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Abstract 

In support of recommendations by the Columbia Accident 
Investigation Board, a team has been conducting an extensive analysis 
effort to study the effect of debris impacting the reinforced carbon-
carbon panels of the shuttle leading edge.  Various parameter studies 
have been conducted to define the scope of this analysis.  The objective 
of the study described within this document was to examine the effect of 
varying parameters of the debris trajectory on the damage tolerance.  
Three locations were examined including the upper and lower surface 
and the apex of the leading edge.  For each location, trajectory 
variances were identified for both the alpha and beta directions.  A 
2”x7”x11.88” rectangular foam block weighing 0.23 lb was used to 
impact the RCC.  The material model of the foam was developed at GRC 
using LS-Dyna Mat 83 (MAT_FU_CHANG_FOAM, GFM4).  The impact 
velocity for the foam was 1000 ft/sec.  The results of the analysis 
indicated in all cases the beta sweep decreased the amount of damage to 
the panel.  This is due to the fact the trajectory parameter could only 
vary in a way to cause a more glancing blow in the beta direction.  For 
the alpha variations, the trajectory parameter was varied in a way to 
result in a more severe impact.  In these cases, there was significant 
increase in damage to the RCC panel.  In particular, for the lower 
surface, where the alpha can increase by 10 degrees, there was a nearly 
40% increase in the impulse.  As a result, it is recommended that for 
future analyses, a 10 degree offset in alpha from the nominal trajectory 
is included for impacts on the lower surface.  It is also recommended to 
assume a straight aft, or zero beta, trajectory for a more conservative 
analysis. 

 

Introduction 

The Columbia Accident Investigation Board (CAIB) concluded that the breach of the shuttle TPS was caused 
by a large piece of External Tank (ET) foam that impacted and penetrated the lower portion of a left-wing 
leading edge RCC panel, as shown in Figure 1.  Chapter 11 recommendation 3.3-2 of the CAIB report [1] 
indicates that NASA should initiate a program to improve the impact resistance of the Wing Leading Edge 
(WLE) and to “determine the actual impact resistance of current materials and the effect of likely debris 
strikes.”  To address this recommendation and to prepare for return to flight, a detailed study of the foam 
impact on the leading edge surfaces was initiated to characterize potential damage and limitations for future 
flights. A team consisting of NASA Glenn Research Center, NASA Langley Research Center, and Boeing 
Philadelphia  was formed to study the effect of high speed foam impacts on the Reinforced Carbon-Carbon 
(RCC) WLE panels.  The objective of the team was to develop analytical tools that could be used to accurately 
predict the threshold of damage from debris for the WLE panels for a variety of impact conditions.  This 
threshold of damage is defined in terms of impact velocity for a standardized debris size and mass. 

Pursuant to the recommendations of the CAIB report, the team has been developing LS-DYNA [2] models of 
the RCC leading edge panels and correlating the models with data obtained from impact tests onto RCC 
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panels.  The analysis discussed within this document is a part of a larger parametric study intended to define 
analytical requirements for the large scale simulation effort.  In an attempt to bound the large number of 
possible cases to be studied, the parameter study helped define a reasonable number of conditions that would 
limit the problem to a workable number of loading conditions.  An analysis of a rectangular foam block 
impacting panel 9 was used as the baseline in the study.  This particular parameter study was intended to 
address the assumption that the foam would be traveling along a trajectory parallel to the x-axis, or straight aft.  
The possibility of a slight rotation in the pitch or sweep angle needed to be addressed.  This report summarizes 
the finding of this parametric study. 

 

 
 
Analytical Approach  

This study was intended to address possible variations in the trajectory of the projectile.  Previous analyses had 
assumed the projectile would impact the velocity in a direction parallel to the axis of the vehicle body, or the 
velocity vector of the orbiter itself.  For this analysis, variances in this trajectory were considered for two 
possible rotations from this vector.  The coordinate system of the orbiter along with the rotation angles is 
shown in Figure 1.  Rotation about the y-axis, defined as α, or commonly referred to as the pitch angle, was 
the first variable.  The second variable was possible rotation about the z-axis, defined as β, or commonly 
referred to as sweep angle or yaw.  Rotation about the x-axis, γ, or bank, was addressed in a separate parameter 
study.  The effects of the change in the α and β angles were addressed at three locations on panel 9.  These 
locations were on the top surface (location 104), bottom surface (location 4) and the apex (location 2).  These 
locations are shown in Figure 2 for a cross section of the panel.  All three locations lie along the midspan of 
the panel.  

X, γ 

Z, β 

Y, α 

Figure 1: Wing Leading Edge 
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Figure 2:  Impact Locations for Trajectory Study 

Analysis of trajectory parameters and transport uncertainties of the debris by the Orbiter project defined a 
given set of α and β rotation angles to be used in this parameter study.  This report indicated a maximum 
variance in the β angle of 5 degrees sweep outboard.  Because the model was of panel 9 from the left wing, a 
negative angle is used. This would be the same for both lower and upper surfaces.  The report also indicated a 
maximum possible variance in the pitch angle, α, of 5 degrees for the upper surface and 10 degrees for the 
lower surface.  The combination of rotations to be addressed is listed in Table 1.  Note, for this analysis, the 
effect of an α or β rotation are considered separately.  No cases involving a rotation about both axes combined 
were considered.   

