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ABSTRACT

State Estimation of International Space Station Centrifuge Rotor with Incomplete

Knowledge of Disturbance Inputs

by

Michael James Sullivan
This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system
where only relative measurements are available with limited knowledge of both rotor
imbalance disturbances and International Space Station (ISS) thruster disturbances. A
Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used
to model both the effect of the rotor imbalance and the ISS thrusters on the CR relative
motion measurement. The sinusoidal disturbance states compensate for the lack of the
availability of plant inputs for use in the Kalman filter. Testing confirms that complete
disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to

show that increased estimator operational bandwidth can be achieved through the

expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo

analysis shows the varying levels of robustness against defined plant/filter uncertainty

variations.
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1 Introduction

The National Aeronautics and Space Administration (NASA), in association with the
Japanese Aerospace Exploration Agency (JAXA), are building a Centrifuge
Accommodation Module (CAM) for attachment onto the International Space Station (ISS).
The CAM houses the Centrifuge Rotor (CR) and will be attached at node 2 on the

International Space Station (ISS) as shown in Figure 1-1.
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Figure 1 1 Exploded Dlagram of Internatlonal Space Statlon Components [1]

The CAM/CR is an orbiting laboratory which will study the effects of zero gravity and
micro gravity environments on rodents. More details concerning the CAM/CR can be

found in Section 1.1.




Before the CAM/CR can be attached to the ISS, all verification must be completed on the
ground to ensure robust stability and safe operation. This is important not only to for
increasing the probability of mission success, but also to make certain the safety of the ISS
crew members. One issue concerning the safe operation of the CR aboard the ISS is the
occurrence and the effect of rotor imbalances due to changing inertia during CR operation.
The effect of rotor imbalances can be found in everyday life such as an unbalanced
washing machine drum impacting the side of the washing machine or steering issues
caused by unbalanced automotive tires. Although this problem may seen benign in the
washing machine example, if the massive rotor in the CR impacts the CAM, critical

damage to the ISS could result.

One method of solving this problem would be to use counterbalancing masses to cancel out
any imbalances in the rotor. In the case of the CR, a system called the Auto Balancing
System (ABS) employs this method. A problem occurs during implementation of the ABS
due to the unavailability of measurements integral to ABS control, namely the rotor’s
absolute (i.e., relative to inertial space) states. These absolute rotor states cannot be
obtained, because the displacement sensors are located in such a manner that only relative
(i.e., between two moving masses) measurement are possible. Therefore an estimator is
needed to estimate absolute rotor states from the relative measurements. This thesis
proposes a method for estimating absolute rotor states from available relative/corrupt
measurements involving the use of a Kalman filter. However using a standard Kalman
filter formulation requires availability of both the rotor imbalance disturbances as well as

the ISS thruster disturbances which are not available. This thesis will also discuss the



methods used to overcome this problem. Note that the words filter, observer, and estimator

will be used interchangeably throughout the thesis.

Although the goal of this thesis is specific, the basic premise of the problem being solved is
applicable to any field where there is a need to compute absolute measurements from
relative and/or corrupt measurements with limited input knowledge. For example, state
estimation would be helpful in many applications such as determining the core temperature
of a nuclear reactor, where it is too hazardous for sensor location. This is accomplished
with the use of thermodynamics and sensors placed in less intense locations [3]. Also,
optimal filters are useful in the field of aeronautics when applied to estimation of turbine

blade states through dynamics and inferior measurements [4].

1.1 Introduction to Centrifuge Accommodation Module (CAM)

The CAM, shown in Figure 1-2, which is composed of a life sciences glove box and freezer
racks also houses the CR. The CR contains up to 4 habitats designed to house rodents.
The CR will be used to study the long term effects of zero gravity and micro gravity
environments on rodents. An artificial gravitational force of anywhere from 0 to 2 g can be
generated by spinning the rotor anywhere from 0 and 1.4 Hz. The normal operational spin

rate is 0.7 Hz, which is the spin rate necessary for 1 g.
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Figure 1-2. CAM Internal Components [2]

