INTEGRATED PROJECT MANAGEMENT:

A Case Study in Integrating Cost, Schedule, Technical, & Risk Areas
INTEGRATED PROJECT MANAGEMENT

☐ OBJECTIVES
☐ BACKGROUND
☐ GETTING STARTED
☐ DEVELOPING THE PLAN
☐ DIVERGING PATHS (REALLY?)
 ☐ SCHEDULE DEVELOPMENT
 ☐ ESTIMATE DEVELOPMENT
☐ CONVERGING PATHS
 ☐ RISKY BUSINESS
 ☐ ESTABLISHING THE BASELINE
☐ IT ALL COMES TOGETHER
☐ LESSONS LEARNED
OBJECTIVES

☐ To demonstrate the practical application of good integrated project management principles to a real project

☐ To endorse those project management principles that support a successfully managed effort

☐ To share the pain and rewards of discovery with others so that they may avoid the pain and embrace the rewards
CASE STUDY BACKGROUND

- The International Space Station (ISS) fluid filtration system uses disposable cartridges
- These cartridges were procured from a contractor who developed the fluid filtration system
- The contractor "lost" the cartridge technology and could no longer provide off-the-shelf replacements
- The contractor offered to "re-design" and fabricate the replacement cartridges for a cost
- The ISS Program Office (ISSPO) decided to pursue developing the cartridges "in-house"
GETTING STARTED

- A need was identified
 - Replacement cartridges for ISS fluid filtration system
- Expectations were conveyed – at a high level
 - Time Frame = X years
 - Budget = $X M
- The project team was formed
 - Work scope was discussed – the conceptual plan was developed
 - Preliminary roles were defined - an informal OBS was developed
- Detailed planning began
 - A WBS template was obtained with a product-orientated structure
 - The template was modified by the project team to suit the project
EXAMPLE OF MODIFIED WBS (2 OF 2)
DEVELOPING THE PLAN

☐ The WBS provided a document outline to begin

☐ A WBS dictionary from another project was used as a reference to draft a "straw man" document

☐ The project team developed definitions together

☐ This was an iterative process that resulted in some minor WBS revisions (**important point**)

☐ Activities required to complete WBS elements were discussed in some detail
1. Gas Trap Insert — Unless otherwise stated, each WBS element is to include all elements of cost (i.e., procurements, labor, and indirect costs).

1.1. Management — Includes all aspects of program & project management, control, and coordination.

1.1.1. ISS Program Office (ISSPO) — All activities involving personnel from the ISSPO. Also includes those authorized to act on behalf of the ISSPO that are not assigned to the project by the MSFC project manager.

1.1.2. Project Management — All activities required to manage the project according to the applicable NPD, NPG, MMI, and MWS including, but not limited to: project planning, development, administration, and maintenance of the Project Plan, Project Risk Plan, Project WBS & WBS Dictionary, and other required documentation not specifically covered elsewhere, and project meetings and reviews (formal and informal).

1.1.3. Project Control — All activities required by applicable NPD, NPG, MMI and MWS including, but not limited to: creating, updating, and maintaining the project schedule(s), and cost estimates, reviewing, measurement, analysis, and control measures, including all activities related to establishing an Earned Value System (EVS).

1.2. Systems Engineering & Integration

1.2.1. Specifications

1.2.1.1. Interfaces — All activities associated with identifying and documenting interfaces between the Gas Trap Insert and other components and systems it will interact with.

1.2.1.2. Requirements — All activities associated with identifying and documenting system-level requirements for the Gas Trap Insert.

1.2.2. Conceptual Design — All activities related to the identified trade studies, which are: Hydrophilic Membrane (1x Material), Hydrophilic Membrane (Curing Material & Application), Hydrophilic Membrane (Single vs. Multi-plate), End Caps (New Material), and End Plates (Single vs. Multi-Plate Hydrophilic Membrane).

1.2.3. Component & Systems Integration — All activities related to the determination of chemical and mechanical compatibility between all of the Gas Trap Insert hardware pieces, as well as the Gas Trap Insert Assembly’s compatibility with the environment to which it will be installed.

