A Scalable and Robust Multi-Agent Approach to Distributed Optimization

Kagan Tumer
NASA Ames Research Center
Mailstop 269-3
Moffett Field, CA 94035
kagan@email.arc.nasa.gov

Abstract
Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents.

We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are \(n \) devices, each of which has a "distortion", and the task is to find the subset of those \(n \) devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.

1 Introduction
Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. Similarly, coordinating a large number of agents to achieve complex tasks collectively presents new challenges to the field of multi-agent systems. In this work we leverage recent advances in the field of multi-agent coordination to modularize and solve a difficult optimization problem.

In truly large problems, many of the reasonable assumptions used in multi-agent coordination problems related to a handful of agents are difficult to justify. When dealing with a small number of agents it is reasonable to assume that agents react to one another, can model one another, and/or enter into contracts with one another [Clement and Durfee, 1999; Decker and Lesser, 1995; Hu and Wellman, 1998; Sandholm and Lesser, 1997]. When dealing with thousands of agents on the other hand, such assumptions become more difficult to maintain. At best each one can assume that the agents are aware of other agents as part of a background. In such cases, agents have to act within an environment that may be shaped by the actions of other agents, but cannot be interpreted as the by-product of the actions of any single agent.

In this work, we focus on an agent coordination method that aims to handle large systems composed of simple agents and where those agents are failure-prone. The size of the system (e.g., a thousand agents) naturally requires methods that do not rely on detailed information about the actions of all the agents being available to a given agent. The simplicity of the agents requires methods where the interactions among the agents provides the systems' strength rather than the sophistication of each individual agent. Finally, the propensity of the agents to sudden failures requires solutions where one agent's actions are not rigidly dependent on the actions of other agents.

The problem of imperfect device subset selection introduced by Challet and Johnson [Challet and Johnson, 2002] provides the perfect setting to test the efficacy of the multi-agent method. In this problem, there are \(n \) objects, each of which has a "distortion". The task is to find the subset of those \(n \) objects that minimizes the average distortion. This is a hard optimization problem, and brute force approaches cannot be used for any but its smallest toy instances [Challet and Johnson, 2002; Garey and Johnson, 1979]. We propose to address this problem by associating each device with a simple adaptive Reinforcement-Learning (RL) agent [Kearns and Koller, 1999; Littman, 1994; Sut-ton and Barto, 1998] that decides whether or not its device will be a member of the subset. The essential problem is to determine how best to set the agent utility functions (e.g., subsystem objective functions) in a way that will lead to good values of the global utility (e.g., global objective, in this case average distortion), without involving difficult to scale external mechanisms to ensure cooperation among the agents. This problem has been explored in many different domains, including multi agent systems, distributed optimization, computational economics, mechanism design, computational ecologies and game theory [Boutilier, 1996;
This paper presents an agent coordination method well-suited for large and noisy multi-agent systems, and is tested on a difficult distributed optimization problem. In Section 2 we focus on the properties the agent utilities must possess to lead to coordination. In Section 3 we present the imperfect device combination problem and derive the specific agent utilities for this domain. In Section 4 we present results showing that the proposed method outperforms traditional methods by up to an order of magnitude, has superior scaling properties and is resistant to severe cases of agent failure. Finally, in Section 5 we provide a summary and discuss the implications and general applicability of this work.

2 Background

For the joint action of agents working in a large system to provide good values of the global utility, we must ensure that: (i) the agents' goals support the global goal; and (ii) each one has a solvable problem. The first of these two desirable properties is that the agent utilities have to be aligned with the global utility. For discrete states, this can be formalized by assessing the “degree of factoredness” between any two utilities [Agogino and Tumer, 2004], which gives the fraction of actions for an agent where the agent utility and global utility have same delta (e.g., if agent utility goes up so does global utility and vice versa).

The second properties assures that the agent utilities have high “learnability” for the agent. Intuitively, learnability provides the sensitivity of an agent’s utility to its own actions. It is computed by dividing the expected value of changes in agent i’s utility caused changes in agent i’s actions to the expected value of changes in agent i’s utility caused by changes in the actions of agents other than i [Wolpert and Tumer, 2001; Agogino and Tumer, 2004]. So at a given state, the higher the learnability, the more the utility of agent i depends on the move of agent i, i.e., the better the associated signal-to-noise ratio for i. Higher learnability is desirable because it makes it easier for i to achieve a large values of its utility.

