Electric Power System Technology Options for Lunar Surface Missions

Thomas W. Kerslake
Glenn Research Center, Cleveland, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at 301–621–0134

- Telephone the NASA Access Help Desk at 301–621–0390

- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076
Electric Power System Technology Options for Lunar Surface Missions

Thomas W. Kerslake
Glenn Research Center, Cleveland, Ohio

Prepared for the
Space Power Workshop
cosponsored by the Aerospace Corporation, the Air Force Research Laboratory, and the Air Force Space and Missile Systems Center
Manhattan Beach, California, April 18–21, 2005
This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

This report contains preliminary findings, subject to revision as analysis proceeds.
Electric Power System Technology Options for Lunar Surface Missions

Thomas W. Kerslake
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

In 2004, the President announced a “Vision for Space Exploration” that is bold and forward-thinking, yet practical and responsible. The vision explored answers to longstanding question of importance to science and society and will develop revolutionary technologies and capabilities for the future, while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions and a nominal 2-kW, 2-person unpressurized rover.

To help direct NASA’s technology investment strategy, this lunar surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to Mars missions, costs, and risks.

For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution architectures and component technologies were defined consistent with the preferred habitat power generation technology option and the overall lunar surface mission. For rover power, more than 20 technology options were down-selected to radioisotope Stirling, liquid lithium-ion battery, PEM, RFC, or primary fuel cell options. The author discusses various conclusions that can be drawn from the findings of this surface power technologies evaluation.
Lunar Surface Power System Technology Assessment

Space Power Workshop
April 18-21, 2005
Thomas W. Kerslake
NASA Glenn Research Center

Presentation Outline

• Introduction

• Study Approach, Guidelines & Assumptions

• Candidate Power Technologies
 ○ Habitat/ISRU
 ○ Human Unpressurized Rover

• Technology Assessment Results

• Recommendations & Findings

April 21, 2005
2005 Space Power Workshop
Chart 1
Introduction

- 6-week, Internal NASA study (Spring 2004)

- Study power team members
 - JSC/Tim Lawrence, GRC/Ray Beach

- Purpose
 - Derive complete set of lunar surface system technology options
 - Enable DRM-3 mission scenario
 - 30-90 day stay at lunar polar site
 - Identify potential to advance to TRL 6 by 2014
 - Identify programmatic cost and risk metrics

Approach

- Fill-in needed requirements/assumptions
- Create figures of merit (FOMs)

- Identify broad range of candidate power technologies
 - Data from literature review & subject matter experts
 - Calculations & scaling
 - SOA & Advanced

- Prescreen candidate technologies
 - Eliminate poor performers & immature technologies

- Compare remaining technologies using FOMs
 - Capture data & references in Excel spreadsheet
- Recommend leading technologies
Key Guidelines/Assumptions

- **30-90 day (90 day) mission to lunar south pole in 2020**
 - Exact landing site unspecified
- **3-10 year operating life (nominal 5-year)**
 - 5 missions to same site, once per year
- **20-100 kW (nominal 50 kW) habitat power system**
 - Shared nuclear heat source, 3/2 redundant dynamic converters & radiators
 - 240 kW-hrs energy storage
- **1-3 kW (nominal 2 kW) rover power system**
 - Shared isotope heat source & radiator, dual redundant dynamic converters
 - 8-hr sortie/8-hr recharge periods
- **Subsystem TRL 6 by ~2014**

Assumptions in italics

NASA Technology Readiness Levels (TRLs) [Mankins 2001]

- **TRL 9** Actual system flight proven through successful mission operations.
- **TRL 8** Flight System completed and qualified through test and demonstration.
- **TRL 7** System prototype demonstrated in a space environment.

