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Abstract 
In this paper we examh the problem of monitoring and di- 
agwsing noisy dmplex dynamical systems that m modeled 
as hybrid systems - models of umtinuolrs behavior, inter- 
leaved by disnsts transitions. In particular, we examins cop 

experience abrupt, partial or full failme of component de 
vices. Building on our previous work in this area (MBCG99; 

matical formulation of the hybrid monitoring and diagnosis 
task maBayesian modeltracling andselection problem, and 
provision of a suitable tracking algmitbm. The wnlinear dy- 
namics of many hybrid systems m t  challenges to pmb 
abilistic tracking. Fur~ber, probabilistic tracking of a system 

els of the system cormponding to failure modes am numer- 
ous and g d y  very unlikely. To focus tracking on these 
unlikely models and to rsduce the number of potential & 
elswkrconsideration, weexploitlogic-bawdtechniquesfbr 
qualitah model-baseddiagnosis to conjecture alimitedini- 
tial set ofconsistent candidatemodels. In this paper wedis- 

fxent classes of hybrid systems, focusing specifically on a 
metbod fbr traekiag multiple models of wnlioear bebavior 

sity propagdtion. To illustrate and motivate the epproach de 

and diagnosing NASA's Sprint AERCam, a small spherical 
robotic camera unit with 12 thrusters that enable both l k a r  
d r o t a t i ~ m o t i o n .  

tiauous systems with embedded supervisory COntrolleR that 

MBCGOO), our specific focus in this paper is on the mrrtha 

forthep~~ofdiagoosisirproblematicbeca~the& 

cuss alt€anative tracking techniques that are mlevant to dif- 

s i m W u s l y  wing factomd sampling aad condtiioaal dm- 

scribedinthis paper we examine t h e ~ ~ o f m o n i ~  

Introduction 
We have been conducting an ongoing project to investigate 
how to diagnose hybrid systems - complex dynamic4 sys- 
tems whose behavior is modeled as a hybrid system. Follow- 
mg the description m (MBCG99; MBCGOO), hybrid mod- 
els comprise both discrete and continuous behavior. They 
are typically represented as a sequence of piecewise con- 
tinuous behaviors mterleaved with discrete &ansitions (e.6, 
(Bra95)). Each period of continuous behavior representa a 
so-called mode of the system. For example, in the case of 
NASA's Sprint AEiRCam, a spherical airborne robot cam- 
era unit, modes might mclude tmnslateX-axis, mtateX- 
axis, translate-Kais, etc. (AG98). In the case of an Airbus 
fly-by-wire system, modes might include take-ofi landing, 
climbing, and ctuke. Mode transitions generally result in 

changes to the set of equations govemingthe continuous be- 
havior of the system, as well as to the state vector that initial- 
izes that behavior m the new mode. Discrete transitions that 
dictate such mode switching are modeled by finite state au- 
tomata, temporal logics, switching functions, or some other 
transition system, while continuous behavior within a mode 
is modeled by, e.g., ordinary differential equations (ODES), 
difference equations, or differential and algebraic equations 
(DAEs). For the purposes of this paper, we restrict our at- 
tention to discrete-time estimation for the class of systems 
whose hybrid models contain no autonomous jumps. Le., 
all nominal transitions between system modes are induced 
by a controller action; none are induced by the system state 
and mode (Bra95). 

In (MBCG99) we presented the hybrid diagnosis prob- 
lem: 

Given a hybrid model of system behavior: a hbtory of 
executed conttvikr actions. a history of observations, 
including observations of abermnt behavior mlative to 
the model. isolate the f a d  thar is rhe cause for the 
abennnt behavior. 

Our task was to perform diagnosis online m conjunction 
with the continued operation of the system. Hence, we 
divided our diagnosis task into two stages, initial conjec- 
turing of candidate diagnoses and subsequent refinement 
and tracking to select the most likely diagnoses. We cast 
the diagnosis problem as the p b l e m  of finding a model 
and associated parameter values that best fit the data. In 
that paper we focused on the problem of dealing with the 
multitude of potential models of the system by exploiting 
qualitative diagnosis techniques to generate a set of can- 
didate qualitntive diagnoses, and we described two param- 
eter estimation techniques to deal witb estimaling the pa- 
rameters associated with the model, particularly when er- 
roneous behavior manifested itself some period of time 
after the initial occurrence of a huh. (See (MBCGOO; 
MBCG99) for details.) We did not discuss the specific prob- 
lem of tracking multiple candidate models, nor did we dis- 
cuss how to compare them. 