1.2.4. Configuration & Data Management

1.2.4.1. Configuration Management — All activities covering the control of Configuration Identification, Control, Accounting and Verification of the Design Requirements, Design, and Hardware documentation for the Project.

1.3. Safety & Mission Assurance

1.3.1. Safety — All activities related to ensuring hardware, and the environment (earth and space) are suitable for the project goals.

1.3.2. Reliability — All activities related to ensuring the reliability and maintainability of the hardware.

1.3.3. Quality — All activities involving the assurance of the improvement of product quality.

1.4. Gas Trap Hardware

1.4.1. Hydrophilic Membrane — All activities related to analyzing, procurement, and manufacture of this component.

1.4.2. Hydrophilic Membrane — All activities related to analyzing, procurement, and manufacture of this component.

1.4.3. End Caps — All activities concerning the manufacture of this component.

1.4.4. End Plates — All activities concerning the manufacture of this component.

1.4.5. O-Rings — All activities concerning the procurement of this component.

1.4.6. Stiffeners — All activities concerning the manufacture of this component.

1.4.7. Glue — All activities concerning the manufacture of this component.

1.4.8. Hardware Assembly — All activities related to the integration of components identified in this section (1.4).

1.5. Ground Systems

1.5.1. Facilities — All activities involving the turnaround of equipment and material (used up in ground processes, do not remain on the ground) including the modification, development, and procurement of material.

1.5.2. Transportation — All activities involving the movement of the developed hardware components and the Gas Trap Insert assembly to include shipping containers.
DIVERGING PATHS (REALLY?)

- Yes AND No - parts of schedule development can done in parallel with parts of estimate development, but other parts of schedule development must be done before the estimate can be completed

- Schedule Development
 - The WBS outline was used to create an initial schedule structure – actually, just a list of activities with no sequence
 - The schedule development effort began by better defining the activities (i.e. adding detail where needed)
 - Once defined, the process of relating the activities to one another sequentially (i.e. establishing network logic) began
 - No date constraints were used except for the Project Start
 - Technical performance measures (TPM's) were discussed, agreed upon, and documented (important point) – there are many varied methods
EXAMPLES OF TPM’S (1 OF 2)

☐ Percent Complete

☐ Subjective – requires someone to estimate physical progress
 ☐ Least desirable, most used

 “I’d say we’re about 25% complete”

☐ Objective – utilizes physical counts to determine progress
 ☐ Most desirable, least used

 “We’ve built 50 of the 100 widgets, therefore we’re 50% complete”
EXAMPLES OF TPM’S (2 OF 2)

- **Milestone**
 - **0-100%** - credit is only earned upon completion (100%)
 - Typically used when tasks span \(\leq 1\) acct. period
 - **50-50%** - credit is given at the start (50%) and finish (50%)
 - Typical for tasks spanning 2-3 acct. periods
 - **Weighted** – partial credit is given at key interims
 - Used when tasks span more than 3 acct. periods

NOTE ON MILESTONE TPM: REQUIRES THE USE OF A TRACKING PROCESS
DIVERGING PATHS (REALLY?)

- Schedule Development (Continued)
 - The tasks of making duration estimates and doing resource identification, assignments and allocations were done hand-in-hand since the skill level (for people) and availability of resources have a direct impact on the activity duration
 - Not one, but three duration estimates were collected for each schedule activity (best case, worst case, most likely – more on this later)
 - Every work group (engineers, manufacturing, etc.) participated in developing the schedule – this resulted in a highly integrated plan
 - This process was iterative – adjustments to the sequencing of activities and allocation of resources were made until all stakeholders were satisfied with the results
 - As duration estimates were finalized, the SAME PEOPLE provided inputs for the cost estimates
DIVerging Paths (Really?)

