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Abstract

The current standards for handling uncertainty in control systems use interval bounds for

definition of the uncertain parameters. This type of approach gives no information about the

likelihood of system performance but simply gives the response bounds. When used in design,

current methods of µ-analysis and can lead to overly conservative controller designs. With

these methods worst case conditions are weighted equally with the most likely conditions. This

research explores a unique approach for probabilistic analysis of control systems. Current

reliability methods are examined, First Order Reliability Methods and Monte Carlo using

sampling procedures such as Hammersley Sequence Sampling, showing the strong areas of

each in handling probability. A hybrid method is developed using these reliability tools for

efficiently propagating probabilistic uncertainty through classical control analyses problems.

The method developed is applied to classical Bode and Step response analysis as well as

analysis methods that explore the effects of the uncertain parameters on stability and

performance metrics. The benefits of using this hybrid approach for calculating the mean and

variance of response cumulative distribution functions are shown. Results of the probabilistic

analysis of a missile pitch control system show the added information provided by this hybrid

analysis. Finally, a probability of stability analysis is performed on both the missile pitch

control problem and a benchmark non collocated mass spring system.
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Chapter 1
Introduction

The demand to improve performance of modern and future aerospace vehicles is going to

continue to grow as we push new limits. Retaining the level of safety seen in aerospace vehicles

will be just as demanding in the future. Increasing system performance while maintaining

reliability or safety requirements can be provided by uncertainty based design methods. Using

probabilistic information about the uncertainty can help to develop systems that are not overly

conservative on performance simply to ensure an acceptable response to extreme conditions.

The goal of this research is the development of a method for incorporating probabilistic

uncertainty into classical control systems analysis tools.

1.1 Probabilistic Uncertainty

Using the definition in [1] uncertainty based design can be split into two categories based

on desired results, robust design and reliability based design. Robust design seeks insensitivity

to small uncertainties, while reliability based design seeks a probability of failure less than

some limit. A large amount of work has been done on robust design with respect to control

systems, however less work has been done incorporating probability or reliability based design

in controls. In both controls and aerospace arenas, the traditional design process has been done

using norm-bounded descriptions of uncertainties, essentially safety factors and knockdown

factors. While these safety factors give limits to the problem, information about the likelihood
1



of particular events is ignored. Such methods can lead to overly conservative designs that

sacrifice performance to accommodate the worst case conditions. A probabilistic approach to

uncertainty uses information about the likelihood of parameters in determining the likelihood

of the response. Figure 1-1 shows a comparison between norm-bounded uncertainty (all values

have equal likelihood) and probabilistic uncertainty, where information about the likelihood of

parameter values in included. This comparison provides the focus for this research, to develop

classical control analysis that includes probabilistic uncertainties to aid in finding the best

controller that meets both performance and safety requirements.

To further expand on the concept of probabilistic analysis of Single Input Single Output

(SISO) control systems, the topic can be explained with a bit more clarity. While this research

focuses on uncertainty analysis, the type of uncertainty design that the analysis will support

must be considered. When probabilistic uncertainty is included, robust design looks at

conditions near the mean reducing sensitivity to small variations about that mean. Reliability

based design is concerned with conditions near the tails of the probability density function

(PDF), ensuring that the probability of the system response being outside a safe range is below
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a given limit. Along with two types of uncertainty based design are two types of uncertainty;

model uncertainty where the physics defining the problem are only approximately correct, and

parameter uncertainty where basic coefficients in the governing equations of the system are

uncertain. Throughout this paper uncertainty will be pertaining to parameter uncertainty, model

uncertainty will be excluded. Given probabilistic parameter uncertainty a probabilistic

definition of the system response be used to make decisions about the reliability and robustness

of the system. Figure 1-2 diagrams the propagation of parameter uncertainty through a process

that produces a response distribution, which is the goal of the tools contained in this paper. An

example of the process in Figure 1-2 with respect to classical control analysis methods would

be a Bode or step response.

1.2 Current State of Probabilistic Control Analysis

A review of the state of current research pertaining to control design and analysis of

systems with probabilistic parameter uncertainties indicate that there exists only a small

amount of literature pertaining directly to this topic. A large amount of work has been done in
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the field of robust design, however; this work predominately uses norm-bounded uncertainty

containing no information about the probability distribution of parameters. A few papers like

those directed by Stengel [2],[3] take into account probability when working with parameter

uncertainty in control systems and will be discussed in section 1.3. In this research, a different

approach is described for using probabilistic parameter information and reliability methods to

analyze systems. There has also been a large amount of research in the past two decades on

reliability analysis, mostly coming from the civil/structures engineering field and is gaining

more use in other engineering disciplines. The dominant amounts of information pertaining

directly to either classical control analysis or reliability analysis led to splitting the survey of

current work into a section on controls and a section on probabilistic design methods. The

methods that include probability in control analysis are incorporated into section 1.3 on

controls.

1.3 Controls

Classical control design techniques are those frequency domain and graphical techniques

pioneered by Bode, Nyquist, Nichols, others [4] [5]. The developmental efforts of these

researchers laid the groundwork for analysis of control systems and methods for describing

stability robustness. Gain and phase margins are the most widely used metric to express

robustness. There has been extensive work over the years on robust control design facing

parameter uncertainty, however; these methods have been based on norm bounded uncertainty.

Methods for handling robust control design grew as complexity of systems increased, leading

to current techniques of µ-analysis and  design. The structured singular value, µ, is a

mathematical object used to analyze the effects of uncertainty in linear algebra problems,

particularly helpful in analysis of effects due to parameter uncertainty on stability[6]. The µ

H∞
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framework is based on linear fractional transformations used to separate the uncertainties from

matrices representing the system. The desired separation is seen in Figure 1-3, where ∆ is a

diagonal matrix of individual parameter uncertainties and M is the transformed system with

interconnections to the uncertainty. µ-analysis then uses a set of tools to connect the system

with controllers or other system matrices and analyze the effects of different values for

individual uncertainties on the overall system performance. 

 is a controller optimization technique that best meets certain performance criteria. It

can also be used with µ-analysis to produce an optimal controller that is still robustly stable

given the system uncertainties [7]. More on these methods are included in references [6], [8],

[1]. It can be seen in references[8] and [9] that current µ-analysis approach still considers

uncertainty in the system as a norm bounded set. The drawback of this approach is that all

uncertain values are given an equal likelihood of occurrence. Realistically most physical

random variables have some sort of probabilistic distribution. Thus µ-analysis and  methods

of robust control are designing for the worst case scenario by giving extreme conditions the

same importance as the most probable conditions[10]. Both of these methods attempt to reduce

the conservatism in the design imposed by interval bounds on the uncertain parameters. There

is still the downfall of designing for extreme cases with this description of the uncertain

variables. When designs are developed using norm-bounded uncertainties, systems often lack

the performance characteristics that could be achieved for the most likely cases. 

Figure 1-3: Uncertainty Separated Into Delta Block
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There has also been some work done on robust pole placement for system design with

uncertainty. Again this approach uses interval bounds to define uncertainties in the

system[11],[12]. This approach has the same problem of not being able to design for better

performance at the most likely cases. Probabilistic information, not just interval bounds, about

the uncertainty is required to design for performance at the most likely cases and still meet

requirements at extreme values, 

A few research investigations have looked at incorporating the probabilistic parameter

information into the design process. Stochastic robustness of linear time invariant systems has

been analyzed by looking at probability distributions of the closed loop eigenvalues[13].

Probabilistic robustness is then measured by the probability that all eigenvalues lie in the left

half plane. In this work, Monte Carlo simulation (MCS) is used to find the distribution of

eigenvalues in the complex plane; the stochastic robustness is then the probability of stability

for the system. Continued work in the stochastic robustness analysis has included other

performance metrics and has been applied to designing an optimal controller that reduces the

probabilities of unacceptable performance[13],[2],[3]. All of these works use only MCS for

probability calculations and focus on designing a controller for a system with specified

parameter uncertainties. This research focuses on analysis of system responses with defined

parameter distributions and how varying uncertainty affects probability of stability. 

1.4 Probabilistic and Reliability Analysis

A lot of research also exists in the areas of reliability analysis and reliability methods.

Reliability methods are based on the concept of a limit state function that separates a failure

region from a safe region[14]. The definition of failure can be defined as any undesirable

behavior in the system. This limit state function, g(x), separates the failure region g(x)≤0 from
6



the safe region g(x)>0, so the probability of failure Pf =P[g(x)≤0]. Pf is calculated with the

following integral, where fX is the joint PDF of the random variables, X, that is,

  (1.1)

This integral can become unmanageable for high dimensional systems or when the

algorithm for g(x) is complicated. Numerical error is also a problem for very low

probabilities[14]. Reliability methods are a way of approximating a solution to the given

integral with reduced computational effort. A few of the reliability based design tools are

Monte Carlo analysis, First Order Reliability Method (FORM), and Second Order Reliability

Methods (SORM). 

1.4.1  Sampling and Monte Carlo

Monte Carlo is a direct numerical simulation tool that is simple but can be computationally

intense. Random samples are generated with the desired distributions for uncertain parameters,

and then the system is simulated with each set of generated samples. The number of results

produced in the failure region is divided by the total number of results giving an approximate

Pf. If an indicator function is defined such that it has the value 1 in the failure region and 0 in

elsewhere, i.e. equation (1.2),

 (1.2)

then the integral in equation (1.1) can be rewritten as seen in equation (1.3).

Pf P g x( ) 0≤[ ] fX x( ) xd
g x( ) 0≤

∫= =

Ig x( )
0        g x( ) 0>
1       g x( ) 0 ≤




=
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 (1.3)

The indicator function forces integration of only the failure region while allowing the integral

to be evaluated for all (x). Forming the Pf integral as in equation (1.3) shows that probability of

failure is also the expected value of Ig(x). Monte Carlo uses a discrete evaluation of the

expected value integral to approximate the probability of failure integral. The expected value of

the indicator function can be approximated by the summation of Ig(x) divided by the number of

evaluations, as shown in the following, 

 (1.4)

in other words, the number of samples in the failure region divided by the total number of sam-

ples.

