td>26071</td>
<td>-3.80</td>
<td>-0.511</td>
<td>8.24</td>
<td>0.431</td>
</tr>
<tr>
<td>( \text{NO}_x )</td>
<td>Lean</td>
<td>1.45E-10</td>
<td>-0.0092</td>
<td>48747</td>
<td>-0.479</td>
<td>01.042</td>
<td>2.052</td>
</tr>
<tr>
<td>Rich</td>
<td>1.26E-19</td>
<td>1.566</td>
<td>49662</td>
<td>-2.01</td>
<td>-0.932</td>
<td>5.99</td>
<td>0.869</td>
</tr>
</tbody>
</table>

**H2/O2 Equilibrium Correlations**

The \( H2/O2 \) presentation closely follows the \( H2/\text{air} \) presentation. The lean and rich \( H2/O2 \) equilibrium correlations can be found in table 4, respectively. A parity plot for the lean \( H2/O2 \) T4 equilibrium correlation can be found in figure 8. \( T3 \) is the initial temperature for \( H2 \) and \( O2 \), whose state were taken to be gaseous. These temperatures for rockets is considerably lower than for \( H2/\text{air} \) combustors.

\[ T4 = A(P)^a (\phi_o)^b (T_{3H2})^c (T_{3O2})^d \]  \hspace{1cm} (25)

\[ T4 = A(P)^a (\phi_o)^b (T_{3H2})^c (T_{3O2})^d \]  \hspace{1cm} (26)

\[ T4 = A(P)^a (\phi_o)^b (T_{3H2})^c (T_{3O2})^d \]  \hspace{1cm} (27)

\[ T4 = A(P)^a (\phi_o)^b (T_{3H2})^c (T_{3O2})^d \]  \hspace{1cm} (28)

<table>
<thead>
<tr>
<th>( \text{Lean T4} )</th>
<th>( A )</th>
<th>( a )</th>
<th>( b )</th>
<th>( c )</th>
<th>( d )</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.46E-109</td>
<td>0.0248</td>
<td>0.393</td>
<td>8.96</td>
<td>58.4</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>( \text{Rich T4} )</td>
<td>0.96</td>
<td>0.021</td>
<td>-0.427</td>
<td>0.395</td>
<td>1.752</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Where the equivalence ratio phi for \( H2/O2 \) is given by:

\[ \phi_o = \frac{cH_o^0}{2*cO_2^0} \]  \hspace{1cm} (30)
Chemical Kinetic Times For H\textsubscript{2}/O\textsubscript{2}

Step One Equations for H\textsubscript{2}/O\textsubscript{2}

The lean and rich step one H\textsubscript{2}/O\textsubscript{2} chemical kinetic time correlations are of the following form:

\[ \tau = A(P)^a (\phi_o)^b \exp\left(\frac{D}{T}\right) \]  

(31)

where \( P \) is pressure in atm, \( \phi \) is the initial or overall equivalence ratio and \( T \) is the temperature in Kelvin.

The initial or overall fuel oxygen ratio can be determined from either the initial or the mixture molar concentrations of \( cH_2 \), \( cH_2O \) and \( cO_2 \) moles/cc. Assuming that the radical and intermediate concentrations are small, the initial \( cH_2 \) concentration is:

\[ cH_2^O = cH_2 + cH_2O \]  

(32)

A summary of these correlations can be found in table 5. Parity plots for the lean step one H\textsubscript{2}/O\textsubscript{2} correlations can be found in figure 9. These parity plots show minimal scatter, which is consistent with the high R-squared values of the lean correlations.

| Table 5.—Step One H\textsubscript{2}/O\textsubscript{2} Chemical Kinetic Time Correlations |
|-----------------|--------|------|------|-------|
| Lean            | 2.632E-5 | -1.005 | 2424. | 0.771 | 0.975 |
| Rich            | 1.397E-5 | -1.024 | 2479. | 1.141 | 0.971 |

