NASA /TM—2005-213616

‘s|‘:4> YA

%

Project Integration Architecture:
A Practical Demonstration of
Information Propagation

William Henry Jones
Glenn Research Center, Cleveland, Ohio

March 2005

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA's scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA'’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

* TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

¢ TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

* CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

¢ TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following;:

* Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

* Fax your question to the NASA Access
Help Desk at 301-621-0134

e Telephone the NASA Access Help Desk at
301-621-0390

e Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076

NASA /TM—2005-213616

‘sl‘:,)» YA

%

Project Integration Architecture:
A Practical Demonstration of
Information Propagation

William Henry Jones
Glenn Research Center, Cleveland, Ohio

National Aeronautics and
Space Administration

Glenn Research Center

March 2005

NASA Center for Aerospace Information

7121 Standard Drive
Hanover, MD 21076

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.

Available from

Available electronically at http:/ /gltrs.grc.nasa.gov

National Technical Information Service

5285 Port Royal Road
Springfield, VA 22100

Project Integration Architecture:
A Practical Demonstration of Information Propagation

William Henry Jones
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT: One of the goals of the Project Integration Architecture (PIA) effort is to provide the ability to propagate
information between disparate applications. With this ability, applications may then be formed into an application graph
constituting a super-application. Such a super-application would then provide all of the analysis appropriate to a given
technical system. This paper reports on a small demonstration of this concept in which a Computer Aided Design (CAD)
application was connected to an inlet analysis code and geometry information automatically propagated from one to the
other. The majority of the work reported involved not the technology of information propagation, but rather the conversion

of propagated information into a form usable by the receiving application.

1 Introduction

1.1 History

In the late 1980s, the Integrated CFD and Experiments
(ICE) project [1, 2] was carried out with the goal of provid-
ing a single, graphical user interface (GUI) and data man-
agement environment for a variety of CFD codes and re-
lated experimental data. The intent of the ICE project was
to ease the difficulties of interacting with and intermingling
these disparate information sources. The project was a suc-
cess on a research basis; however, on review it was deemed
inappropriate, due to various technical limitations, to ad-
vance the effort beyond the successes achieved.

A re-engineering of the project was initiated in 1996 [3].
The effort was first renamed the Portable, Redesigned In-
tegrated CFD and Experments (PRICE) project and then,
as the wide applicability of the concepts came to be appre-
ciated, the Project Integration Architecture (PIA) project.
The provision of a GUI as a project product was eliminated
and attention was focused upon the application wrapping
and integration architecture. During the intervening years,
work has proceeded and an operational demonstration of
the PIA project in a C++, single-machine implementation
has been achieved.

1.2 Key Contributions
The PIA technology provides a number of benefits. Among

the more significant are the following.

1. Complete engineering process capture is possible to

NASA/TM—2005-213616

the extent desired.

(a) A complete derivational history of every project
configuration investigated can be captured, pro-
ducing an auditable trail from final design back
to initial guess.

(b) Technologist’s journals, notes, and the like can
be captured, allowing the record of thinking to
be retrievable in the context of the hard data of
the project.

. Integration of applications into a functional whole is

possible, allowing for the complex analysis of entire
systems.

. Rigorous design configuration synchronization is en-

forced, eliminating mis-matched analyses between in-
tegrated applications.

. The classic n-squared integration problem is solved

through the use of semantically-defined parameters.

. Dimensional unit confusion is eliminated by encap-

sulating in parameters a self-knowledge of their own
dimensionality.

. Quality values (good, bad, and, potentially, a range

in between) are captured allowing bad data or designs
to be retained in the record without concern that they
might be inadvertantly relied upon as being good.

. Application integration is achieved without the neces-

sity of re-coding those applications to the standard.
The wrapping nature of the architecture decouples
commitment to the integration standard from the cap-
ital assets of the wrapped applications.

8. The wrapping nature of the architecture also allows
for multiple wrappers to the same application. Among
other things, wrappers appropriate to the skill level of
various users might be developed.