Although the Monte Carlo method is a simple concept, computational time can

significantly increase as greater accuracy is needed or as the simulated system becomes more

complicated. The absolute error in approximating the Pf integral from regular Monte Carlo is of

, this slow rate of convergence leads to a very high number of samples to

approximate low probability levels. Computation time increases because the function has to be

evaluated for each sample. With complex systems, a large numbers of functions evaluations

can be cost prohibitive. With Pf approximated by the expected value of the indicator function a

representation of accuracy can be developed based on sample size, since the indicator function

is a boolean variable (either 0 or 1). Stengel[13] discuses the number of samples required for

the approximate Pf to be within an interval around the true Pf, given some confidence level. For

Pf fX x( ) xd
g x( ) 0≤

∫ Ig x( )fX x( ) xd

∞–

∞

∫= =

Pf fX x( ) xd
g x( ) 0≤

∫
1
N
---- Ig xi( )

i 1=

N

∑≈=

O N 1 2⁄–( )
8



example to be 95% confident that the approximated Pf will be within 10% of a true Pf of 0.99

requires 105 random samples. The difficulty with pure Monte Carlo sampling arises because

you need to increase the number of samples by a factor of 10 for each added decimal place in

the Pf that is being approximated. 107 random samples are required to be 95% confident that

the approximated Pf falls with 10% of 0.9999. Computationally this can become very

demanding, a function that requires 0.05 seconds to be evaluated will spend 1.4 hours

evaluating 105 samples and 140 hours evaluating 107 samples. Using MCS when

approximating small probabilities has serious drawbacks. 

There has been research on sampling techniques to reduce the number of simulations

required to produce the same level of accuracy. One of the more popular methods is Latin

Hypercube Sampling (LHS). This method of sampling is approached by taking the distribution

and dividing it into n intervals of equal probability, then selecting a value from each of the

intervals. The n samples produced with LHS cover the range of the distribution in much fewer

samples than would be required to cover the range with purely random samples[15]. LHS's

advantage over MCS is it's more uniform spread of points across the sample-space, with LHS

this benefit reduces as the dimensions of the parameter space increases. A newer method that

has become more widely used is Hammersley Sequence Sampling (HSS)[16]. HSS is

considered a quasi-MC sampling method because deterministic points are used instead of

random points. Hammersley points are used to divide a unit hypercube, providing uniform

sample points across the sample space. Since the points are chosen on a unit hypercube, they

are transformed to the given parameter distributions providing sample points for simulation.

This method produces good coverage of the distribution with a greatly reduced set of sample

points.[16]
9



1.4.2  Reliability Methods

Some of the early methods of analytical probabilistic analysis are the Mean Value (MV)

method, response surface method, and differential analysis[17]. All three methods are very

similar, the MV method and differential analysis methods are based on generating a taylor

series expansion of the response surface about the nominal values of the uncertain parameters.

With the MV method the moments of the approximate function are used to determine and

approximate Pf. The differential analysis method produces the taylor series expansion and then

partial derivatives of the response surface are calculated, helping to define the shape of the

response surface used to approximate Pf. The response surface methods are very similar to MV

methods, however; where the MV method finds a taylor series expansion of the true

performance function, the response surface approximates the performance function with a

simpler function, often a second order polynomial. After defining the simpler approximate

performance function, the response surface method proceeds the same as the MV method. An

in depth survey of reliability methods can be found in [14], [17].

First Order Reliability Method (FORM) and Second Order Reliability Method (SORM) are

methods that have come into much wider use in the past decade [18]. These methods are related

to the response surface method since response surface is approximated with a simpler function.

The goal of FORM is to compute failure probabilities efficiently, while avoiding the particular

errors due to problem formulation seen in other methods. The FORM method takes specific

advantage of transforming the problem into a standard normal space (u-space), where uncertain

parameters are independent with standard normal distributions. The uniformity and exponential

decay properties of u-space can be used to reduce error from response surface approximation as

well as simplifying the Pf calculation. The transformation and limit state approximation are the
10



basis of the FORM and SORM techniques. FORM approximates the limit state function with a

tangent hyper-plane, a linear or “First-Order” approximation, while SORM approximates the

limit state function with a Hyper-parabola, a “Second-Order” approximation. SORM can have

a dramatic effect of reducing error from limit state approximation, but it comes at the

computational cost of having to calculate derivatives of the limit state surface. Both FORM and

SORM are strong in regions of low probability, however the approximation error increases as

the limit state function nears the origin in standard normal space.

1.5 Probabilistic Analysis of SISO systems

A probabilistic view of Classical Control analysis for SISO systems will be a beneficial

step in providing information on performance of systems with parameter uncertainty. The goal

of this research is to show a probabilistic-based method for control systems analysis of SISO

systems with parameter uncertainty. The extreme conditions do not dominate the design

process by incorporating probability in the uncertainty. The most probable cases can be used to

achieve a desired performance while extreme cases can still be considered. The nominal

system, or system with mean values of all uncertain parameters, give one response but, a third

dimension to the traditional response plots is added when you add probability because each

response is represented with a distribution. Representing the probabilistic information on

classical response plots must be incorporated to provide clear understandable plots. One

method is the use of probabilistic confidence bounds.

1.5.1  Classical Response Analysis

Probabilistic response plot analysis looks at probabilistic analysis of the bode magnitude

and phase plots as well as the step response. With probabilistic response plots, the added
11



dimension of probability is used to give real confidence intervals that represent the range of

probable system responses. The idea pursued is to take these existing controls tools (bode, step

response) add to them the probabilistic analysis tools (HSS, FORM) providing a new capability

to evaluate system performance.

The hybrid approach developed mixes sampling and FORM to solve the problem. Using

both methods allows for the strengths of each tool to be used. Sampling computation is quick in

midrange probabilities and FORM approximation error is small in low probability regions. The

appropriate combination of the two methods can produce a cumulative distribution function

(CDF) of the system response with accurate representation through the middle and the tails of

the CDF. One advantage of mixing these methods in a hybrid approach is reduced

computational effort. As discussed in section 1.4.1 sampling alone can be extremely expensive

to reach low levels of probability. Using Form allows for specific computations of these much

lower levels of probability. A few FORM analyses can reach the levels of probability that

would require a number of samples many orders of magnitude larger. Once the full CDF has

been generated, it is easy to represent the desired confidence intervals for the system response.
12



A representation of probabilistic bode response is shown in Figure 1-4. If the Bode response is

considered to be probabilistic, a cross section of the response at any frequency would produce a

probabilistic distribution. Figure 1-4 shows the cross section of a specific frequency produces a

CDF representing the probability that the Bode response will be less than given magnitude or

phase values. A probabilistic step response would have the same structure, where at each

instant in time the response values of all possible systems could be represented as a

distribution.
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1.5.2  Parameter Space Analysis

Parameter analysis examines how the parameter space affects the performance of the

system. The concept of the largest stable hypercube has been explored with norm bounded

uncertainty to determine how much certain parameters can change before becoming

detrimental to the system. The norm bounded set of parameters can be scaled until instability is

reached. This largest stable hypercube is simply the largest parameter space. By adding a

probabilistic distribution to the parameters not only can the largest stable hypercube be found,

but also the rate at which the probability of instability increases. For example, consider two

systems, system A parameters can be scaled by a factor of 2 with guaranteed stability.

However, continuing to increase the parameter scaling factor to 2.5 may lead to 30%

probability of instability. Now, system B is only stable when the parameter space is scaled by a

factor of 1.5, but a continued increase shows the parameters can be scaled to 2.5 with only 1%

probability of instability. System A may be considered more robust; however, if a small

probability of instability is acceptable, system B may be a much more desirable system.

Clearly, this information about the rate at which instability increases can only be obtained with

a probabilistic approach. Requirements would provide the method for choosing the most

desirable system. Parameter space analysis looks at this probability of instability problem as

well as how the size of the parameter space affects specific performance metrics.

The largest variation allowed in the parameters to still ensure stability is very useful. A

probabilistic approach to the analysis allows for the added depth of understanding how the

system will continue to perform if this largest variation is exceeded. Similar analysis can

provide added information to other performance metrics to determine how the changes in the

parameter distributions affect the performance characteristics. Items such as rise time, peak
14



value, and settling time of a step response can be analyzed to see how the mean of the

performance metric compares to the nominal value as the parameters space varies. Analyses

like these could aid in reducing costs of systems while maintaining a level of performance

characteristics and meeting a required level of risk.

This chapter has introduced the ideas of probabilistic controls and has presented a method

for approaching these types of problems. A hybrid approach to the problem was chosen to take

advantage of the strengths of both sampling and FORM methods. A full CDF of the system

response is desired, so with the hybrid approach FORM is used to resolve the tails, areas of low

probability, while Monte Carlo excels at filling in the mid regions of the CDF. The

development of the hybrid method and its benefits is presented. A review of sample problems

and a comparison of this analysis technique to current methods are presented next.
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Chapter 2
Reliability Methods

2.1 Sampling and Monte Carlo

The Monte Carlo method is based on simulating a system with a set of sample points. A

sample is a vector or ordered set of the form x=(x1,x2,...xN), where N in the number of

uncertain parameters. This vector is a specific instance selected at random from the set of

random variables X. The most important part of the Monte Carlo method is generating the

sample points. Pseudo-Monte Carlo sampling, also known simply as Monte Carlo sampling

(MCS), is the most well known method. MCS consists of the pseudo-random number

generation of n samples on a k-dimensional hypercube. The ‘pseudo-’ implies that the random

numbers are produced with an algorithm intended to imitate a truly random natural process.

Random numbers may be repeated exactly given the seed used in the random number

algorithm. The “pseudo-” prefix may be dropped though it is still implied throughout this

paper. With MCS and many sampling methods, samples are generated over a uniform

distribution U(0,1), then inversely mapped the CDF of the desired distribution to produce the

desired samples. The approximation error (see section 1.4.1) when approximating an integral

when using Monte Carlo sampling is dependent on the even distribution of the sample points

not on the randomness [16]. With a limited sample size, purely random sampling can lead to

clumping of sample points or areas of the sample space not adequately represented. Uniformity

is key to efficient sampling techniques so alternate methods of generating sample points can
16



considerably improve the MC simulation results, two such methods are stratified sampling and

low discrepancy sampling. 

2.1.1  Stratified Sampling Methods (Latin Hypercube)

The goal of stratified sampling techniques is to produce a more uniform distribution of

sample points throughout the sample space.[19] The basic concept is to divide the sample space

into bins of equal probability, and then generate a random sample inside of each unique bin. By

dividing the sample space into bins before selecting the random samples, better overall

coverage is achieved compared to MCS. Stratified methods also give the user the ability to

control the number of bins, ensuring a desired number of samples in given probability ranges.