TRL 6 System Prototype Demo in Relevant Environment

- **TRL 5** Component and/or breadboard validated in relevant environment.
- **TRL 4** Component and/or breadboard validated in laboratory environment.
- **TRL 3** Critical function or characteristic demonstrated (proof-of-concept).
- **TRL 2** Technology concept and/or application formulated.
- **TRL 1** Basic principles observed and reported.
Power Technology Quantitative
Figures of Merit (FOMs)

- Mass, kg/kW
 - Includes heat source, conversion, heat rejection & PMAD hardware

- Deployed Area, m²/kW

- Volume, m³/kW

- Energy Storage Specific Energy, W-hr/kg
 - Includes mass of integration elements

Qualitative Power
Technology FOMs (3 of 16)

<table>
<thead>
<tr>
<th>FOM</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding to Achieve TRL 6</td>
<td>> $100's M</td>
<td>$10's M</td>
<td>< $10 M</td>
</tr>
<tr>
<td>Extensibility to Future Human Mars Mission Power (Surface, In-Space, NEP, NTR)</td>
<td>Meets 3 or more elements</td>
<td>Meets 2 elements</td>
<td>Meets 1 or less elements</td>
</tr>
<tr>
<td>Deployment Complexity (# major deployment steps)</td>
<td>5 or more</td>
<td>4</td>
<td>3 or less</td>
</tr>
</tbody>
</table>
Power Technology Assessment

50 kW Habitat Power Technology Results

Identified space power reactor options:
- Liquid metal cooled (SP-100)
- Gas cooled (Escort)
- Heat pipe cooled (SAFE)

All options are leading technology candidates:
- Acceptable mass, volume; technology heritage

Liquid metal cooled technology:
- Best reactor/shield compactness
- Lowest mass

To avoid multiple shield penetrations in heat pipe cooled
- Engine fluid loop and/or heat exchanger on reactor side of shield
Nuclear Reactor Shielding

- **Technology Options:**
 - Layered LiH/W or Be/DU (thermal control needed)
 - 4π shielding collocated with habitat
 - Human-rated
 - Instrument-rated plus regolith shielding
 - Remote, “instrument-rated + $\pi/2$ human-rated sector”

- **Collocated reactor shielding options eliminated:**
 - high mass
 - insufficient TRL for regolith handling equipment

- **Leading technology candidate:**
 - Remote, LiH/W, instrument rated + $\pi/2$ human-rated sector shield
 - ~3000 kg shield mass (100 kW system 2.5-km from habitat)

Power Technology Assessment

![Power Technology Assessment Image]
Surface Reactor Power Conversion

- Technologies Eliminated
 - Direct Potassium Rankine (working fluid activation)
 - In-direct Potassium Rankine (insufficient TRL)
 - Organic Rankine Cycle (ORC) (high mass)
 - Combo Thermoelectric (TE)/ORC (high mass, large radiator)
 - AMTEC, MLQW TE (insufficient TRL)
 - In-core Thermionic [TFE-CsO] (insufficient TRL)
 - Themophotovoltaic (TPV) (high mass, large radiator)
 - Combo Brayton/ORC (no mass benefit, large radiator, greater complexity)

Surface Reactor Power Conversion (Continued)

- Competing technologies key FOMs (SOA technology, 50 kW)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Mass, kg/kW</th>
<th>Rad. Area, m²/kW</th>
<th>TRL</th>
<th>Funding To Achieve TRL</th>
<th>Extensibility To Human Mars Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brayton</td>
<td>125</td>
<td>2.7</td>
<td>4</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>Stirling</td>
<td>120</td>
<td>1.6</td>
<td>4</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>TE</td>
<td>136</td>
<td>1.4</td>
<td>5</td>
<td>high</td>
<td>medium</td>
</tr>
</tbody>
</table>
Radioisotope Power Conversion

- **All Habitat** radioisotope power technologies eliminated
 - All GPHS-based technologies (238PuO$_2$ availability)
 - Half US civilian production, stockpile 10 years $>\sim 2$ kW converter
 - 241Am Alphavoltaic, boron-nitride converter (insufficient isotope availability, poor mass scaling above mW level, launch safety)
 - 3H-amorphous silicon (a-Si) Betavoltaic converter (poor mass scaling above mW level)
 - 3H-phosphor, Si or a-Si photovoltaic converter (poor mass scaling above mW level)