1.3 Demonstration of Information Propagation

As a part of the project effort, it was deemed necessary and
appropriate to develop a working example of an applica-
tion graph and the automatic propagation of information
from one application to another. Because of the limited re-
sources available to a research project of this kind, it was
important to identify as simple a demonstration effort as
possible, while still achieving a real-world result.

Two applications were selected for the demonstration:
a Computer Aided Design (CAD) geometry information
repository and an inlet analysis code. The information to
be propagated was, of course, the geometry information of
an inlet designed in the selected CAD system. The propa-
gated information was then to provide the geometric input
for an analysis of the inlet by the inlet analysis code.

This problem was directly drawn from the world at hand.
The selected inlet was one under study at the Glenn Re-
search Center for a Rocket Based Combined Cycle (RBCC)
propulsion system. The inlet was interesting in that it was
neither axisymmetric nor two-dimensional. Instead, it was
an integrated bulge extending around one third of a circu-
lar cross-section fuselage, three such engines surrounding
the entire vehicle. This gave the flow path a cross section
something akin to an orange segment. This geometry had
proven difficult to handle with traditional tools. The ge-
ometry was particularly ill-suited to the input forms of the
selected inlet analysis code.

The CAD program used to define the engine geometry
was ProEngineer, a commercial product of PTC, Inc., in
use at the Glenn Research Center. To avoid complete
vendor dependence, the developed PIA wrapper incorpo-
rated the Computational Analysis PRogramming Interface
(CAPRI) [4] technology developed under the auspicies of
other projects at the Glenn Research Center. CAPRI pro-
vides a single Application Programming Interface (API)
that has been implemented in the context of a number of
different CAD products. By switching between CAPRI
implementation libraries, a consuming application may be
made relatively insensitive to the actual CAD product orig-
inating the geometry information.

The inlet analysis was conducted by the Large Perturbation

Inlet Analysis code (LAPIN), also separately developed un-
der other efforts at the Glenn Research Center. This code is

NASA/TM—2005-213616

a one-dimensional, unsteady, time-accurate flow code used
for the evaluation of inlet/flow control stability. The be-
lief that LAPIN, being a one-dimensional code, was in any
sense simple proved to be in error. In fact, a great many
options for studying the response of the flow to various
control actions (bleeds, bypasses, mass injections, and the
like) are provided by LAPIN, making it a rather compli-
cated code.

2 Implementation

The theory of information propagation within PIA has been
previously reported [5]. The present demonstration has
provided no alteration of that original theory.

2.1 The CAPRI/ProEngineer Wrapper

A PIA-compliant wrapper was generated to encapsulate ge-
ometry information obtained through CAPRI technology
from CAD files generated by the ProEngineer commercial
software product. The wrapper is fully documented on the
central PIA web site and is the subject of a separate re-
port [6].

The wrapper is, from an external viewpoint, unremarkable;
however, the internal structure necessary to implement the
wrapper is of some interest. The key consideration dic-
tating the resulting structure is the fact that the ProEngi-
neer software product provides access to its geometry ker-
nel only through the mechanism of a Dynamic Link Library
(DLL) containing the consuming code. The DLL is identi-
fied to the ProEngineer executable image at program load
time. The ProEngineer executable links to the identified
DLL and executes the well-known entry point provided by
that DLL.

In order to use some of the dynamic CAPRI API features
(as will be discussed shortly), the wrapper must spawn the
ProEngineer executable as a separate process and commu-
nicate with the wrapper-supplied DLL identified to that
process as a backend, geometry server. Thus, while ge-
ometry information presented by the wrapper appears to
originate in that wrapper, it is in fact produced in a separate
process and communicated to the wrapper for presentation.

2.2 The LAPIN Wrapper

A PIA-compliant wrapper was generated for the LAPIN
code. The wrapper is, again, fully documented on the cen-
tral PIA web site; however, due to its conventional nature,
it is not otherwise reported at this time.