One popular variant of the basic stratified sampling technique is Latin Hypercube sampling

(LHS). As a stratified technique, the sample space is again divided into unique bins of equal

probability, then a reduced set of samples are randomly selected in the sample space. With LHS

the randomly selected samples have two major constraints:

• each sample is randomly placed inside a bin

• all one dimensional projections of samples shall have one and only one sample in each

bin.
17



A visual representation of LHS is illustrated in Figure 2-1. In Figure 2-1 points are selected

from a two dimensional space with a uniform distribution. The points are inversely mapped

through normal CDF to produce samples with good coverage of the true parameter distribution.

The same process can be done to map the points to samples for parameter x1. It can be seen in

the lower right portion of Figure 2-1, that if the points are projected to either axis that only one

point falls in each bin. LHS can provide a more accurate estimate of the mean with the same

number of samples as MCS or basic stratified sampling. There are however, a few drawbacks

to the LHS method. Since there are multiple arrangements of bins containing samples that meet

the two previously mentioned constraints, care must be taken to reduce spatial correlation of

the sample points. It is easily seen that sampling along the diagonals would meet the two

constraints. However, this would be an undesirable choice since it counters the goal of

uniformly covering the sample space. Highly correlated sample points can also lead to other
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less desirable results[19]. A third ‘soft’ criterion is included in LHS algorithms to minimize

correlation of sample points. One drawback of the LHS method is that the uniform quality of

the sample points decreases as the dimension k of the sample space increases, however; with

LHS the error of the estimate is still reduced compared to MCS with the same number of

samples, or similar results can be achieved with a fewer number of sample points.

2.1.2  Low Discrepancy Methods and Hammersley Sequence Sampling

Another class of sampling methods is quasi-Monte Carlo Methods[20], with the explicit

goal of producing an evenly distributed set of sample points over the sample space. The word

quasi- is used because the sample points contain no randomness, instead they are chosen by a

strictly deterministic algorithm. The goal again is to produce evenly distributed sample points

throughout the sample space, while not having a high correlation between the points, i.e. not

forming a regular grid. Another term for this type of method is low discrepancy sampling,

where discrepancy is a measure of how close the sample points are from an ideal uniform

distribution. This ideal uniform distribution can be thought of as a set of points that are all

equidistant from each other and unstructured, or have no regular pattern.

One variant of these quasi-Monte Carlo methods is Hammersley Sequence sampling (HSS)

described by Kalagnanam and Diwekar [16] which uses the Hammersley sequence to generate

n uniformly distributed samples on a k-dimensional hypercube. This low discrepancy method

has an advantage over techniques like LHS in that is selects points for uniformity over all

dimensions of the hypercube, where LHS primarily focuses on uniformity across one

dimension. HSS sample points keep their uniformity as the number of dimensions increases.

The differences in sampling techniques can be seen in Figure 2-2 showing the uniformity of the
19



HSS points. The benefits of the HSS method and the ability to get similar MC results with a

greatly reduced set of sample points led to the use of HSS points in all the sampling used in this

research.

Described in Kalagnanam [16] and Giunta [19], the Hammersley sequence is based on the

inverse radix notation using prime numbers as the radix- R. Radix notation of an integer p is a

sum of the digits of p multiplied by powers of the base, or radix.

 (2.1)

for example in base 10 the number 516 in radix notation looks like,

. Reversing the digits of p about the decimal point generates a
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Figure 2-2: Monte Carlo Sampling Methods (100 points) A) Random Sample 
generation, B) Latin Hypercube Samples, C) Hammersley Sequence Samples.
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unique fraction between 0 and 1, known as the inverse radix number, 0.615 in the case of the

example.

 (2.2)

The Hammersley points of a k-dimensional hypercube are generated using

 (2.3)

where Ri are the first k-1 prime numbers, and p=1,2,3...,N. These N Hammersley points are

distributed on the unit hypercube [0,1]k (see Figure 2-2c for a two dimensional representation).

Given the CDF of each parameter distribution the Hammersley points can be inversely

transformed to give a low discrepancy sequence of sample points in the parameter space.

2.1.3  Justification For Using HSS

A simple demonstration is given to show the benefits of low discrepancy sampling

techniques. Given a distribution with a known mean and variance apply each sampling method

and evaluate the mean and variance of the sample points. The level of Pr achievable with each

sampling technique is still 1/N. The benefit of LHS and HSS methods is the reduced error

bounds. The narrower error bounds result in a more accurate computation of the mean with the

same number of samples, or an equivalent mean calculation with far fewer sample points.

φR p( ) 0.pop1p2…pm=

φR p( ) poR 1– p1R 2– … pmR m– 1–+ + +=

xk p( ) p
N
---- φR1

p( ) φR2
p( ) … φRk 1–

p( )=
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Using a standard normal distribution, Figure 2-3 shows the results of 200 samples for different

sampling schemes. The more accurate representation of the HSS samples is evident. A

comparison of the mean and variance calculations can be seen in Table 2-1 and Table 2-2

respectively.These benefits of HSS drove the decision for the use of HSS in the methods

Table 2-1: Comparison of Mean Calculations for Different Sampling Methods
Sampling Method 100 1000 10000 100000

MCS 0.00057607 0.0012104 2.1091e-005 6.9766e-005
LHS 8.5421e-005  1.0392e-005 4.175e-007  9.8505e-008
HSS 1.7347e-017 3.9248e-016 1.2248e-015 1.2098e-016

Actual mean value = 0
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developed. LHS showed a slight reduction in variance error however, the significant

improvement of HSS in the mean computation was the deciding factor for choosing HSS.

Being a deterministic set also allowed for easy repeatability of simulations.

2.2 First Order Reliability Methods (FORM)

Reliability methods are based on finding regions of failure and regions of safety of a given

system with uncertain parameters. Each random variable X is represented by a probabilistic

distribution. A scalar state function g(x) is defined which produces a metric of interest given a

specified set of the random parameters. This state function is used to separate the safe region

from the failure region, and is formulated so that g(x)>0 defines the safe region and 

defines the failure region. The condition that separates failure and safety, g(x)=0, is know as the

limit state function. Probability of failure can then be defined by the integral shown in equation

(1.1) As mentioned before, with high dimensions this integral can be very difficult and

unmanageable. The ability to find the Pf without directly integrating the integral is highly

desirable.

The goal of FORM is to simplify integration by calculating Pf based on an analytical

approximation of the limit state function. These methods are especially effective when looking

at very low levels of probability of failure, where traditional sampling methods become

Table 2-2: Comparison of Variance Calculations for Different Sampling Methods
Sampling Method 100 1000 10000 100000

MCS 0.93405 0.98866 0.99869 0.99968
Error 0.06595 0.01134 0.00131 0.00032

LHS 0.93734 0.98960 0.99853 0.99981
Error 0.06266 0.01040 0.00147 0.00019

HSS 0.93026 0.98886 0.99845 0.99981
Error 0.06973 0.01113 0.00154 0.00019

Actual variance = 1

g x( ) 0≤
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excessively expensive. Reliability methods simplify the problem of performing

multidimensional integration with a method of transforming the problem into a standard

normal space and approximating the limit state surface with a simpler lower order hyper

surface.

2.2.1  Transformation to Standard Normal Space

Standard normal space (u-space) is defined so that all random variables are statistically

independent, with normal distributions having zero mean and unit variance. In u-space all

random variables are defined by the standard normal density function.

[21]  (2.4)

U-space has several desirable advantages for approximating the limit state surface. Most

notable are the exponential decay of the probability density, and the symmetry about the origin.

The exponential decay in the u-space allows for good approximations of Pf with a hyperplane

since the probability attributed to the area between the actual and approximate g(x) reduces

exponentially with the distance from the point where g(x) is approximated. Symmetry of u-

space simplifies the approximation because the direction to the hyperplane does not affect the

fU u( ) 1

2π( )1 2⁄
------------------- 

  e 1 2⁄( )– uTu⋅( )⋅=
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approximation only the distance. The transformation of the random variables to u-space, shown

in Figure 2-4, is the first step of the FORM process.

The transformation process takes the variables from their native distributions in the

physical space, x-space, through a one-to-one nonlinear mapping into u-space. The simplest

form, the Hasofer-Lind Transformation, can be used when the random variables X have normal

distributions and are uncorrelated. The normal distributions then must simply be shifted to a

standard normal distribution, by

 (2.5)

For variables that are independent but not normally distributed the following diagonal

transformation may be used:

 (2.6)
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Where  is the standard normal cumulative distribution function (CDF) and  is the CDF of

the random variable X. Transformations that are more complex exist to handle correlated

random variables, such as the Nataf and Roseblatt transformations. See reference [14] for a

review of these and other transformations. For the present research, only uncorrelated random

variables were used.

2.2.2  Most Probable Point Determination

The most probable point (MPP) is the point in u-space closest to the origin on the limit state

function. The symmetric exponential decay of u-space means the point closest to the origin is

going to have the highest probability, relating to the mostly likely point of failure. As the most

probable point of failure, the MPP is the desired location for the limit state approximation. A

nonlinear constrained optimization is used to find the MPP.

 (2.7)

The MPP can be inversely transformed back to x-space for a better physical representation of

the most likely point of failure. For much of the investigation performed the fmincon function,

a gradient based optimization tool in MATLAB, is used for finding the MPP.

2.2.3  Limit State Approximation and Probability of Failure Calculation

After the transformation to u-space and finding the MPP, the limit state function can be

approximated with a tangent hyper-surface. With FORM, the approximation is a tangent

hyperplane (with SORM the approximation is a paraboloid). The largest contributing area to

the probability of failure is the region near the MPP, therefore the Pf can be well approximated

as the area beyond the tangent hyper-surface. This is where the uniformity and exponential

Φ FXi

min u
subject to    G u( ) 0=
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decay of the normal distribution is helpful in reducing the significance of error in

approximation of the limit state hyper surface. SORM has the advantage of being able to reduce

error resulting from highly curved limit state function, however SORM comes with added an

complexity in calculating the Pf.

The Pf is approximated as the area on the failure side of the tangent hyper-surface. Since

FORM uses a tangent hyper-plane, the value of working in u-space is apparent at this point. As

seen in Figure 2-5, the Pf can be approximated with FORM simply using the distance from the

origin to the MPP. This distance  is also known as the reliability index.

 (2.8)

Finding the Pf for SORM is not quite as simple because you are approximating with a second

order hyper surface, however finding the area on the failure side of the surface is significantly

easier than finding the area of the failure region of the original g(x). 

