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Summary of Research Activities and Findings 
 
 
1.  Helicopter Gearbox Anomaly Detection 
 
The initial aim of this project was to provide machine learning support for failure 
prediction in helicopter gearboxes.  We sought to develop anomaly, or outlier, detectors 
based on accelerometer measurements of gearbox vibration.  Due to the large variability 
of vibration signatures with the aircraft’s dynamical state (e.g. maneuvers), we 
recognized early that useful outlier detection would require knowledge of the state to 
allow conditioning.   
 
Our initial studies were aimed at using features derived from vibration total RMS power 
and vibration spectra to identify -- via (unsupervised) clustering – aircraft maneuvers.  
The gearbox data for these studies consisted of the instantaneous signal from six 
accelerometers time-synchronously averaged at three different periods: the pinion, bevel, 
and rotor periods.  The raw data is thus an 18-dimensional time series.  These signals 
were available for 14 maneuvers, which we clustered into 9 classes based on symmetries. 
 
RMS Power – RMS power was calculated from the entire time series (~34 sec) at each 
maneuver.  To enhance clustering and aid visualization, we applied both PCA and 
discriminatory feature selection to reduce the signal dimension from 18 to 7.   
 
Several clustering techniques, with cross-validation used to determine number of clusters, 
were applied.  Gaussian mixture models severely underestimate the number of clusters 
(typically 3), yielding a poor discrimination between the maneuvers (37% classification 
rate).  Entropy-constrained k-means (standard k-means with a regularizer consisting of 



and entropy penalty to encourage small models)  produces good classification (89% 
classification rate) but grossly overestimates the number of clusters (typically ~28).  The 
k-means classifier accuracy is comparable to results obtained by NASA ARC scientists 
on the same data using a (supervised) neural network classifier.  Entropy-constrained 
adaptive PCA typically gives 6 clusters and a 65% classification rate.  The local 
dimension of the clusters range from 0 to 5.  
 
Spectral Features – Spectra carry more detailed information than the total RMS power, 
and are expected to be important in anomaly detection.  Auto-regressive spectral 
estimates failed to discriminate between maneuvers, so we turned to Welch-averaged 
estimates.  We explored an extensive range of averaging windows reflecting a wide 
coverage of the bias-variance tradeoff in the spectral estimates.  We further explored 
several techniques for concatenating and normalizing the spectra from the six 
accelerometers.  Results indicated that with properly-chosen Welch-averaging and 
concatenation, unsupervised maneuver classification comparable to, but not better than, 
that resulting from RMS power features is obtained.  Clustering based on the FFT of the 
time-synchronous average accelerometer traces did not perform as well as the best 
Welch-averaged spectra. 
 
Nonstationarity – Marianne Mosher at NASA ARC determined that accelerometer 
signals are not stationary over the 34-second period used in the time-synchronous 
averages.  She suggested timescales over which the signals are stationary.  We found that 
the suggested short-time averaged spectra are less-easily clustered by maneuver.  That is, 
maneuvers overlap more in this representation.  Presumably, the shorter time averages 
contribute to noisy spectra, and the required Welch-averaging smoothes over 
discriminatory information. 
 
The nonstationarity results suggested that maneuver are an insufficient specification of 
dynamical state.  More refined indicators are required.  Flight-bus data could provide the 
fine-scale dynamical state information required to understand the relationship between 
flight-state and vibration-signature during nonstationary flight.  Based on this, and earlier 
results, in October 02, we requested pooled vibration and flight-bus data.  These data 
were not available until late in March 03, by which time we had redirected our research 
thrust to remote earth observing data. 
 
 
2. Application of Complexity-Penalized Clustering to Segmentation of EOS Data 
 
In collaboration with Ashok Srivastava ar ARC, in early 2003 we began investigating the 
use of novel clustering techniques for exploration and segmentation of multi-channel 
imaging spectrometer data from NASA Earth Observing satellites.  Dr. Srivastava had 
been using kernel-based clustering for segmentation of EOS images.  His initial 
exploration on an image of Greenland turned up an unexpected identification of a 
possible ice-melt region.   

