
William Henry Jones
Glenn Research Center, Cleveland, Ohio

Project Integration Architecture:
Implementation of the CORBA-Served
Application Infrastructure

NASA/TM—2005-213617

March 2005



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
           NASA Access Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076



William Henry Jones
Glenn Research Center, Cleveland, Ohio

Project Integration Architecture:
Implementation of the CORBA-Served
Application Infrastructure

NASA/TM—2005-213617

March 2005

National Aeronautics and
Space Administration

Glenn Research Center



Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

This report contains preliminary
findings, subject to revision as

analysis proceeds.

Available electronically at http://gltrs.grc.nasa.gov



Project Integration Architecture:
Implementation of the CORBA-Served Application Infrastructure

William Henry Jones
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT: The Project Integration Architecture (PIA) has been demonstrated in a single-machine C++ implementation
prototype. The architecture is in the process of being migrated to a Common Object Request Broker Architecture (CORBA)
implementation. The migration of the Foundation Layer interfaces is fundamentally complete. The implementation of
the Application Layer infrastructure for that migration is reported. The Application Layer provides for distributed user
identification and authentication, per-user/per-instance access controls, server administration, the formation of mutually-
trusting application servers, a server locality protocol, and an ability to search for interface implementations through such
trusted server networks.

1 Introduction

1.1 History

In the late 1980s, the Integrated CFD and Experiments
(ICE) project [1, 2] was carried out with the goal of provid-
ing a single, graphical user interface (GUI) and data man-
agement environment for a variety of computational fluid
dynamics (CFD) codes and related experimental data. The
intent of the ICE project was to ease the difficulties of in-
teracting with and intermingling these disparate informa-
tion sources. The project was a success on a research basis;
however, on review it was deemed inappropriate, due to
various technical limitations, to advance the effort beyond
the successes achieved.

A re-engineering of the project was initiated in 1996 [3, 4,
5, 6, 7, 8, 9, 10]. The effort was first renamed Portable,
Redesigned Integrated CFD and Experiments (PRICE) and
then, as the wide applicability of the concepts came to
be appreciated, Project Integration Architecture (PIA). The
provision of a GUI as a project product was eliminated
and attention was focused upon the application wrapping
and integration architecture. During the intervening years,
work has proceeded and an operational demonstration of
the PIA project in a C++, single-machine implementation
has been achieved. This demonstration includes the in-
tegration of a Computer Aided Design (CAD) geometry-
wrapping application with a wrapped CFD code and the
automatic propagation of geometry information from one
to the other [5].

1.2 Key Contributions

The PIA technology provides a number of benefits. Among
the more significant are the following.

1. Complete engineering process capture is possible to
the extent desired.

(a) A complete derivational history of every project
configuration investigated can be captured, pro-
ducing an auditable trail from final design back
to initial guess.

(b) Technologist’s journals, notes, and the like can
be captured, allowing the record of thinking to
be retrievable in the context of the hard data of
the project.

2. Integration of applications into a functional whole is
possible, allowing for the complex analysis of entire
systems.

3. Rigorous design configuration synchronization is en-
forced, eliminating mis-matched analyses between in-
tegrated applications.

4. The classic n-squared integration problem is solved
through the use of semantically-defined parameters.

5. Dimensional unit confusion is eliminated by encap-
sulating in parameters a self-knowledge of their own
dimensionality.

6. Quality values (good, bad, and, potentially, a range
in between) are captured allowing bad data or designs
to be retained in the record without concern that they
might be inadvertantly relied upon as being good.

NASA/TM—2005-213617 1



7. Application integration is achieved without the neces-
sity of re-coding those applications to the standard.
The wrapping nature of the architecture decouples
commitment to the integration standard from the cap-
ital assets of the wrapped applications.

8. The wrapping nature of the architecture also allows
for multiple wrappers to the same application. Among
other things, wrappers appropriate to the skill level of
various users might be developed.

9. The architecture provides a significant step forward
into the long desired utopia of plug-and-play, mix-
and-match software building blocks, allowing cus-
tomers to pick the analysis pieces needed for a par-
ticular situation and drop them into a self-integrating
analysis system.

10. The architecture also provides a beginning for the
building of intelligence into applications (or more cor-
rectly, their wrappers) whereby those applications can
search for other applications developing the kinds of
information they need. A small peak over the horizon
at self-organizing solutions may be here, perhaps the
basis for the implementation of the “solve yourself”
method.

11. The CORBA-served implementation of the architec-
ture will allow the services of applications to be pro-
vided to customers without the release of the actual
application software. Often it is the software and its
internal techologies which are the competitive edge of
an enterprise.

12. Applications made available through the CORBA-
served implementation will be more easily maintained
since only the copies in execution on the server(s) (as
opposed to all the copies that would have been shipped
to customers under conventional distribution mecha-
nisms) need be updated when new features are added
or mistakes corrected.

2 Developmental Foundations

Before proceeding to discuss the developed application-
layer infrastructure, it is appropriate to understand the sup-
positions upon which that infrastructure is based.

2.1 Commercial, Off-the-Shelf Solutions

One of the points the astute will notice is that the
application-layer infrastructure, at points, tends to dupli-
cate facilities and capabilities that might also be obtain

from various commerical products or other implementa-
tions of standards that are either in place or nearly at hand.
In particular, the implementation of object access controls
is a topic that has been addressed by the Object Manage-
ment Group (OMG, the organization responsible for the
Common Object Request Broker Architecture (CORBA)
standard) and commercial products implementing those
further standards are available. Other such areas undoubt-
edly exist.

Such Commercial, Off-the-Shelf (COTS) solutions are
generally declined by the PIA project in favor of project-
generated and open-source freeware solutions. Some of the
reasons forming this choice are as follows.

1. The technical approaches of some alternative solu-
tions do not fit the (sometimes implicitly understood)
design strategies of the PIA project. For example,
the commercial products offering object access con-
trols tend toward a single user authentication database
server, which represents a single point of failure and
runs contrary to the utterly-distributed design goal of
the PIA project.

2. As a (possible) standard in its own right, the PIA
project is reluctant to build upon COTS solutions as
elements of the PIA whole. While the ideal pro-
poses that every COTS solution conforming to a given
standard is to be interchangable with every other, the
practical reality is that there are often subtle differ-
ences between solutions that have slipped between the
cracks of the associated standards process. This con-
dition then leads to one of two undersirable condi-
tions: either the PIA implementation would become
dependent upon a particular set of COTS solutions to
the exclusion of other supposedly identical products,
or the PIA implementation would become a morass
of conditional code attempting to accommodate the
slight differences between those supposedly identical
products.

3. Continuing the previous concern, the Government of
the United States is customarily reluctant to provide
an endorsment of a particular commercial product in
preference to another. Thus, to issue the PIA product
with a list of required COTS elements is a less than
completely desirable choice.

4. One potential commercialization plan for the PIA
project [11] is to provide it as open-source freeware.
Such an approach to commercialization offers a num-
ber of benefits, including but not limited to wide dis-
tribution due to the ease of acquisition, wide accep-
tance due to the lack of proprietary protections and

NASA/TM—2005-213617 2



ploys, confidence due to the ability to examine the ex-
act operations of the software, and a large de facto test-
ing/debugging community. Dependence upon a list of
required COTS foundation elements is somewhat an-
tithetical to such a commercialization path.

2.2 Implementation Foundation

Except for a few peripheral elements whose need has not
yet been clearly defined or established, the implementation
of the foundation layer upon which the application infra-
structure is built is complete. There are in this founda-
tion layer a few assumptions which run somewhat counter
to those of the application infrastructure. The following
choices led to this situation.