- **Estimate Development**
 - Initial estimates were compiled by combining work group leads' estimates (i.e. X heads for Y months) with rates for labor, procurements, and indirect costs – this process was heavily influenced by historical data.
 - As schedule development evolved, costs for resources were loaded in the schedule tool and the resulting time-phased cost plan from the schedule tool was compared with initial estimates.
 - The cost, schedule, and work groups collaborated to reconcile the gaps between cost and schedule.
 - Initial reserves (cost and schedule) were added based on historical data, but later reviewed and revised (see Establishing the Baseline).
EXAMPLE ESTIMATE WORKSHEET

<table>
<thead>
<tr>
<th>Object Level</th>
<th>FY05</th>
<th>FY06</th>
<th>FY07</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>9051 Civil Service</td>
<td>FTE's</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9052 Contractor on-site</td>
<td>WYE's</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workforce total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 Personnel</td>
<td>Direct Civil Service FTE x rate (Salary & Fringe)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100 Travel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000 Procurement</td>
<td>Contracts, grants, hardware, direct services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB TOTAL Direct Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8020 Service Pools</td>
<td>(FTE+WYE)*Service Pool rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8005 Center G&A</td>
<td>(FTE+WYE)*Center G&A rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8000 Corp G&A</td>
<td>(FTE+WYE)*Corp. G&A rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Full Cost Budget Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserve (15% - held by ISSPO/OB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONVERGING PATHS

☐ Risky Business

☐ The schedule data was used to initially populate a Risk Log template (including best case, worst case, and most likely duration estimates for use later)

☐ The project team adopted a list of risk-types that applied to the project (e.g. design engineering difficulty, manufacturing process difficulty, etc.)

☐ For each risk-type, the project team defined a scale that consisted of numbers with a description for each number (e.g. a “0” for design engineering difficulty might mean “we do it all the time” while a “25” might mean “never done before”)

☐ The same type of scale was developed for the consequence of risk materialization as well

☐ The Risk Log items were examined by the project team and risks were rated using the scales developed as described in the preceding steps

☐ These risk ratings were converted via formulas into a Performance Difficulty factor, as well as an overall Risk Factor, for each Risk Log item

☐ The results were plotted on a standard 5 X 5 Risk Matrix and ranked
Example Risk Template (1 of 3)

Table 1
State of Technology (GOT) Rating
- Concept design formulated for performance and qualification concerns
- Concept design tested for performance and qualification concerns
- Critical function/character demonstrated at prototype and fabricated and tested for performance and qualification
- Dolphin fabricated and tested for performance and qualification
- Prototype hardware in test, passed performance requirements
- Full-scale test and full qualification tests
- Engineering change and full qualification test manufacturing process and operational and field operations

Table 2
Design Engineering Difficulty (DED) Rating
- No alternative and/or requires new or breakthrough advances
- No alternative and/or requires major engineering development using existing knowledge
- No alternative and/or requires new component development
- No alternative and/or requires standard components
- Design effort required using standard components
- Off the shelf item with minor modifications
- Off the shelf item which requires qualification
- Off the shelf item which includes all requirements

Table 3
Material Resource Status (MAR) Rating
- No defined source
- Single U.S. source identified with insufficient material production
- Single U.S. source identified with insufficient material production
- Multiple off-shore source identified with insufficient material production
- Multiple off-shore source identified with sufficient material production
- Single source identified with sufficient material production
- Multiple U.S. sources with sufficient material
- Single U.S. source identified with sufficient material production

Table 4
Manufacturing Process Difficulty (MPD) Rating
- No comparable process and at least one of C, Y, T, E, or M is expected to exceed state of art
- No comparable process, and all of the requirements for C, Y, T, E, or M are expected to be within the state of the art
- Integrated process is a combination of demonstrated processes
- Integrated process is a combination of existing processes and C, Y, T, E, or M are within the norm for these processes
- Existing process meets the requirements

Table 5
Production Equipment Status (EPS) Rating
- Insufficient facilities and equipment, development
- Facility available, and equipment development required
- Facility available, equipment development complete
- Facility available, equipment development complete
- Facility available, equipment development complete
- Facility available, equipment development required
- Facility available, limited use in designated production
- Facility is being used to manufacture given product