All FORM calculations were based on the MATPA tool developed at NASA Langley.
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Chapter 3
Hybrid Approach

The idea for using a hybrid method to approach probabilistic SISO analysis is to take

advantage of the strengths of two different techniques of reliability analysis. Sampling excels in

the central region of the probability distribution scale and FORM excels in end regions of the

probability scale, each technique is then used in its strong area. The data from this third

dimension of information is then used to provide information about the probable performance

of the system. The following sections describe a way to put these tools together to analyze the

effects of probabilistic parameter uncertainty on SISO systems.

3.1 General Hybrid Method

Given a control system with deterministic parameters, it will produce a single response

curve. For example, a Bode magnitude plot shows the magnitude of the system steady state

response due to a sinusoidal input over a range of frequencies. If slightly different parameters

for the system are applied, the Bode magnitude will obviously change. When the system

parameters are defined in a probabilistic manner, the system response will be probabilistic in

nature. In the example of Bode magnitude, at each frequency the magnitude can be represented

by a probabilistic distribution of the magnitude response of that frequency. A specific set of

parameters 'x' will produce a response C(x) at one frequency or time. The CDF of this response

can be thought of as giving the probability that the system response will be greater than some
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reference level, C(x)>Ref. The approach to finding this distribution with reliability methods is

to write the limit state function as g(x)=Ref-C(x). Thus the failure region g(x)<0 is defined by

C(x)>Ref. Using reliability tools the full CDF can be found by sweeping across the full range

of reference levels between Pr[Ref-C(x)]=0 to Pr[Ref-C(x)]=1.

The shape of this response distribution is unknown so sampling is used as the first step of

the hybrid approach. HSS points are generated, then applied to the function C(x), producing a

first approximation of the response distribution. Using a low number of HSS points (e.g. 200)

allows for a good definition of the midrange of the CDF, including the general shape of the

distribution. Using sampling data to determine a starting point, FORM is used to resolve the

probability in the tails of the CDF down to a predetermined level. The hybrid method then takes

both sets of data and combines them to produce a full CDF of the system response at that

instance. The entire process must be repeated at each desired frequency or time to generate a

full probabilistic representation of the system response. Computational time obviously grows

with each additional instance for which the response CDF must be calculated, however; taking

advantage of matrix based operations in MATLAB can help to improve computational effort.

The sampling data can be computed over the full frequency range with one function call. The

FORM process involves a scalar optimization, which must be performed independently at each

frequency or time interval.

3.2 Tail Refinement Process

Sampling was used to find the midrange of the CDF, FORM is then used to refine the tail

regions of the CDF. The true CDF is unknown a priori, so the sampling data can be used to

determine a starting point for the FORM calculations. Given Pf=Pr[Ref-C(x)≤0] the C(x)

values from sampling can be used as the first initial Ref values for FORM. The first FORM
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computation is performed at the fourth sample from each end of the CDF generated from

sampling to allow for an overlap between FORM and sampling data. Section 3.4 describes the

logic for choosing the 4th point, and the process for combining the sampling and FORM data.

Performing the FORM calculations at the location of the Ref value generated from a sample

evaluation guarantees a feasible problem with a known approximate solution. The FORM

problem becomes infeasible if the PF is zero, therefore feasibility is ensured because there

exists some level of probability of failure at this Ref value. When Pf=0 the limit state function

is mapped to infinity during the transformation to u-space. The optimization problem of

minimizing |u| subject to G(u)=0 is ill posed if no finite u can produce G(u)=0. Aside from

ensuring a feasible problem, performing the first FORM computation at a sample point allows

for a smart choice of initial conditions to be used for the optimization. The specific sample

point produced a value for the response function C(x), this reference value is then used in

FORM to solve . If the sample point produces C(x) and is then used as

the Ref value, the sample point x should be a good initial condition for finding an accurate first

form solution. Using the initial conditions that produced the reference condition aids in

reducing convergence time of the optimization.

Determining a step or  value to the next FORM analysis is done using the slope of the

last three sample points. This technique places the second FORM point within the region of

sample points, again ensuring a feasible problem. The reference value is only moved a small

amount so the FORM problem is very similar to the first. The results of the first FORM

computation can be used as initial conditions for the second computation. Providing these

smarter initial conditions reduces the number of optimization iterations for the new FORM

calculation.

Pr g x( ) Ref C x( )–≤[ ]

∆Ref
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At Each location of the SISO response analyses the FORM calculations are performed

many times, FORM computations are slow enough that only the desired number computations

to define the tail of the CDF should be calculated. With the shape and limit of the tail unknown,

it is difficult to evenly space the desired number of FORM calculations. It is known that the

CDF ranges from 0 to 1 on the y-axis so a vertical spacing can be defined and used to determine

the reference step size. For example, a FORM solution is desired at probability levels

decreasing by a factor of 10 (Pf=1e-2, 1e-3, e-4...). With the shape of the tail still unknown a

method for determining the reference step value for each new FORM computation must be

developed in an attempt to achieve the FORM results at the desired levels of probability.

The step determination method is slightly different for the first, second, and all remaining

steps. With no prior FORM data, the first step was chosen based on the average spacing of the

last three sample points. This averaging gives a rough estimate of the slope of the CDF tail, and

again ensures that a solution to the FORM problem exists since there is a known probability of

failure. A least squares fitting of data with extrapolation has been applied for determining the

remaining steps (2 - N). A review of many resultant CDFs showed a second order exponential

decay function best represented the tail of most CDF’s. For determining the second step only

two FORM calculations exist so a first order model,  is used, where Pf is known

and the new x is desired. The step is then the difference between x at the desired Pf and the

previous x. For remaining steps, third and higher, calculations are done with the same least

squares method, however; using a second order exponential decay model, given as,

 (3.1)

Pf a e⋅ b x⋅=

Pf a e⋅ b x⋅ ec x2⋅⋅=
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where a, b, and c are coefficients of the fitted curve. Figure 3-1 shows the results of the

exponential decay extrapolation with asterisks representing predicted Pf at given locations

while the circles are the calculated Pf at that value. One modification was required for use of

the least squares technique, the x values must be normalized so that the least squares matrix in

equation (3.2) remains invertible as the x values become large.

 (3.2)

Equation (3.2) represents the least squares equation used to find the coefficients of the

exponential decay function of equation (3.1). The coefficients are then used for the

extrapolation to find the new x value that will produce the desired probability.
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One of the primary reasons that this more elaborate extrapolation scheme was developed

was to prevent FORM from attempting zero probability computations. The FORM process uses

a transformation to standard normal space, when Pf is zero the distance to the MPP is infinite

since the limit state function is transformed to infinity. This event leads to an infeasible

problem. It is desired to avoid this scenario because in general FORM takes a significantly

longer time to not converge to a solution than it takes to converge. When FORM does not

converge it produces no beneficial information other than it did not work, the added

computational time makes this an undesirable scenario. A series of safeguards were developed

to avoid or limit the occurrence of failed FORM computations.

3.3 Capturing Abnormal Occurrences

FORM computations use a gradient based optimization, and are not guaranteed to produce

a solution. A few issues exist that can cause the optimization to not converge are as follows:

• Infeasibility of FORM (Pf =0 or 1)

• Limit state function discontinuities

• Nonsmooth limit state functions

• Complicated limit state functions requiring extensive function evaluations with given

initial conditions.

For these reasons, safeguards have been implemented into the algorithm to improve the

performance of the hybrid method. When the FORM computation fails before the desired level

of probability is reached, an attempt to alter specific conditions to find a converged solution is

desirable. With the goal of keeping computational time low, two safeguards were put in place

to attempt recovery from a failed FORM calculation. If the FORM computation fails,

determining if the problem is actually feasible is the primary step in finding a solution. If the Pf
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is truly zero or one, the limit state function is transformed to infinity in u-space making the

FORM problem infeasible. A feasibility test uses a non gradient based optimizer to find the

closest point to the limit state function contained within the parameter space. A vector is

defined in u-space, from the origin to this point, then a set of samples along an extended portion

of this vector are transformed back to x-space. When evaluating these transformed samples, if a

sign change is found the problem is feasible, and if no sign change is found the problem is

considered infeasible. With feasibility of the problem known, there are two options. First, if the

problem is infeasible the initial conditions of the problem may not have been well suited for the

problem. New initial conditions are selected, half way between the infeasible and previous

feasible locations, and the FORM problem is computed again. If the second attempt also fails,

the hybrid analysis is not completed for that specific frequency, or time. The second option

when FORM is found to be not feasible then the reference value is outside the possible

response range and must be stepped back. A new reference value is chosen half way between

the failed and previous successful computations. As before this is only attempted once to

facilitate the quick computation for the entire response. The individual issues that cause the

FORM failures can be scrutinized separately if the information at that specific frequency or

time is needed.

3.4 Hybrid Data Processing and Representation

After sampling and FORM computations, probability of failure data exist for each

respective method. These two sets of data must be combined to form one continuous

monotonically increasing CDF. Both Methods are approximations and may not exactly match,

therefore, FORM and Sampling data overlap in the hybrid method helping facilitate a smoother

combination of the data. For FORM, approximation error increases in u-space as the limit state
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function approaches the origin. A probability of failure level of 2% was assumed as an upper

limit for trusting FORM solutions. Above this level of probability the approximation error is

likely to be significant. However, sampling is more accurate when there are a significant

number of points in the failure region compared to the total number of samples evaluated.

Sampling results with less than 2% of the samples in the failure region were assumed less

accurate than a FORM solution at that probability level. For this research 200 sample points

were typically used, so less than 5 was considered not as accurate as FORM. The reasoning

behind the transition between FORM and sampling is based on an assumption of when to trust

FORM and when to trust sampling. The data combination logic was defined to achieve a

transition between FORM and sampling, using a few safeguards to ensure a smooth and

monotonically increasing final CDF. Logic must be specified for the combination when the

points don’t exactly line up. The logic used is as follows:

• The end 4 points of the sampling are discarded due to lack of accuracy.

• If all FORM points have a Pf less than the 5th sample point from end of the CDF, they

are appended to the sampling Pf vector.

• If any FORM points result in PF greater than the 5th sample point from end of the CDF,

they are discarded and the remaining points are appended to the Pf vector.

The 5th sample point from the end is assumed as the limit between when FORM is trusted and

where sampling is trusted. The assumed limit is the justification for discarding FORM points

greater than this 5th sample point from the end of the CDF. The combination logic is used for

both tails of the CDF, and is necessary to insure a proper CDF.