1. The goal of the foundation layer was to provide
generic, reusable structural forms as CORBA-served
interfaces. These include arrays, matricies, lists,
maps, organizations, graphs, and a few fundamental,
non-atomic data types.

2. As a generic, reusable form, the foundation layer
does not introduce the concept of a “user”; how-
ever, because of the inherently multi-accessor nature
of CORBA, resolution of concurrent access conflicts
is provided [7].

3. Lacking the concept of a user, the foundation layer had
little upon which to hang the concept of an “operating
system”. Thus, the central, server control interface
(of which each server program has one instance) had
little to do but control diagnostic features and provide
a skeletal framework for the startup and shutdown of
the server program.

4. Lacking the concept of an operating system, the fo-
cus of the “bootstrap” process (whereby some initial
grasp of CORBA-served objects is obtained) moved
to the interfaces themselves. Thus, the GInterface-
Info instances (in CORBA parlance, the interface fac-
tories) which parallel the PClassInfo objects of the
C++ Foundation Classes became the elements publi-
cized for clients to find. Thus, a client does not find a
server, but instead finds a served GInterfaceInfo in-
stance.

5. Because of an anticipation that there would be many
PIA servers in a given, cooperating environment, the
publication of GInterfaceInfo instances was orga-
nized in a way so as to allow many instances support-
ing the same interface to co-exist. Further, this mech-
anism allowed the client an opportunity to navigate to
a particular GInterfaceInfo instance based upon ap-
parent co-locality on the network.

3 Application Infrastructure

As discussed in the following subsections, two key con-
cepts, that of trusted, cooperating servers and that of a
“user” combine to shape the application infrastructure.

3.1 The Trusted Server Concept: The Collective

The PIA application model conceives not simply of a sin-
gle, isolated CORBA server serving one or more compliant
application wrappers, but instead a cooperating community
of application servers (called a collective, so as to avoid
calling it a federation) serving many different types of ap-
plications. The collective may span just a few servers of
a division of some corporate entity, or it may consist of
thousands of servers cooperating in a world-wide service
of technical resources.

Because the collective is conceived as potentially expand-
ing to a world-wide basis, the first design dictum becomes
one of scalability through distribution. To the extent that it
is possible, there is to be no central resource for anything;
no central user identification data base, no central lock or
access control mechanism, no central security mechanism
or resource, no central location service, etc. This dic-
tum coordinates with the previously explained prediposi-
tion against COTS software solutions since many of those
solutions gravitate in entirely the opposite direction to cen-
tral resources and central points of failure.

A consequent point that arises from the distributed, scalable
design dictum is that, since many of the activities carried on
between cooperating servers involve key security issues, a
level of trust between the servers of a collective must be
met. For example, one of the activities carried out by the
collective is the identification of a particular user. Since
this identification is key to establishing access privileges to
information, the validity of the identification process must
be maintained. A rogue server accepted by the collective
could easily identify its own users as uniquely privileged
and, thereby, compromise any and all information through-
out the collective.

It should be further noted that the establishment of trust
does not directly dictate the open or closed nature of the
collective. A collective fully rooted in trust of its members
may well permit wide-ranging anonymous or guest account
access. The focus of the trust issue is on whether or not the
prescribed mechanisms are operating correctly, not the use
to which those mechanisms are being put.

At present, no automatic mechanism for the establishment
of trust between servers is implemented, or even particu-

NASA/TM—2005-213617 3



larly conceived. Instead, some particular user (typically a
server administrator of one or the other servers involved)
must be granted ownership privileges to both members of a
trusting pair. That user can then execute functionality that
forms a linkage of trust between those two servers. It is up
to the people involved to satisfy themselves that the req-
uisite compliance to PIA application server protocols is in
place on both servers of the established pair.

As additional trust linkages are formed, a graph of trusted
servers evolves. Since linkages are reciprocal and adirec-
tional (a linkage indicating the trust of A in B is matched
by a linkage indicating the trust of B in A, neither of which
is considered a “forward” linkage), cycles in this graph are
inevitable. Cycles are, of course, not limited to the formed
reciprocal linkages. Server A might trust B, which would
trust C, which would trust D, while A might also trust D
directly.

No initial node of the graph is defined. Because of this, any
conceptualization of depth is only relative to the node from
which its calculation is started. While technically possible,
relative depth within the graph is not presently used to es-
tablish any measure of relative trust. Thus, if A trusts B,
which trusts C, which trusts D, D is as trusted by A as B.

3.2 The User Concept

Because the application layer is to present for use valuable,
indeed often revenue generating, resources, the concept of
a “user” which may be granted or denied use of these valu-
able facilities is very definitely included. This, of course,
runs entirely counter to the suppositions of the foundation
layer upon which the application infrastructure is built.

In the PIA formulation, a user currently has the following
rather limited characteristics.

1. A user has a name. This corresponds to the classic
computer system concept of the user account, but in
the PIA formulation, that name or account is a global
concept spanning (potentially) many computers and
many PIA-based servers.

2. A user has a location, or more generally, a range of lo-
cations from which she originates. In classic computer
systems, a user has only one location, the computer
system to which she is logged on, and that location
is more a point of termination that origination. In the
PIA formulation, the point of origin serves to differen-
tiate users in the event of name collisions. Thus, PIA
can accept multiple users named “xyz” if those users
originate from different ranges.

Client

GLockCtx

GObjLck-based Instance

GLock

Figure 3.1: Relationship of Concurrency Resolution Com-
ponents

3.2.1 The User Context Mechanism

The reason for the concept of a user is, as previously stated,
to provide a basis upon which to grant or deny usage of the
served resources, those resources being in the form of in-
stances of PIA-defined, CORBA-served interfaces. Some
mechanism is needed to identify a particular user request-
ing such resources and to track the resources to which that
user has been granted access. The foundation layer pro-
vides the basis for such a mechanism in the form of the
GLockCtx lock context interface.

In the foundation layer, the GLockCtx interface is one part
of the concurrency conflict resolution triad (illustrated in
Figure 3.1) of context (the GLockCtx instance), target (any
GObjLck-based instance), and lock (a GLock instance as-
sociated with the target) [7]. The GLockCtx context tracks
the locks currently held by the logical thread of execution.
It is presumed that the activities of such a thread of exe-
cution are free to perform the acts granted by the locks it
holds without further concern of corruption through other
concurrent events.

This concept of a context extends naturally into the con-
cept of a user since a user holds the right to access various
resources in the form of interface instances. Thus, a deriva-
tive form of the GLockCtx interface, the GacLockCtx
interface, is provided to accommodate certain additional
functionality to be discussed later.

3.2.2 Provision of Access Control Levels

The next step of the user concept is the recognition that
the goal is to provide controls on the access to interface in-
stances beyond the simple resolution of concurrency con-
flicts. That is, beyond the resolution of whether or not a

NASA/TM—2005-213617 4



particular access could be accomplished without corruption
is the issue of whether or not a particular user has the right
to exercise such an access. This task falls very naturally
upon the GLock interface which, in the concurrency reso-
lution triad of the foundation layer, makes the decision as to
whether or not to grant a lock and, thereby, permit the pro-
posed access. As with the lock context interface, the ap-
plication infrastructure implementation provides a deriva-
tive of the GLock interface, the GacLock interface, to deal
with these matters.

The application layer begins by recognizing the standard
access forms defined by the foundation layer: release, ref-
erence, read, write, execute, and delete. These are ex-
tended into the concept of the right to perform the access,
in addition to the present ability to conduct such an access.
The application layer then extends these concepts to in-
clude additional forms of access, the significant ones being
control, own, and security.