Typically these two requirements are in conflict with one another. As a trivial example, a system in which all the agent utility functions are set to the global utility is fully factored. Then

\[

diff = \frac{\sum_{i=1}^{N} n_j a_j}{\sum_{k=1}^{N} n_k}
\]

where \(n_j \in \{0,1\} \) is whether device j is or is not selected, and there are N devices in the collection, having associated distortions \{a_j\}. This is a hard optimization problem that is similar to known NP-complete problems such as subset sum or partitioning [Challet and Johnson, 2002; Garey and Johnson, 1979], but has two twists: the presence of the denominator and that \(a_j \in R \forall j \). In this work we set \(G \) the system-level, global utility function to \(G = -d \) (we do this so that the goal is to “maximize” \(G \), which is more consistent with the concept of “utility” function). \(G \) is a function of the full state system \(z \) (e.g., joint moves of all the agents).

The system is composed of N agents, each responsible for setting one of the \(n_j \). Each of those agent has its own utility function that it is trying to maximize, though the overall objective is to maximize global performance. Our goal is to devise agent utility functions that will cause the multi-agent system to produce high values of \(G(z) \) [Agogino and Tumer, 2004; Wolpert and Tumer, 2001].

3.1 Problem Definition

Formally, the problem is to minimize

\[
\varepsilon = \left| \frac{\sum_{i=1}^{N} n_j a_j}{\sum_{k=1}^{N} n_k} \right|
\]

We now present the difficult optimization problem of combining imperfect devices [Challet and Johnson, 2002]. A typical example of this problem arises when many simple and noisy observational devices (e.g., nano or micro devices, low power sensing devices) attempt to accurately determine some value pertinent to the phenomenon they're observing. Each device will provide a single number that is slightly off, similar to sampling a Gaussian centered on the value of the real number. The problem is to choose the subset of a fixed collection of such devices so that the average (over the members of the subset) distortion is as close to zero as possible.

3.2 Expected Difference Utility

Now let us present the first of two utilities that possess the desirable properties discussed in Section 2, the Estimated Difference Utility (EDU). EDU aims to isolate the impact of an agent on the full system by focusing on the difference between the actual impact the agent has and its “expected” impact. Let, \(E_z[G(z)|z_{-i}] \) provide the expected value of \(G \) over the possible actions of agent i, where \(z \) denotes the state of agent i and \(z_{-i} \) denotes the states of all agents other than i. Then EDU for this application becomes:

\[
EDU_i(z) = G(z) - E_z[G(z)|z_{-i}]
\]

\[
= -\left(\frac{\sum_{j=1}^{N} n_j a_j}{\sum_{k=1}^{N} n_k}\right) + \left(\frac{\sum_{j \neq i}^{N} n_j a_j + a_i}{\sum_{k=1}^{N} n_k} \right)
\]

where \(p(n_i = 1) \) and \(p(n_i = 0) \) give the probabilities that agent i set its \(n_i \) to 1 or 0 respectively. In what follows, we
will assume that those two actions are equally likely (i.e., for all agents i, $p(n_i = 1) = p(n_i = 0) = 0.5$).

For each agent, EDU is fully factored with G because the second term does not depend on agent i's state [Wolpert and Tumer, 2001] (these utilities are referred to as AU in [Wolpert and Tumer, 2001]). Furthermore, because it removes noise from an agent's utility, EDU yields far better learnability than does G [Wolpert and Tumer, 2001]. This noise reduction is due to the subtraction which (to a first approximation) eliminates the impact of states that are not affected by the actions of agent i.

Depending on which action agent i chose (0 or 1), EDU can be reduced to:

$$EDU_i(z) = 0.5 \frac{|\sum_{j=1}^{N} n_j a_j - a_i|}{\sum_{k=1}^{N} n_k - 1} - 0.5 \frac{|\sum_{j=1}^{N} n_j a_j|}{\sum_{k=1}^{N} n_k}$$

if $n_i = 1$,

or:

$$EDU_i(z) = 0.5 \frac{|\sum_{j=1}^{N} n_j a_j + a_i|}{\sum_{k=1}^{N} n_k + 1} - 0.5 \frac{|\sum_{j=1}^{N} n_j a_j|}{\sum_{k=1}^{N} n_k}$$

if $n_i = 0$.

Note that in this formulation, EDU provides a very clear signal. If EDU is positive, the action taken by agent i was beneficial to G, and if EDU is negative, the action was detrimental to G. Thus an agent trying to maximize EDU will efficiently maximize G, without explicitly trying to do so. Furthermore, note that the computation of EDU requires very little information. Any system capable of broadcasting G can be minimally modified to accommodate EDU. For each agent to compute its EDU, the system needs to broadcast the two numbers needed to compute G: the number of devices that were turned on (i.e., the denominator in Equation 1) and the associated subset distortion as a real number (i.e., the numerator in Equation 1) before the absolute value operation is performed. Based on those two numbers, the agent can compute its EDU.