It should be noted that the LAPIN code is maintained as
a separate entity from the wrapper. When execution of the
code is needed, the wrapper writes the Fortran namelist text
file expected by the LAPIN code, executes the code, and
then reads the text output file generated by that operation.
Thus, the PIA-compliant wrapper requires no modification
of the LAPIN code for its integration into the PIA applica-
tion environment.

2.3 Geometry Products

One of the key technologies of the PIA information propa-
gation formulation is the infusion of semantic meaning into
parameter objects through the act of class derivation; that
is, that a piece of consuming code can determine the kind
of information being supplied by determining the kind of
object supplying it. In the present demonstration, this tech-
nology allows the consuming LAPIN wrapper code to iden-
tify and obtain geometric assembly information by looking
for parameter objects of the kind PacParaGeoAsmb. Hav-
ing found such an object, the consuming code is then free
not only to acquire the information the parameter object di-
rectly offers, but also to avail itself of the functional prod-
ucts provided by the object. In the case of the PacPara-
GeoAsmb geometric assembly parameter object, there is
one principal functionality of interest to the consuming
LAPIN wrapper code: the generation and manipulation of
cross-sectional curves.

2.3.1 Basic Generation of Cross-Sectional Curves

The PacParaGeoAsmb geometric assembly object pro-
vides several member functions which generate cross-
sectional curves. These curves encompass the entire as-
sembly encapsulated by the presenting object. Assemblies,
though, imply a collection of things and, thus, do not di-
rectly provide the basis for cross-sectional curve genera-
tion.

In point of fact, assemblies organize boundaries and other
assemblies, and boundaries, in turn, organize faces. In the
CAPRI formulation (which is closely followed by the PIA
wrapper), faces are made substantial through triangular tes-
sellations; that is, a geometric face is ultimately realized as
a set of points in geometric space that are organized into
sets of connected triangles, the whole resulting in an ap-
proximation to the true geometric shape.

The tessellation information is the basis upon which cross-
sectional curve generation begins. As shown in Figure 2.1
each triangle of a tessellation is examined until one is found
which intersects the sectioning surface. Once such a trian-

NASA/TM—2005-213616

Y

L

Figure 2.1: Triangle Intersection Tracking

gle is found, the two intersections of the triangle’s sides
with the sectioning surface are computed. Curve genera-
tion then proceeds as an iterative process from these start-
ing points by identifying the connecting triangle and com-
puting the intersection of its side with the sectioning sur-
face. Due attention is also provided to the possibility that a
triangle vertex may lie exactly on the sectioning surface.

The geometric model does not provide closed faces; for ex-
ample, what is in fact a cylinder is represented in the geo-
metric model as two half-cylinders joined at their edges.
Thus, the tracking of a cross-sectional curve around a
closed solid must (and does) account for the crossing of
edges shared between faces. While requiring the explo-
ration of additional data structures, the fundamental logic
of the curve generation process is the same.

The cross-sectional curve generation process notes the
starting point of its operations and, should it re-encounter
that point during a subsequent iteration, it concludes that
the produced curve is closed and makes an appropriate
notation; otherwise, the curve defaults to an open status.
Note, though, that since the supported CAD products, in
this case ProEngineer, model solid objects, open cross-
sectional curve results should not occur as a practical mat-
ter. It is possible, though, to have multiple closed curves
result from a single cross-section, for example as the cross-
section of a block with a hole through it.

2.3.2 Curve Fidelity Improvement

The cross-sectional curve generation process recognizes a
fact of geometry discretization: when the geometric face is
not flat, the collection of triangles is only an approxima-
tion to the shape of that actual geometric face. While it
is true that each vertex of the set of tessellating triangles
lies on the geometric face (to within an arbitrary value),
it is not necessarily true that the line segment connecting
each vertex pair lies on that face. Thus, a cross-sectional

N

L

Figure 2.2: Introduction of Noise by Geometric Discretiza-
tion

curve product based solely upon the intersection of trian-
gle sides with a sectioning surface will introduce error into
the portrayed geometry proportional to the curvature of the
geometric face.