 
Table 1:  Parameter Study Variables 

Location α β 
0 0 2 

(apex) 0 -5 
0 0 
-5 0 

-10 0 

4 
(lower surface) 

0 -5 
0 0 
5 0 

104 
(upper surface) 

0 -5 

 

To impose the change in trajectory for the projectile, the foam was rotated the corresponding angle about the 
given axis.  These rotations could be defined either about the orbiter axis or a local axis.  By rotating about the 
orbiter coordinate system origin, the projectile would be relocated on a global scale and would require large 
translations to reposition it to impact at the correct location.  However, by using the local axis, the need for this 
translation was eliminated.  The resulting foam orientation was only minimally different between the two 
approaches.  To generate the local rotation, a coordinate system was generated at the desired point of impact 
with the same orientation of the orbiter coordinate system.  The foam projectile was then rotated about the 
corresponding axis of this local coordinate system.  For all cases, it was assumed that the beta translation 
resulted in a more glancing blow, aligning with the sweep of the wing.  The alpha translation was assumed to 
result in a more direct impact. For this reason, the direction of rotation for the upper and lower surfaces are 

4 

2 

104 
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opposite in direction.   

An LS_DYNA model was used to analyze the effect of a foam projectile impacting a wing leading edge panel 
on the upper surface, lower surface, and apex.  The effect of the different trajectory variations was observed for 
each of the three locations.   Panel 9 is shown in Figure 3 with the foam configured for an impact at location 4.  
The four different orientations of the foam at this location are shown in this figure. 

 

  
Figure 3: Panel 9 with Foam Impact at Location 4 

 

Model Description 

The LS-DYNA analysis model consists of two components, an RCC Panel 9 and a foam block.  The model 
with the foam at location 4 is shown in Figure 4.  Both the panel and foam block models utilized were products 
of previous studies in support of the overall Impact Team effort .  The Panel 9 geometry included the 
midsection, ribs, and bottom flanges.  The model was constrained at the bolt hole locations.  The model 
consists of 57,414 shell elements.  Average-strength, degraded material properties were used for the RCC 
panel.  The material model was developed by team members using LS-Dyna Mat 58(MAT_LAMINATED_ 
COMPOSITE_FABRIC [3]. 

The projectile was a 2”x7”x 11.88” rectangular foam block with rounded edges. It is modeled with 21,899 
solid elements.  The material model of the foam was also developed by team members at NASA GRC using 
LS-Dyna Mat 83 (MAT_FU_CHANG_FOAM, GFM4) [3].  The weight of the foam projectile was 0.23 lb and 
the  impact velocity was 1000 ft/sec.  The velocity vector is input in global coordinates. Therefore, the values 
were modified to account for the varying trajectory angles. The components of the velocity used in the 
analyses are shown in Table 2 below. 

α=0, β=0 α=0, β=5 

α=5, β=0 

α=10, β=0
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Figure 4: RCC Panel 9 LS Dyna Model with Foam at Location 4 

 

Table 2: Velocity Components 
Angle Location 

Alpha Beta 
Vx, in/sec Vy, in/sec Vz, in/sec 

104 0 -5 11954 -1046 0 
 0 0 12000 0 0 
 5 0 11954 0 -1046 

2 0 -5 11954 -1046 0 
 0 0 12000 0 0 

4 0 -5 11954 -1046 0 
 0 0 12000 0 0 
 -5 0 11954 0 1046 
 -10 0 11818 0 2084 

 

Results 

The contact force for the various load cases are plotted as time histories in Figures 5 through 7.  These graphs 
compare the change in contact force for the different trajectory parameters at locations 104, 2, and 4, 
respectively.  From these graphs, it is evident that the contact force decreases in all cases for the beta sweep of 
5 degrees.  This is an expected result in that the sweep rotation results in a higher obliquity impact, or more 
glancing blow, to the panel.  The alpha or pitch rotations result in an increase in contact force.  In particular, 
for location 4, the increase is significant.  Table 3 compares the impulse based on this contact force.  For 
location 4, there is a 21% increase in impulse for 5 degrees of pitch, and a 40% increase for 10 degrees of 
pitch.  Based on this result, it is apparent the pitch rotation is especially significant for location 4.   The effect 
of the pitch angle is less severe for location 104 at only a 7.3% increase from the baseline.  The difference in 
effects between location 104 and location 4 is more than likely due to the difference in the curvature of the 
panel between the top and bottom surface.  Also shown in Table 3 is the impact angle of the foam.  The impact 
angles listed here are relative to an impact becoming more severe as it approaches a 0 degree angle, and more 
glancing as the angle approaches 90 degrees.  For the baseline trajectory, Location 4 on the lower side of the 
panel has an impact angle of 67.4 degrees, whereas location 104 on the upper surface has an impact angle of 
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55.3 degrees.  The higher the impact angle, the more oblique (tangent) the velocity vector is.  This results in an 
obvious decrease in the impulse.  However, it is of interest to note that for location 4 on the lower surface the 
impulse level is much more sensitive to a change in the impact angle than location 104.   