A rotor imbalance will occur whenever the spinning-member center of mass is not on the
spin axis (e.g., due to location of rodents). Also a disturbance caused by the ISS jet-firing
Attitude Control System will act on the rotor through the CAM shroud. Two separate
systems, the Vibration Isolation Mechanism (VIM) and the Auto Balancing System (ABS)
will be used to help minimize the rotor motion caused by these two disturbance sources.
They are shown in Figure 1-3. Excessive rotor motion will result in snubber strikes against

the shroud, causing the system to perform a safety shutdown.
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The ABS controls the counter balancing masses which move in order to cancel out any
rotor imbalance caused by rodent motion [5]. The sensors, which measure the motion of
the rotor relative to the ISS, are located within the VIM. This relative measurement is the

only available measurement with information of rotor motion.
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By sensing only relative motion, if any ISS motion occurs, the relative measurement will
not be the resulting motion due to pure rotor imbalance. In the case of a balanced rotor
with only ISS motion, if the ABS were to act on the relative motion alone, it would drive
the balancing mass away from the spin axis, effectively introducing an imbalance into a

previously balanced rotor. This is shown in Figure 1-4.

The CR controls and sensors do not interface with the ISS controls and sensors. This lack
of system interaction limits the amount of knowledge available for either system’s
controllers. The result is no direct knowledge of the ISS disturbance inputs which affect
the relative measurement sensor located within the VIM. Also, since rodent motion is
unpredictable and unmeasured, neither a rotor disturbance measurement, d,, nor an ISS
disturbance measurement, ds, is available for use by the ABS controller or for use by the
Kalman filter during state estimation. However, some rotor and ISS disturbance
parameters (spin frequency, ISS disturbance characteristics, approximant rodent mass, etc.)

are nominally known. Furthermore, the measurement, x , is corrupted by the addition of

Sensor noise, v, .

VIC <

(Vibration Isolation Control)
Vi
d ﬁ X 4
e
d’ Plant —> Sensors —
g e (Rotor + VIM + ISS)
——
X
ABS |e— Kalman |
(Auto Balancing System) Filter

Figure 1-5. Overall CR System and Control




Since the main purpose of the VIM is to allow the rotor to follow the rigid body motion of
the ISS while isolating rotor vibrations, a relative measurement is sufficient for the
Vibration Isolation Controller (VIC) (see Figure 1-5); this can achieved by ensuring there is
no change in relative displacement. However, the main purpose of the ABS is to
counterbalance any imbalance caused solely by rodent motion, therefore, a relative
measurement is not sufficient. Instead, absolute rotor state information is necessary for
proper ABS control. This leads to the central question addressed in this thesis; that is,
“How do we calculate absolute rotor states from relative measurements, with only partial
knowledge of the disturbance inputs into the system?” This thesis provides a method of
state estimation through the use of a Kalman Filter applied to a plant model which has been
augmented by disturbance states. A more in depth discussion on the system and the details

of the CR example problem can be found in Chapter 2.
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L ] l
1 Itz 4 X X
N 5 Plant —> Sensors ol
| - i (Rotor + VIM + ISS)

" X Ka.lman ¢
I Filter

Figure 1-6. Open Loop System Used for Thesis



Since state estimation is the only operation of concern, the controllers in Figure 1-5 will be
eliminated to create the open loop system found in Figure 1-6. This is the system used

during the filter design process.

1.2 Alternative Estimation Options

One approach to resolve the lack of input knowledge is input reconstruction. Input
reconstruction involves the use of the knowledge of the plant and the output time history to
estimate the input, u, which in this case would include both rotor and ISS disturbances.
This is also known as Inverse System Identification technique. This method may be
helpful during state estimation, because if the inputs into the system can be reconstructed,

then they can be used in the estimation process (see Figure 1-7).

VIC -

(Vibration Isolation Control)
Vi
’ X
AL S Plant —> Sensors rel
) (Rotor + VIM + ISS)

€
ABS Kalman

X
(Auto Balancing System) (_ Filter E Inverse <
System ID

Figure 1-7. Possible Use of Inverse System ID for Estimation Process

A
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A time domain method for estimating the applied forces on a structure was proposed by
Stelzner, Kammer, and Milenkovic [6]. The method uses a non-causal moving average
representation of the inverse structural system and has been successful in estimating the
individual input forces for structures where the sensors are not collocated with the force
input locations. The problem with the implementing of this method is that it only allows
for near-real time estimation of the input forces, while the Kalman filter requires
knowledge of real time input forces for proper estimation. Therefore, the approach

suggested in Figure 1-7 cannot be used to solve the rotor estimation problem.