Table 6
Personnel Resource Status (PER) Rating
- Insufficient trained production personnel involved in ongoing production
- Insufficient production personnel but training required
- Insufficient production personnel required for production personnel
- Insufficient high-skilled production personnel
- Insufficient moderate-low skilled production personnel

Table 7
Resource Status (RES) Rating
- No defined test procedures, no equipment and no defined procedures, insufficient equipment/facility: standard equipment required
- Defined procedures, facility available, standard equipment required
- Defined procedures, facility available, custom equipment required
- Defined procedures, facility available, standard equipment required
- Defined procedures, facility available, custom equipment required
- Defined procedures, facility available, insufficient equipment available

Table 8
Consequence of Failure (C-F) Scale
- 0.1 "MARGINAL" - Failure to meet the requirement would create insufficiency or non-opened impact. No significant performance or technical performance.
- 0.2 "MEDIUM" - Failure to meet requirement results in minor reduction in mission performance. Minor performance reduction.
- 0.3 "LOW" - Failure to meet requirement results in major reduction in mission performance. Major performance reduction.

Table 9
Probability Distribution Curve
1. Uniform
2. Triangular
3. Normal
EXAMPLE RISK TEMPLATE (2 of 3)

<table>
<thead>
<tr>
<th>WBS</th>
<th>Title</th>
<th>Risk ID</th>
<th>Risk Description</th>
<th>SOT</th>
<th>DED</th>
<th>MDP</th>
<th>EOR</th>
<th>MAT</th>
<th>PER</th>
<th>TST</th>
<th>CT</th>
<th>Fr</th>
<th>Pm</th>
<th>Fr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Gas Trap Insert</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Management</td>
<td></td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Project Management</td>
<td></td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>1.3</td>
<td>Project Control</td>
<td></td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>2.1</td>
<td>Systems Engineering & Integration</td>
<td></td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Specifications</td>
<td></td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>2.1.2</td>
<td>Requirements</td>
<td></td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Conceptual Design</td>
<td></td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>2.2.1</td>
<td>Trade Study - Membrane Membrane (Material Type)</td>
<td></td>
<td>New material selected (additional enhancements)</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>0.9</td>
<td>0.09</td>
<td>0.004</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Trade Study - Membrane/Polymer (Material Type)</td>
<td></td>
<td>New coating material & application technique</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>18</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>19</td>
<td>0.7</td>
<td>0.120</td>
<td>0.188</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Trade Study - Monolithic Membrane (Single vs. Multiple)</td>
<td></td>
<td>Monolithic performance vs. extruded design work</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0.1</td>
<td>0.092</td>
<td>0.004</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Trade Study - End Caps (Material Type)</td>
<td></td>
<td>Change to require existing design work</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0.1</td>
<td>0.092</td>
<td>0.004</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Trade Study - End Plates (Polymer/Membrane Trade)</td>
<td></td>
<td>Compatibility assessment or multiple membranes</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>0.9</td>
<td>0.092</td>
<td>0.004</td>
</tr>
<tr>
<td>2.3</td>
<td>Component & Systems Integration</td>
<td></td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Configuration & Data Management</td>
<td></td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>Configuration Management</td>
<td></td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>2.4.2</td>
<td>Data Management</td>
<td></td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