One of the desires of generating the data to produce a full CDF of the system response is the

ability to calculate the mean and variance of the system response. Both pieces of information
35



are very useful in the analysis of SISO systems. Depending on the distributions of the

parameters and the characteristics of the system the mean response may or may not follow the

response of the system with nominal parameter values. Representing the spread of the CDF, the

variance can also be useful if comparing multiple systems to determine which system will have

the narrowest range of responses. Given the relation between the CDF and the PDF 

 (3.3)

where F(x) is the CDF and f(x) is the PDF. The expected value is calculated using the CDF data

as follows.

  (3.4)

Similarly the variance is calculated in the following equation.

 (3.5)

Representing the entire distribution along with the system response is unwieldy and

difficult to interpret, leading to a method of representing the response by its mean, upper, and

lower confidence bounds. The confidence bounds represent some percentage of system

responses will be within these bounds. 

The data from both methods (e.g. sampling and FORM) representing the CDF are discrete,

and will not likely have a datum point exactly coinciding with the desired confidence interval.

Thus, the data must be curve fitted to interpolate where the probability limit lies. A spline

interpolate works poorly because of the generated CDF data lacks smoothness, which produces

overshoot in the interpolate. By definition monotonicity must be maintained since the CDF is
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the integral of an integrand that is always positive. For these reasons a piecewise cubic Hermite

interpolating polynomial was chosen for fitting the output CDF data. This type of interpolating

polynomial is produced in MATLAB with the pchip command. Given data x and y defining the

CDF, this Hermite interpolating polynomial produces P(x) which is the cubic interpolate on the

interval xi < x < xi+1, for every interval of the data. This method was chosen because overshoot

is not encountered with non-smooth data and the piecewise cube Hermite polynomial uses

slopes at xi and xi+1 to preserve the shape of the given data. The pchip command eliminates

problems found with splines fit, with respect to the monotonicity of the CDF data. Clearly

illustrated in Figure 3-2 that the spline interpolate does not provide the necessary

monotonically increasing function, where the pchip interpolation provides a feasible CDF.

Once the CDF data is smoothly represented, the value of the CDF is found for the upper and

lower bounds. This representative data is then used to produce the resultant response plot,
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whether it is a Bode response or a step response. Having the fully defined CDF also allows

quick representation of the response with any other desired confidence intervals without having

to regenerate the response.

3.5 Response Analysis Issues

The hybrid method of response analysis works for a wide range of systems. In general,

good performance is achieved but the automated method of performing FORM calculations

does not guarantee finding probability levels to the desired limits. FORM does provide a

benefit to defining the CDF but also possesses it’s own difficulties. One issue arises from using

an exponential decay model when extrapolating the tails of the CDF and determining a .

If the tail of this CDF does not fit the model, the extrapolation technique may perform poorly

preventing a converged FORM solution. An example of this occurs when using uniform

distributions for the uncertain parameters. The often sharp drop off in probability of the

response CDF makes the exponential decay model less efficient and may miss the point where

the probability drops suddenly. An unknown shape of the CDF tails and a large possibility of

response distributions means any extrapolation method is unlikely to perform well in all cases.

One solution to this problem may be the inverse MPP problem, instead of choosing a Ref value

and finding the Pf with FORM, the Pf could be given and perform an inverse problem to find

the Ref value that produces the chosen Pf. This would eliminate any extrapolation technique

because desired levels of Pf would be able to be exactly chosen. No research has been

performed on this problem, so the inverse MPP approach remains as future work.

A second issue causing difficulty for the hybrid method originates with the FORM process.

There are cases where the Pf reduces, although the MPP does not move significantly farther

away from the origin in u-space. With multiple FORM calculations performed to develop the

∆Ref
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end of the CDF, the limit state function normally moves farther from the origin with each new

calculation. The FORM process uses a first order approximation of the limit state function so

the probability of failure is found directly from the distance the MPP is from the origin.

Equation (1.1) showed that Pf is found by integrating over the failure region, therefore the Pf is

reduced when this area is smaller even if the MPP does not move farther from the origin, in u-

space. If the MPP does not move significantly farther from the origin, the reduction of

probability is not captured by FORM and the approximation error increases. An example of this

is illustrated in Figure 3-3, where the approximated Pf stays constant as the limit state function

shifts from G1(u) to G2(u). As FORM is calculated at each different location, the limit state

function increases its curvature instead of moving away from the origin. Occasionally seen in

Bode magnitude plots around the system poles, FORM calculations may never reach the

desired limit if the MPP does not shift away from the origin in u-space. The implementation of

SORM has the potential to improve accuracy in probability of failure calculation by reducing

the error in approximation of the highly curved limit state function.

Figure 3-3: First Order Approximation Problem
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An issue that can lead to limited low probability computations of a CDF is found when the

limit state function becomes non-smooth or highly erratic. This issue is particular to the use of

a gradient based optimizer in the FORM process, not the overall FORM concept. Having many

minimums or sharp edges in the limit state function can prevent the gradient-based FORM

optimization from converging to a solution, or converging to the correct solution. Designed as a

general tool for system analysis, the hybrid method cannot accommodate or work around all of

these issues. Most difficulties can be determined from the resulting information of the overall

analysis. Adjustments to the developed method for specific problems can often solve these

issues, so that full CDF's to the desired level of probability may be achieved.

The last difficulty is specific to phase representation and is not just a problem with the hybrid

method. If the variation in the uncertain parameters causes the phase response to range greater

than 2π, producing a representation of the CDF becomes difficult. The current process

developed does not have the ability to accommodate a CDF that spans a range greater than 2π.

3.6 Extending to Parameter Space Analysis

While probabilistic response plots analyzed a specific set of distributions, parameter space

analysis is the concept of looking at how large the uncertain parameters can be allowed to

expand, before undesirable system metrics occur. The parameter space is defined for this work

as, the hypercube containing all possible combinations of the uncertain parameters. The

standard approach finds the amount parameters can expand before undesirable metrics are

found. Approaching this analysis probabilistically allows the parameter space to be expanded

beyond the first undesirable metric, finding the probability that undesirable performance

metrics will occur. For the stability example, if this hypercube is allowed to expand beyond the

onset of instability the growth rate of probability of instability can be measured. This can give
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an insight to the allowable range of parameters for a predefined acceptable probability of

instability and an indication of the robustness of the system. The basic concept of the hybrid

method is the same however the approach or application is different between the probabilistic

response plots and the parameter space analysis. Two types of parameter space analysis are

explored, performance metric analysis and probability of instability analysis. The performance

metric technique most closely follows the process used in the probabilistic response plots,

while probability of instability analysis shares the same basic tools, but the approach is

different.

3.6.1  Performance Metric Analysis

Few modifications were necessary to adapt the system response hybrid techniques to

analyze parameter space with respect to performance characteristics. Given the full set of

uncertain parameters (parameter space) and a performance metric, a CDF of all possible

performance metric results can be found. Sampling and FORM are used in the same way as

described in sections 3.1 - 3.4. HSS samples are used to give a quick approximation of the

performance metric CDF midrange. In this case C(x) is the function that generates the desired

performance metric; rise time, peak value, or settling time. Using the sampling as a reference,

FORM is used to finish generating the CDF with the limit state function again defined as

g(x)=Ref-C(x). 'Ref' is a value used to step away until the low level of probability is reached.

This full CDF now describes the range and likelihood of the performance metric results.

Instead of performing the computations of another time or frequency as in the probabilistic

response plots, the size of the parameter space is increased and another performance CDF is

generated. The mean and variance of these CDFs are computed and then compared with the
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performance of the nominal system. A new specific performance metric function J, has been

defined in this research. The expected value of J or the variance of J is compared to the

performance metric of the nominal system, Jo, in a simple ratio, E(J)/Jo or V[J]/Jo. Plots of

these two ratios can provide information about how expanding the parameter space, increasing

the amount of uncertainty, affects the performance metric defined by J.

3.6.2  Probability of Instability Analysis

As a parameter space analysis tool, stability analysis is very different from the performance

metric analysis. The main difference when looking at probability of stability is that a full CDF

is never desired. The performance metric analysis finds a full CDF of the metric at each

increasing amounts of uncertainty. In probability of instability analysis, if the failure region is a

closed space, the probability of instability may never reach a value of one. This difference is

the reason that the approach is so different between the two parameter space analyses. 

The basic concept is; given a system with some nominal parameter values, how much

uncertainty can be allowed before instability is possible in the system. Allowing for

probabilistic definitions of the uncertain parameters lets the analysis be taken a step further

than conventional approaches to determining stability bounds, where the rate at which

probability of instability increases can be determined. It is desired to explore how the parameter

space can be enlarged before instability onset changes depending on the shape, or scaling

factor, of the increasing parameter space. Largely dependent on how much is known about the
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parameter uncertainty, there are many ways to scale this hypercube of the parameter space.

Four such methods are considered; 

• Uniform percentage of mean values,

• Ratio based on the most probable point of failure in x-space (mppX),

• Ratio based on the closest point on g(x)=0 to the nominal values,

• Ratio based on the gradient of g(x).

These are discussed next.

Each method is trying to find the probability of instability based on the size of the parameter

space, but each is different on how they select the relative scaling between each side of the

hypercube. The last three scaling methods are illustrated in Figure 3-4.

The first method explored was the uniform percent scaling of the mean values. This was

chosen as it appears the most common amongst non-probabilistic parametric uncertainty

Figure 3-4: Hypercube Scaling Methods
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analysis. Each parameter is defined as the range  where  is the mean, or

nominal value. This generates a norm bounded set or uniform distribution with all values

having equal likelihood. Using a simple uniform distribution does not show the probabilistic

benefits, however; it allows for comparison with previous works. The analysis can easily

incorporate distribution information when known. The process is the same when using

distributions with bounded support with the shape only affecting the calculated probability

levels. The largest stable hypercube is initially unknown so sampling is used to find a rough

guess of when the parameter space produces unstable systems. A very small amount of

uncertainty is allowed then 200 HSS samples are evaluated to check stability. The size of the

hypercube is increased until probability of stability is no longer 100%. Having bounded the

transition between zero probability of instability and non-zero probability of instability, a

bisection technique is used with HSS sampling to find a hypercube producing a low probability

of instability. After narrowing down the probability, FORM computations are performed at

steps down to a low level of probability of instability. These FORM calculations provide the

data for representing how the probability of instability increases as the parameter space

increases.