Another recently developed time domain Inverse System Identification method called the
Sum of Weighted Accelerations Technique (SWAT) has been applied to many different
impact problems [7]. The limitations of using SWAT lie in the fact that it can only
reconstruct the sum of the external forces acting on a body’s center of mass and not the
individual applied forces. To overcome this shortcoming, Genaro and Rade created a
variation of SWAT which would yield the input forces [8]. However, this process
introduces a shortcoming of its own in the fact that the number of sensors must be equal to

or be greater than the number of responding modes, which is not the case for the CR.

A further limitation of the input estimation or indirect force measurement techniques is that
the process is found to be numerically ill-conditioned [9]. The numeric ill-conditioning
occurs during calculations that require inverses of matrices which allows very small errors

in measurements to result in large errors in estimated forces.
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Another approach includes the use of general structured (GS) observers for state estimation
during the case where inputs are unknown. A method for designing a full order unknown
input observer (UIO) based on a GS observer is presented by Chang, You, and Hsu which
allows for state estimation despite the existence of unknown inputs or uncertain
disturbances [10]-[13]. However this method cannot be used for the CR problem since it
requires the number of outputs (measurements) to be greater than the number of unknown

inputs. For the CR problem, there are only 4 outputs versus the 8 possible inputs.

1.3 Thesis Overview and Content

Chapter 2 provides a problem overview and a concise description of the CR system. This
description includes a list of assumptions made during problem formulation and the process
used to create a simplified model, which includes the rotor, the shroud, and a two-mass ISS
flex model, for analysis and testing purposes. Also, the reference frames used as well as

the derivations of the equations of motion for the simplified system are presented.

Chapter 3 presents a detailed description of the proposed solution method by introducing a
formulation of the disturbance models. The rotor disturbance is derived as a function of
imbalance geometry, mass/inertia, and spin rate, while the ISS disturbance modeling is
accomplished though a sinusoidal approximation of the effect of a pulse train through the
system dynamics. Issues dealing with the peripheral effects of this sinusoidal
approximation are examined along with both plant and filter system observability.
Examples of both observable and unobservable filter models are presented using a modal

form of the observability test. A time varying observability test is presented and used to
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determine observability during cases of rotor spin-up and ISS operation. Also, the discrete
Kalman filter equations and algorithm are introduced along with a method for calculating

initial Kalman filter parameters.

Chapter 4 provides a summary of the testing conducted to analyze estimation capabilities
using the solution method proposed in Chapter 3. A description of the different
performance measures used to evaluate Kalman filter performance is given. These
measures included percent amplitude error in estimation, error covariance standard
deviation envelope, error duration, and time to convergence. Testing was conducted to
evaluate the validity of the proposed solution method and to show improved performance
through disturbance model expansion within the filter dynamics. Finally, Monte Carlo
analysis was performed to show both robustness of the estimator as well as its sensitivity to
different uncertainties. The following computer programs were used to run all simulations
and to perform all data analysis: Matlab Version 6.5.1.199709 (R13SP1) and Simulink

Version 5.5.1 (R13SP1+).

Chapter 5 provides a summary of the conclusions, along with a description of possible

future work on the estimation process proposed in this thesis.
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2 Problem Overview

This section provides a problem overview and a concise description of the CR system.
This description includes a list of assumptions made during problem formulation and the
process used to create a simplified model, which includes the rotor, the shroud, and a two-
mass ISS flex model, for analysis and testing purposes. Also, the reference frames used as

well as the derivations of the equations of motion for the simplified system are presented.

2.1 Modeling Assumptions

For design and verifications purposes, a simplified model consisting of the CR system on a

flexible ISS platform was used (see Figure 2-1).