In this paper, we formulate the hybrid monitofing and 
diagnosis task as a Bayesian model tracking and selection 
problem (e.g., (Mac91)). In particular, we wish to estimate 
the state (model) of the system at successive time instants, 
given a history of observations. The system diagnmis is de- 



scribed by the value of a specific subset of the state variables 
- namely those that designate whether components are nor- 
mal or abnormal, and what their associated par&- values 
are. We estimate state by tracking the posterior distribution 
of the state, given the observations. 

Probabilistic tracking of complex hybrid systems for diag- 
nosis purposes presents a number of in t e re s~g  challagm. 
Kalman filtering techniques, traditionally used for trackiag 
linear dynamid systems with Gaussian noise, asBume a 
Gaussian density which is unimodal, making a Kalman fil- 
ter (Ka160) inadequate for simultanmusly tracking alterna- 
tive candidate models. Multiple Kalman filters, one for each 
candidate model, can sometimes be used to track multiple 
candidate models of linear dynamical systems with Gaus- 
sian noise (e.g., (Fra90)). More importantly, hybrid systems 
often have complex nonlinear, nonGaussian a d  potentially 
nondeterministic behavior. The nonlinearities come from 
both the mode switching (faulty or normal modes of behav- 
ior), and fiom the nonlinear dynamics within a mode. The 
latter has been addressed m some cases by using local lin- 
ear (Taylor series) approximations of the nonlinear contin- 

ters (e.g., (BF88)) or Iterated Extended Kahnan Filters (e.g., 
(Jaz70)). 

ticle filters and the condensation algorithm (e.g., (GSS93; 
IB98)), we use a lktured ssmpling technique to sample and 
represent our m u b d  posterior distribution of the state 
(models) given the observations. Such a technique enables 
us to track multiple models of nonlmear systems simulta- 
neously. unfortpnately, sampling techniques for probabilis- 
tic tracking focus on the most likely models within the dis- 
tribution, whereas most fsult models have low probability, 
initially. To overtime this bias, we show how to integrate 
the qualitative diagnosis techniques described m (MBCGOO; 
MBCG99) into the temporal prior of our Bayesian formula- 
tion to focus sampling on models that are mdicated by our 
qualitative candidate diagnoses. 
In the next eectiOn, we provide a brief description of 

NASA’s Sprint AERCam, which we have used as a motivat- 
mg example and which we will use to illustrate certain con- 
cepts m this paper. In the section that follows the desCription 
of the AERCam, we present a formal characterhtion of the 
class of hybrid systems we study and the diagnosis problem 
they present. Next, we describe our Bayesian formulation 
of the problem and the algorithm we use for computing and 
propagating posterior distributions. In the final section, we 
summarize, discuss our contmumg research m this area, and 
reference some related work. 

uous dynamics such BS is done with EX- Yalman Fil- 

In thi~ paper, following march on b00t-p e, par- 

The AERCam 
We are using NASA’s Sprint AERCam and a simulation of 
system dynamics and the conmller written m Hybrid CC 
(HCC) (AG98) as a testbed for this work. To make this 
paper somewhat self-contained, we condense and repeat the 
description provided m (MBCG99). The AERCam is im- 
pler than many of the complex systems we intend to diag- 
nose, but it serves well m illustrating the concepts developed 
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g1 
The body fiame of reference and the directions of 
velocities (u, v, w) are the components of the translation 
velocity. (p, q, r) am components of the angular velocity. 

X 
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Three views of the AERCam, showing the thusten, 
and showing all the thrusters together in the cube 
circumscribing the AERCam. 

Figure 1: TheAERCamaxesandthTusters 

h m ,  and has p v i & d  excellent teestbed for OUT prelimi- 
nary work. We describe the dynamic model of the AERCam 
system brielly, a more detailed description of the model and 
simulation appear in (AG98). 

The AERCam is a smail spherical robotic camera unit, 
with 12hSters  that allow both linear and r o t a t i d  mo- 
tion (Fig. l). For the purposes of this model, we assume the 
sphere is uniform, and the fuel that powers the movement is 
in the center of the sphm. The fuel depletes as the thrusters 
fire. 