Because the implementation is achieved through derivative
forms of the GLockCtx and GLock interfaces, the new ac-
cess control concepts must be treated in the manner of the
old concurrency forms. A certain complexity arises since
the new forms enforce the same concurrency restrictions as
the old, but must be treated as distinct by the GLockCtx
and GLock mechanisms. For example, both the write and
control access levels require exclusive access to the target
instance; however, to hold a write lock is not to hold con-
trol privileges, even though both locks are of equal prece-
dence.

Further, while this distinction between locks of equal
precedence but differing privilege is being maintained, it is
also necessary to conform to the concurrency system prin-
cipal that a nested lock application not reduce the prece-
dence of a lock already held. For example should a holder
of a delete lock request a control lock in some nested part
of the overall operation, the granting of the control lock
(which, technically carries only write precedence) should
not reduce the delete precedence already held by the con-
text. All of this must be done, of course, by code that has no
knowledge that derivative lock/privilege forms have been
defined.

The implementations of the GLockCtx and GLock in-
terfaces provide a few functional hooks that allow this
introduction of additional lock/privilege concepts. The
GsLockCtx class (which implements the GLockCtx inter-
face) provides the IsLesserLock member function which
compares the precedence of two lock levels. This func-
tion, in turn, uses the ConvertToLockLevel method of the
GLock interface to obtain a basic lock precedence for a
provided lock level. The implementation of the derivative

GacLock lock interface provides an override of the defined
ConvertToLockLevel function that adds the knowledge of
the newly-defined lock/privilege levels and provides the ap-
propriate foundation level precedences for each. In the
event that a precedence adjustment must be made, the
GacLock interface supplies an override of another method,
PromoteToPrecedence, which supplies lock level codes
for the desired access kind at the required precedence. For
example, if the current precedence is execute and a control
lock is requested, the overridden ConvertToPrecedence
method implementation provides a code that is, in its es-
sense, control at execute precedence.

3.2.3 Enforcement of Access Control Levels

Having, through object-oriented slights of hand, introduced
additional access control levels and kept them distinct in
the implemented concurrency mechanism, the next magi-
cal feat is to actually enforce those levels. This is done
through an override of the implementation of the Request-
Lock functionality originally defined by the GLock inter-
face. The overriding code is provided by the implementa-
tion of the derivative GacLock interface.

The RequestLock override eventually relies upon its in-
herited base-class implementation to provide concurrency
resolution; however, before it does so it first verifies that
the user represented by the supplied GLockCtx interface
(which must be, in fact, a GacLockCtx interface), can ex-
ercise the privileges of the requested lock. The source of
this answer is found in a GacDescAccs access control de-
scriptive element attached to the lockable target, which it-
self must be an instance of the GacBObj interface (or its
derivatives). (This symbiosis between GacBObj targets
and GacLock locks is enforced through an override pro-
vided by the GacBObj implementation of the NewLock-
Instance member function originally defined by the im-
plementation of the GObjLck interface, GacBObj being
a derivative of GObjLck.)

The RequestLock override obtains from its supporting
GacSrvrCtl server control instance (the GacSrvrCtl in-
terface being a derivative of the GSrvrCtl interface of the
foundation layer) a user identification text associated with
the GacLockCtx instance requesting the lock. The de-
scriptive sets of the particular GacBObj interface are then
searched for a GacDescAccs instance providing a definite
answer as to the access privileges of the identified user. If
no such answer is found in the course of the search, the
access is, currently, denied.

Note that the GacBObj descriptive system is hierarchial in
nature, providing many potential layers of description cor-

NASA/TM—2005-213617 5



responding to each layer of derivation from the GacBObj
foundation. Each such layer may provide a separate
GacDescAccs access control descriptive instance. The lay-
ers are searched from shallowest (the most derived layer)
to deepest (the GacBObj layer) while the issue remains in
doubt.

The access control search further recognizes the applica-
tion layer concept of structural uplink and, while an an-
swer to the access control question is not yet found, will
proceed up this chain of GacBObj instances to containing
logical application structures. The first instance providing
a definite answer terminates the search and settles the is-
sue. Because of this upward search, the potential exists for
controlling many instances through a highly-placed access
control description. For example, access controls might be
placed on a root application instance (that is, an instance
of a derivative of GacAppl) and neglected on all the com-
ponents of the application that instance heads. Because of
the uplink search protocol, every component ever added to
that application instance would be governed by the access
controls of that single GacAppl-derivative instance.

3.2.4 Access Control Description

The GacDescAccs access control interface does not, itself,
implement the access controls. Instead, it serves only as
a linkage to a more general set of control mechanisms,
the GacAccsCtrl access control interface which organizes
GacAccsAce access control entry instances. GacAcc-
sAce instances actually record the particulars of privilege
granted to a specific user or account.

As currently implemented, GacAccsAce access control
entries (ACEs) are organized by GacAccsCtrl-derivative
forms into access control lists (ACLs) which are traversed
from head to tail. Again, the first such entry providing a
definite answer terminates the access control search and de-
termines the issue.

ACEs identify users either by a simple text match of a pro-
vided text, or by the matching of a general regular expres-
sion to that text. By using a general regular expression,
a user may be allowed to roam over a range of machines
while still exercising the same access privileges. Addition-
ally, the list may be arranged as a filter through the use of
multiple entries applicable to a partiular user. For example,
such a list might grant greater privilege to a user when that
user originates from a more restricted (and, presumably,
more trusted) range of machines.

3.2.5 Access Control Execution: The Privileged Ac-
count

The descriptive system interfaces used to describe the ac-
cess controls of GacBObj-derived interfaces are, of course,
themselves derivatives of the GacBObj interface. The ac-
cess control descriptions thus avail themselves of the same
access control protections as the instances they, themselves,
protect. That is, to read an access control description to
determine if it grants some particular access to an identi-
fied user, one must obtain a read lock on that descriptive
instance. And to obtain that read lock, the GacLock in-
stance protecting the access control description must deter-
mine that the requesting GacLockCtx can exercise read
privileges on that instance. Without some relief, an infinite
recursion immediately develops: to gain access to a target,
a requestor must gain accesss to another target, but to gain
access to that target, the requestor must gain access to an-
other target, and so on.

To break this recursion, the determination of access priv-
ileges is not carried out in the context of the requesting
GacLockCtx instance. Instead, the GacLock instance
goes, once again, to its supporting GacSrvrCtl server con-
trol instance to obtain a privileged lock context in which
to conduct the access control search. When a GacLock
instance requests a user identification of a privileged lock
context, the special identification “server root” is returned.
The RequestLock override of the GacLock implementa-
tion is coded to recognize this special identification and
bypass the entire access control process when it occurs.
Naturally, considerable pains are taken to assure that the
identification “server root” is not granted to other lock con-
texts. Even system administration accounts, which custom-
arily have full access privileges, are named “server admin”
rather than “server root” as a security precaution.

3.2.6 Control of Access Controls

The modification of access controls is not carried out in
a privileged context, but instead must be the act of a user
supplying a GacLockCtx instance. Since, as previously
pointed out, the access control interfaces are themselves
derivatives of the GacBObj interface, they too can attach
access controls for their protection. The access control re-
cursion problem is, thus, re-encountered. Two solutions are
available.

First, an access control could attach no access controls and
rely upon the uplink search protocol to define its accessi-
bility. Since the uplink of an access control proceeds up
to the GacBObj-derivative instance it controls, by waiting
for this mechanism to operate, an access control would be-
come self-controlled; access privileges to the control be-

NASA/TM—2005-213617 6



Start

Privileged Context?

Trusted Context?

Trusted by Collective?

Untrusted Context Result

Return "server_root"

Return identfication text

Capture local copy

Yes

Yes

Yes

No

No

No

Figure 3.2: Association of Identity with a Lock Context

come identical to access privileges to the controlled in-
stance.