#
7
v
v
¥
Y
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Figure 2-1. VIM/Rotor Reference Frame
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During the modeling process, in order to simplify the problem all external forces on the ISS
other than attitude control jet firings, such as gravity gradients, ISS Control Momentum
Gyroscopes (CMG) torques, aerodynamic forces, and orbital effects were neglected.
Secondly, all masses which make up the ISS, shroud, and rotor are considered to be rigid
bodies. The rotor is assumed to be cylindrical and therefore symmetric about the axis of
rotation. ISS flexibility was modeled using a two mass-spring-damper system. A nominal
ISS configuration was used for the determination of mass and inertia values of the two

mass ISS flex model created for testing purposes.

The origin of the reference frame is located at the geometric center, gc, which is the point
on the x-y plane of the rotor through which all of the springs and dampers act. The gc is

defined during equilibrium, and is the non-rotating inertial reference frame.

The center of mass, cm, of the shroud and ISS flex model masses are collocated with the
cg, thus eliminating any coupling between translation and rotation in or about the x or y-
axis between the shroud and ISS flex model. Only the rotor’s static cm, noted on Figure
2-1, is located directly above the reference frame along the z-axis, which causes coupling

in the translational and rotational equations of motion between the rotor and the shroud.

2.2 Derivation of the Linear, Time-Varying Equations of Motion

In this section, the equations of motion for the simplified model has been developed to
include the rotor, the shroud, and a two-mass ISS flex model. Each of the four masses has

4 degrees of freedom (dofs) for a total of 16 dofs.
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A cross-section of the model, in the x-z plane, that was used in the derivations of the

equation of motion in x-axis is shown in Figure 2-2. This figure is not to scale.

V4
A .
E Disturbances

v
A
A
7
//////////////////////////////
—AN— Translational Spring —I}—— Translational Damper

—))r—Rotational Spring ——e— Rotational Damper
Figure 2-2. Simplified Model

Typical ISS flex modes, between ~0.01 and ~1.0 Hz, are captured by a two-mass ISS flex
model, which attaches to the shroud through translational and rotational springs and
dampers. Each of the four masses in this simplified model has two translational dofs (x and
y-axis) and two rotational dofs (about x and y-axis), resulting in a model with 16 dofs. In
addition, the disturbance on the rotor, d,qr, caused by rodent motion during operation, acts
on the rotor mass, while the disturbance on the ISS, diss, caused by jet firings, acts on the
outside mass of the ISS flex model. Note that the relative measurement, X, is a relative
measurement between the rotor ant the shroud. The system is time varying due to variable

rotor spin rate experienced during rotor spin-up and spin-down.
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2.2.1 EOMs for Coupled x Translation and ¢, Rotation

The equations of motion describing the x translational motion and the ¢, rotational motion

of the simplified model were calculated using Figure 2-3.

Kye --._fp"‘ ?/M p4 _q;@_)
Cyy - 7{@;’,&_0,“ v
- _\\%4))43, _@_)

o NS %

Inertial
X /

Figure 2-3. Model Used for Derivation of X-translation and ¢,-rotation

The rotational dofs shown in Figure 2-3 are relative to the inertial reference frame.
Rotational and translational springs and dampers are located between each mass. Each
mass is depicted separately to show translational and rotational dofs, but it is important to
recognize that all masses of the same label are actually the same mass. That is to say that
there is only one shroud (M), one ISS Mass 1 (M), and one ISS Mass 2 (M;). This is also

the case for the figure used for the derivation of y translational and ¢y rotational EOMs.
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2.2.1.1 EOMs for x Translation

For the x translation equations of motion,

F =mx
(2-1)

where

£ F ek R E—F

Ix *

and X, =—-1F,

(2-2)

The variable M represents each mass represented in the simplified model. The forces, F in
equation ( 2-2 ), are provided by the springs, dampers, and external disturbance forces (See
Figure 2-3). These forces are

F, =—CpyX, + CppX, +Cp, Lsing, —Kp x, + Ky x +Kp Lsing, +d,

Rix“*r Rix s Rix™"r
FS.( = CRM'X."r = (CRlx + Cle )x\ * CZJxxI = CRl.rLSin ¢’y,
+K % ~{K, + K