Two Step H\textsubscript{2}/O\textsubscript{2} Chemical Kinetic Times

Step Two Equations for H\textsubscript{2}/O\textsubscript{2}

The following form of equation was used for all lean and rich H\textsubscript{2}/O\textsubscript{2} step two correlations:

\[ \tau = A(P)^a (cfuel)^b (ch20)^c (\phi_o)^d \exp\left(\frac{E}{T}\right) \]  

(35)

Table 6 provides a summary of these correlations, and lean parity plots can be found in figure 10.
Table 6.—Step Two H₂/O₂ Chemical Kinetic Time Correlations

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>a</th>
<th>E</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Rsquared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>1.114E-13</td>
<td>0.645</td>
<td>8028</td>
<td>-1.000</td>
<td>-0.664</td>
<td>1.785</td>
<td>0.358</td>
</tr>
<tr>
<td>Rich</td>
<td>2.196E-24</td>
<td>2.544</td>
<td>25388</td>
<td>-3.079</td>
<td>0.035</td>
<td>4.24</td>
<td>0.315</td>
</tr>
</tbody>
</table>

Comparison of Kinetic Times for Hydrogen and NOₓ for Multiple Fuels

The multiple fuel kinetic times at 10 atm and 2000 K are shown for step one in figure 11 and for step two in figure 12. The Jet-A and methane predictions were obtained from reference 2. For step one the kinetic times are one millisecond for lean mixtures except for Jet-A which was 10 µs. The Jet-A mechanism consisted of an irreversible breakup to CH and C₂H₂ followed by oxidation of the products. These times are the average startup times computed when the water concentration is less than 1×10⁻²⁰. Without nitrogen, the rate for H₂/O₂ is faster than H₂/air. Step two, figure 12, is computed with an inefficiency of 0.5, or 50 percent reacted. After the radicals form, the rates are much faster being 1µs for H₂/O₂ at an equivalence ratio of 0.6. The smaller the chemical kinetic time, the faster is the reaction. The chemical kinetic times for NOₓ step one and two (INEFF = 0.5 see below) are shown in figure 13. The NOₓ production rate with hydrogen was two orders of magnitude slower than for Jet-A or methane.

Computation of the Fuel and Water Concentrations for Step Two

In order to use the step two instantaneous correlations, one needs to know the instantaneous fuel and water concentrations and the temperature and pressure. Remember, these correlations were based on the model concentrations for H₂ and H₂O. The concentrations can be easily computed from the inefficiency, INEFF, where

\[ INEFF = \frac{cH_2}{cH_2^o} \]  

If \( cH_2^o \), the initial hydrogen concentration is unknown it equals:

\[ cH_2^o = cH_2 + cH_2O \]  

or can be computed from the initial f/a or initial equivalence ratio \( \phi_o \) from:

\[ cH_2^o = \frac{f/a * 29/2 * P}{(1 + f/a * 29/2)} \]  

where \( f/a = \phi_o * 0.0292 \)

\[ \rho = \frac{P}{82.056*T} \text{ moles/cc} \]
Then, from equations (38) and (39), the concentrations are:

\[
c_{H_2} = cH_2^o \cdot \text{(INEFF)} \quad (42)
\]

\[
c_{H_2O} = cH_2^o - c_{H_2} = cH_2^o \cdot (1 - \text{INEFF}) \quad (43)
\]

\[
cO_2 = cO_2^o - \frac{1}{2} cH_2O \quad (44)
\]

\[
cN_2^o = \frac{0.79}{0.21} \cdot cO_2^o \quad (45)
\]

The initial equivalence ratio \( \phi_o \) for either \( H_2/\text{air} \) or \( H_2/\text{O}_2 \) is given by:

\[
\phi_o = \frac{1}{2} \cdot \frac{cH_2^o}{cO_2^o} \quad (46)
\]

These values were substituted into step two kinetic time constants equations at 10 atm 2000 K and an INEFF = 0.5 and plotted in figure 13.