1.3 Specialty Engineering

1.3.1	Safety												0.09
1.3.2	Reliability												0.09
1.3.3	Quality												0.09

1.4 Gas Trap Hardware

1.4.1	Hydropptic Membrane												0.22	
1.4.2	Hydropptic Membrane & Analysis												0.22	
1.4.3	Hydropptic Membrane Manufacturing		Material not available in the time frame required	0	0	6	6	5	5	0.5	0.000	0.000	0.000	0.000
1.4.4	Hydropptic Membrane Testing												0.09	
2.2.2	Hydropptic Membrane Analysis												0.09	
2.2.3	Hydropptic Membrane Procurement		Material not available in the time frame required	0	0	1	1	1	1	0.5	0.000	0.000	0.000	0.000
2.2.4	Hydropptic Membrane Testing												0.09	
3.0	End Cases												0.09	
3.1	End Caps Design & Analysis												0.09	
3.2	End Caps Procurement		Material not available in the time frame required	0	0	1	1	5	5	0.5	0.000	0.000	0.000	0.000
3.3	End Caps Manufacturing												0.09	
4.0	End Plates												0.09	
4.1	End Plates Design & Analysis												0.09	
4.2	End Plates Procurement		Material not available in the time frame required	0	0	1	1	1	1	0.5	0.000	0.000	0.000	0.000
4.3	End Plates Manufacturing												0.09	
5.0	O-Rings												0.09	
5.1	O-Rings Design & Analysis												0.09	
5.2	O-Rings Procurement		Material not available in the time frame required	0	0	1	1	1	1	0.5	0.000	0.000	0.000	0.000
6.0	Stiffeners												0.09	
6.1	Stiffener Design & Analysis												0.09	
6.2	Stiffener Procurement		Material not available in the time frame required	0	0	1	1	1	1	0.5	0.000	0.000	0.000	0.000
7.0	Glue												0.09	
7.1	Glue Design & Analysis												0.09	
7.2	Glue Procurement		Material not available in the time frame required	0	0	1	1	1	1	0.5	0.000	0.000	0.000	0.000
8.0	Hardware Assemblies												0.09	
8.1	Hardware Assemblies												0.09	

1.5 Ground Systems Development

1.5.1	Facilities Development												0.09
1.5.2	Transportation Development												0.09
1.5.3	ISG Development												0.09

15.0 Testing & Evaluation

15.1	Qualification Testing												0.09
15.2	Acceptance Testing												0.09
15.3	Final Functional Testing												0.09
15.4	Overall Acceptance Testing												0.09

17.0 Safety Engineering
EXAMPLE RISK TEMPLATE (3 of 3)

<table>
<thead>
<tr>
<th>WBS</th>
<th>Title</th>
<th>Ci</th>
<th>Pd</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.2.1</td>
<td>Trade Study - Hydrophilic Membrane (Material Type)</td>
<td>1.5</td>
<td>3.1</td>
<td>0.18</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Trade Study - Membrane Coating (Material & Application)</td>
<td>3.5</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Component & Systems Integration</td>
<td>3.5</td>
<td>0.7</td>
<td>0.10</td>
</tr>
<tr>
<td>1.4.1.1</td>
<td>Hydrophilic Membrane Design & Analysis</td>
<td>2.5</td>
<td>0.8</td>
<td>0.08</td>
</tr>
<tr>
<td>1.4.1.2</td>
<td>Hydrophilic Membrane Procurement</td>
<td>3.5</td>
<td>0.4</td>
<td>0.05</td>
</tr>
<tr>
<td>1.4.1.3</td>
<td>Hydrophilic Membrane Manufacturing</td>
<td>4.5</td>
<td>0.2</td>
<td>0.04</td>
</tr>
<tr>
<td>1.4.1.4</td>
<td>Hydrophilic Membrane Testing</td>
<td>4.5</td>
<td>0.2</td>
<td>0.03</td>
</tr>
<tr>
<td>1.4.3.1</td>
<td>End Caps Design & Analysis</td>
<td>3.5</td>
<td>0.1</td>
<td>0.02</td>
</tr>
<tr>
<td>1.4.4.1</td>
<td>End Plates Design & Analysis</td>
<td>2.5</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>1.4.8</td>
<td>Hardware Assembly</td>
<td>3.5</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Qualification Testing</td>
<td>3.5</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Acceptance Testing</td>
<td>3.5</td>
<td>0.1</td>
<td>0.01</td>
</tr>
</tbody>
</table>