This introduction of geometric noise can be seen on close
inspection in Figure 2.1. Figure 2.2 especially illustrates
this by showing the axial cross section of a cylinder in com-
parison with the cross section produced by tracking the in-
tersection of the tessellating-triangle sides (that curve being
shown in red). When the triangle side spans the sectioning
plane, the produced cross-sectional curve dips down to the
height of the spanning side and deviates from the true geo-
metric surface.

The cross-sectional curve generation process removes this
introduced error by utilizing a snap-to-face capability pro-
vided by the CAPRI API. As each tessellating triangle side
is intersected with the sectioning surface, the computed
point is then snapped onto the underlying geometric face.
Because the direction of this movement to the face is un-
predictable, the point improvement is, in fact, performed
iteratively: the point is snapped to the underlying geomet-
ric face, then back to the intersecting surface. The iterative
process terminates when meaningful movement of the im-
proved point ceases.

The process to this point generates a cross-sectional curve
whose defining discrete geometric points lie (to within
an arbitrary accuracy) on the underlying geometric faces;
however, just as with the sides of the tessellating triangles,
the line segments implicitly joining the successive points of
the curve do not necessarily lie in the underlying geometric
faces.

To adjust for this curve-segment difficulty, a curve im-

provement phase is performed. As shown in Figure 2.3,
each line segment of the curve is bisected and the resulting

NASA/TM—2005-213616

.

Tolerance band

Figure 2.3: Curve Fidelity Improvement by Segment Bi-
section

T~ —
~ = \\\\
I

—

Figure 2.4: Cross Sections of Individually-Modelled En-
gine Components

point snapped onto the geometric face, just as the original
tessellation intersection points were. If the displacement of
this point improvement is greater than the accuracy spec-
ified for the cross-sectional curve, then the improved bi-
section point is inserted into the curve and the two curve
segments that result are, themselves, recursively considered
for bisection point improvement.

2.3.3 Curve Purification

As noted earlier, assemblies usually organize two or more
boundaries or other assemblies, each of which produces at
least one cross-sectional curve (assuming, of course, that
the sectioning surface intersected the organized geometric
element at all). When boundaries touch each other across a
portion of a face, as they will in many real-world geomet-
ric assemblies, parts of the produced cross-sectional curves
will be redundant. For example, consider the situation il-
lustrated in Figure 2.4 which shows the lateral cross-section
curves of a propulsion system in which the centerbody
and cowl both sit on a common splitter plate. Portions of

Curve segments that touch

L
z
Figure 2.5: A Single Curve that Intersects Itself

those cross-sectional curves obtained from both the center-
body and cowl duplicate portions of the splitter plate cross-
sectional curve. The objects encapsulating cross-sectional-
curve products provide functionality to identify and elimi-
nate such intersections between curves, producing in such
an event one cross-sectional curve where two (or more) ex-
isted before.

There is a further aspect to such curve merging. Consider
an assembly of two objects in which the objects touch each
other in two distinct areas, as the cowl touches the split-
ter plate in Figure 2.4. The resulting cross-sectional curves
will intersect each other in two distinct places, namely at
each end of the arch. When curve purification detects one
of these intersections and merges the two curves, the re-
sult will be a single curve that intersects itself at the other
point of intersection, as shown in Figure 2.5. The imple-
mented curve objects also provide functionality to detect
this situation and split such single curves back into two
non-intersecting (or pure) curves.

The cross-sectioning functionality of assembly objects uti-
lizes these capacities to merge and split the set of curves
obtained until a pure set of non-intersecting curves is ob-
tained, as shown in Figure 2.6. In this way, curves that are
cross-sections of the assembly as a whole are obtained for
use by consuming code.