The dynamics of the AERCam are described in the AER- 
Cam body frame of reference. The translation velocity of 
this fi-ame with respect to the shuttle inertial frame of ref- 
exmce is 0. However, its orientation is the same as the ori- 
entation of the AERCam, thus its orientation with respect 
to the shuttle reference fiame changes as the AERCam m 
tates (i.e., it is not an inertial frame). The twelve thrusters 
are aligned so that there are four along each major axis m 
the AERCam body frame. For modeling purposes, we as- 
sume the positions of the thrusters an on the centers of the 
edges of a cube circumscribing the AERCam. Thus, for ex- 
ample, thrusters TI . T.. . T: . TI are parallel to the x-axis and 
are used for translation along the x-axis or rotation around 



the y-axis. Le., firing thrusters TI and T? results in transla- 
tion along the positive x-axis, and f i g  thrustem TI and TI 
results in a negative rotation around the y-axis. AERCam 
operations are simplified by limiting them to eitber transla- 
tion or rotation. Thrustas are either on or off, therefore, the 
control actions are discrete. In a normal mode of operation, 
only two thrusters are on at any time. 

AERCam dynamics 
A simplised model of the AERCam dynamics based on 
Newtonian laws is derived using an inertial m e  of ref- 
erence fixed to the space shuttle. The AERCam position m 
this frame is defined as the triple (.r.g, :). Let $ be the 
velocity in the AERCam bocty h e ,  with its vector compo- 
nents given by ( IL. i ~ . m ) .  The frame rotates with respect to 
the inertial reference frame with velocity d l  = @. q. T ) ,  the 
angular velocity of the AERCam. The rotating body b e  
implies an additional Coriolis force acting upon the AER- 
Cam. We assume uniform rotational velocity since in the 
n o d  mode of operation, the AERCam does not translate 
and rotate at the same time (Am78, pg. 130). Similar equa- 
tims can be derived for the rotational dynamics (AG98). 

2 - - . A  

d(nt G ) / d t  =F - 2 n t ~  x d) ~ e w t o n ’ s ~ a w  

The resultant equation for each coordinate: 

du/dt = F, /nt - 2(qw - vt’) - ( o/nnl) din/& 
h / d t  = F,/m - 2(t’rr - prn) - ( v /n t )  * din/& 

diol& = F:/in - 2(1w - pu)  - ( io /m)  * dm/dt .  

where the force F on each axis, is a function of the percent- 
agedegradationofthethrustersthat areexertingforceinthat 
direction as specified in Figure 1. Under normal operating 
conditions, the thrusten operate at lOOO?. 

We use these models to predict the position of the MR- 
Cam at time 1 + 1, given the position at time 1. We add noise 
to each of the models above. In this case the noise is white 
Gaussian noise with a mean of zero and a standard deviation 
(T. As noted above, these models are implemented in HCC 
and are used to compute the likelihood d e s c r i i  in the next 
section. 

Position Control Mode of the AERCam 
In the position cmtrol mode, the AERCam is directed to go 
to a specified position and point the camem in a particular di- 
rection. Assume the AERCam is at position A and directed 
to go to position B. In the first phase, the AERCam rotates 
to get one set of thrustem pointed towards B. These are then 
fired, and the AERCam cruises towards B. Upon reaching a 
position close to B, it fires thrusters to converge to B, and 
then rotates to point the camem in the desired direction. 

To facilitate the illustration of the diagnosis problem, we 
use a simple trapezoidal controller, which we explain in two 
dimensions. Suppose the task is to travel along the .,.-axis 
for some distance, then along the y-axis. Such manoeuvres 
are needed for navigating in the space shuttle. In order to do 

this, the AERCam fires its x thrustem for some time. Upon 
reaching the desired velocity, these are switched off. When 
the AERCam has reached a position close to the desired r 
position, the rwerse thrusters are switched on, and the AER- 
Cam is brought to a halt - the velocity graph is a trapezium. 
The process is analogous for the y direction. 