Rix”r
I:lx = Clexs - (CZIX .2 Cllx )‘xl + C
FZ: = Cll.rxl i (C

)x.\' ¥ KZI,('xl "y I(RI.rLS]n ¢y,

Zitx
X2 + Kz X, —(Kg, + K\ )X + K X,
H C2/x )x?. ) Kll.rxl E (K * KZL\' )x2 At dxJ

lex 133

(2-3)

where external disturbance forces are defined by Figure 2-4,

dgn |
Axis of Motionz N _:gcr::(l::n
X = x translation s_= 1SS

Y =y translation

¢, = rotation about x

¢, = rotation about y

Figure 2-4. External Disturbance Naming Convention




The naming conventions for the states, the stiffness/damping values, and the mass/inertia

values can be found in Figure 2-5, Figure 2-6 and Figure 2-7, respectively.

Ji

Axis of Motion

X = X translation

Y =y translation

o, = rotation about x
¢, = rotation about y

i

Which Mass
r = rotor

s = shroud
1=I1SSmass 1
2 =SS mass 2

Figure 2-5. State Naming Convention

Direction of Motion
x = in the x direction/about the x axis
y = in the y direction/about the y axis

K = Spring —> ABCd‘(

o

C = Damper

Location
R = between Rotor and Shroud

Z = between Shroud and ISS mass 1

1 = between ISS mass 1 and ISS mass 2
2 = between ISS mass 2 and inertial

Description of Motion
t = translation
r = rotation

Figure 2-6. Naming Convention for Stiffness and Damping Values

E,

"l

M = mass
| = Inertia

r = rotor

s = shroud
1=ISS mass 1
2 =1SS mass 2

Which Mass ~

°"" Which Inertia

d, = rotor (transverse)
p = rotor (axial)

s = shroud

1=ISS mass 1

2 =1SS mass 2

Figure 2-7. Naming Convention for Mass and Inertia Values
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Assuming small angle rotations allow for linear but coupled equation for x translation

given in equation ( 2-4 ). Substituting equation ( 2-3 ) into equation ( 2-2 ) gives

M. %, +Cpx, —Cp,x, —Cp, Lo, +K

Rix™*r Rix”"s Rtx r

KRI.rxx = KRIxL¢y, e dx,
CraX, +(Cpy +Cp )%, — Cp X, + CR:.-L(b

= Kmx , (K, + K )x, — Ko x) + KRL\'Lwy, =0
M X = Cpx, +(Cp +C )%, —C\ X, - Ky x, +(Kp, + K, )x, - K, x, =0
M, %, -C,x, +(C,, +C,, )%, — K, x, + (K, +K,, )x, = d,r_‘

(2-4)

2.2.1.2 EOMs for ¢, Rotation

The angular momentum equations, in the rotor body reference frame, provide the rotational

equations of motion for the rotor are given by Yamamoto [15] [14] as

Tw(r = Id, &r, + Ipw¢y,
T, =1,0, 1,00,
T, =0
(2-5)

where I, is the transverse inertia for the rotor, 7, is the rotor spin axis inertia, @ is the

rotor spin rate about the spin axis, and

Tmr = _CRty Lyr + CRt_v Lyv B (CRrx + CRI)' LZ )¢x, + CRrx¢.r,

s KRI_v Lyr + KRI_v Ly\ G (KRr.r + KRI{V Lz )wx, 2 KRr.rwx_‘ s dmr
(2-6)

and
TWr = +CRlxl‘X.:r i CRlxux _(CRry

+ Ky Lx, =Ky lix, =(K, +K, L ), + K0, +d,,
(2-7)

+Cp, L )P, +Crn @,
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Since the rest of the masses are not involved in rotations, then H = h can be used along

with the small angle approximation to calculate linear but coupled equation for and ¢y

rotation

1, @, —1,00, —Cp Lk, +CpLx, +(Cp, + Cp, L)@, —Cp, @,
= Kp, Lx, + Kp, Lx, +(Kg,, + KRIXLZ )¢’y, -~ Ky, @; = d@'r
1§, —Cpp@, +(Cpy +C)0, —Cp, @, —Kp, 0, +(Ky,, + K5 ))0, —K7,0, =0
Lo, -Cpp, +(Cyy +C )0, —C,0,, —K5, 0, +(K,, +K,,))0, -K,,0, =0
L¢, -C,9, +(C,+C,)0, -K,,0, +(K,, +K, )p, =d,,
(2-8)

The coupling occurs in the equation for the rotor motion due to the fact that the cm of the
rotor is not collocated with the connection point of the springs/dampers. The distance, L, is

used to account for translation in the x direction due to rotor rotation about the y axis at the

cm and vice versa.
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2.2.2 EOMs for Coupled y Translation and ¢, Rotation

The EOMs describing the y translational motion and the ¢ rotational motion of the

simplified model were calculated using Figure 2-8.