The step two chemical kinetic times can be computed from equations (24) and (35) above for a \( \tau \) given by the values in tables 3 and 6 at conditions of \( P = 10 \text{ atm}, T = 2000 \text{ K}, \) and \( \text{INEFF} = 0.5. \)

**Comparison of the Model With the Full Mechanism Kinetics**

The predictions of the full mechanism (\( H_2, H_2O,OH, \) and \( H_2O \)) are plotted in figures 14 and 15, and then our model predictions are superimposed on the calculations. The model predictions are slower than the full mechanism predictions. We have not included the intermediate species in our predictions, but we correlate the chemical kinetic times to the overall species concentrations. The inefficiency from the above equation (38) is integrated using the chemical kinetic time, \( \tau (\tau) \).

\[
\text{INEFF} = \frac{cH_2}{cH_2^o} = \exp\left(\int -\frac{dt}{\tau_{au}}\right) \quad (47)
\]

where \( \tau_{au} = \tau_1 \) at the start or

\[\tau_2 = \tau_{au} \text{ when } c_{H_2O} > 1\times10^{-20}.\]

This single equation was integrated by backward differencing for a time step of \( 1\times10^{-6} \text{ ms}. \) Even at the first time step of \( 1\times10^{-6} \text{ sec}, \) the water concentration is at \( 1\times10^{-13}, \) so only step two was used in these calculations. One could have used a Runge Kutta scheme, but this simple example could be quickly implemented on an Microsoft Excel spreadsheet. The chemical kinetic
time for this condition is about 10 µs so the integration requires only about 3000 steps. The agreement is fair for the three species of interest. As expected the OH, H, and O increases at almost the same rate as the H₂O, so it is a good indicator of the reaction rate.

**Computation of NOₓ PPM**

One can use the correlations for computing premixed NOₓ levels for well mixed combustors. The NOₓ in parts per million (ppm) or the emission index (EI) can be computed using equation (6).

\[
NOₓ \left( \frac{mole}{cc} \right) = \frac{t}{\tau_{NOₓ}}
\]  

(6)

The chemical kinetic time \( \tau_{NOₓ} \) ms cc/mole was integrated for a stoichiometric equivalence ratio in figure 14. A NOₓ concentration of \( 1 \times 10^{-9} \) moles/cc is predicted.

The concentration in ppm is calculated as follows:

\[
NOₓ(ppm) = \frac{NOₓ \left( \frac{mole}{cc} \right)}{\rho \left( \frac{mole}{cc} \right)} \times 10^6 \quad \text{where} \quad \rho = \frac{P}{RT} = 6.09 \times 10^{-5}
\]  

(48)

The NOₓ concentration in ppm is then 16.42 for one millisecond residence time.

This result is consistent with the data.

**Auto Ignition Times for H₂/Air**

Hydrogen reacts explosively at low temperatures and pressures as shown by the dashed line in figure 16. Mixtures to the right of the curve explode (produce a rapid pressure rise for a constant volume reactor), while mixtures to the left are stable. This was computed by A.K. Oppenheim (ref. 8) using a full mechanism similar to the one used in this report with a one second reaction time.

Auto ignition times using the simple model and a given formula were calculated and compared for the H₂/air system. The auto ignition time for the simple model is based on the recommendation of reference 9, where the time required for ignition is for 5 percent of the fuel to react.

\[
Fuel = F_0 e^{-t/\tau}
\]  

(49)
If \( \frac{F_{\text{fuel}}}{F_o} = 0.95 \) then \( \frac{t}{\tau} = 0.0513 \) and \( t_{\text{auto ignition}} = 0.0513 \times \tau_{\text{fuel}} \). \hspace{1cm} (50)

Note that \( \tau_{\text{fuel}} \) decreases as \( f/a \) decreases. We used an equivalence ratio of 0.2 (fastest rate from figure 11) with the lean equation.