Contact Force 
Panel 9; Location 104; GFM4; V=12000 in/sec
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Figure 5: Contact Force Results, Location 104 

Contact Force 
Panel 9; Location 2; GFM4; V=12000 in/sec
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Figure 6: Contact Force Results, Location 2 



 

 
 
 
 

7

Contact Force 
Panel 9; Location 4; GFM4; V=12000 in/sec
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Figure 7: Contact Force Results, Location 4 

 

Table 3:  Impulse Results 
Angle Location 

Alpha Beta 
Impact 
Angle* 

Impulse 
lb-sec 

Impulse 
% Change 

104 0 5 58.7o 4.35 -7.1% 
 0 0 55.3 o 4.68 -- 
 -5 0 51.6 o 5.02 7.3% 

2 0 5 51.6 o 4.5 -8.2% 
 0 0 46.7 o 4.9 -- 

4 0 5 69.8 o 2.80 -8.5% 
 0 0 67.4 o 3.06 -- 
 5 0 63.0 o 3.71 21% 
 10 0 58.7 o 4.28 40% 

*A 90 degree impact represents the foam skimming tangent to the surface, where a 0 degree impact represents the 
foam impacting normal to the surface. 
 
 

Time history graphs of kinetic energies, internal energies, and the hourglass energy are all included in the 
appendix.  Each of these results indicates similar trends to the one discussed above for contact force.  In each 
case, the increased beta angle reduces the effect of the impact on the RCC panel.  The increase in alpha angle 
has the reverse effect.  Additionally, the lower side consistently shows a higher sensitivity to the increased 
impact angle than the upper surface.   

Contour plots showing the first principal infinitesimal strain at different time steps are also included in the 
appendix.  In these plots, the spectrum is defined to have a maximum of 0.006 in/in. This represents the 
approximate failure strain of the RCC material.  Therefore, areas of the plots that are colored red indicate 
imminent failure of the RCC.  Elements that have reached the failure criteria are deleted.  These contour plots 
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of first principal infinitesimal strain show more resulting damage in the RCC panel for the off nominal alpha 
angle.  This increase in damage is especially significant for the lower surface as shown in the plots for location 
4. 

 
Conclusions 

The results of the parametric study have been outlined and discussed above.  Based on these results, it is 
apparent that the alpha rotation of the foam projectile does have a detrimental effect on the damage to the RCC 
panel.  In particular, at location 4, this can have a much greater influence on the threshold velocity.  Because of 
this, impact analysis of future panels at the location 4 should include a rotation in the pitch direction.  The beta 
angle reduces the effect of the impact.  Therefore, it is a more conservative solution to assume a zero beta 
(straight aft) trajectory.   
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Kinetic Energy, Foam 
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Figure A8: RCC Kinetic Energy, Location 104 
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Figure A9: RCC Kinetic Energy, Location 2  
 

Kinetic Energy, Foam 
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Figure A10: RCC Kinetic Energy, Location 4 
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Internal Energy, RCC Midsection (Part 2000)
Panel 9; Location 104; GFM4; V=12000 in/sec
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Figure A4: RCC Internal Energy, Location 104 
 

Internal Energy, RCC Midsection (Part 2000)
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Figure A5: RCC Internal Energy, Location 2 
 

Internal Energy, RCC Midsection (Part 2000)
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Figure A6: RCC Internal Energy, Location 4 
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Kinetic Energy, Foam 
Panel 9; Location 104; GFM4; V=12000 in/sec
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Figure A7: Foam Kinetic Energy, Location 104 
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Figure A8: Foam Kinetic Energy, Location 2 
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Figure A9: Foam Kinetic Energy, Location 4 
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Internal Energy, Foam 
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Figure A10: Foam Internal Energy, Location 104 
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Figure A11: Foam Internal Energy, Location 2 
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Figure A12: Foam Internal Energy, Location 4 
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Hourglass Energy, Foam 
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Figure A13: Hour Glass Energy, Location 104 
 

Hourglass Energy, Foam 
Panel 9; Location 2; GFM4; V=12000 in/sec

0

1000

2000

3000

0 0.001 0.002 0.003 0.004

Time, sec

En
er

gy
, i

n-
lb

a0b0
a0bn5

 
Figure A14: Hour Glass Energy, Location 2 
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Figure A15: Hour Glass Energy, Location 4 
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Figure A16: First Principal Strain, Location 104 
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Figure A17: First Principal Strain, Location 2 
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First Principal Strains – Location 4
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Figure A18: First Principal Strain, Location 4 
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