A second method for scaling the hypercube is to find the most probable point of failure in

x-space, MPP in x-space, and let the vector from the mean values to the MPP in x-space be the

vector to one corner of the hypercube, see Figure 3-4. This method requires some general

knowledge about the parameter distributions, not just the mean value. The parameter space is

first set very large, though still with the given distribution shapes. A FORM analysis provides a

MPP in x-space used to define the new scaling ratio. This method has the benefit of knowing

exactly what parameter space range will be the largest stable hypercube. Using the MPP in x-

ηi 1 ηi∆±( )⋅ ηi
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space as the scale for the hypercube ensures that the hypercube will touch the limit state

function first at this point. The hypercube be can slightly increased with this scaling,

performing FORM calculations as it grows to find probability of instability.

The previous two methods assumed some previous knowledge of the uncertain parameter

distributions. Transformations to u-space require knowledge of the uncertain parameter

distributions, however, basic information of the parameter distributions may be unknown. One

way to determine a hypercube scaling factor without this knowledge is to work in x-space. The

closest point to the nominal parameter values on the limit state function, g(x)=0, is found and

used to set the scaling ratio of the hypercube, see Figure 3-4. This closest point is found from

the following constraint equations, where η is again the nominal parameter value.

 (3.6)

This minimum distance point in x-space, similar to MPP in x-space method, gives the largest

set of parameters with this scaling that will maintain stability. The parameter space hypercube

is then increased from this starting size using FORM to see how the probability of instability

increases as the hypercube grows.

The final technique used for developing a hypercube scaling was to use gradient

information of the state function, where the ith hypercube element can be written as,

 (3.7)

A finite differencing approach was used to find the gradient information of the limit state

function seen in equation (3.7). This finite differencing was done using  as the difference

between 95% and 105% of the nominal value of xi. Unlike some methods, it is not immediately

min η x–
subject to    g x( ) 0=

∇i g( ) g∂
xi∂

------- ∆g
∆xi
--------≈=

∆xi
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known what range of parameters will first introduce instability using this method of

determining hypercube scaling. The gradient information gives a vector that points in the

direction the greatest rate of change in g(x). Points are selected along the direction of this

vector until a sign change is g(x) is found, indicating the transition into the failure region. A

bisection technique can be used to find a more precise value for the point on the limit state

surface. From this point FORM can be used to find the probability of instability in a similar

way as the previous methods.

Each of these scaling methods will provide the largest parameter values allowable, given

that scaling factor, that ensure 100% stability. The additional probabilistic information can give

insight to how quickly the probability of instability in the system grows when these limiting

values are exceeded.
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Chapter 4
Analysis of Hybrid Method

4.1 Definition of Example Problem #1

Two different example problems on uncertainty analysis were chosen from the literature to

compare with the newly developed hybrid method. The first example, developed by Wise

[22][7][23], is a missile pitch autopilot system with four uncertain parameters. The following

aerodynamic equations and nominal aerodynamic stability derivatives represent a trim angle-

of-attack of 16 degrees, Mach 0.8, and altitude of 4000 ft. With a linearized set of equations,

the pitch dynamics decouple from the roll-yaw dynamics of the missile system. The state space

representation of the pitch dynamics is,

 (4.1)

where α is angle-of-attack, q is pitch rate, δe is elevon fin deflection. The uncertain parameters

are the dimensional aerodynamic stability derivatives with the following nominal values used:

Zα=-1.3046 (1/s), Zδ=-0.2142 (1/s), Mα=47.7109 (1/s2), and Mδ=-104.8346 (1/s2). The

corresponding accelerometer and gyro output equations are,

 (4.2)
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where Az is normal body acceleration and V is velocity. Having a damping ratio of ζ=0.6 and

natural frequency of ω=113.0 (rad/s) the dynamics of the elevon fin actuator are governed by

equation (4.3), where  is the commanded elevon deflection.

 (4.3)

Incorporating the actuator dynamics the linearized missile dynamics can be represented in the

following transfer function.

 (4.4)

See reference [23] for a full development of the system.

A classical autopilot structure is given to control the commanded elevon fin deflection, δec,

based on the normal body acceleration and pitch rate outputs. A block diagram of the system

with the two controller blocks is given in Figure 4-1. The two controllers have the following
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Figure 4-1: Classical Pitch Autopilot
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values: Ka=-0.0015, Kq=-0.32, az=2.0, and aq=6.0. The overall system provides the normal

body acceleration, Az, in response to an acceleration command. This missile pitch system

allowed the hybrid method to be compared to the analysis done by Wise[23]. The original

papers [22][7][23] did not use a probabilistic representations of these parameters, however

assumed distributions were given to each of the parameters. All four uncertain parameter was

assumed to have a beta distribution having shape coefficients of 2 and 2 with limits of plus and

minus 50% of the nominal value.

4.2 Probabilistic Response Plots

The Bode and step response analysis were explored first, with the missile pitch problem.

Some results of the hybrid method producing probabilistic response plots are shown in this

section. The performance of the hybrid method was also analyzed. One hybrid method analysis

was looking at the benefits of the hybrid approach when calculating the mean and variance of

the distributions. The hybrid approach was also compared with a standard -analysis

technique. 

4.2.1  Bode Analysis

The Bode response provides information about how physical system responds to sinusoidal

inputs over a range of frequencies after all transients have died out[24]. Introducing

probabilistic information into this classical analysis tool can expand the benefits of this

analysis, showing what frequency ranges are most affected by the parametric uncertainty.

Frequency response techniques such as Bode analysis must represent both parts of the complex

data, magnitude and phase. Because the FORM process is optimizing a scalar output the two

portions of the complex data must be analyzed separately, forcing Bode magnitude and phase

µ
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plots to be generated separately with the hybrid method. Using the missile pitch autopilot

system described in section 4.1, probabilistic Bode magnitude and phase responses can be seen

in Figure 4-2. The hybrid method propagated the parametric uncertainty through the system

providing a full distribution of the magnitude and phase at each frequency. Representing this

probabilistic information in the traditional Bode plot without adding a third axis produces

cluttered and difficult to read graphs, as mentioned in section 3.4. The probabilistic information

in Figure 4-2 is represented by the mean, upper, and lower confidence intervals. This technique

simplifies representation of the data to produce a clean readable plot. For this analysis,
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confidence bounds of 99.999% are represented, which means 99.999% of all responses will be

below the upper bound and 99.999% of the responses will be above the lower bound. Although,

only one set of bounds is displayed, the entire CDF has been calculated, therefore confidence

bounds of any level less than the FORM computation limit can be displayed without

reanalyzing the system. Viewing the results seen in Figure 4-2 shows the system is always

stable with the assumed distributions on the parameters.

4.2.2  Step Response Analysis

Similar to the Bode Response Analysis, a probabilistic step response provides information

not found with norm-bounded uncertainty techniques. The hybrid method does not change

when applied to the step response; only the limit state function is different. The limit state

function that represents the step response of the system is evaluated at individual time intervals

in the same style as the probabilistic bode response. This probabilistic step response of the
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missile pitch problem can be seen in Figure 4-3. The variance is calculated, along with the

mean and confidence intervals, for all the points of the response. The mean and variance of the

response are only available with a probabilistic representation of the response plots. This

probabilistic step response depicts areas that are more affected by the uncertainty. The first 0.5

seconds for example have a large variation in response while the variance drops as the system

reaches its steady state value. 

4.2.3  Comparing the Hybrid Method with Standard Uncertainty Analysis

Verification that the hybrid method is indeed producing accurate results requires that it be

compared with an existing method for uncertainty analysis. It was stated earlier that the
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standard uncertainty analysis and design methods in controls, µ-analysis and , are

dominated by ‘worst-case’ scenarios, essentially the vertices of the parameter hyperspace.

While this technique neglects considerations of likelihood of the response, it is useful to

compare the hybrid method to this standard procedure. Giving all parameters uniform

distributions to define the uncertainty allows the hybrid method to be compared directly to the

current standard of a delta block representation of the uncertainty (see Figure 1-3). The delta

block representation is the current basis for most uncertainty analysis which does not produce

probabilistic information, however the two different methods should produce the same bounds

for the system response. Figure 4-4 shows the resulting comparison of the Bode magnitude

analysis of a simple mass-spring-damper problem. It can be seen that the hybrid method
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produces very similar bounds compared to an analysis of the system with the uncertainty

defined in a delta block. In Figure 4-4 eight dashed lines represent responses from the eight

vertices of the parameter space for this system. These eight lines are not easily seen in Figure 4-

4, because they lie on top of each other for some frequencies. Small differences of the bounds

can be related to the hybrid method producing bounds of 99.999%, while the verticies of the

parameter space represent bounds of 100%. Nevertheless, this comparison gives confidence

that the hybrid method is producing accurate results. A follow-up analysis of 10,000 HSS

points ensured that all responses were contained within the response envelope.

4.2.4  Mean and Variance Benefits of Hybrid Approach

There are two reasons why FORM analysis has been used in the Hybrid method. Because of

Safety considerations a probabilistic analysis of control systems in the aerospace field requires

handling very low levels of probability, requiring knowledge of distributions extending into the

tails. Secondly, when computing mean and variance of the response distributions, significant

error can result from distributions inadequately defined in the low probability regions.

Approached with sampling only the number of sample points must be increased by orders of

magnitude to lower the achievable probability value as seen in section 1.4.1. An analysis of the

mean computations of a system shows that the addition of FORM calculations can reduce the

error in the calculated mean. This benefit in the mean calculation with the hybrid method
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(shown in Figure 4-5) is similar to increasing the number of sample points by a factor of 100.

The comparison analysis in Figure 4-5 shows the error in the mean computations of a Bode

phase analysis in the spring mass system (section 4.2.3) with three uncertain parameters. An

analytic result for the exact mean is not available, an assumed ‘true’ answer was found from a

Monte Carlo simulation with 300,000 samples. The mean response at each frequency was then

calculated using a trapezoidal integration technique for solving equation (3.4). Three cases; 200

HSS, 10,000 HSS, and the hybrid approach, were performed and the mean values of the

response were calculated. Figure 4-5 shows the difference between these cases and the

accepted value . The comparison shows how adding

FORM results on the tails of the distributions generated by 200 HSS points improves the mean

10
-1

10
0

10
1

10
-6

10
-5

10
-4

10
-3

10
-2

Frequency ω (rad/s)

10,000HSS - 455.8
Hybrid - 384.05
200HSS - 5.93

Figure 4-5: Mean Computation Error for Hybrid and HSS Methods

ac
ce

pt
ed

 m
ea

n 
 c–

al
cu

la
te

d 
m

ea
n

ac
ce

pt
ed

 m
ea

n
----

----
----

----
----

----
----

----
----

----
----

----
----

----
----

----
----

----
----

----
----

----
----

--

accepted mean  c– alculated mean
accepted mean

----------------------------------------------------------------------------------------------
55



result similar to the level achieved by using 10,000 HSS samples. Figure 4-6 is a similar

analysis of the variance calculation, equation (3.5), also showing the benefit of added FORM

calculations in the Hybrid method. The legends in both Figure 4-5 and Figure 4-6 show the

computation time in seconds for evaluating the probabilistic response for each method. The

hybrid method, at 384 seconds, is a quicker than computation of the 10,000 HSS points, at 455

seconds. Although the time increase is only modest for this example the hybrid method

generally still provides information at lower probabilities than 10,000 HSS evaluations. For

comparison the 300,000 MCS computation took approximately 37 hours.