 



The results of clustering algorithms are sensitive to initial conditions, and Dr. Srivastava 
voiced an interest in obtaining low-variability alternatives to the algorithms he has been 
using.  The entropy-penalized clustering algorithms we had been exploring with 
helicopter data have a natural mechanism for suppressing variability, and like the kernel 
methods, have more flexible modeling capability than standard approaches.  This led to 
our collaboration on these problems. 
 
Our initial studies explored application of several entropy-constrained algorithms to 
portions of multi-channel spectrometer images of Sicily and of Greenland.  We 
reproduced Dr. Srivastava’s segmentation with slight differences in the boundary.   

 
We found that an entropy-constrained k-means algorithm provides lower variability with 
respect to initial conditions than does unconstrained k-means, or our adaptive PCA 
algorithms.  We have not yet compared our variability results with Dr. Srivastava’s, 
though we find very robust replication of the segmentation feature he discovered, albeit 
with small variations of the boundary. 
 
We explored the use of a genetic algorithm clustering to reduce variability.  Our study 
showed that the computational complexity is unfavorable with respect to simple 
clustering with multiple restarts. 
 
Finally, and most productively, we explored incorporating hints to help constrain 
clustering.  These hints consist of human-induced biases that encourage, or discourage, 
co-clustering of a small number of pairs of datapoints.  This is a form of prior knowledge 
that is weaker than class labels.  Our resulting algorithm is a probabilistic clustering 
model (mixture model) that successfully generalizes the information in the hints to out-
of-sample data. 

 
This algorithmic development, and its application to the Greenland image data was 
published in NIPS 17 (see publications).  We are also drafting a journal article on this 
material for submission in June 2005. 
 
 
Educational Activity 
 
This award supported a portion of the doctoral studies of Cynthia Archer.  She received 
her Ph.D. degree in June, 2002.  Dr. Archer is now employed at the Portland, OR office 
of Research Triangle Park. 
 
This award supported a portion of the doctoral studies of Zhengdong Lu.  Zhengdong is 
currently a Ph.D. student in the PIs lab. 
 
The award also funded research activities of a postdoctoral research student, Dr. Alex 
Nelson, who worked with us on the helicopter gearbox data during the fall and early 
winter of 2002, and also working on preliminary aspects of the segmentation of EOS 
data.  Dr. Nelson is now employed in biomedical signal processing at Inovise. 



 
Publications  
 
Zhengdong Lu and Todd K. Leen.  Semi-supervised Learning with Penalized 
Probabilistic Clustering.  In Advances in Neural Information Processing Systems 17,  
Saul, Weiss, and Bottou (eds), The MIT Press, 2005. 
 
Zhengdong Lu and Todd K. Leen.  Prior Knowledge for Probabilistic Clustering.  In 
preparation for submission to Neural Computation.  The target submission date is June 
13, 2005. 
 
 
 
Patent Activity – None 
 
 
 
Ancillary Materials 
 
Presentations from the IS PI workshops are appended below. 
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Building Better Clusters

Unsupervised Classification
for Novelty Detection

Towards Application to Failure Prediction

Sept 4, 2002

Cynthia Archer, Lu Zhengdong, 
Todd Leen
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Motivation and Algorithm Grounding

• Outlier detection to identify anomalies
• Accurate models of healthy baseline 

– “healthy” must be conditioned on operating state – mixture 
or local models for nonstationarity

Healthy distribution,
operating state A

f1

f2

Healthy distribution,
operating state B

x

Healthy or faulty?
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Clustering Approaches

• Clustering Gaussian Mixture Density Models
– How many clusters?
– What shape (constraints of mixture components)?
– Dimensionality for PCA-based clustering?

e.g. Helicopter gearbox RMS vibration signal from 
6 accelerometers in 14 different maneuvers 

Todd K. Leen 
OGI – OHSU Sept. 4, 20024

Clustering Approaches

• For k-means (spherical 0-d clusters), how do model clusters 
correspond with true data clusters?

Visualization
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New Algorithm
Entropy-Constrained Adaptive PCA

• Clustering based on constrained Gaussian mixture model. 
Constraints related to PCA and factor analysis (Basilevsky, 
Tipping and Bishop)

• Structure includes model resolution parameter (or 
observation noise variance) σ2.