![GTI Risk Matrix](image-url)
ESTABLISHING THE BASELINE

- The risk data, along with data collected during interviews, was used to characterize schedule tasks
- This characterization and the 3 duration estimates collected earlier were used to perform a schedule risk assessment
- Since the schedule was resource loaded and resources were costed, a cost risk assessment was performed simultaneously
- The results of both assessments were used to determine the needed cost and schedule reserves
- These reserve numbers were compared to the initial reserve estimates and an informed decision was made – THE BASELINE WAS ESTABLISHED
RESERVE JUSTIFICATION

Cost Reserve Justification

Assumptions
- Desired reserve is 10-20% (based on historical data).
- Cost and risk estimates are accurate and complete as of the time of this analysis.
- All planned work has an estimated cost and is identified in the schedule.
- Total project costs are estimated to be $X,XXX.

Basis
- Cost is directly proportional to the cost of resources and the duration of the task.
- Certain indirect, travel, material, facility/test support, and level-of-effort costs are fixed.
- There are widely varying levels of risk associated with different tasks.

Analysis
- The project was evaluated as a whole and each section was analyzed independently.
- A combined approach is recommended to ascertain the most accurate results.
- At a project level, an 80% level of confidence can be obtained for $X,XXX.
- This represents a reserve of $X,XXX for estimate uncertainty.

Schedule Reserve Justification

Assumptions
- Desired reserve is approximately 20% (based on historical data).
- Schedule and risk data is accurate and complete as of the time of this analysis.
- All planned work is identified in the schedule.

Basis
- Task duration is 2 years and 7 months.
- Project start is assumed to be 1/1/04 for the purpose of this exercise.
- Scheduled project completion date with 120 days of reserve is 1/2/07.
- The last unit is scheduled to ship on 7/18/06. This is the completion date without reserve.

Analysis
- To an 80% level of confidence, the project will be complete by 10/24/06.
- The difference between 7/18/06 and 10/24/06 is 72 working days of reserve, or about 9.3%.
- Recommend adding an additional 9.3% for unknown or unrealized risks.
- A total schedule reserve of between 120 to 150 days, or about 18-20% should be adequate.

Cost Probability Table

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Cumulative Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X,XXX</td>
<td>$X,XXX</td>
</tr>
<tr>
<td>$X,XXX</td>
<td>$X,XXX</td>
</tr>
<tr>
<td>$X,XXX</td>
<td>$X,XXX</td>
</tr>
</tbody>
</table>

11th run - revised CS FTE and other costs

- Using mean data, the table below represents recommended additions to the reserve.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Estimated Cost ($)</th>
<th>Mean Cost ($)</th>
<th>Recommended Reserve Add ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>Hardware</td>
<td>$X,XXX</td>
<td>$X,XXX</td>
<td>$X,XXX</td>
</tr>
<tr>
<td>1.6</td>
<td>Testing & Evaluation</td>
<td>$X,XXX</td>
<td>$X,XXX</td>
<td>$X,XXX</td>
</tr>
</tbody>
</table>

- The basis for fixed costs is not valid, therefore it is recommended that an additional 5% be allowed to cover these costs (based on the schedule reserve analysis).

Reserve Build Up

<table>
<thead>
<tr>
<th>Element</th>
<th>$K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate Uncertainty</td>
<td>$X,XX</td>
</tr>
<tr>
<td>High Risk Items</td>
<td>$X</td>
</tr>
<tr>
<td>Fixed Costs variation</td>
<td>$X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL RESERVE</th>
<th>$X,XXX</th>
<th>Project Estimate</th>
<th>Total Project Cost</th>
</tr>
</thead>
</table>
IT ALL COMES TOGETHER

- The result – a time-phased and costed plan with built-in performance measurement capability
 - **Time = Schedule** – Our schedule tool provided a complete list of all activities required to complete our scope of work, arranged in a logical, sequential fashion, along with the capability to assess the impact on our completion date due to changes (scope, sequence, risk materialization)
 - **Dollars = Estimates** – By assigning costed resources to schedule activities, we had a cost plan that not only indicated total costs, but when those costs would be incurred, along with the impact of changes (scope, sequence, risk materialization)
 - **Performance = Work Accomplished** – The baseline contained the record of our commitment to perform work for a specified cost during a specified time period, which could then be used to compare with actual costs and actual time as the project moved forward (this also provided us with a tool to enable forecasts of time and cost for future work planned)
Along with key project milestone times... take? "How long will it answered Key Questions. It all comes together..."
IT ALL COMES TOGETHER

Key Questions Answered

“How much will it cost?”