As a second alternative, a self-controlled characteristic can
be set in an access control which achieves the same result:
access privileges to the control are identical to those of the
controlled instance. This alternative is provided for those
situations in which the uplink search protocol is not avail-
able, or when it is desirable to circumvent that protocol.

3.2.7 Concurrency Resolution

Once an affirmative determination of privilege is obtained,
the requested lock is converted to a foundation layer code
and the inherited RequestLock functionality of the GLock
implementation is invoked. This functionality proceeds in
the usual manner to resolve conflicts of concurrent access
and either grant or deny the requested lock.

3.3 Association of Identities with Lock Contexts

As mentioned above, it is the job of the GacSrvrCtl server
control instance supporting a PIA-compliant application
level server to associate a user identification (in the form of
a text) with a particular GacLockCtx instance. At present,
this is done in the following manner, which is illustrated in
Figure 3.2.

1. The instance name of the identified GacLockCtx in-
stance is obtained.

2. An internal, PMap-based map is searched for that in-
stance name. If that name is found and a further Inter-
operable Object Reference (IOR)-based test is passed,
then the identified GacLockCtx instance is one of

the privileged lock context instances maintained by
the GacSrvrCtl instance and the special identification
“server root” is returned.

3. An external, GMap-based map is searched for the
instance name. If the name is found and, again, a
further IOR-based test is passed, then the identified
GacLockCtx instance is an instance already known to
the GacSrvrCtl instance. A linkage to a GacTrust-
edLcxInfo instance is followed, a user identification
text obtained from that instance, and that text returned
as the associated identification.

4. Should the identified GacLockCtx instance still be
unrecognized, a traversal of the other servers of the
collective is conducted in the expectation that some
server will recognize the context. Should some server
respond positively, that response is honored as be-
ing valid and the subsequently obtained identification
passed back to the inquiring GacLock instance. The
association is also recorded in the GacSrvrCtl in-
stance hosting the original inquiry in the expectation
that the issue will arise again.

5. Should the GacLockCtx instance still be unrecon-
gized, an empty user identification text is returned.
The empty text is defined as being a declaration that
the GacLockCtx instance is not trusted. Operations
in such a context should be refused.

It is in the traversal of the collective step that the issue of
trust between members can be clearly seen. A rogue server
can easily answer that the associated identification is the
all-powerful “server root” pseudo-user. Such a response
cannot be rejected a priori since operations in a privileged
context are not prohibited from crossing server boundaries.
That is, there are legitimate situations in which a server
may encounter the privileged lock context of another mem-
ber of the collective. If members of a collective were sim-
ply to trust any other server that they might detect, the
breaching of PIA application infrastructure security would
be trivial.

Note that the mechanism described above conforms to the
distribution of services design dictum established for the
PIA application infrastructure. There is no central re-
source for establishing the user association of a particular
GacLockCtx instance. Instead, it is a distributed act of the
collective operating under the presumption that somewhere
“out there” a member exists that can identify the lock con-
text instance and associate a user with it. Furthermore, the
operation is conducted in a manner so as to tolerate the oc-
cassional unavailability of some trusted servers.

NASA/TM—2005-213617 7



3.3.1 Lock Context Linkages

As indicated previously, each GacSrvrCtl server control
instance keeps a map of GacLockCtx instances which it
has, by one means or another, identified as being trustwor-
thy.

Since it is anticipated that the lifetime of a GacLockCtx
lock context instance will correspond with the working
sessions of the user it represents, it is necessary to pro-
vide a mechanism to notify each trusting GacSrvrCtl in-
stance when a trusted GacLockCtx instance becomes de-
funct (that is, when the instance is destroyed). Thus, the
GacLockCtx derivative implementation has been coded to
include a map of GacSrvrCtl instances trusting the par-
ticular GacLockCtx instance. An entry in this trusting
server map is made at the time the GacSrvrCtl instance
adds the GacLockCtx instance to its trusted lock context
map. (This is one of the reasons that all lock contexts used
in PIA-compliant application servers must be of the deriva-
tive form GacLockCtx rather than the base GLockCtx
form.) When the particular GacLockCtx instance becomes
defunct at the end of a user session, it traverses this map
and notifies each identified GacSrvrCtl instance so that the
trust linkages may be discarded.

It is further anticipated that the lifetime of a server (and,
consequently, its associated GacSrvrCtl instance) will be
far longer than that of the GacLockCtx instances it trusts,
extending out from months and years toward a practical in-
finity. Thus, the need for the reciprocal mechanism for di-
solving linkages of trust to such GacLockCtx instances is
much smaller. None the less, the mechanism is provided
for the dissolution of linkages upon the demise of a server.

3.4 Establishing Trust in Cooperating Components

Based upon the system described in [7], the flow of events
in acquiring a lock (and, with the introduction of the appli-
cation infrastructure, access privileges) is in the following
manner, as illustrated in Figure 3.3.

1. The user invokes a method on the target (GObjLck-
derivative) instance. A GLockCtx lock context in-
stance (which is, in fact, of the derivative kind
GacLockCtx) is supplied as the user’s context for the
operation.

2. The target instance consults with its associated
GacSrvrCtl instance to determine if the supplied
GLockCtx instance is trustworthy. If this is not the
case, the method execution is aborted with a lock fault
indication.

Start

Supply lock context
Invoke Method

Trusted lock context?
Consult GacSrvrCtl

Refuse invokation

Supply lock instance
to acquire lock

Ask lock context

ready hold this lock?
Does lock context al-

identifed lock instance
Request lock from

notes denial
Lock context

of lock grant
Inform method

internal state
Lock context adjusts

Execute method

No

Yes

No

Denied

GrantedYes

Figure 3.3: Flow of Events in Lock/Access Acquisition

This step, introduced by the application infrastructure,
is a regrettable overhead since it must be performed
even when the supplied lock context instance already
holds the desired lock; however, the step is necessary
to prevent the introduction of rogue lock contexts that
will return false results to the target instance. The
overhead is even greater than is apparent because of
the often recursive nature of method implementation:
method A obtains a lock and then invokes method B
on the same instance, which obtains a lock and in-
vokes method C on the same instance, which obtains
a lock and....

To alleviate this situation, the GacBObj application
foundation interface implements a small, hashed, as-
sociative cache of lock context instances recently
demonstrated as being trustworthy. Concurrency res-
olution of this cache is by means of mutual-exclusion
locks executed on a per-element basis; thus, maximum
execution concurrency is expected. It is expected that
the storage and execution burden of this cache will be
far outweighed by the overall performance improve-
ment gained.

3. The target instance requests that the supplied (and now
trusted) GLockCtx lock context instance obtain a lock
of appropriate kind on the target instance. A reference

NASA/TM—2005-213617 8



to the correct GLock instance (which is, in fact, of the
derivative kind GacLock) is supplied in that request.

4. Assuming that the lock context instance does not al-
ready hold the requisite lock, it makes a further lock
request on the identified GLock instance.

5. The GLock instance evaluates the request and either
grants or denies the requested lock, returning that re-
sult to the requesting GLockCtx instance.

6. The GLockCtx instance makes such notations as are
appropriate to the result of its request and then returns
its lock request result, again usually of the form grant
or deny, to the requesting target.

7. The target instance examines the result returned to it
and, if the required lock is granted, proceeds to per-
form whatever operation the invoked method encap-
sulated.

The security of all this depends, of course, upon each of the
three components, target, context, and lock, performing as
they are designed. The security of two of the components,
the target and the lock, is not in doubt in the application
infrastructure.