3.3 Wonderful Life Utility

The second utility we present is the Wonderful Life Utility (WLU) which aims to isolate the impact of an agent on the full system by focusing on the difference between the impact of states that are not affected by the actions of agent i.

Depending on which action agent i chose (0 or 1), WLU can be reduced to:

$$WLU_i(z) = \frac{|\sum_{j=1}^{N} n_j a_j - a_i|}{\sum_{k=1}^{N} n_k - 1} - \frac{|\sum_{j=1}^{N} n_j a_j|}{\sum_{k=1}^{N} n_k}$$

if $n_i = 1$, (5)

or:

$$WLU_i(z) = 0$$

if $n_i = 0$. (6)

In this formulation, unlike EDU, WLU provides a clear signal only if agent i had chosen action 1. In that case, a positive WLU means that the action was beneficial to G, and a negative WLU means that the action was detrimental for G. However, if agent i had chosen action 0, it receives a reward of 0 regardless of whether that action was good or bad for G. This means that on average half the actions an agent takes will be random as far as G is concerned. Considering learnability implications, this means that on average WLU will have half the learnability of EDU for this problem.

4 Experimental Results

In this work we purposefully used computationally unsophisticated and easy to build agents for the following reasons:

1. To ensure that we remained consistent with our purpose of showing that a large scale system of potentially failure-prone agents can be coordinated to achieve a global goal. Indeed, building thousands of sophisticated agents may be prohibitively difficult; therefore though systems that will scale up to thousands may use sophisticated agents, they cannot rely on such sophistication.

2. To focus on the design of the utility functions. Having sophisticated agents can obscure the differences in performance due to the agent utility functions and the algorithms they ran. By having each agent run a very simple algorithm we kept the emphasis on the effectiveness of the utility functions.

Each agent had a data set and a simple reinforcement learning algorithm. Each agents' data set contained \{time, action, utility value\} triplets that the agent stored throughout the simulation. At each time step each agent chose what action to take, which provided a joint action which in turn set the system state. Based on that state the global utility, and the agent utility for all agents were computed. The new \{time, action, utility value\} for agent i is then added to the data set maintained by agent i. This is done for all agents and then the process repeats.

To choose its actions, an agent uses its data set to estimate the values of the utility it would receive for taking each of its two possible moves. Each agent i picks its action at a time step based on the utility estimates it has for each possible action. Instead of simply picking the largest estimate, to promote exploration it probabilistically selects an action, with a higher likelihood of selecting the actions with higher utility estimates, e.g., it uses a Boltzmann distribution across the utility values [Sutton and Barto, 1998]. Because the experiments were run for short periods of time, the temperature in the Boltzmann distribution did not decay in time. Finally, to form the agents' initial data sets, there is an initialization period in which all actions by all agents are chosen uniformly.
settles down and starts to converge.

Each time step, and for \(N = 1000 \), sixty agents turned on their learning algorithms at each time step, and for \(N = 1000 \), sixty agents turned on their learning algorithms at each time step.

4.1 Agent Utility Performance

Figures 1-2 show the convergence properties of different agent utilities and a search algorithm in systems with 100 and 1000 agents respectively. The results reported are based on 20 different \(\{a_i\} \) configurations, where each \(\{a_i\} \) is selected from a Gaussian distribution with zero mean and unit variance. For each configuration, the experiments were run 50 times (i.e., each point in the graphs is the average of \(20 \times 50 = 1000 \) runs). In all cases, the Boltzmann parameter (e.g., temperature \(t \)) was set to 0.1. The graphs labeled \(G \), EDU and WLU show the performance of agents using reinforcement learners with those reinforcement signals provided by \(G \), EDU and WLU respectively. \(S \) shows the performance of local search where new \(n_i \)'s are generated at each step by perturbing the current state and selected if the solution is better than the current best solution (in the experiments reported here, 25% of the actions were randomly changed at each time step, though somewhat surprisingly, the results are not particularly sensitive to this parameter). Because the runs are only 200 time steps long, algorithms such as simulated annealing do not outperform local search: there is simply no time for an annealing schedule. This local search algorithm provides the performance of an algorithm with centralized control.