We limited our correlations to pressures above 0.5 atm. The model above 0.5 atm fits the data well, but it will not capture the “S” shape of the classical data. At low pressures and temperatures, our model would overpredict the stability of the mixture.

The auto ignition delay time was also compared to the correlations of reference 7, shown in figure 17. The formula for calculating the auto ignition time for H\(_2\) (ref. 7) is given by:

\[
\tau P(\text{milliseconds} \cdot \text{atm}) = 8.6 \times 10^{-6} \exp \left[ \frac{9600}{T} \right]
\] \hspace{1cm} (51)

Figure 17 shows a plot of the auto ignition time versus temperatures that the auto ignition time given by the simple model compares well with the data in reference 8 for \( \tau_2 \) and \( \text{INEFF} = 0.95 \) at the higher temperature. These correlations had a larger activation energy than the expressions of reference 8.

**Conclusions**

A simplified kinetic correlation scheme for H\(_2\)/air and H\(_2\)/O\(_2\) fuels resulted in a two-time step correlation that calculates chemical kinetic times for fuel and NO\(_x\). These models are simple enough to use in spreadsheet calculations and they represent the data well. These chemical kinetic time equations can then be used in a numerical combustor code to compare the chemical kinetic time with the turbulent mixing time at every grid point and for every iteration step. Strong step one \((R^2 > 0.9)\) and mild step two \((R^2 \sim 0.4)\) H\(_2\) correlations were developed \((R^2 > 0.9)\) for all relations, both the H\(_2\)/air and H\(_2\)/O\(_2\) correlations. However, because we are trying to correlate so many values over a wide range of conditions, scatter error exists. These model equations are believed to be extremely useful in the comparison of kinetic reaction and turbulent mixing times and in the computation of kinetic rate results. In our model we have only two equations and four major species, therefore the step size can be large and the rates are no longer coupled. This should be very fast.
Appendix A

Multiple Linear Regression With Microsoft Excel

Performing Multiple Linear Regression on a Logarithmic Equation

This regression technique may be used to develop a correlation between a dependent variable and one or more independent variables. First the equation to be used must be linearized. An example of an exponential equation used here is shown below.

\[
A = BC^e D^d \exp\left(\frac{e}{T}\right) \quad \text{(Non-linear form)} \quad (A1)
\]

\[
\ln(A) = \ln(B) + c \ln(C) + d \ln(D) + \frac{e}{T} \quad \text{(Linear form)} \quad (A2)
\]

Columns of data containing the independent variables (natural log of C, natural log of D, 1/T,) and the independent variable (natural log of A) were contained in an Excel spreadsheet. (It is easiest to have the independent variables adjacent to each other, followed by the dependent variable.)

The multiple variable regression analysis is located in the Data Analysis Toolpak. The Data Analysis Toolpak must be added into the spreadsheet if it is not already running in Excel. In order to add it, select the ‘Add ins’ button from the Tools menu. Click on the Analysis Toolpak option and click OK to accept this choice. Then choose ‘Data Analysis’ from the Tools menu and double click on ‘regression’. Click on the ‘Input Y Range’ box and highlight the column that contains the logarithm of the dependent variable and press return. Click on the ‘Input X Range’ box and highlight the columns containing all of the independent variables. (In this case ln(C), ln(D) and 1/T). Press OK to begin the regression. The regression data will be contained in a new worksheet. The variable labeled ‘intercept’ will be equal to the natural log of coefficient B. The remaining coefficients (c,d, and e) will be given as X Variable 1,X Variable 2 and X Variable 3 respectively. This process is quick and accurate for Excel 2002 and was used for all equations given in this report. Excel has to capability to handle one dependent variable and multiple independent variables. As many as 14,000 points were used in the regressions. Excel can regress up to 65000 points with one dependent variable and 8 independent variables.
Appendix B