Formalism leads to entropy-penalized (regularized) cost 
function directly from likelihood maximization. 

• Locally adjusts cluster dimensionality and shape to data.
• Includes unconstrained mixture models and entropy-

penalized k-means as special cases.
• Number of clusters selected by cost minimization on holdout 

set.
• Makes inspired choices for number of clusters.  Functions 

well for unsupervised classification. 

Todd K. Leen 
OGI – OHSU Sept. 4, 20026

What’s it do?
COlumbia RIver Estuary Modeling and Observation System 

(Antonio Baptista, ESE – OGI) 

Gaussian Mixture Model
with full covariance matrixLocal PCA with 1 dimension

EC APCA, average dimension 1

• Salinity and temperature 
measurements are correlated

• Conditions vary, changing 
correlation
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What Else Does it Do?

• High-D example that can be visualized – unsupervised texture 
segmentation

Training image blocked 9x9 

Four-texture test image  

Todd K. Leen 
OGI – OHSU Sept. 4, 20028

Texture Segmentation

Number of clusters chosen to minimize corresponding 
clustering cost – not to optimize texture segmentation 
performance.

Entropy-constrained K-means Standard Gaussian mixture Entropy-constrained APCA 
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Gearbox Vibration
• 14 maneuvers, human-clustered into 9 classes
• Features – RMS power in each of 6 accelerometers from 3 

different synchronous averaging periods, 18-dim space, pruned 
to 7 based on discriminative ability

• Clustering via entropy-constrained k-means, standard Gaussian 
mixtures, and entropy-constrained APCA.  Evaluate clusters as 
classifier.

• Results 
– Unconstrained Gaussian mixtures severely underestimate 

number of clusters (3), poor discrimination between real 
classes (37% classification rate).

– Entropy-constrained k-means produces good classification 
(89%) by grossly overestimating number of clusters (28)

– Entropy-constrained APCA likes 6 clusters, gives 65% 
classification rate, cluster dimensions from 0 to 5.

Todd K. Leen 
OGI – OHSU Sept. 4, 200210

Outstanding Issues

• Choosing model resolution σ2  via cross-validation.  
Seems to consistently underestimate – estimation bias?

• How to do feature selection for clustering?
• Figure-of-merit for cluster-based unsupervised 

classifiers?
• How to do real-time operating state conditioning for 

helicopter data.  Operating state – quantized or 
continuous?

• What about real texture segmentation?
• Applications to other environmental science datasets?

Dynamical regime identification by clustering?
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New Clustering Framework
• Clustering based on constrained Gaussian mixture models

– Latent variable generative model constraint structure 
related to PCA / FA

– Automatically tunes to local data dimensionality
– Generates entropy-penalized (e.g. regularized) cost function 

directly from likelihood maximization
– Automatic selection of number of clusters by likelihood 

maximization on holdout data.
– Appears to work well for unsupervised classification.

• Latent space s
• Maps Wi from s to data space x (fit)
• Additive noise – variance σ2 

(resolution control parameter, not fit)
• Rank(Wi) determined by data & σ2

sets local cluster dimensions3

Todd K. Leen 
OGI – OHSU Sept. 4, 200212

Entropy-Constrained Adaptive PCA
• Density model    p(x) = Σ πα p(x|α),

with

• Hard-clustering limit of data likelihood is entropy-constrained 
cost 

p(x|α) = N(μα, σα
2 I + Wα Wα

Τ)

Defines orientation and eigenvalues 
for local PCA subspaces

Defines position of local PCA
subspaces sets model 

resolution

x1

x2

x3

u1

u2

x

( )∑ ∑
= ∈

+−
K

Rx
I – Uα Uαx=C

1

T

α α

μαN
1

+ σ2 ∑
=

K

1α
πα log πα( ) )T −x μα )( ( hα−2



1

Todd K. Leen 
OGI - OHSU  Feb. 4, 20041

Entropy-Constrained and 
Partially-Supervised Clustering

Unsupervised Classification
for Novelty Detection and 

Segmentation

Feb. 4, 2004

Cynthia Archer, Alex Nelson, 
Zhengdong Lu, 

Todd Leen

Todd K. Leen 
OGI - OHSU  Feb. 4, 20042

Novel Clustering Applied to

• Helicopter gear-box vibration 
segmentation/classification, towards anomaly detection

• Segmentation of satellite earth-observing data.