1. The target, GObjLck-derivative instance is consid-
ered to be secure by definition. There can be no point
to implementing an inherently corrupt target instance
since the serving of such an interface would be point-
less.

2. The security of the lock is entirely controlled by the
target instance. The lock instance is obtained through
an internal member function of the target interface im-
plementation. There is no mechanism for attaching an
alternative, corrupt lock instance to a target.

Unfortunately, the third element of this triad, the
GLockCtx lock context instance, is entirely amenable to
security breaches through the introduction of a corrupt in-
stance. Throwing aside all sorts of devious mechanisms,
a corrupt GLockCtx instance may obtain all the access it
desires simply by returning a grant result to the target with-
out regard to the actual result returned to it by the GLock
lock instance. (Indeed, why even bother inquiring of the
lock instance?) Further, the location transparency features
of CORBA create a situation in which an individual intent
upon breaching security is completely able to substitute her
own GacLockCtx implementation to undertake whatever
nefarious scheme she might devise.

Many schemes for validating a supplied GLockCtx in-
stance through operational tests were considered; dummy
lock operations with known results, preset operations on
the locks of the intended targets, location of the serving
server, and the like. Counters to all such validity tests
we identified and, ultimately, the concept of accepting a
GLockCtx from an unverified source was discarded.

As a result of the above considerations, it was determined
that a user would have to go through an initial server logon
sequence, the result of which from the user’s perspective
would be a reference to a GacLockCtx instance obtained
from and trusted by the providing GacSrvrCtl server con-
trol instance. It is this logon operation that makes the initial
entry of a GacLockCtx lock context instance into a trusted
lock context map of a server and, consequently, into the
collective.

Trust is established in the GLockCtx instance because it is
supplied from a trusted source. Further, because the server
control instance closely tracks through information interior
to the server the identity of each GacLockCtx instance it
issues, it is not possible for the user to substitute a cor-
rupted lock context instance in place of even a legitimately
obtained lock context.

The final barrier to rogue lock context substitution is based
upon comparison of the IORs for the supplied and trusted
instances. At the time a trusted lock context is generated,
its IOR is recorded. When a supplied lock context instance
is examined, the apparent IOR for that instance is compared
with the recorded IOR: if the two differ, then a substitution
must have been made.

The use of the IOR for identification is, in general, not in
compliance with the CORBA standard. The standard al-
lows a particular instance to be served by different servers
at different times. Since the IOR includes the information
necessary to locate the presently served instance, a migrat-
ing instance exhibits a varying IOR.

The difficulties of the IOR comparison are (currently)
eliminated by the design assumptions of the PIA effort.
PIA instances are to persist until deliberately destroyed,
even across server shutdown/restart cycles of any duration.
Since references to such persistent instances are maintained
by recording the IORs of those instances, the migration of
PIA-conformant instances to other servers (with the atten-
dant invalidation of outstanding IORs) is prohibited.

Because of the number of instances anticipated in real-life
PIA implementations, no thought of central, forwarding
instance registries to bridge the fixed-IOR-to-migrating-
instance gap is entertained. Typical instance counts in the

NASA/TM—2005-213617 9



range of many billions and up are expected in such real-life
implementations.

It should be understood, finally, that this use of IORs is still
open for future review. The introduction of multiple servers
for a particular instance is supported by the CORBA stan-
dard and such multiple access paths can be encoded in the
IOR. The sole-server policy is strictly a PIA constraint. The
introduction of redundant PIA servers is anticipated and
may be accommodated by requiring that any instance re-
strict itself to a fixed set of such redundant servers in order
to maintain an unvarying IOR.

3.5 The Logon Operation

Like other elements of the PIA application infrastructure,
the logon operation is a fully distributed act. A user
may log on to any server of a collective without regard to
whether or not that particular server contains the user’s ac-
count information.

The user initiates the logon operation by invoking the User-
LogonRemote method in presentation by any GacSrvrCtl
server control instance of the desired collective. In re-
sponse, the user identification and password are solicited
through a supplied GacUser user interaction interface. If
the particular server control does not recognize the re-
sulting user identification, the collective is searched for a
GacUserInfo user information instance containing the ap-
propriate identification. Assuming that a member of the
collective responds in the affirmative to this search, the
obtained logon information is transmitted to the respond-
ing GacSrvrCtl server control instance and authentication
completed.

With the user identification verified, the server control
instance initially handling the logon request allocates a
trusted GacLockCtx instance, enters it into the internal
structures tracking such instances, and associates with it
the user identification finally established by the logon pro-
cess. Ultimately, a reference to the trusted GacLockCtx
instance is returned to the user as the result of the logon
process.

Support for both pre- and time-expired passwords is pro-
vided. If the logon operation discovers such an expired
password, a password change operation must be success-
fully completed before the logon operation can complete.
The password change operation excludes previously-used
passwords and can enforce the usual and customary rules
for password composition. Again, the actual password
is changed and maintained by the GacSrvrCtl claiming
knowledge of the user.

3.5.1 Administration of User Accounts

The design of this user information system is intended to al-
low a user’s information to be maintained on a single server
of convenience while not restricting the points of access
available to that user. For example, if a number of corpo-
rations have formed a collective of servers, user account
information for an employee of a particular corporation
can be maintained on a server provided by that corporation
without the need for that user to log on to that particular
server. This allows the user to obtain the GacLockCtx re-
source on the member of the collective in which she intends
to be most active. Because of the high interaction rates of
the lock context instance, this may be a performance ad-
vantage in some situations.

The logon process does not specify a precedence in the
event that more than one GacUserInfo instance applica-
ble to a particular user exists within the collective. The
first applicable instance found in the traversal of the col-
lective is the instance used; however, it is not predictable
which member of the collective will have the first opportu-
nity to respond. Furthermore, the search is not continued to
identify additional applicable GacUserInfo instances, even
though they might exist elsewhere in the collective.

The unpredictability in the case of multiple user informa-
tion instances is not considered to conflict with the current
PIA application infrastructure design. A single GacUser-
Info user information instance within the collective is con-
sidered to simplify such administrative tasks as password
management, account disabling and the like. The single in-
stance design does represent a single point of failure since,
if the appropriate member of the collective is unavailable,
the users supported by that member cannot complete a lo-
gon sequence; however, that failure is only for that group
of users, not for the users of the collective as a whole.

A multiple GacUserInfo instance design is possible and
support for such configurations may be implemented in the
future if server availability issues warrant such facilities.
It is hoped that the ease of single instance administration
combined with reasonable server reliability will suffice for
the time being.

3.5.2 Organization of Accounts Within a Server

As mention earlier, the collision of account names is ex-
pected, especially so in the case of global collectives. To
resolve such collisions, the user is also identified by a point
of origin. A general regular expression is used to provide a
particular user a range over which she is recognized.

Because of this user identification arrangement, it is not

NASA/TM—2005-213617 10



possible for a server control to deterministically identify a
GacUserInfo instance through a single mapping structure.
Instead, lists of GacUserInfo instances are sorted by their
common (collided) user name. Once an appropriate list has
been identified, it is traversed from head to tail applying the
general regular expression of each encountered GacUser-
Info instance to the actual location associated with the user.
The first match that is found terminates the list traversal and
selects the enumerated GacUserInfo instance.

While the general intent of this user identification system
is that only one GacUserInfo instance be applicable to any
given user, it is possible to use the system in a filtering
manner. For example, very specific ranges for a given user
might preceed much more general location ranges in the
list, with the effect that the user would be in some way
different when originating from the constrained locations.
Currently, the user identification system serves only to pro-
vide identity and, thus, such distinctions as might be ac-
complished through such a filtering system are trivial; how-
ever, at some future point, useful distinctions such as billing
and credit, service priority, and the like might be control-
lable through such a system.