4.3 System Response Code Testing

The hybrid method of probabilistic response plots was developed to be generic and to be

applicable to a wide range of system sizes. To test the technique, a simple way to generate a
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large number of different uncertain test systems was needed. This scalable test system

generates stable transfer functions with an arbitrary number of random variables. The scalable

testing model was used both for systematic testing of the hybrid method and for computational

effort analysis.

4.3.1  Scalable Testing Techniques

The scalable model is built using the real portion of the system poles as random variables.

Using the poles as the basis for the random variables was done both for simplicity and for

producing systems of similar style while they were scaled. The technique developed starts by

using the rmodel function in Matlab to define a random stable transfer function. Considering

complex conjugate pairs as one variable the real component of each pole is given a

probabilistic distribution. All distributions were lognormal, with the nominal pole value used as

the mean, and a standard deviation defined by 10% of the pole value. Although all poles are

defined by lognormal distributions, using the pole value in determining the standard deviation

gave a wide range of distribution shapes. The order of the system transfer function could now

be arbitrarily set, thereby quickly producing systems of order n. Since there are an unknown

number of conjugate pairs, the number of random variables is less than n. This drawback of

basing the scalable model off the rmodel function is that the number of random variables

cannot be directly specified. While the number of poles is specified, an unknown number of

complex poles will cause some variation in the number of random variables. Nevertheless, this

scalable model allowed for extended testing of the hybrid software to ensure it wasn’t overly

specialized for the few specific example problems being analyzed.
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4.3.2  Computational Effort Analysis

One of the main benefits of the scalable testing model was the ability to generate an

extensive computational effort analysis relating the CPU time with the number of uncertain

variables. Figures 4-7 through 4-9 show the computational time in minutes for an increasing

number of uncertain parameters. The time represented is the time necessary to complete a full

Bode magnitude or phase response plot using the hybrid method evaluated at 20 evenly space

frequencies. Some variation is expected even in systems with the same number of random

variables since the exact number of FORM calculations cannot be specified, therefore the

number of FORM computations at each frequency is not the same. This computation analysis is

meant to look at the trend of the hybrid method computing a full system response. The

computation time as a function of the number of random variables is depicted in Figure 4-7.

Fitting a second order polynomial through the data points shows the apparent second order

growth trend in CPU time. For the Bode magnitude data seen in Figure 4-7 the norm of the
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residuals for the fitted data was 8.8 for the linear fit and 6.3 for the quadratic curve fit. It

becomes evident that as the number of random variables increases the computational effort will

eventually become prohibitively costly. The complexity of the limit state function is also a

major contributor to the computational time. While a more complicated limit state functions

increase computational time, the second order growth remains evident. This can be seen in the

difference between time analysis of the Bode magnitude and Bode phase plots. The

computational effort for the Bode phase plot is depicted in Figure 4-8, it can be seen that the

data has a similar quadratic curve as Figure 4-7, however; the phase plot computations are

faster. For the Bode phase data, the norm of the residuals was 3.2 for the linear fit and 1.7 for

the quadratic fit. The step response is a more complicated function to evaluate than either the

Bode magnitude or phase, thus it is expected to require more computation time. Illustrated in
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Figure 4-9, the time to compute the step response is significantly greater than for either Bode

responses. The quadratic curve fit again fits the data better than a linear fit, with the norm of the

residuals being 40.57 for the linear and 25.9 for a quadratic fit.

4.4 Definition of Example Problem #2

The second example problem chosen from the literature is a two-mass-spring system

depicted in Figure 4-10, with nominal parameters m1=m2=1 and k=1 [26]. A position sensor is
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Figure 4-10: Non collocated two-mass-spring system
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located on m2 and the controller input acts on m1 for this non-collocated problem. The transfer

function representing the systems is given as

 (4.5)

A number of papers were written using different techniques to produce a controller for the

system in Figure 4-10, given uncertainty bounds on all three parameters of plus and minus

50%. This example again uses beta distributions with shaping coefficients 2 and 2, to represent

the parameter uncertainties. However, parameter space analysis adjusts the limits of the

distribution to analyze affects on system characteristics. Each controller submitted was

supposed to be stable for the entire range of uncertain parameters and meet a number of

different performance criteria. Stengel and Marrison [25] performed a robustness comparison

of the submitted controllers. The transfer functions for seven of the controllers from reference

[25] follow: 

 (4.6)

 (4.7)

 (4.8)

 (4.9)

 (4.10)

 (4.11)

TF s( ) y
u
---

k
m1m2( )

-------------------

s2 s2 k
m1 m2+

m1m2
--------------------

 
 
 

+

---------------------------------------------------= =

A K s( )⇒ 40.42 s 2.388+( ) s 0.350+( )

s 163.77+( ) s2 2 0.501( ) 0.924( )s 0.924( )2+ +[ ]
---------------------------------------------------------------------------------------------------------------------=

B K s( )⇒ 42.78 s 1.306–( ) s 0.1988+( )

s 73.073+( ) s2 2 0.502( ) 1.182( )s 1.182( )2+ +[ ]
---------------------------------------------------------------------------------------------------------------------–=

C K s( )⇒ 0.599 s 1.253–( ) s 1.988+( )

s2 2 0.502( ) 1.182( )s 1.182( )2+ +[ ]
--------------------------------------------------------------------------------------–=

D K s( )⇒ 19881 s 100+( ) s 0.212+( ) s2 2 0.173( ) 0.733( )s 0.733( )2+ +[ ]

s2 2 0.997( ) 51.16( )s 51.16( )2+ +[ ] s2 2 0.838( ) 16.44( )s 16.44( )2+ +[ ]
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

E K s( )⇒ 5.369 s 0.348–( ) s 0.0929+( )

s2 2 0.832( ) 2.21( )s 2.21( )2+ +[ ]
--------------------------------------------------------------------------------–=

F K s( )⇒ 2246.3s 0.237( ) s2 2 0.32( ) 1.064( )s– 1.064( )2+[ ]+

s 33.19+( ) s 11.79+( ) s2 2 0.90( ) 2.75( )s 2.75( )2+ +[ ]
------------------------------------------------------------------------------------------------------------------------------------=
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 (4.12)

However, the original equations are from the following references [28] A-C, [29] D, [30] E,

and [31] F. The remaining three controllers were unable to be reproduced and give a stable

system. About half of controllers in equations (4.6) through (4.12) have a leading negative sign

to account for inconsistency in negative feedback representation of the original paper.

4.5 Parameter Space Analysis

The probabilistic response plots were developed first, then the hybrid method was reapplied

to explore parameter space analysis. Both performance metric analysis and probability of

instability were found to produce good results, however; the performance metric analysis

exhibited the need for a more problem dependent approach. Most of the parameter space

analysis was performed using beta distributions, a bounded support distribution that has two

shape parameters a and b that prescribe the curvature within the support of the distribution. 

4.5.1  Performance Metric Analysis

While many control system performance metrics exist, a few specific performance metrics

were used for the development of the probabilistic performance metric analysis discussed here.

The specific metrics were rise time, peak value, and settling time. There were a few early

hurdles in adapting the hybrid method to performance metric analysis. While the response plot

analysis developed limit state functions directly from response equations, the performance

metrics analyzed in this research required limit state function to be produced based on a

discretely sampled step response. A coarse spacing of time values produced a very nonsmooth

limit state function making the gradient based optimization in MATPA (see section 2.2.3)

H K s( )⇒ 2.13 s 0.145+( ) s 0.98–( ) s 3.43+( )

s2 2 0.82( ) 1.59( )s 1.59( )2+ +[ ] s2 2 0.46( ) 2.24( )s 2.24( )2+ +[ ]
------------------------------------------------------------------------------------------------------------------------------------------------------------–=
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perform poorly. Interpolation of the step response around the rise time helped to alleviate this

problem. 

Another necessary adaptation was that the deterministic definitions of some system

characteristics do not work in a probabilistic context. This was first noticed in the definition of

rise time; rise time is the time it takes the system to go from 10% to 90% of the steady state

value. Parameter variations can alter not only the response speed, but also the steady state

value. Evaluating the rise time with a varying steady state value can cause an erratic limit state

function, inhibiting the use of FORM. For this research, the definition of rise time was

modified to the time for the system to go from 10% to 90% of the steady state value of the

nominal system. With these two modifications, the hybrid method is able to provide full CDFs

of the given metric, allowing accurate calculations of the mean performance. With uncertain

parameters defined having beta distributions, Figure 4-11 shows how the mean rise time of

missile pitch control system (see section 4.1) changes as the bounded supports of the parameter

space are increased. Calculated at the same time and also included in Figure 4-11 is the plot of
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Figure 4-11: Performance Metrics as a Function of Scaled Parameter Space
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V[J]/Jo, representing how the variance of the performance metric values increases as the

supports of the parameter space are increased. For the example shown in Figure 4-11 it can be

seen that with uncertain parameters having a range of up to plus and minus 40% of the nominal

values, the expected value of the rise time stays very close to the rise time value of the nominal

system. As the uncertainty is increased the distribution of rise time spreads out, however stays

centralized about the nominal system.