2.4 Information Consumption

The LAPIN analysis code requires geometric input that
is, considering the fact that it is all the same propul-
sion system, radically different from that provided by the
CAPRI/ProEngineer geometry wrapper. The most strik-
ing difference is that, while the CAPRI/ProEngineer infor-
mation models the solid objects that make up the propul-

NASA/TM—2005-213616

Y
Q
z

Figure 2.6: A Purified Curve Set that Reveals the Flow Path

jeen inlet spike and rocket body bulkheads

Figure 2.7: Propulsion System Flowpath Profile

sion system, LAPIN focuses instead on the hole through
space (that is, the flow path) left over by these solid ob-
jects. Futhermore, LAPIN is only interested in the profile
of the flow path; the three-dimensional shape of the flow
path is entirely beyond its scope of interest.

The LAPIN wrapper uses the cross-sectioning geometry
functionality provided by the PacParaGeoAsmb geomet-
ric assembly object it identifies to transform the informa-
tion encapsulated in the CAPRI/ProEngineer wrapper into
a form useful to the LAPIN analysis code. Furthermore,
by examination of the results it obtains, the wrapper is able
to select among a number of geometry options accepted by
the LAPIN code.

The following actions are performed to lead to this overall
result during the act of information propagation.

1. The LAPIN wrapper obtains from the identified Pac-

ParaGeoAsmb object a cross-sectional profile of the
propulsion system, resulting in a set of curves like
those depicted in Figure 2.7.

2. An attempt is made to reduce the curve set by elimi-
nating those curves that exist in the interior of another
curve.

This action is required to account for the actual situ-
ation of the RBCC geometry. The propulsion system
consists of a cylindrical splitter plate, a rocket body
mounted to the aft portion of that plate, an inlet spike
mounted to the plate whose aft section fits over the
rocket body and is able to translate longitudinally for
shock capture, and a cowl bridging from edge to edge
of the plate and generally enclosing the overall propul-
sion system. With the spike translated forward, the
production of pure, profile cross-sectional curves, as
shown in Figure 2.7, results in an apparent hole in the
centerbody profile which is, in fact, the interior lon-
gitudinal gap between the inlet spike and the foward
wall of the rocket body.

3. The profile curves are split at their longitudinal ex-
tremes to produce a set of open profile curves. The set
is then vertically sorted.

4. The number of open profile curves is then used to se-
lect two profile curves for further processing.

(a) If there are exactly four curves, the middle two
curves are selected. This case presumes that one
of a number of centerbodyless flow path forms
is represented by the geometric information.

(b) If there are exactly six curves, the fourth and fifth
curves are selected. This case presumes that a
centerbody with upper and lower cowls is repre-
sented by the geometric information.

5. The two selected curves are examined to determine if
they are, in fact, mirror images of each other. (This
is another functional capability offered by the class of
objects encapsulating cross-sectional curves.) If this is
the case, curve processing is performed under the pre-
sumption that the flow path is of a centerbodyless, ax-
isymmetric system, a type recognized and supported
by LAPIN. Further discrimination of the geometry in-
formation is avoided.

6. The vertical coordinate of the leading point of the
lower curve is compared to zero. If it is, essentially,
zero, then curve processing is performed under the
presumption that the flow path is of an axisymmet-
ric system with a centerbody, another type recognized
and supported by LAPIN. Further discrimination of
the geometry information is avoided.

NASA/TM—2005-213616

7. Should consideration of geometry information reach
this point, all other relevant options presently imple-
mented by LAPIN have been exhausted. The selected
curves are processed under the presumption that the
flow path is of a non-symmetric, two-dimensional sys-
tem, a special type again recognized and supported by
LAPIN.

In processing this last type, LAPIN accepts width ge-
ometry input in addition to its normal profile geom-
etry. Pure, assembly cross-sectional curves normal
to the longitudinal axis, such as those shown in Fig-
ure 2.6, are acquired from the assembly object and
the second largest area (another function provided by
curve objects) enclosed by a curve of the set is taken to
be the flow path area. (The largest area is presumed to
be the projected frontal area of the propulsion system,
while smaller areas would be considered to be internal
ducts for bypasses, bleeds, and the like.) A simple cal-
culation based upon the vertical extent of the profile at
that station then produces the width value for use by
LAPIN.