3.6 Protection of Sensitive Information

The previous section mentioned the transmission of user
identification, including passwords, between the GacUser
user interaction instances and various GacSrvrCtl server
control instances of the collective. In point of fact, pass-
words are considered by the PIA application infrastructure
to be sensitive over and above the sensitivies of other in-
formation. While it is expected that collectives handling
sensitive information (whether legally secret or related to
the competitive advantage of a business) will routinely deal
in secured communications technologies such as Secure
Socket Layer (SSL), passwords in particular are protected
even within such secured transactions.

Each GacSrvrCtl maintains a ready supply of encryption
keys using the algorithm of Rivest, Shamir, and Adleman
(that is, the RSA algorithm). The PIA application infra-
structure defines the acquisition of a keyset with both the
public and private elements intact as being a protected func-
tion of the GacSrvrCtl interface which, generally, is only
to be exercised between instances served by the same server
so as not to expose the private key content to possible
eavesdropping. On the other hand, the provision of a key
with only public encryption elements is entirely open and
such a key is considered to be freely transmittable between
instances without regard to their relative locality.

All derivatives of the GacBObj application foundation in-

terface inherit the ability to provide and utilize something
called a passback encryption key for the purpose of pro-
tecting the transmission of sensitive information to an in-
stance of that interface. (Certain other interfaces, in par-
ticular the GacSrvrCtl interface which is not a derivative
of the GacBObj interface, implement this functionality by
other means.) The cycle of operation is in the following
manner.

1. The instance intending to transmit sensitive informa-
tion requests a passback encryption key from the in-
tended destination instance.

2. The destination instance locates the GacSrvrCtl
server control instance associated with the server pro-
gram serving the destination instance and acquires
from that server control instance a complete RSA en-
cryption key.

Because this transaction is entirely interior to the sin-
gle server program, the transmission of a complete
RSA key between instances is considered to be ac-
ceptable. The premise is that a server must be able to
trust itself.

3. The destination instance records the complete RSA
encryption key in an internal structure, sorting the key
in that structure by the public modulus of the key.

4. The destination instance then returns to the requesting
source instance the public encryption portions of the
key.

5. The source instance encrypts the sensitive informa-
tion using the received public, passback encryption
key and invokes a method of the destination instance.
The public, passback encryption key is supplied to the
method invokation as one of its arguments.

Only particular, documented methods of an interface
support the passback mechanism, and in those cases
only particular arguments are encrypted.

6. The invoked method locates the complete passback
encryption key in the presenting instance’s internal
structure based upon the public modulus obtained
from the public key portion supplied as an argument
to the method. The sensitive information is decrypted
and method execution proceeds.

7. Finally, the destination instance discards the used
passback encryption key. Any subsequent passback
encryption operation will require a new encryption
key.

In the event that an intended passback encryption opera-
tion does not come to pass, mechanisms are provided to

NASA/TM—2005-213617 11



return the public portion of the passback encryption key to
the intended destination instance so that the key may be re-
moved from the internal structures of that instance. Even
in this case, though, the encryption key is discarded. Un-
til the random generation process regenerates the same key
again (something thought to be unlikely in the extreme), an
eavesdropper will find a gleaned key useless with regard to
future operations.

With this understanding of the passback encryption mech-
anism in hand, it is merely necessary to add that all pass-
word transactions are handled in this manner. The Gac-
SrvrCtl instance on which the logon operation is begun
provides a passback encryption key to the GacUser in-
stance conducting the interaction with the user. The pass-
word is transmitted to the GacSrvrCtl having access to the
actual GacUserInfo instance using a passback encryption
key obtained from that server control instance. The pass-
word is then transmitted on to the GacUserInfo instance in
the same manner.

The GacUserInfo interface protects encapsulated pass-
words by RSA encryption once they have been received.
Again, an encryption key is obtained from the associated
GacSrvrCtl, but in this case only the public portion of the
key is requested. Thus, once encrypted for storage by the
GacUserInfo instance, the original plain-text form of the
password is no longer obtainable.

A number of operations enforcing various rules for the
form and length of a password must be carried out on
the plain-text version of that password. These operations
are confined strictly to the internal mechanisms of the
GacUserInfo interface and, as such, are considered to be
sufficiently secure. Note, though, that this has it ramifi-
cations: it is presently considered an unacceptable secu-
rity risk to pass the plain-text password to shared resources
such as common prohibitied password dictionaries and the
like. Such mechanisms might be arranged and made secure
by further employing the passback encryption key mech-
anism; however, these mechanisms would not be able to
use the repetoire of distributed object capabilities provided
by the CORBA-served PIA implementation. For example,
a GMapGStr-based map of prohibited passwords would
not be possible because the GMapGStr interface does not
support passback encryption. Even if that capacity were
added, the computational burden of encryption would be
beyond realistic achievement.

3.7 Location of Interfaces

Very nearly the first issue to be confronted by any CORBA
client code is how to find a served instance or obtain a new

served instance. As mentioned at the beginning, the PIA
foundation started this issue off in a direction which must
be reversed by the application layer.

3.7.1 The Foundation Layer Approach

The PIA foundation layer provided no concept of a user
and, lacking that, had little to define a system. The central
GSrvrCtl server control instance of a foundation server has
little to do but start and stop the server and turn debugging
logs on and off.

Because of the lack of user and system concepts, the focus
is upon the GInterfaceInfo interface and its instances. One
instance of this interface is created and served for every
interface served by the foundation layer server. The cre-
ated instance is named for the interface it supports. For ex-
ample, an instance of the GInterfaceInfo interface named
GMapGObjToGObj is created and served to support the
GMapGObjToGObj interface. To have a reference to that
GInterfaceInfo instance is to have the ability to create and
use instances of the GMapGObjToGObj interface.

As each GInterfaceInfo instance is created, a reference to
it is published by the foundation layer in a well-known
NameService server. After several name context lay-
ers sorting through the fact that the reference is a PIA-
conformant GInterfaceInfo instance, the reference is dis-
tinguished by its assigned name. To account for the fact
that multiple PIA servers serving many (if not all) of the
same interfaces are expected to exist, the reference is fur-
ther qualified in the naming service by appending addi-
tional layers consisting of the fully-qualified domain name
of the server. The order of the domain name components
is reversed so that they proceeded from most general (.gov,
.com, .org, and the like) to most specific. Only when the
terminal element of the domain name is reached is an ac-
tual reference to a GInterfaceInfo instance obtained. In
this way, a GInterfaceInfo instance supporting the GMap-
GObjToGObj interface on one serving machine is distin-
guished from another GInterfaceInfo instance supporting
the same GMapGObjToGObj interface on the next ma-
chine over.

Note should be taken of the fact that the fully-qualified do-
main names used are established by configuration actions
of the PIA-compliant server programs and not by making
inquiries of any actual Domain Name System (DNS) server
that might be available. While it is generally intended that
configured server names will follow the DNS names of the
serving machines, the configuration option allows devia-
tions from those names that may serve useful purposes.
For example, a group of machines not sharing any partic-

NASA/TM—2005-213617 12



ular pattern of DNS names but all serving a common ap-
plication may be formed into a server cluster by placing a
common name suggestive of the served application just be-
fore (in reversed order, or after in DNS order) the terminal,
machine-identifying name. For example, a cluster serving
the LAPIN code might be configured to exhibit the follow-
ing server names.

srvr00.lapincluster.grc.nasa.gov
srvr01.lapincluster.grc.nasa.gov
srvr02.lapincluster.grc.nasa.gov
srvr03.lapincluster.grc.nasa.gov
srvr04.lapincluster.grc.nasa.gov
srvr05.lapincluster.grc.nasa.gov
srvr06.lapincluster.grc.nasa.gov
srvr07.lapincluster.grc.nasa.gov

The foundation layer provides services for the navigation
of the name service structure it has constructed. In general
the service proceeds in the following manner.