Answer - $X M

1. Risk Assessment

2. Build Up (Estimate + Risk)
IT ALL COMES TOGETHER

Key Questions Answered

“What’s the critical path?”

Answer – See graphic

...and goes thru Project Completion
IT ALL COMES TOGETHER

Key Questions Answered

“What resources are required and when?”

Answer – See graphic

By resource...
IT ALL COMES TOGETHER

Key Questions Answered

“What if …?”

Answer – Using a copy of the schedule, change sequencing or durations or risk factors and analyze the outcome...

1. If I change a task’s duration, or sequence, or risk factor...

2. What impact does that have on this milestone & ...

3. How does this change affect my project completion date, resource & cost phasing?

Cost Profile
IT ALL COMES TOGETHER

- Changes in work scope create a "data cascade"
 - The WBS is updated
 - The WBS Dictionary is updated
 - The Schedule is updated
 - Estimates are updated
 - The Risk Log is updated
 - A new cost/schedule risk assessment is performed
 - Reserves (cost &/or schedule) adjusted accordingly

- A change in any of the following creates a similar ripple effect
 - Schedule – actual versus planned durations, revised plans
 - Cost – rate differences, resource expenditures
 - Technical – design issues, technology development issues
 - Risk – retirement of risks, new risks, evolving risks
IT ALL COMES TOGETHER

- One key to successfully managing the project – A DISCIPLINED SYSTEM OF PROCESSES
 - Management Philosophy – “plan the work, work the plan” approach
 - Configuration Control (WBS, WBS Dictionary, etc.)
 - Data Management (cost, schedule, etc.)

- Another key - COMMUNICATION !!! Is there an ECHO in here?
 - An “ECHO” implies repetition – necessary part of effectiveness
 - Early – gives stakeholders the most precious commodity (TIME)
 - Clearly – ensures understanding and commonality of purpose
 - Honestly – fosters teamwork and trust
 - Often – makes certain the message is received & understood
 - Openly – eliminates fear and builds the information power base

- Historical Note – this “package” was “bought” by our customers with only minor comments
LESSONS LEARNED (1 of 3)

- "Lock in" the WBS before proceeding with schedule, cost, or risk efforts – this will save much grief and wasted effort later on.
- Establish rigorous configuration & data management processes as early as possible – define the "data cascade".
- Don't trust your memory – write EVERYTHING down (agreements, definitions, information, etc.).
- It is extremely difficult (if not impossible) to separate estimating durations and making people-resource allocations – each has a bearing on the other.
- Have the people doing the work involved in planning the work – they know more about it than anyone else.
- Decide which TPM's you will use, on which tasks, and document them during the planning process.
- Cost and schedule should tell the same story from different perspectives with the same ending.
LESSONS LEARNED (2 of 3)

- Cost and schedule inputs are related – some are serial (such as resource use), some are parallel (resource & indirect rates)
- It always takes more than you think (money, time, & resources) – unproductive costs are a reality, be prepared
- Indirect costs are real and may double (or more) the total cost of your project – be prepared for this reality
- Schedule, cost, and technical risks are related – but are not necessarily always directly proportional
- Historical data is very valuable – USE IT! – chances are, someone else paid very dearly for it
- When using historical data, ensure you understand its context, especially in relation to your own
LESSONS LEARNED (3 of 3)

There is no such thing as a project too large or too small to benefit from good integrated project management practices – the best practices are those that are consistent in ideology but scalable in practice (i.e. they can shrink or grow to fit the circumstances)