By only changing the limit state function to represent a different performance metric such

as peak value, the exact same analysis method can be used. Each performance metric requires a

different limit state function, and each brought its own unique difficulties. Settling time

provided a few more difficulties than those found working with rise time analysis. With settling

time defined as the time the response last exceeds 2% of the steady state value, uncertainty can

cause large jumps in the settling time value as different oscillations of the response are the last

to exceed 2% deviation from the steady state value. A slight modification to the definition of

settling time is harder to define than it was for rise time. This issue inhibits the use of FORM

reducing the accuracy of the mean calculations. For the settling time analysis the true hybrid

approach only works well when there is enough knowledge of the system step response to

know these jumps in settling time value do not exist. For systems where these issues do not

arise the settling time analysis can be performed in the same manner as the rise time and peak
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value analysis. Figure 4-12 illustrates the Settling time analysis on the missile pitch control

problem. The expected value analysis in Figure 4-12 shows that with increasing amounts of

uncertainty in this system the expected settling time is slower than the nominal system

This performance metric analysis of the parameter space provides insight into system

performance as the uncertainty of the parameters is allowed to expand. The knowledge of how

desired performance metrics are affected by growing uncertainty bounds can be one additional

tool to help find the most desirable control system, however, cost must also be considered. As

an uncertainty analysis method, the performance metric analysis is less robust than the

probabilistic response plots and requires more knowledge of the system response to ensure an

analysis of the performance metric is achievable. There are cases when the analysis is not valid

such as peak value analysis of an overdamped system, or cases where FORM becomes non-

beneficial such as when gaps in settling time are produced. These added complexities make the

performance metric analysis a much more system specific analysis tool.
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4.5.2  Probability of Instability

The first step in the probability of instability analysis is to compare results with existing

hypercube analyses in literature. The missile pitch control problem, see section 4.1, defined by

Wise[23] was analyzed using various methods to find the largest percentage scaling of the

parameters before instability in the system is found. The baseline in his work was a Monte

Carlo analysis resulting in bounds on the parameters of 60-61% of the mean values before

instability is allowed in the system. The uniform percentage method of scaling produces a

similar result of 60.4%, as well as the percentages of instability beyond this limit. Figure 4-13

shows the percent probability of instability versus the scaling factor. The scaling factor is the

percentage of the mean parameter values that defines the bounds of uncertain parameters. In

this figure the same set of data is plotted twice, once with a logarithmic scale seen on the left

and the other with a linear scale seen on the right. The data was plotted on a logarithmic scale to

show the very low probability levels not noticeable on the linear scale. Finding results that
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correlate well with previous research gives confidence that the hybrid method is producing

accurate results.

Analyzing the system with a norm bounded set, or uniform distribution, is beneficial for

comparison to non-probabilistic analysis. The real advantage to the hybrid method is being able

to incorporate distributions such as beta distributions. Most physical parameters do not have a

uniform distribution but one where each value has a different likelihood. The hybrid method

allows the system with different distributions defining the uncertain parameters to be analyzed

and compared. A system analyzed with beta distributions having the same support but different

shape parameters produces different results. Figure 4-14, shows that the point at which stability

is first violated stays similar, however; the rate that probability of instability increases does

change with different parameter distributions. This provides better information about the limits

on the parameter space if a specified probability of instability is acceptable. If a specified
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Figure 4-14: Effects of Parameter Distributions on Probability of Instability
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probability of instability is acceptable, the shape of the distributions representing the uncertain

parameters is important. Assuming a distribution for parameters has consequences if the

uncertain parameters do not closely represent the assumed distribution. If the uncertain

parameters are not closely represented by a uniform distribution, conservative results may be

produced.

Another type of probability analysis compares multiple controllers for a given system.

Using the Benchmark example describe in section 4.4 all controllers are compared in Figure 4-
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15 and Figure 4-16. This analysis used the uniform percentage scaling method, and the x-axis
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values represent the percentage variation of the uncertain variables. That is the x-axis shows the

percentage change in each of the parameters in the system. Controller D is significantly more

robust than the others, while controller A is the least robust. Controller D allows the uncertain

parameters to vary by 60% of the nominal value before any probability of instability, while

controller A will only tolerate a range of parameters within 20% of the nominal values before

any probability of instability. While each controller will accept a different amount of

uncertainty, all have similar rate of growth in probability of instability. Ranked for robustness,

controller D would be the best choice for the system. The results for all the controllers compare

well with the analysis of the controllers in reference [25], which also shows controller D as the

most stable. 
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As described in section 3.6 there are many ways the parameter space hypercube can be

scaled to fit the needs of each problem. Each hypercube scaling technique was used to analyze

the stable parameter space for the missile pitch problem. Table 4-1 shows the nominal values

for the different variables and the delta values each scaling technique provides for the extent of

a stable parameter space. The hypercubes represented by Table 4-1 are the nominal value plus

and minus the delta given in the column of each scaling technique. The uniform percentage

column represents a hypercube with each parameter having 60.4% variation about the nominal

values. Table 4-1 shows that each of the different methods produces a different range of

parameters that leads to instability. The requirements of the problem would determine which

technique provides the best results.

No one scaling method seems to provide the best overall answer, however; each has its own

unique degenerate cases where the method produces poor results. Although unlikely to occur at

the same time, both the method using mppX and the method using the closes point in x-space

have the same type of problem. The problem arises if the closest point on the limit state

Table 4-1: Comparison of Hypercube Scaling Techniques on Missile Pitch Problem

Nominal 
Values

Uniform 
Percentage

mppX Closest point 
in x-space

Gradient of 
g(x)

Zα=-1.3046 0.788 0.1528 1.3046 1.2383
Zδ=-0.2142 0.1293 0.0040 9.3E-07 0.6113
Mα=47.711 28.817 9.5976 2.4E-06 0.0197
Mδ=-104.83 63.317 76.599 9.7E-07 0.00877
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function falls on or near an axis of a random variable, see Figure 4-17. When this condition

exists, the hypercube may be disproportionately sensitive in the direction of that parameter.

Though accurate, the parameter space bounds that result may misrepresent how much

parameters may vary before inducing instability. The finite differencing method also has a

drawback. The finite differencing used to find the gradient of g(x) is done at the mean values of

the system, the resultant vector may not point in the direction of the first point of contact

Figure 4-17: Closest Point Hypercube Scaling Problem
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between the hypercube and the limit state surface. See Figure 4-18 for a representation of this

problem. With this method points were taken along the gradient vector to find when the

hypercube transitions across the limit state function. If the gradient vector doesn’t point to the

first point of contact, techniques must be developed to find the largest hypercube still within the

stable parameter space. This problem can easily be detected if a significant probability of

instability is computed at the starting hypercube. When detected, one method for solving the

issue is to use the MPP found with the FORM calculation and shrink the hypercube until this

point is on the surface of the hypercube. This process may need to be repeated if the scaling of

the hypercube allows for a portion of the limit state function to stay within the hypercube.

However, once that starting hypercube is found with zero probability of instability the analysis

can proceed as usual.

Figure 4-18: Gradient Based Hypercube Scaling Difficulty
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Chapter 5
Conclusions

The increasing demand on aerospace control systems requires high performance

characteristics as well as being robust to uncertainties. Individually the two requirements often

oppose each other. A probabilistic approach can produce control systems that both improve

performance as well as improve robustness. A hybrid method for approaching the analysis of

SISO systems with parameter uncertainty in a probabilistic manner has been investigated. A

missile pitch example and spring mass example were used to explore results of the hybrid

method. Incorporating the FORM tools helped provide definition in regions of low probability

without the hundreds of thousands of sample evaluations required with Monte Carlo

techniques.

The developed hybrid method adapted quite well to probabilistic response plots, in both the

frequency and time domain. Applied to a range of the system response, a probabilistic

definition of the specific response plot was easily found. Confidence bounds provide response

limits and indicate the likelihood of the system response exceeding these bounds. These plots

also provide information about areas of the response that are more affected by the parameter

uncertainty. The main difficulty of the hybrid method was the developed extrapolation method

used for selecting FORM locations, although it worked well for most response distributions.
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Expanding from the probabilistic response plot application, the hybrid method was applied

to parameter space analysis. Due to the nature of many system characteristics the performance

metric analysis required more restructuring of the problem to fit the hybrid method tools. Also

for this type of analysis some prior knowledge is necessary to ensure the performance metric

being analyzed is legitimate over the range of responses seen with increasing uncertainty.

However the performance metric analysis is able to produce useful information on changes in

the uncertainty affected performance metrics. The missile pitch example showed how the

distribution of rise time stays centralized evenly distributed about the nominal parameters.

Results of a similar analysis showed a skewed distribution for settling time where as

uncertainty increased more systems had a settling time later than the nominal system.

The probability of instability analysis performed quite well across a wide range of systems.

While the scaling of the parameter space is arbitrary, four techniques were given and discussed.

Any one of these four techniques, or some other scaling, can be used for most generic systems

when determining the largest parameter uncertainties before a probability of instability exists.

The hybrid method provided information beyond pervious research by mapping the growth in

probability of instability as the amount of uncertainty in the system increased.

The developed hybrid method was found to perform well both for producing probabilistic

response plots and analyzing the effects of varying uncertainty with parameter space analysis.

As a preliminary study this paper has shown many benefits and possibilities of probabilistic

control analysis. This research has shown that the hybrid method for probabilistic analysis

provides previously unavailable information about system responses due to parameter

uncertainty
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Chapter 6
Future Work

One of the most noticeable areas of future work is moving from the analysis phase to the

design phase. It is mentioned in the introduction, there has been some research performed using

sampling to incorporate probability into control design, however including low probability

analysis tools such as FORM could improve results. Related directly to the hybrid method of

analysis, the addition of SORM could improve results over the use of FORM in some cases.

This research looked at Bode and step responses as two classical analysis tools, however

there are also root locus, Nyquist, and Nichols plots. The hybrid approach to including

probability into the system analysis has not been applied to these analysis methods. The main

challenge with both of these tools is that they display a combined representation of the complex

data. Nyquist plots represent phase versus magnitude while root locus represents the real vs.

imaginary portions of the data. This makes the problem much more difficult because you are

looking at a joint probability distribution that may have high correlation. The difficulty that

prevented the hybrid approach from being applied to these methods was the inability to

separate the joint distribution into independent distributions. The use of FORM inhibited the

ability to accommodate these two analysis tools.

There are many ways for efficiency improvements to be made in the analysis methods,

particularly in the response analysis. Since FORM must be performed separately at each
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frequency, this analysis could be easily segmented and performed on a distributed computing

system. This would allow for greatly reduced analysis time for a large number of uncertain

parameters, or systems that are more complex. Another option would be to arrange the software

for the hybrid method to perform a slightly more extensive sampling analysis of the overall

system, and then only performing the more detailed analysis at desired locations.

Briefly discussed in section 3.5 was the issue of the inverse MPP problem. In this research,

the standard FORM problem was used to find the probability of failure and extrapolation

techniques were developed attempting to find the desired probability of failure results. The

inverse problem would allow for the probability of failure to be prescribed and the conditions

that produce this probability would be found. Instead of finding the MPP, the distance from the

MPP to the origin is prescribed and the conditions that cause the closest point of the limit state

function to be this prescribed distance from the origin. The inverse problem could allow for a

specified number of FORM computations at prescribed levels.
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