Modifications to GLSENS for Obtaining Output for the CH4 Computations

C ALREADY DONE IN DIFFUN
C MODIFICATIONS TO MAIN
  COMMON/marek/foa,atauf,atauco,atauno,nc,eratio,edd,timi,nco
C READ AND CONVERT INPUT, PERFORM PRE-KINETIC CALCULATIONS
  RXORDR=.TRUE.
  write(16,8)
  8 format(' fuel, nc, lnP,1/T,ln phi, ln(atau f),atauf,millisec')
  write(18,11)
  11 format(' nox, nc, lnP,1/T,ln phi ln(atau f),atauf,millisec')
  icount=0
  CALL KINP
  5 continue
  fo=0.
  IF (NEXT) GO TO 55
  65 TIME1 = SECCPU(0.0)
  IF (WSFLOW) WELSTR = .TRUE.
  C AFTER COMPLETION OF EACH TEST CASE, TABULATE THE AVERAGE CHEMICAL
KINETIC TIMES
    pln=sngl(dlog(p))
    TLN=sngl(1.d0/T)
    t1000=log(1000./sngl(T))
    fo=0.
    phi=foa/0.0292
    if(foa.gt.0.)FO=log(phi)
    AF=0.
    ACO=0.
    ANO=0.
    if(atauf.gt.0.)AF=log(atauf)
    if(atauno.gt.0.)ANO=log(ATAUNO)
    icount=icount+1
    write(0,31)icount,nc,nco,P,T,phi,timi
    C   WRITE(14,7)nc,PLN,TLN,FO,AF,ACO,ANO,timi
    WRITE(14,31)icount,nc,nco,P,T,phi,timi
    31 format(i7,2i10,f10.2,f10.0,f10.3,1p,1e13.4)
    7 format(i10,1p,9e13.4)
    write(16,7)nco,pln,tln,fo,af,atauf,timi
    write(18,7)nco,pln,tln,fo,ano,atauno,timi
    atauf=0.
    nco=0
    nc=0
    atauno=0.
    CALL RINP
  GO TO 5

C MODIFICATIONS TO OUT2 OF LSENS COMPUTE STEP ONE AND STEP TWO FOR EACH
PRINT STATION

C h2lab.f 2/16/2005
C COMPUTE MOLAR CONCENTRATIONS
C ALREADY DONE IN DIFFUN
420  foa=eratio*0.0292
phi=eratio
phi1n=log(\phi)
tn=timil
trr=sngl(T)
c write(6,1605)time
1605 format(' time ',e14.4)
418 if(nc.gt.0)goto 427
write(10,1)
1 format(' TITLE= P atm T K f/a coc h2 nox time')
write(26,444)dspnm(5),dspnm(2),dspnm(1),dspnm(4),dspnm(3),dspnm(6)
1,dspnm(10)
444 format(' timil   ',1p,13(3x,a8,2x))
C calculate the initial conditions for the averaging
nc=1
nco=1
NC2=1
t0=0.
areaf=0.
tauf=0.
tauono=0.
areano=0.
atauf=0.
atauno=0.
do 600 i=1,ls
if(dspnm(i).eq.'H2 ')ih2=i
if(dspnm(i).eq.'H2O ')iih2o=i
if(dspnm(i).eq.'NO ')ino=i
if(dspnm(i).eq.'O2 ')io2=i
600 continue
C
C STEP 1 INTEGRATION
C
C set initial fuel concentration CH2MI
CH2MI=SNGL(PRC(ih2))
427 continue
Cnox=sngl(prc(ino))
 CFUEL=(prc(ih2))
CH2OM=CH2MI-CFUEL
if(ch2om.gt.1.d-20.and.nco.gt.8)goto 504
IF(NCO/50*50.EQ.NCO)write(10,423)nco,P,T,phi,cfuel,nh2osl
1timil
423 format(i4,f5.1,f8.1,1p,8e10.3)
C calculate the initial conditions for the averaging
if(nc.lt.2)goto 1500
if(timil.gt.1.)goto 1500
if(nc.eq.1)tstart=timil
if(nc.eq.1)t0=timil
if(nc.eq.1)taufo=-(prc(ih2)/W(ih2))*1.d3
C if(nco.eq.2)edd=15.*tauf
if(tn.eq.t0)goto 424
if(W(ih2).ne.0.)tauf=-(prc(ih2)/W(ih2))*1.d3
if(nc.eq.q)atauf=tauf
if(tauf.le.0.)goto 899
nco=nco+1
areaf=areaf+(1./tauf+1./tauf)/2.*dble(tn-t0)
timet=timil-tstart
atauf=dble(timet)/areaf

