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@ Model for the CO, channel
Overlap of Fringes and CO, Lines
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@ Comparison of Overlap at Two Temperatures
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The flight hardened version

Channels for measuring €O,
(1571 nm),0, pressure se
and O2 temperature sensing channel (768 nm)
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W Calibration using Direct Sun CO,
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6round testing results
with the fiber-coupled Sun Tracker

@ Sensitivity Estimates using Direct Sun

CO, Ratio change per airmass = (1.1 - 1.0)/(2.0 - 6.0) = -.025
1/10 second CO, Ratio Noise = +/- 00025 so SNR ~ 100:1
Since 1 airmass ~ 370 ppm Sensitivity ~ 3.7 ppm in 1/10 sec

O, Ratio change per airmass = (6 - 4)/(4.5 - 1.5) = .666
1/10 second O, Ratio Noise = +/- 004 so SNR ~ 165:1
Since 1 airmass ~ 1013 mB  Sensitivity ~ 6.1 mB in 1/10 sec
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MORE TRACKER DATA
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@ Diurnal Variation of €O, at Goddard
in May 2004

W Effects of Atmospheric Scattering

SEPT 22 DIRECT + DIFFUSE 02 & CO2 REF CHANNELS
———r——— T

oay, < e0s
0.2 - ooz
g EEl
8 3
8 3
001 - omg
0.00 3 Jooo
s 2
CARRON FROM SPACE FRASCATY _ Jue

E Effects of Atmospheric Scattering

CONTRIBUTION OF SCATTERED LIGHT TO CO2 AND 02 RATIO
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ATMOSPHERIC SCATTERING ALTERS THE
OPTICAL PATH

W Results from PAVE Campaign

PAVE FEB 7 FLIGHT TRACK
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FPICC rack and instrument
shown installed in DC-8 cabin

Results from PAVE Campaign

02-07 PAVE CO2 30 SEC AVG
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Results from PAVE Campaign

02-07 PAVE CO2 & 02 RATIGS 30 SEC AVG
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@ Results from PAVE Campaign

02-07 PAVE CO2 & 02 RATIO 30 gEC AVG
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Results from PAVE Campaign

92-07 PAVE CO2 & 02 CORRELATION 30 SEC AVG
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@ Dealing with Atmospheric Scattering

USE THE 6LINT!

GLINT IS REFLECTION OF SUNLIGHT OFF
THE SURFACE OF WATER—ADVANTAGE IS
THAT YOU KNOW THE PATH LENG6TH FOR
GLINT.

6LINT CAN BE AS MUCH AS 1,000,000 TIMES
BRIGHTER THAN REFLECTION OFF GROUND
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@ GLINT PROVIDES A KNOWN PATH
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@ SUMMARY & STATUS

*SMALL, INEXPENSIVE, PRECISE SYSTEM HAS
POTENTIAL FOR GROUND BASED, AIRCRAFT,
OR SATELLITE USE.

FUTURE WORK HIGHLY DESIRABLE AIMED AT
VERIEYING TECHNIQUES FOQR DFEEATING
SCATTER, STABILIZING DESIGN, AND
EXTENDING TECHNIQUE TO OTHER SMALL
MOLECULES
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@ SUMMARY & STATUS

-INSTRUMENT FOR SIMULTANEOUS
MEASUREMENT OF CO2 AND OXYGEN
DEMONSTRATED IN FIELD WITH VERY HIGH
INTRINSIC PRECISION.

‘PATH LENGTH UNCERTAINTY DUE TO
ATMOSPHERIC SCATTERING INTRODUCES
SERIOUS PROBLEMS IN DATA INTERPRETATION
FOR DEVICES OF THIS TYPE

‘USING THE GLINT HAS BEEN PROPOSED TO
AMELIORATE SCATTERING PROBLEMS BUT THIS
APPROACH IS UNTESTED
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Prospects for Precision Measurement of CO-
Column from Space

William S. Heaps, S. Randolph Kawa, John F. Burris and
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Georgieva and Marty Miodek, Science Systems and
Applications, Inc.

ABSTRACT

In order to address the problem of sources and sinks of CO2
measurements are needed on a global scale. Clearly a satellite
is a promising approach to meeting this requirement.
Unfortunately, most methods for making a CO2 measurement
from space involve the whole column. Since sources and sinks
at the surface represent a small perturbation to the total
column one is faced with the need to measure the column with
a precision better than 1%. No species has ever been
measured from space at this level.

We have developed over the last 3 years a small instrument
based upon a Fabry-Perot interferometer that is very sensitive
to atmospheric CO; and has a high signal to noise ratio. We
have tested this instrument in a ground based configuration
and from aircraft platforms simulating operation from a
satellite.

We will present results from these tests and discuss ways that
this promising new instrument could be used to improve our
understanding of the global carbon budget.