Problem Formulation 
In this section we describe OUT formulation of the hybrid di- 
agnosis problem. Once again, the hybrid systems we ex- 
amine are discretetime hybrid systems. Observations and 
state estimation are made at regular intervals 1,2. . . . . I ,  1 + 
1.. . . . Further, we assume that our systems contain no au- 
tonomous jumps. Le., all nominal transitions between sys- 
tem modes are induced by a controller action, none are in- 
duced by the system state and mode (Bra95). Autonomous 
jumps are common m hybrid models where a mode with 
complex nonlinear behavior has been simplified by creating 
multiple modes of less complex behavior, with stateinduced 
autonomous jumps connecting them. Building on the con- 
cepts in (MBCGOO): 
Deenition 1 (Hybrid System) A hybrid system is a 5-tuple 
(-M.-Y.C. 17,f): 
0 14 E .tl is the discrete state or mode of the system, where 

.M is a finite collection of variables. 111 is the system 
mode at time I .  

0 .r E S R” is the continuous state vector of the system. 
.rl is the continuous state at time f . 
(T E C, is the discrete input, where C is a finite collection 
of actions. I.e., the controller actions that transition the 
systembetween modes. 

0 I’ E 1- C R’ is the continuous input. 
0 f is the system dynamics function that maps the mode, the 

continuous state, and the input into the mode and contin- 
uous state atthenextdiscretetime point. [/~/+I.TI+I) = 
f ( j t , .  . r / .  nl. u / .  u q ) ,  where L C ~  E IT” is zero-mean white 
noiseofknown@,and f : .M x S x C x R7’ x -+ 
.W x S. f is o b  expwssed as a collection of fimc- 
tions, e.g., functions that describe the continuous behav- 
ior within a specific mode, and a function that describes 
the discrete transitions between modes, based on discrete 
inpUt. 

0 d . 9  E R’’ is the observation vector of the system. oL.sl is 
the observation vedor at time 1. o l ~ 9 l  is relatedto the con- 
tinuous state vector xl  by the function o l ~ ~  = 11 (q . V, ) 
where VI E R’’ is zero-mean white noise of known pdf, 
and11 : S x RP -+ Rl’. 

Definition 2 (System State) The state of a hybrid system at 
time 1 ,  (p,. x / )  comprises the discrete mode of the system 
and the continuous state at 1 .  

To define the hybrid diagnosis problem, we augment Defini- 
tion 1 as follows. 
Definition 3 (Diagnosable Hybrid System) A diag- 
nosable hybrid system, (.V. S. Z. 1.. f. CO:\IPS) is a 
hybrid system comprised of 77) potentially malfunctioning 
components C(24tPS = (rl  , . . . . c,,,) where 



For each ir f -W, i i  includes a designation of whether 
each c, E CO:\IPS is operating normally, or abnormally, 
i.e., [7]d)(c1) .  

0 For each 11, con&uous state vector .r includes a set of 
distinguished parameters 8 associated with that mode. 

0 We assume that transitions to fault modes axe achieved by 
exogenous actions. Hence, C = C, U E,, where 
- E, is a fimite set of controller actions, and 
- C, is a finite set of exogenous actions. 

We introduce the following additional notation, 
0, designates the observation history, the sequence of 
timeindexedobservations. 01 designates the observation 
history to time I .  

p p  denotes a faulty mode, i.e., a mode for which at least 
one c+ E COMPS is n(r(c,) in p p .  Or denotes tbe pa- 
rameters associated with l i p .  

In the case of the AERCam example, the potentiaUy mal- 
functioning components are the 12 thrusters, and a mode 
/ r  includes the behavior mode (e.g., translate-x, translate- 
y, rotatex, etc.) and [ - I J ~ J ( T ~ ) ,  i = 1. .. . -12, for each 
thruster. The continuous state vector includes the 3, y, : 
position of the AERCam, velocity and acceleration. The pa- 
ram- values, 8 associated with each it axe the percentage 
degradation of each of the thrusters. As we will see later 
on, we make a Markov assumption with respect to cmput- 
mg the temporal dynamics of our system. Hence all relevant 
state must be included explicitly in the state variables. 
Dewtion 4 (Mode9 A model of a diagnosable hybrid sys- 
tems is a timeindexed mode sequence and associated pa- 
rameter values ( b i ~ .  . . . . pol ] .  [OI.. . . , &)]). The model to 
time 1 is denoted (g. @ and the model at time 1 is denoted 
R/ = ( p / . O / ) .  The model is a distinguished subset of the 
entire system state. 