NASA/TM—2005-213619 20
if(nco/1*1.eq.nco)write(11,423)nc,P,T,phi,cfuel,O2,tauf,atauf,ltimil
tauf=tauf
xrate=(w(ino))
424 if(nco.eq.1)tauni=(1.D0/(xrate))*1.e3
tauno=sngl(1.D0/(xrate))*1.e3
if(t0.eq.tn)goto 339
if(tauno.lt.0.)go to 339
areano=areano+(1./tauno+1./tauni)/2.*dble(tn-t0)
atauno=dble(timet)/areano
if((nc/10*10).eq.nc)write(13,501)nc,P,T,cnox,tauno,
a ratio, timil
339 continue
338 format(i7,1e12.3,7e12.4)
t0=tn
504 continue
431 format (f12.2,3e13.5,f8.3,f8.3,e13.5)
do step 2 calculations
IF(CH2OM.LT.1.d-20)GOTO 899
if(W(ih2).ne.0.)tauf=-(prc(ih2)/W(ih2))*1.d3
xrate=(w(ino))
tauni=(1.D0/(xrate))*1.d3
pl=dlog(p)
tol=1./T
cfuel=(prc(ih2))
h2o=sngl(prc(iih2o))
H2OML=dLOG(CH2OM)
fo=dlog(cfuel)
if(W(ih2).ne.0.)tauf=-(prc(ih2)/W(ih2))*1.d3
if(tauf.le.0.)goto 899
tal=dlog(tauf)
if(taln.gt.0.)taln=dlog(tauni)
NC2=NC2+1
if(nc2/100*100.ne.nc2)goto 899
if(tauf.gt.5..or.tauf.lt.1.e-6)goto 899
if(timil.gt.1.)next=.true.
if(timil.gt.1.)goto 1500
write(10,423)nc2,P,T,phi,cfuel,h2o,ch2om
1,tauf,timil
write(26,447)timil,prc(5),prc(2),prc(1),prc(4),prc(3),prc(6),
1,prc(10)
447 format(1p,9e13.4)
write(27,900)NC2,timil,philn,pl,tol,fo,h2oml,tal,tauf,ch2om
write(28,900)NC2,timil,philn,pl,tol,fo,h2oml,taln,taun
900 format(I5,1e10.3,1p,9e11.3)
if (nc.gt.2)go to 502
write(6,1602)ih2,ihi2o
1602 format(' ih2 ',',i5,' iih2o ','i5')
coci=prc(ih2)/ch2mi
if(coci.gt.0.)totau=-log(coci)
write(6,1600)timil,tauf,atauf,h2o1,h2oml
1600 format(' timil ',',e12.3,' tauf ',',e12.3,' atauf ',',e12.3,
1' h2o1 ',',e12.3,' h2oml ',',e12.3)
write(6,1603)ch2mi,cfuel,ch2om
1603 format(' ch2mi ',e12.3,' cfuel ',e12.3,'ch2om ',e12.3)
write(6,1601)oci,totau
1601 format(' h2/h2i ',e12.3,' tim1/tau overall ',e12.3)
899 continue
501 format(i4,f7.4,f7.1,4e12.5,f6.3,f9.3)
1500 continue
nc=nc+1
if(nc.gt.3)goto 502
DO 435 IJ=1,MAX
  IF (IJ.GT.LS.OR.IJ.GT.LR) GO TO 435
  TCON(IJ)=SNGL(PRC(IJ)/W(IJ))
  FMOL=SNGL(SIGMA(IJ)*MIXMW)
  WRITE (LWRITE,175) DSPNM(IJ),PRC(IJ),FMOL,W(IJ)
430  WRITE (LWRITE,185) IJ,RATE(IJ),PRX(IJ),EQUIL(IJ)
C430  continue
435  CONTINUE
502 IF (WELSTR) GO TO 446
Appendix C