Collocated Solar Photovoltaic & Dynamic Power Conversion

- If collocated with habitat in permanently shadowed basin
- All solar photovoltaic & solar dynamic technologies eliminated
 - Lack of sunlight
Solar Photovoltaic Power-Tower Systems

- All technology options eliminated
 - All impose mission launch window restrictions
 - 700-m tower deployed from habitat
 - High mass (2X reactor options), Insufficient tower TRL
 - Requires precision landing in known terrain region
 - Power cart deployment to:
 - Shackleton Crater North Rim Massif (35°-40° incline)
 - Incline exceeds rover locomotion limit (30°-35°) on friable slopes
 - Excessive regolith depth near craters
 - Malapert Mountain
 - Low rover TRL
 - Excessive operational risk (60-100 Km deployment)

Lunar South Pole
Mt. Malapert is located 122 Km from the South Pole at 84.9S, 12.9E. It is a 5-Km high, 69-Km wide.
Yearly insolation: 89% full, 4% partial, 7% none.
Shaded periods last 5+ days, 5 times per year.
Mt. Malapert is 60-Km to 100-Km away from areas that may contain water ice (shown in blue on left).
The top is a plateau approximately 10 Km² in area.
Beamed Power Conversion Systems

- All power beaming technologies eliminated
 - High mass-10X, Insufficient TRL
- RF transmitter/receiver
 - 3 satellites
 - 357-m diameter transmit antenna (50-100 MT antenna mass)
 - 8 MWe power (> 40 MT system mass)
 - 134 m x 134 m auto-deployed, surface rectenna
- Laser diode transmitter/PV receiver
 - 3 satellites
 - ~34-m transmit dish
 - 0.025-µrad pointing system
 - 200 kW transmit satellite (90 MT)

Habitat Energy Storage

- Technologies eliminated:
 - Polymer Li Ion battery (insufficient TRL)
 - Solid oxide fuel cell (noncompetitive stack power density, insufficient TRL)
 - Flywheel system (high mass)
 - Thermal phase change material (eliminated w/Solar Dynamic option)
- Competing technology key FOMs (SOA)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Sp. Energy, W-hr/kg</th>
<th>Rad. Area, m²/kW</th>
<th>TRL</th>
<th>Funding To Achieve TRL</th>
<th>Extensibility To Human Mars Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Li Ion Battery</td>
<td>90</td>
<td>n/a</td>
<td>5</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>PEM-RFC</td>
<td>412</td>
<td>1.0</td>
<td>4</td>
<td>medium</td>
<td>high</td>
</tr>
</tbody>
</table>
Power Management and Distribution System (PMAD)

- **Eliminated Technologies:**
 - Low Frequency AC Distribution (high mass)

- **Candidate Technologies**
 - 3Φ AC (~ 1000-Hz), High Voltage (~ 1000-V) [Alternator]
 - High Voltage DC [Stirling, TE]
 - Low Mass, High Frequency DC-to-DC Converters
 - Ring & Star Distribution Architectures
 - Ring may have better efficiency, load management capability
 - Electronics Reliability Improved Through Use Of SiC
 - SOA Silicon Capable With Box Level Redundancy

Heat Rejection

- Insufficient time to complete evaluation of identified technology options

- Heat rejection technology important for all high-power conversion options

- Recommend further study
Power Technology Assessment

2 kW Human Rover
Power Technology Results

Human Rover Power Technologies

- **Technologies eliminated**
 - All nuclear reactor power conversion options (high mass)
 - All solar PV & dynamic conversion options (lack of sunlight)
 - \(O_2/CH_4\) internal combustion engine; Flywheel system (high mass)
 - Solid oxide fuel cell (noncompetitive stack power density, insufficient TRL)
 - Polymer Li Ion battery (insufficient TRL)
 - Radioisotope power conversion technologies
 - All power technologies eliminated for >2 kWe (\(^{238}\)PuO\(_2\) availability)
 - Direct Potassium Rankine (insufficient TRL)
 - AMTEC, MLQW TE (insufficient TRL); SiGe TE (high mass)
 - Combo TE/ORC, ORC (large radiator area)
 - Brayton, TPV (high mass & large radiator area)
 - Out-of-core CsO-triode thermionic (high mass, insufficient TRL)
 - Combined cycle - Brayton/ORC (high mass)
Human Rover Power Technologies (Continued)