In this paper we make several simplifying assumptions re- 
garding our diagnosis ta t .  In particular, we make a single 
time fault assumption. We assume that our systems do not 
experience multiple sequential fiults. Further, we assume 
that faults am abrupt, resulting m partial or full degradation 
of component behavior. We cast the hybrid diagnosis task 
as the problem of finding the most lilcely model for the ob- 
servation history, P(s, I U), i.e, the mode and paameter 
valuea (p,. 9,) that best fit the observations over time. To do 
this, we appeal to a Bayesian formulation of the pblem. 

Bayesian Formulation 
To monitor and diagnose a hybrid system, we must compute 
the posterior probability distribution over models at time 1 ,  
given the observation history. Recall, using Bayes’ rule that 
the posterior is proportional to the likelihood times the prior. 
Le., 

p(mode1 I observations) ‘x p(observati0ns I model) p(mode1). 

Our objective is to find the posterior probability distribu- 
tion over models at time I ,  11, given the observation history 
uptotimet, Or. I.e,wewishtocomputep(.s/ IO/). 

To compute the temporal dynamics of our system, we 
make a Markov assumption, i.e., 

Further, we assume that at each time point, there is a small 
probability of an exogenous action, leading to a transition 
to a failure mode. Finally, we assume that given the current 
model S I ,  the current observations o h ,  and previous obser- 
vation history C?/- I axe independent. 

Hence, in order to track our hybrid system, we can com- 
pute the posterior distrihtion of the model at time 1 given 
the observation history which, according to Bayes’ rule 
and our assumptions above, is proportional to the likeli- 
hood of the observation at time 1 given the model at time 
/ @(oh.$/ I XI)) and the temporal prior, the prediction 
of the current model, given the observation history UP to 
1 - l,@(.v I 01-1). Le., 

where k ensures that the distribution integrates to one. 
The likelihood of the observations given the state is easily 

evaluated for the AERCam following the model described in 
the previous section. The t e m m  prior, i.e., the probability 
of the current model given the observation history to 1 - 1 
depends on the posterior over models at the previous time 
point, p(.?/- I I or- I ) and the temporal dynamics, p(.q I 
R/ - I ) . Le., 

y(s/ I s/- I . .  . . ..Yo) = P(S/ I $1-  I )  

])(Si I (31) = kp(dS /  I .%)I?(S/  I C7r-l). 

P(S/ I C3-1) = P h  I .V-I)P(.%l I ( 3 / - l ) h - l  L, 
The temporal prior expresses the probability of a partic- 

ular model given the observation history up to that point. 
In the case of a fault diagnosis, the likelihood of a fault 
model will initially be very low. If we are tracking using a 
h i t 0  number of parallel filters, or using a factored sampling 
method as suggested in the next section, this may mean that 
we will initially not track these fault models, or alternately 
that we lrack many low probability models which is com- 
putationally expensive. In order to focus the temporal prior 
more quickly and accurately on the appropriate diagnostic 
models, we make use of qualitative diagnosis techniques. 

In (MBCGOO; MBCG99), we proposed to use qualitative 
diagnosis techniques to generate qualitative candidate diag- 
noses - candidate mode and parameter values that were con- 
sistent with observations (3 in some window of time. 
Dehition 5 @tuple (MBCCOO)) A D-tuple is a 4-tuple 
( C . j i p . / p . B p ) ,  where / ir  is a fault mode, I y  is the time 
the fault mode commenced, Or is the parameter values BS- 
sociated with the fault mode behavior, and C is the set of 
failed (abnormal) components m / L  I.‘. 

Deanition 6 (Candidate Qualitative Diagnosis (MBCCOO)) 
Given a diagnosable hybrid system with model (@. i), in- 
put history Z’, and observation history, (3, D-tuple 
(C. l ip .  / p .  9,) is a candidate qualitative diagnosis iffthere 
exists a range of parameter values Or;. = [el. &I, and time 
range 1 p = [ ! I .  /J such that the occurrence of fault mode 
l i p  with parameter values O p  in time range / r is consistent 
with 0, z and (17.8). 