It should be noted that, internally, LAPIN is concerned
with the flow path profile and its cross-sectional area. The
original LAPIN code made a universal axisymmetric pre-
sumption, allowing cross-sectional area to be computed di-
rectly from the centerbody (if present) and cowl profiles.
The introduction of two-dimensional inlets to real propul-
sion systems necessitated the amendment of LAPIN to ac-
cept width input because the adjustment of profile values
to achieve proper areas under an erroneous axisymmetric
presumption would introduce errors into the oblique shock
impingment computations performed by LAPIN.

The fact that the RBCC flow path is orange-segment
shaped, rather than simply rectangular, is beyond the scope
of LAPIN computations because no lateral effects exist in
the LAPIN formulation. Although the actual flow path is
an angular portion of an axisymmetric flow path (that is,
the flow path is made from angular portions of surfaces of
revolution), it was considered inappropriate to simply ana-
lyze a full axisymmetric extension since this would require
the scaling of various bleed and bypass flow values.

3 Enhanced CAPRI/ProEngineer Services

The curve purification discussion identifies the activities
necessary to deal with flow path geometry in an environ-
ment in which an engine is described as an assembly of sep-
arate pieces; cowl, centerbody, splitter plate and the like.
The great majority of computation performed involves the
integration of that separate information using only the tools

of a discretized geometry; however, the ProEngineer prod-
uct has the capability to eliminate this complexity by merg-
ing the separate pieces of the engine assembly into a single
solid object. By dealing with the engine as a single solid,
the need for curve purification is entirely eliminated and,
with it, a very large computational effort.

A new release of the CAPRI libraries recently incorpo-
rated into the PTA project now includes the ability to invoke
these assembly-merging facilities of ProEngineer. Per-
forming this function has been made an optional part of
the CAPRI/ProEngineer CAD wrapper.

It is worth mentioning that, due to the PIA technology,
no reprogramming of the LAPIN wrapper was required to
adapt to the revised CAPRI/ProEngineer wrapper since the
LAPIN wrapper is programmed to the kinds of information
it wants, not to the application presenting that information.

4 Results

The results, per se, are very simple: geometry information
was presented by the CAPRI/ProEngineer CAD wrapper
and consumed by the LAPIN wrapper during the act of in-
formation propagation. In and of itself, this result is rather
anticlimatic. The same feat was accomplished using man-
ual methods by the original engine analysis team, requiring
several weeks of effort for each studied design.

A further element of the result, though, is the speed im-
provement obtained by automating the transfer of informa-
tion. The runtime required when the actions of curve purifi-
cation in a multi-solid, discretized geometry environment
were required was on the order of five days, a figure far
above the “instantly” commonly expected of such automa-
tion, but still an improvement over manual methods. Con-
trasted with this, the execution time when a pre-merged,
single-solid formulation of the geometry was used was on
the order of minutes, ranging somewhere between 12 and
30 minutes depending upon the granularity of the tessel-
lation produced by the geometric services. The difference
in these two numbers is virtually all in the effort of curve
purification, which is eliminated by the single-solid formu-
lation.

Perhaps what this runtime difference points out most
forcibly is the debilitating effects of geometry discretiza-
tion. While the reduction of parametric geometry (that
is, the geometry of planes, cylinders, cones, and the like)
to simply a maze of organized points may be unavoidable
to achieve a least-common denominator between the many
commerical CAD products, that loss of semantic informa-
tion is huge step into the abyss. The ProEngineer multi-

NASA/TM—2005-213616

solid merging process is accomplished in a matter of sec-
onds while the same result in the discretized reduction takes
days. This points, once again, to that perpetual Holy Grail
of the CAD world: a supported, common, high-level, open
standard for geometric representation.