1. First, the naming contexts are navigated to the GInter-
faceInfo instance tree supporting the desired, named
interface, for example up to the point where the GIn-
terfaceInfo instance(s) supporting the GMapGObj-
ToGObj interface is identified.

Note that, once this navigation phase is completed, it
is certain that any GInterfaceInfo instance identified
will support the desired interface. In the case of a very
general interface such as GMapGObjToGObj there
may yet be many possibilities left. In the case of a very
specific interface, for example a (supposed) LapAppl
LAPIN application wrapper interface, there may be
very few possibilities left.

2. From the currently identified point, naming contexts
are further selected based upon the (reversed) fully-
qualified name of the client.

Using the example of the supposed LAPIN cluster
given above, a client named

somemachine.grc.nasa.gov

will navigate up through gov, nasa, and grc since
those elements match the client name.

It is this phase of the navigation process that at-
tempts to achieve network co-locality. It is presumed
that matching name components will be indicative of
“closeness” in some network sense.

3. From the currently identified point, further naming
contexts are navigated by random selection until a ter-
minal context is reached. The charitable might con-
sider this last random selection among servers to be
a minimal form of load balancing; the uncharitable
might not.

Further using the supposed LAPIN cluster example
given above, having reached the naming context of
grc, random selection has only one choice: lapin-
cluster (presuming for the moment that only members
of this cluster serve the desired interface). From that
point, one last random selection picks a server of that
cluster and leads to a final reference to a GInterface-
Info instance supporting the desired interface.

As almost an afterthought, the foundation layer similarly
publishes a reference to the GSrvrCtl server control in-
stance of each server.

The above implementation represents what could be done
within the very general framework assumed for the PIA
foundation layer. It should be noted that all of the publi-
cation actions are implemented as options which derivative
servers may turn off.

3.7.2 Deviation from DNS Names

The example of the supposed LAPIN cluster of servers in
the previous section served no particularly spectacular pur-
pose. Since it was presumed that the desired interface was
served only by members of that cluster, one of those mem-
bers would have been selected even if the client name had
been

somedesktop.bldg666.seattle.bcac.com

As a more constructive example (which leaps just a bit for-
ward into application layer concepts), suppose this LAPIN
cluster consisted of power server machines on which it was
inappropriate to run PIA-conformant GUIs for administer-
ing those servers. Let us suppose, instead, that there are
several desktop machines named

admin00.lapincluster.grc.nasa.gov
admin01.lapincluster.grc.nasa.gov
admin02.lapincluster.grc.nasa.gov
admin03.lapincluster.grc.nasa.gov

and existing on networks judged secure enough to perform
administrative tasks.

NASA/TM—2005-213617 13



Under this set of suppositions, the default instance location
mechanisms will lead these supposed administrative ma-
chines straight to the servers they propose to administrate.
This will occur even for instances of interfaces served by
many other servers outside this cluster.

3.7.3 The Application Layer Approach

Two key points adjust the application layer approach to lo-
cating interface services.

1. The GacSrvrCtl server control instance is now a vital
part of a PIA-compliant application server. In partic-
ular, the need to locate such an instance to logon and
obtain a trusted GacLockCtx lock context instance is
paramount.

2. The number of interfaces to be served by PIA-
compliant application servers and the number of ex-
pected servers combine to make the burden upon sup-
posed NameService servers untenable.

One of the visions of the PIA plan is that every kind of
engineering, technical, scientific, management, manu-
facturing, quality-control, or other parameter will be
encapsulated in a specific, closely-defined interface
so that its well-known, pre-defined semantics may be
recognized by discovering its interface type and func-
tionality specific to those semantics may be encap-
sulated. This alone may lead to tens or even hun-
dreds of thousands of defined interfaces. When this
is multiplied by a supposed global collective, many
of whose members serve the same interfaces over and
over again, the untenable burden upon even a feder-
ated name service becomes clear.

Because of these factors, servers of the application infra-
structure turn off the NameService publication of GInter-
faceInfo instances, even though these instances are still
created at server startup for every supported interface.
Also, while the GacSrvrCtl server control instance is still
published in the normal, foundation layer manner, the ser-
vices provided by the collective mean that each member
of the collective need not publish their individual server
control instances with any one name service. Indeed, some
members of the collective need not publish their server con-
trol instances at all if that is not desired. The full services
of the collective may be reached through a local name ser-
vice providing connections to only a few, local members of
that collective.

Having turned off the general publication of GInterface-
Info instances, the application layer must provide an al-

<root>

com

bcac

chicago

seattle

stlouis

ge

evendale

schenec

westhart

gov

nasa

arc

jpl

grc

larc

msfc

GObject instance

GObject instance

GObject instance

GObject instance

GObject instance

GObject instance

GObject instance

GObject instance

GObject instance

GObject instance

GObject instance

Figure 3.4: Organization of Fully-Qualified Names by the
GacFqdnToGObj Interface

ternative method of locating those interface-supporting in-
stances, which it does in the form of the TrustedSrvrFind-
IifByName method and the GacFqdnToGObj organiza-
tional structure.

As illustrated in Figure 3.4, the GacFqdnToGObj inter-
face provides an n-ary tree facility used to create a corre-
spondence to (reversed) fully-qualified names. The root in-
stance of the structure customarily has no name while each
of the root’s immediate offspring are assigned the most
general element of the fully-qualified name being used to
map a path through the structure. The next element of the
fully-qualified name identifies the offspring of those off-
spring, and so on until terminal nodes are reached. Any
node of the constructed structure may provide a reference
to an instance of any GObject-derivative interface; how-
ever, in common use only terminal nodes of the structure
have such references.

The TrustedSrvrFindIifByName method builds a Gac-
FqdnToGObj structure identifying, much in the manner of
the foundation layer’s utilization of the name service, all of
the servers providing a GInterfaceInfo instance supporting
a named interface. The path through the the GacFqdnTo-
GObj structure is navigated/constructed by the fully qual-
ified names of those servers and the terminal node identi-
fied provides the reference to the identified GInterfaceInfo
instance. The operation traverses the collective, identify-
ing every member serving the identified interface. Once
the GacFqdnToGObj result is received by the requesting
client, it can be navigated by fully-qualified name and ran-
dom selection, in the manner of the naming contexts of the
name service, to an appropriate GInterfaceInfo instance.

NASA/TM—2005-213617 14



There are good and bad points to the application layer ap-
proach to finding an appropriate GInterfaceInfo instance.

1. The entire collective is searched for services, without
the need of publishing all such services in a single
name server reachable by the client. Even collective
members that have not published their server control
instances anywhere are reached.

2. Only the reference structure for the desired interface
is generated, not that of all possible interfaces. In
the case of narrowly focused interfaces, for example
a (supposed) LapAppl application wrapper interface,
this is likely to be a much smaller and more manage-
able result.

3. The reference structure is built within the PIA persis-
tent object model. Should the structure become inor-
dinately large (for example, in inquiring which mem-
bers of a world-wide collective serve, of all things,
the GObject interface), less active components of the
structure will be etherealized and reincarnated should
they be needed again.

4. The reference structure must be (re-)generated for ev-
ery inquiry.

This is the only advantage of the foundation layer’s
name server approach over the application layer’s fa-
cility. The name server structure is generated once and
then need only be navigated when the need arises.