2

Todd K. Leen 
OGI - OHSU  Feb. 4, 20043

Mixture-PCA Density Model
• Density model    p(x) = Σ πα p(x|α),

with

• Soft-clustering through posterior   p(α | x)
• Hard-clustering limit of data likelihood leads to a cost function 

for entropy-constrained clustering -- entropy-constrained 
adaptive PCA  (EC-APCA).

p(x|α) = N(μα, σ2 I + Wα Wα
Τ)

Defines orientation and eigenvalues 
for local PCA subspacessets model 

resolution
x1

x2

x3

u1

u2

x
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Entropy-Constrained Clustering

• Automatically tunes to local data dimensionality
• Generates entropy-penalized (e.g. regularized) cost function 

directly from likelihood maximization
• Automatic selection of number of clusters by x-validation
• Includes unconstrained mixture models and entropy-

penalized k-means as special cases.
• Number of clusters selected by x-validation.
• Selection of model resolution parameter σ2  by x-validation 

(with variable results).
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Application to Helicopter
Gearbox Vibration

• Classify maneuver (flight “state”) from vibration information.
Surrogate task for fault detection.

• Features – RMS power in each of 6 accelerometers from 3 different 
synchronous averaging periods, 18-dim space, pruned to 7 based on 
discriminative ability
– Clustering via entropy-constrained k-means, standard Gaussian 

mixtures, and entropy-constrained APCA.  Evaluate clusters as 
classifier.  (Classification results ~ comparable to supervised 
learning.)

• Features – Welch power spectra of time-synchronous averaged (TSA)  
time series.
– Normalize spectra to unit power, concatenate spectra from several 

gear TSA.  Marginally less accurate than clustering via RMS power.
• Long-term (~34 sec) TSA noted (Huff / Mosher, NASA Ames) to be non-

stationary.  But clustering over short-term TSA provides poor
maneuver classification.  Suggests need for more detailed state-
description than maneuver only.

Todd K. Leen 
OGI - OHSU  Feb. 4, 20046

Image Segmentation

• Success with texture segmentation (reported last year) 
suggested application to image segmentation of earth-observing 
data.

• Unlabeled image data – how to evaluate unsupervised 
segmentation?

Compare with human clustering …

~ 68% agreement with 2 different human clusterings.

Agreement between humans is about 70%
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Clustering Image blocks

• Suppose we want to label following blocks by clustering 

… 

Todd K. Leen 
OGI - OHSU  Feb. 4, 20048

Clustering Image blocks 

• It is hard to tell which cluster a sample should go to, since we don’t even 
know what those clusters look like

• It is much easier to tell whether one pair of sample blocks should go into 
one cluster or not

and should be in same cluster

Should go to cluster 2 or 5?

and should be in different clusters
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Clustering Image Blocks

• Led to partially-supervised mixture-based clustering

– Gaussian mixture model for data density / clustering
– Incorporate pairwise “opinions” into prior on assignment

of image blocks to mixture components
(clusters).

– “Penalized Probabilistic Clustering” (PPC)

Todd K. Leen 
OGI - OHSU  Feb. 4, 200410

Satellite Image Data

• Partially-labeled region
– Labeled into 2 class-sets

• Snow area: wet snow, dry 
snow, melt ponds, bare ice

• Non-snow area: water, 
clouds, bare land 
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Satellite Image - Generalization

• 50% data for training and 50% data 
for test

• Classification accuracy are 
averaged over 20 runs

• Effect of constraints in training 
properly generalizes to test set

Classification accuracy 75.05%      99.23%        97.15%                      

Todd K. Leen 
OGI - OHSU  Feb. 4, 200412

Conclusion 

• Penalized Probabilistic Clustering

– May be useful to bootstrap dataset labeling.