5 Documentation

Complete, class-by-class, member-by-member documenta-
tion is available on a central server the the Glenn Research
Center. The root URL for this documentation is

http://www.grc.nasa.gov/WWW/price000/index.html

It must be strongly emphasized that these pages are the in-
formal generation of the researchers involved and do not,
in any way, shape, or form, represent an official statement
of the Government of the United States.

References

[1] The American Society of Mechanical Engineers. In-
tegrated CFD and Experiments Real-Time Data Ac-
quisition Development, number ASME 93-GT-97, 345
E. 47th St., New York, N.Y. 10017, May 1993. Pre-
sented at the International Gas Turbine and Aeroengine
Congress and Exposition; Cincinnati, Ohio.

[2] James Douglas Stegeman, Richard A. Blech,
Theresa Louise Benyo, and William Henry Jones. Inte-
grated CFD and Experiments (ICE): Project Summary.
Technical memorandum NASA/TM-2001-210610,
National Aeronautics and Space Administration,
Lewis Research Center, 21000 Brookpark Road,
Cleveland, OH 44135, December 2001.

[3] William Henry Jones. Project Integration Architecture:
Application Architecture. Technical memorandum
NASA/TM-2005-213611, National Aeronautics and
Space Administration, Glenn Research Center, 21000
Brookpark Road, Cleveland, OH 44135, March 2005.
Auvailable electronically at http://gltrs.grc.nasa.gov.

[4] Robert Haimes. Computational Analysis PRogram-
ming Interface (CAPRI): A Solid Modeling Based
Infrastructure for Engineering Analysis and Design.
Cambridge, MA, November 1999. Web Reference:
http://raphael.mit.edu/capri/.

[5] William Henry Jones. Project Integration Architecture:
Inter-Application Propagation of Information. Techni-
cal memorandum NASA/TM-2005-213613, National

Aeronautics and Space Administration, Glenn Re-
search Center, 21000 Brookpark Road, Cleveland,
OH 44135, March 2005. Available electronically at
http://gltrs.grc.nasa.gov.

[6] American Institue of Aeronautics and Astronatics.
Project Integration Architecture (PIA) and Computa-
tional Analysis Programming Interface (CAPRI) for
Accessing Geometry Data from CAD Files, number
2002-0750, 1801 Alexander Bell Drive, Suite 500, Re-
ston, VA 20191-4344, January 2002. Aerospace Sci-
ences Meeting and Exhibit, Reno, NV.

NASA/TM—2005-213616

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 2005 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Project Integration Architecture: A Practical Demonstration of
Information Propagation

WBS-22-617-91-40

6. AUTHOR(S)

William Henry Jones

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field E—15077
Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, DC 20546-0001 NASA TM—2005-213616

11. SUPPLEMENTARY NOTES

Responsible person, William Henry Jones, organization code RTS, e-mail: William.H.Jones-1@nasa.gov, 216-433-5862.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited
Subject Category: 63

Available electronically at http://gltrs.grc.nasa.gov

This publication is available from the NASA Center for AeroSpace Information, 301-621-0390.
13. ABSTRACT (Maximum 200 words)

One of the goals of the Project Integration Architecture (PIA) effort is to provide the ability to propagate information
between disparate applications. With this ability, applications may then be formed into an application graph constituting a
super-application. Such a super-application would then provide all of the analysis appropriate to a given technical system.
This paper reports on a small demonstration of this concept in which a Computer Aided Design (CAD) application was
connected to an inlet analysis code and geometry information automatically propagated from one to the other. The majority
of the work reported involved not the technology of information propagation, but rather the conversion of propagated
information into a form usable by the receiving application.

14. SUBJECT TERMS] . _ 15. NUMBER OF PAGES
C++ (programming language); Data management; Data structures; Functional integration; 14
Information retrieval; Information systems; Object-oriented programming; Parameter 16. PRICE CODE

identification; Semantics; System integration

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