Run Input for GLSENS

Run input for H2 for GLSENS TYPICAL FOR STEP ONE AND TWO
H2/AIR INPUT
CO2   AR
TIME  PRESSURE       H2
  &prob TCON=.TRUE.,CT0=0.5,
  IPRINT=1,end=1.e-4,&end
  &start time=0.,ERATIO=0.3,SCC=0.0,SCOX=0.,SCH=2.0,
  NOXRAT=3.76,ARAT=0.,CRAT=0.,T=1000.,&end
END
  &solver mxstep=20000,emax=1.e-15,atolsp=1.e-15,maxstp=190000,&end
INIT
  ALLSP   END
SENSVAR
  ALLSP   END
REAC
FINIS

H2O2 INPUT FOR H2/O2 STEP ONE AND TWO
TIME  PRESSURE       H2
  &prob TCON=.TRUE.,CT0=0.5,
  IPRINT=1,END=1.E-4,&END
  &start time=0.,ERATIO=0.1,SCC=0.0,SCOX=0.,SCH=2.0,
  NOXRAT=0.0,ARAT=0.,CRAT=0.,T=1000.,&end
END
  &solver mxstep=20000,emax=1.e-15,atolsp=1.e-15,maxstp=190000,&end
INIT
  ALLSP   END
SENSVAR
  ALLSP   END
REAC
FINIS
References

Figure 1.—Magnussen mixing model.

Figure 2.—H₂/air T4 parity (lean) R² = 0.936.
Figure 3.—NO\textsubscript{X} mole fraction equilibrium parity (lean) \(R^2 = 0.977\).

Figure 4.—Kinetic H\textsubscript{2}/air parity plot step one (lean) \(R^2 = 0.994\).
Figure 5.—Kinetic H₂/air NOₓ parity plot step one (lean) $R^2 = 0.647$.

Figure 6.—Kinetic H₂/air parity plot step two (lean) $R^2 = 0.604$. 
Figure 7.—Kinetic \( \text{H}_2/\text{air NO}_x \) parity plot step two (lean) \( R^2 = 0.976 \).

Figure 8.—Equilibrium \( \text{H}_2/\text{O}_2 \) T4 parity plot (lean) \( R^2 = 0.91 \).
Figure 9.—Kinetic H₂/O₂ parity plot step one (lean) $R^2 = 0.956$.

Figure 10.—Kinetic H₂/O₂ parity plot step two (lean) $R^2 = 0.494$. 
Figure 11.—Kinetic $\tau_{\text{fuel}}$ at 10 atm and 2000 K for fuel reactions step one (lean and rich), time = 0.

Figure 12.—Kinetic $\tau_{\text{H}_2}$ at 10 atm and 2000 K step two (lean and rich), INEFF = 0.5.
Figure 13.—Kinetic $\tau NO_x$ at 10 atm and 2000 K for NO$_x$ reaction step one multiple fuels, time = 0, $\tau 2$ for H$_2$/air (lean and rich), and INEFF = 0.5.

Figure 14.—H$_2$/air concentration versus time, 2000 K, 10 atm, $\phi_0 = 1$. 
Figure 15.—H₂/O₂ concentration versus time, 2000 K, 10 atm, φ₀ = 1.

Figure 16.—Explosion limits for H₂ at low pressure.
Figure 17.—Autoignition times of H₂, reference 9.

Melissa Molnar and C. John Marek

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191


A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (>1×10⁻²⁰ moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H₂ and NOₓ are obtained for H₂/air fuel and for the H₂/O₂. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T₃). High values of the regression coefficient R² are obtained.