- Competing technology key FOMs (SOA)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Mass, kg/kW</th>
<th>Rad. Area, m²/kW</th>
<th>Vol., m³/kW</th>
<th>TRL</th>
<th>Funding To Achieve TRL</th>
<th>Extensibility To Human Mars Mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioisotope/</td>
<td>100</td>
<td>2.2</td>
<td>***</td>
<td>4</td>
<td>medium</td>
<td>low</td>
</tr>
<tr>
<td>Stirling Liquid Li Ion Battery</td>
<td>118</td>
<td>n/a</td>
<td>0.04</td>
<td>5</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>2nd PEM RFC</td>
<td>82</td>
<td>1.0</td>
<td>0.22</td>
<td>4</td>
<td>medium</td>
<td>medium</td>
</tr>
<tr>
<td>Primary PEM FC</td>
<td>40</td>
<td>1.0</td>
<td>0.14</td>
<td>4</td>
<td>medium</td>
<td>medium</td>
</tr>
</tbody>
</table>

Power Technology Assessment

Power Technology Recommendations
50 kW Habitat Power

Leading Technologies & Findings

- **On the basis of FOMs:**
 - Nuclear fission reactor
 - LiH/W layer, $\pi/2$ sector shield
 - Deployed via power cart 2.5 Km from habitat
 - Brayton, Stirling or Thermoelectric Power converter
 - NaK pumped loop coupled to deployable heat pipe radiator

- **Technology Findings:**
 - 50 kW System - ~6 MT Mass, ~100-m2 Radiator
 - Favorable Brayton scaling at higher power
 - Favorable Stirling & TE scaling at rover power levels
 - Dynamic & Static Converters rely on “dynamic” liquid metal loops
 - Heat source & heat rejection

2 kW Rover Power

Leading Technologies & Findings

- **On the basis of FOMs:**
 - Independent (contingency), Radioisotope/Stirling Converter
 - ~180-kg mass & ~3-m2 radiator (battery peaking power)
 - Rechargeable (dependent)
 - Liquid Li-ion Battery
 - ~200-kg mass, 0.1-m3 volume & no radiator
 - PEM RFC System
 - 160-kg mass, 0.5-m3 volume and 2-m2 radiator

- **Findings:**
 - Primary PEM fuel cell has $1/2$ mass (fluid interface complexity)
 - Radiator configurations:
 - Deployed, vertical, top-mounted = minimal dust collection
 - Fixed, horizontal, roof mounted
 - Will tend to collect dust
 - Aids rover equipment & crew thermal control
References

Electric Power System Technology Options for Lunar Surface Missions

Thomas W. Kerslake

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

National Aeronautics and Space Administration
Washington, DC 20546–0001

In 2004, the President announced a “Vision for Space Exploration” that is bold and forward-thinking, yet practical and responsible. The vision explores answers to longstanding questions of importance to science and society and will develop revolutionary technologies and capabilities for the future, while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions and a nominal 2-kW, 2-person unpressurized rover. To help direct NASA’s technology investment strategy, this lunar surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to Mars missions, costs, and risks. For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution architectures and component technologies were defined consistent with the preferred habitat power generation technology option and the overall lunar surface mission. For rover power, more than 20 technology options were down-selected to radioisotope Stirling, liquid lithium-ion battery, PEM RFC, or primary fuel cell options. The author discusses various conclusions that can be drawn from the findings of this surface power technologies evaluation.