– Partially-labeled datasets anyone?
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Clustering Framework
• Clustering based on constrained Gaussian mixture models

– Latent variable generative model constraint structure 
related to PCA / FA

– Automatically tunes to local data dimensionality
– Generates entropy-penalized (e.g. regularized) cost function 

directly from likelihood maximization
– Automatic selection of number of clusters by x-validation

• Latent space s
• Maps Wi from s to data space x (fit)
• Additive noise – variance σ2 

(resolution control parameter, not fit)
• Rank(Wi) determined by data & σ2

sets local cluster dimensions3

Todd K. Leen 
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Cost Functions

• APCA (Adaptive Principle Components Analysis)

• ECVQ (Entropy-Constrained Vector Quantization)
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Incorporating Prior on Cluster Assignment

• New complete data likelihood

p X Z( , | )Θ

∏ ∑ −−Θ=Θ
ji

ji xzxzjiWZXp
K

WZXp
,

2
)),(),(),(exp()|,(1),|,(

α
αα

⎩
⎨
⎧ =

=
otherwise     ,0
if,1

),(
αz

xz i
iα

•W(i,j)>0, we prefer to assign xi and xjinto same cluster – must-link
•W(i,j)<0, we prefer to assign xi and xjinto different clusters – cannot-link
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Cluster Assignment 
Posterior: standard mixture model

• In standard GMM, W=0, the posterior that x1 and x2 are generated by the z1
th and z2

th

components is

• The posterior of each sample xi can be calculated separately as

where πk and p(xi | θk ) are easy to calculate
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Cluster Assignment 
Posterior: PPC 

• The independence in assignment doesn’t hold as for standard model

• Marginalization

• Assume we have 20 samples set {x1,x2,…x20}, each 2 samples in that set are 
relevant to each other in assignment. To find the posterior of x1 to z1, we need 
to marginalize out x2,…x20  

– For model with M clusters, the time complexity is O(M20)
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Posterior: PPC   (cont’d)

• More generally, we may have more samples relevant to each other 

• Assume we have 20 samples set {x1,x2,…x20}, each 2 samples in that set 
are relevant to each other in assignment. To find the posterior of x1 to z1, 
we need to marginalize out x2,…x20  

– For model with M clusters, the time complexity is O(M19)
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Transitive 
closure 
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Posterior: PPC   (cont’d)

• Here we only consider the situation where each sample can only be involved in 
at most one pairwise relation

this                 NOT this

Todd K. Leen 
OGI - OHSU  Feb. 4, 200420

Satellite Image

Channel 1     Label           GMM           PPC

• This time we use 3-component model
• Here are typical runs of 3-component 

PPC and GMM

• The clustering result of PPC is more 
consistent with label and human vision
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Satellite Image

Channel 1     Label           GMM           PPC

• Model it with 2-component PPC with 
only Cannot-links 

• Cannot-links are randomly chosen 
according the partial label

• PPC works well on separating snow area 
from non-snow area

Todd K. Leen 
OGI - OHSU  Feb. 4, 200422

Features for Clustering

• Welch-averaged power spectra of the TSA data,
– select the appropriate FFT length using a qualitative 

bias/variance tradeoff.
– combined the spectra of 6 accelerometers into a single 

feature vector. 
– Three different methods where investigated for this 

combination: 
• Concatenation without scaling.

– preserves frequency information, relative power between 
channels, total power

• Concatenation followed by Normalization to unit vector 
magnitude.

– preserves frequency information, relative power between 
channels, not total power

• Normalization followed by Concatenation.
– preserves frequency information only, no power information 

retained
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Combining Features

• Normalize-Concatenate gave superior clustering accuracy 
for all three gear TSAs, and for both APCA and ECVQ.  
However,
– normalization removes information about relative RMS 

power between accelerometers, as well as removing 
RMS differences between examples.

– Cynthia reported 89% accuracy using RMS features from 
the 3 gear-TSAs and six accelerometers 

• Handpicked 7 features using all gears and 
accelerometers.

• So we do best by discarding RMS, even though Cynthia 
found it to be a useful feature!

Todd K. Leen 
OGI - OHSU  Feb. 4, 200424

Fisher Iris data

• 150 samples, 3 classes
• each sample has 4 features

• 90% data for training, 10% data for 
test

• Pairwise constraints are randomly 
chosen from training set

• Classification accuracy is used to 
measure the performance

• Result is averaged over 100 runs

• Effect of constraints in training 
properly generalizes to test set

Average classification accuracy vs. the # of constraints