In both cases in which agents use the \(G \) utility, they have a difficult time learning. The noise in the system is too large for such agents to learn how to select their actions. For 100 agents (Figure 1), WLU performs at the level of the centralized algorithm. Because agents only receive useful feedback when they take one of the two actions, the noise in the system is larger than that for EDU. This "noise" becomes too much for systems with 1000 agents (Figure 2), where WLU is outperformed by the centralized algorithm. EDU, on the other hand, continues to provide a clean signal for all systems up to the largest we tested (1000 agents). Note that because agents turning on their learning algorithm changes the environment, the performance of the system as whole degrades immediately after learning starts (i.e., after 20 steps) in some cases. Once agents adjust to the new environment, the system settles down and starts to converge.

4.2 Scaling Characteristics of Utilities

Figure 3 shows scaling results (the \(t = 200 \) average performance over 1000 runs) along with the associated error bars (differences in the mean). As \(N \) grows two competing factors come into play. On the one hand, there are more degrees of freedom to use to minimize \(G \). On the other hand, the problem becomes more difficult: the search space gets larger for \(S \), and there is more noise in the system for the learning algorithms. To account for these effects and calibrate the performance values as \(N \) varies, we also provide the baseline performance of the "algorithm" that randomly selects its action ("Ran"). Note that the difference between the performances of all algorithms and EDU increases when the system size increases, reaching a factor of twenty for \(S \) and over 600 for \(G \) for \(N = 1000 \).

Also note that all algorithms but EDU have slopes similar to that of "Ran", showing that they cannot use the additional degrees of freedom provided by the larger \(N \). Only
4.3 Robustness

In order to evaluate the robustness of the proposed utility functions for multiagent coordination, we tested the performance of the system when a subset of the agents failed during the simulation. At a given time ($t = 100$ in these experiments), a certain percentage of agents failed (e.g., were turned off) simulating a hazardous condition in which the functioning of the agents cannot be ascertained. The relevance of this experiment is in determining whether the proposed utility functions require all or a large portion of the agents to perform well to be effective, or whether they can handle sudden changes to their environment.

Figure 4 shows the performance of EDU, WLU, and G for 100 agents when 20% of the agents fail at time step $t = 100$. The results of the centralized search algorithm with no failures ("S" from Section 4.1), is also included for comparison. In these experiments, none of the agent learning algorithms were adjusted to account for the change in the environment. In agents that continued to function, the learning proceeded as though nothing had happened. As a consequence, not only did the agents need to overcome the sudden change in their task but they had to do so with parameters tuned to the previous environment. Despite these limitations, EDU recovers rapidly for the 100 agent case, whereas G and WLU do not. Note this is a powerful results: a distributed algorithm with only 80% functioning agents tuned to a different environment outperforms a 100% functioning centralized algorithm.

Figure 5 show the performance of EDU when the percentage of agent failures increases from 10 to 50% for 100 agents. For comparison purposes, the search results (from Section 4.1) are also included. After the initial drop in performance when the agents stop responding, EDU trained algorithms recover rapidly and even with half the agents outperform the fully functioning and centralized search algorithm.

These results demonstrate both the adaptability of the EDU and its robustness to failures of individual agents, even in extreme cases.

5 Discussion

The combination of imperfect devices is a simple abstraction of a problem that will loom large in the near future: How to coordinate a very large numbers of agents – with limited sophistication and failure prone – to achieve a prespecified global objective. This problem is fundamentally different from traditional multi-agent coordination (and distributed optimization) problems in at least three ways: (i) the agents are simple and do not model the actions of other agents; (ii) the agents are unreliable and failure-prone; and (iii) the number of agents is in the thousands.

The work summarized in this paper is based on ensuring coordination while eliminating external mechanisms such as contracts and incentives to allow the systems to scale. In the
experimental domain of selecting a subset of imperfect devices, the results show the promise of this method by providing performance improvements of twenty fold over a centralized algorithm and of nearly three orders of magnitude over a multi-agent system using the global utility (G) directly. Furthermore, when as many as half the agents fail during simulations, the proposed method still outperforms a fully functioning centralized search algorithm.

This approach is well-suited for addressing coordination in large scale cooperative multi-agent systems where the agents do not have pre-set and possibly conflicting goals, or when the agents do not need to hide their objectives. The focus is on ensuring that the agents do not inadvertently frustrating one another in achieving their goals. The results show that in such large scale, failure-prone systems, this method performs well precisely because it does not rely on the agents building an accurate model of their surroundings, modeling the actions of other agents or requiring all agents in the system to reach a minimum performance level.

References