The application layer anticipates the publishing of in-
stances of interfaces derivative of GacAppl, the generic
application wrapper interface. While not yet implemented,
inquiry into published GacAppl-derivative instances is ex-
pected to be along the lines of the GInterfaceInfo mech-
anism, resulting in a GacFqdnToGObj structure that may
be navigated as desired. In this case, though, network co-
locality may not be a desirable discriminant; however, since
the GacFqdnToGObj interface is derivative of the GObj-
Dgn directed graph interface, other traversal options do ex-
ist.

Several elements of application wrapper publication seem,
at this point, apparent.

1. The GacSrvrCtl server control interface will either
have to encapsulate a publication structure or maintain
a reference to a devised structure.

2. Published application wrapper instances will have to
be distinct by name. The given PIA instance name

meets this purpose. Additional semantic discrimina-
tion may be obtained by directly interrogating the de-
scriptive system of the identified application instance.

3. It would be desirable to apply the principal of seman-
tic infusion through interface derivation to the appli-
cation interface as has already been done in the proto-
type work for parameter classes. In this way a client
seeking to find published applications in a particular
discipline, for example in the discipline of computa-
tional fluid mechanics, while not knowing a precise
application kind would be able to search for instances
of interfaces derivative of a base application interface,
for example a supposed CfdAppl interface acting as
a common foundation for all computational fluid me-
chanics applications.

No other explicit publication of interface instances is cur-
rently anticipated by the application layer since nearly all
such instances are reachable through the structures ema-
nating from instances of the GacAppl interface. In par-
ticular, the application interface provides a reference to
a GOrgGObjByItfn organization which provides a com-
plete, ecdysiastical reference to all the information-bearing
instances of an application.

4 Documentation

Nearly all material relevant to the PIA effort, including
complete, class-by-class, member-by-member documenta-
tion, is available on a central server provided by the Glenn
Research Center. The root URL for this documentation is

http://www.grc.nasa.gov/WWW/price000/index.html

It must be strongly emphasized that these pages are the gen-
eration of the researchers involved and do not in any way
represent a commitment of the Government of the United
States.

5 Summary

The concepts and implementation of the Application Layer
infrastructure devised for the CORBA-served, distributed
object form of the Project Integration Architecture (PIA)
has been presented. The following key points were dis-
cussed.

1. A network of mutually-trusting, PIA application
servers, known as a collective, has been described.

NASA/TM—2005-213617 15



2. The concept of a “user” in the context of a collec-
tive has been defined and the elements necessary for
that user to operate and obtain useful services and re-
sources has been described.

3. The mechanisms devised to assure not only the res-
olution of conflicts due to concurrent access, but the
appliation and exercise of access controls to the re-
sources made available have been described.

4. Distritbuted mechanisms for administering users
throughout a collective have been described.

5. The methods for establishing and maintain trust in the
correct operation of the various components of the ap-
plication infrastructure has been discussed.

6. Finally, mechanisms for locating resources wherever
they might exist throughout a given collective have
been described.

References

[1] The American Society of Mechanical Engineers. Inte-
grated CFD and Experiments Real-Time Data Acqui-
sition Development, number ASME 93-GT-97, 345
E. 47th St., New York, N.Y. 10017, May 1993. Pre-
sented at the International Gas Turbine and Aero-
engine Congress and Exposition; Cincinnati, Ohio.

[2] James Douglas Stegeman, Richard A. Blech,
Theresa Louise Benyo, and William Henry Jones. In-
tegrated CFD and Experiments (ICE): Project Sum-
mary. Technical memorandum NASA/TM-2001-
210610, National Aeronautics and Space Administra-
tion, Lewis Research Center, 21000 Brookpark Road,
Cleveland, OH 44135, December 2001.

[3] William Henry Jones. Project Integration Archi-
tecture: Application Architecture. Technical mem-
orandum NASA/TM–2005-213611, National Aero-
nautics and Space Administration, Glenn Research
Center, 21000 Brookpark Road, Cleveland, OH
44135, March 2005. Available electronically at
http://gltrs.grc.nasa.gov.

[4] American Institue of Aeronautics and Astronatics.
Project Integration Architecture (PIA) and Compu-
tational Analysis Programming Interface (CAPRI) for
Accessing Geometry Data from CAD Files, number
2002-0750, 1801 Alexander Bell Drive, Suite 500,
Reston, VA 20191-4344, January 2002. Aerospace
Sciences Meeting and Exhibit, Reno, NV.

[5] Theresa Louise Benyo. Project Integration Archi-
tecture (PIA) and Computational Analysis Program-
ming Interface (CAPRI) for Accessing Geometry
Data from CAD Files. Technical memorandum
NASA/TM–2002-211358, National Aeronautics and
Space Administration, Lewis Research Center, 21000
Brookpark Road, Cleveland, OH 44135, March 2002.

[6] William Henry Jones. Project Integration Architec-
ture: Formulation of Dimensionality in Semantic Pa-
rameters. Technical memorandum NASA/TM–2005-
213615, National Aeronautics and Space Administra-
tion, Glenn Research Center, 21000 Brookpark Road,
Cleveland, OH 44135, March 2005. Available elec-
tronically at http://gltrs.grc.nasa.gov.

[7] William Henry Jones. Project Integration Architec-
ture: Distributed Lock Management, Deadlock De-
tection, and Set Iteration. Technical memorandum
NASA/TM–2005-213612, National Aeronautics and
Space Administration, Glenn Research Center, 21000
Brookpark Road, Cleveland, OH 44135, March 2005.
Available electronically at http://gltrs.grc.nasa.gov.

[8] William Henry Jones. Project Integration Archi-
tecture: Inter-Application Propagation of Informa-
tion. Technical memorandum NASA/TM–2005-
213613, National Aeronautics and Space Administra-
tion, Glenn Research Center, 21000 Brookpark Road,
Cleveland, OH 44135, March 2005. Available elec-
tronically at http://gltrs.grc.nasa.gov.

[9] William Henry Jones. Project Integration Architec-
ture: Formulation of Semantic Parameters. Techni-
cal memorandum NASA/TM–2005-213614, National
Aeronautics and Space Administration, Glenn Re-
search Center, 21000 Brookpark Road, Cleveland,
OH 44135, March 2005. Available electronically at
http://gltrs.grc.nasa.gov.

[10] William Henry Jones. Project Integration Archi-
tecture: Wrapping of the Large Perturbation Inlet
(LAPIN) Analysis Code. Draft paper available on
central PIA web site, March 2001.

[11] William Henry Jones. Project Integration Architec-
ture: One Possible Commercialization Plan. Draft
paper available on central PIA web site, May 2002.

NASA/TM—2005-213617 16



This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved
OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio  44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC  20546–0001

Available electronically at http://gltrs.grc.nasa.gov

March 2005

NASA TM—2005–213617

E–15078

WBS–22–617–91–40

22

Project Integration Architecture: Implementation of the CORBA-Served
Application Infrastructure

William Henry Jones

C++ (programming language); CORBA (programming language); Data management; Data
structures; Functional integration; Information retrieval; Network computing; Object-
oriented programming; System integration; User authentication; User identification

Unclassified -Unlimited
Subject Category: 63

Responsible person, William Henry Jones, organization code RTS, e-mail: William.H.Jones-1@nasa.gov, 216–433–5862.

The Project Integration Architecture (PIA) has been demonstrated in a single-machine C++ implementation prototype.
The architecture is in the process of being migrated to a Common Object Request Broker Architecture (CORBA)
implementation. The migration of the Foundation Layer interfaces is fundamentally complete. The implementation of
the Application Layer infrastructure for that migration is reported. The Application Layer provides for distributed user
identification and authentication, per-user/per-instance access controls, server administration, the formation of mutually-
trusting application servers, a server locality protocol, and an ability to search for interface implementations through
such trusted server networks.