We do not repeat the diagnosis algorithms here, but re- 
fer the reader to (MBCGOO; MBCG99) for details. These 
generated diagnoses are used to propose a set of different 
models to be tracked by the system. The candidate models 
are generated by exploiting pxdous work on qualitative di- 
agnosis of continuous systems (e.g., (MB99)), adapting the 
authors’ causal propagation algorithms to deal with the dis- 
crete state variables and mode transitions of the hybrid sys- 
tems. To incorporate this so-called oracle into our Bayesian 
formulation, we use it to bias or focus the temporal prior. 
This will in hnm more heavily weight the posterior for the 
corresponding fault models, 3,. In the case of particle filter- 
ing, the technique we propose in the next section to compute 
the posterior, this focusing of the temporal prior will help 
the algorithm sample h m  the appropriate part of the dis- 
tribution. To incorporate this qualitative diagnosis “oracle” 
we may alter our view of the posterior we are computing as 
follows. 

p(sl I 0,. oracle) cx p(d~.s /  I s,, oracle) 

cx I ~ ( ~ . Y ,  I 81)  p(al I 0,- I ,  oracle) 
p(  sl 1 01 - I . oracle) 

where y(s/ I 01- 1. oracle) is equal to ~ ( $ 1  I 0,- I ) above, 
when the observations are consistent with the current model, 
and otherwise ~ ( - 9 1  I C’l- 1. oracle) is simply the normalized 
probability of the faulty models, given the observations. To 
ensure the speed of the oracle, and because of the lack of r e  
liable numbers for such calculations, the probabilities gener- 
ated by the oracle are nonnalized prior probabilities of dif- 
ferent fidts given the observations, as defined by the system 
builder. 

Once the posterior is computed, Merent models can be 
comparedby estimatingthe expectedvalue ofdifferentmod- 
els, normalizing and comparing. For example, we may sum 
the likelihoods for ail samples having like [ ~ ] n b ( r , )  desig- 
nations, and compare these to determine which components 
arelikelymalfimcli~g. 

Computing the Posterior 
In the previous Section we presented the problem of tracking 
and diagnosing hybrid systems using a Bayesian fonnula- 
tion. As noted m the mtroduction, there are many algorithms 
for probabilistic tracking of synamical systems, though most 
are not tailored to simultaneously tracking multiple candi- 
date models nor to dealing with nonlinear dynamics. Our 
posteriordishibutionp(.sl I 0,) willbeamulti-dimensional, 
multi-modal distribution, reflecting the multiple competing 
diagnostic models. There is no closed-form (parametric) 
representation for this distribution, as there is, for exam- 
ple, for a unimodal Gaussiun. Consequently, to compute this 
posterior, we appeal to factored sampling techniques to pro- 
vide an approximation of the distribution, and project this 
distribution forward through time according to its dynamics, 
using the Condensation algorithm (IB98), derivative of the 
bootstrap algorithm (GSS93) and commonly refared to as a 
particle filter. 

’Previously referred to as the action history. 

More specifically, the posterior distribution p ( s ,  I O,), 
is represented as a set of LY weighted samples {s( ‘ I. . . . , 
st’)), with associated weishts {r“] .... .d’]). ~ntu- 
itively, the larger the N, the better the approximation, but 
the more costly the computation. Hence we would like to 
sample the distribution as sparsely as possible, while maxi- 
mizing our coverage of our distribution, and thus weighting 
samples more heavily in those parts of the distribution that 
have greater volume. 

At each time step, the basic algorithm comprises three 
steps: select, predict, and update. 
Seleck We start with the posterior h m  the previous time 
step, p(s,-l I OI-I), represented as the factored sample 
(s,-~. ( 8 )  K,- (1) I), i = 1. .  . . . Ar. Sample N times with replace- 
ment with probability x;!~, the sample {s)!~}, producins 
the samples {sf:’’}. Note that samples with high weights 
may be chosen multiple times. 
Predict: For each new sample s’j i l ,  propagate the sample 
forward according to the dynamics of the system to pro- 
duce new samples { s) ’)}. In the case of our AERCam, these 
are the dynamics described m the previous section, together 
with zero-mean Gaussian white noise. This new set of 9 1 ~ -  
ples approximates a fair random sample for the effective 
priorp(a/ I 01-1). Whatremainstocomputeisthe weights. 
update: compute the weights, $) = P(O~,RI I .Ti = sj’)). 
From the observations d ~ / ,  evaluate the likelihood of each 
sample, and normalize the likelihoods of the samples so they 
sum to 1. I.e., 

The above algorithm does not reflect OUT qualitative diag- 
nosis omcle. In order to suitably focus the temporal prior, we 
use a linear combination of the samples from the computed 
temporal prior, and samples from the oracle. This technique 
was inspired by (BF99), and could also be achieved using 
importance sampling. 

The sample approximation to the distribution, p ( , q  I 0 1 )  

can be usedto compute the expectedvalue for some moment 
f of the density, for example a mean of some state variable, 
].e., 

I- 

E[&) I O,] = C nj”f(sj”) 
i= I 

In this way, we can compare the sum of the likelihoods for 
each distmct model. 

Summary and Related Work 
In this paper we expanded the hybrid diagnosis framework 
described in (MBCG99; MBCGOO) to present a m a t h d -  
cal formulation and computational techniques for generating 
diagnoses of hybrid systems in terms of Bayesian tracking 
and model comparjson. We characterized the evaluation of 
our models (system mode and associated parameter values) 



as the computation of the posterior distribution of models 
given a history of observations. Exploiting a Markov as- 
sumption, we showed that this could be computed in terms 
of the likelihood of the observations at time 1,  given the 
model at time I ,  times a prior. Exploiting the work d e  
scribed in (MBCG99; MBCGOO) for generating qualitative 
diagnoses of hybrid systems, we treated our qualitative mon- 
itoring and diagnosis system as an oracle. Ifthe observations 
were consistent with the current model, then the qualitative 
monitoring and diagnosis system had no effect on the com- 
putation of the posterior. However, if the observations were 
inconsistent then the oracle would generate a set of cmdi- 
date diagnoses that would be used to a4ust the prior to focus 
the likelihood computation on that part of the model space 
that was indicated by the qualitative monitoring and d i a p  
sis en*. 

Since hybrid systems are generally nonlinear, and hence 
the distribution of the posterior multimodal and non- 
Gaussian, we represented the post&or distribution as dis- 
crete samples and exploited factored sampling techniques, 
used in particle filtering and in the Condensation algorithm, 
to propagate conditional probability densities over time. 

We are still in the early stages of experimenting with these 
techniques, but prelhbmy results look promising. Con- 
densation has proven effective for some near realtime visual 
tracking tasks (e.g., (IB98)), but we anticipate that more 
complex hybrid systems with large state spaces and par- 
tial observability will require further computation and larger 
amouuts of memory that will compromise realtime cmpu- 
tation, just as they do, for example, with POMDPs. Such 
systems will require new variants of many of the techniques 
we currently employ in model-baseddiagnosis including ex- 
ploiting problem decomposition, compact representations of 
state spaces, abstractions of problems, and approximation of 
inference. In summary, Bayesian tracking and model com- 
parison and factored sampling techniques for dynamical sys- 
tems provide a sound mathematical fonaalism and pmis -  
m g  tools for monitoring and diagnosing complex dynamical 
sy-. 

The problem of monitoring and diagnosing hybrid sys- 
tems has received little attention to date, although there is 
much related work. Within the AI community, t h m  has 
been a great deal of research on diagnosing static systems 
(e.g., (HCD92)), while much less on diagnosing discrete dy- 
namical systems (e.g., ((394; Mc198; WN96; BLPZB)), 
qualitative diagnosis of continuous systems (e.g.,. (MBW)), 
and tracking (e.g., (RK99)). Most recently, (LPKBW), have 
developed related techniques for monitoring and diagnosing 
Conditional Linear Gaussian hybrid systems using a Dy- 
namic Bayes Nets to compactly represent the conditional 
probability distribution, and proposing algorithms for hy- 
pothesis reduction and smoothing. Within the FDI commu- 
nity, the largest proportion of research has focused on diag- 
nosing continuous systems (e.g., (Ge198; Fra90)). These ap- 
proaches have ofien used observer schemes and/or Kalman 
filters to track continuous system behavior. Diagnosis of 
discrete-event systems has also been studied within the FDI 
community (e.& (SSLST96; Lun99)). Nevertheless, our 
work and the concurrent work of (LPKBOO) has been the 

first to propose a Bayesian tracking approach to diagnosing 
hybrid systems. Our use of hctored sampling techniques 
and particle filtering drawn from the statistics and computer 
vision communities, presents a significant contribution to a 
challenging problem. 
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