X <—Inertial A .

¢x1

€ N M
Kiy “W/ Cor

| - .
Kmy e /§(/~i czry

Igertial e Ky

4
y

Figure 2-8. Model Used for Derivation of Y-translation and ¢y-rotation
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2.2.2.1 EOMs for y Translation

For the y translation equations of motion,

(2-9)

where

(2-10)

M represents each mass of the simplified model. The forces, F, are provided by the

springs, dampers, and external disturbance forces (See Figure 2-8). These forces are

F = —_CRr_vyr +CRlyyx —CRryLSin ¢.t, —KRlyyr + KRers —-KRryLSin¢x, +d_v,

ry

F\',V = CRI.\-}.}r _(CRly +C21)»)}.}‘\- +CZJ_V _).’l +CR,yLsin ¢"x
+Kyy, =Ky +Kp)y, + Kz 3, + Ky, Lsing,
Fiy=Cpy, = (Cpy +Ci) )3, +C, ¥, + Ky, = (Kzy + K, )y, + Ky 3,

F?.y = Clry).)l _(Cll,v +C2l,v)-).)2 ¥ Kllyyl _(Klly i KZly)y?. +dy“
(2-11)

Assuming small angle rotations allow for linear but coupled equation for y translation

M.y, +Cgyy, =Cry ¥, + Cro L@, + Ky, = Kpy, + K L@, =d,
M.y, =Cpy¥, +(Cry +Cpy) ¥, = Cpy 3 = Cryy LD,

- KRr_vyr +(KRr_v + sz)ys = Kz:_v.VI - KRfyL¢x, =0
M\, =Cpyy, +(Cpy +C )3, = Ciy Y2 = Ky y, + (K + K,y — Ky, =0
M,y,-C,, 3, +(C,, +C)y, - K,y +(K,, +K,, )y, =d,

(2-12)
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2.2.2.2 EOMs for ¢, Rotation

Since the rest of the masses are not involved in rotations, then H = hi can be used along
with the small angle approximation to calculate linear but coupled equation for and ¢

rotation

Id, ¢x, + Ipa)¢y, + CR!yLyr . CRI_\' Ly\ + (CRrx + CRI_\' Lz )¢.\', - CRr.\‘(bx;
+ KRI_\'Lyr ) KRlyLy.s' ot (KRr.r T+ KRI_\' L?- )(o.r, i KRr,r¢r = dal\‘r

3

1 s@;_‘ = CRrx¢x, +(Cppy +Cppy )¢xx = CZr,r¢xl — Kz @, +(Kp, + Ky, ), —K 2Py, = 0
Il¢x, = Cer¢.rx +(Cp, +Cy, )(b.:, ) Cm¢x2 - Ker(”x_‘ +(K,, + K, )w.\'l - Klr,r(p.w_, =0
12¢x1 - Clrx¢x, +(Cy + Gy )¢x3 & Klrxw(, +(K,, + K, )¢x; = dm
(2-13)

Again, the coupling between the y and ¢, occurs from the distance L between the rotor cm

and the location where the springs and dampers attach.

The time-varying aspect of the EOMs comes from the spin rate of the rotor, ®, (seen in
equations ( 2-8 ) and ( 2-13 )) which ramps up from 0 Hz to 0.7 Hz over a chosen time
interval. Note that the z-axis translation of the VIM/CR is ignored since knowledge of the

motion in the z direction is not necessary for control applications.




2.3 Model Frequency Response

Values for the various model parameters such as mass/inertia and stiffness/damping values,
were selected to capture the expected physical system dynamics. Using these assumed
values, the frequency response from all 8 disturbance forces to the corresponding 4 relative

measurements was calculated and is shown in Figure 2-9.

Bode Plot: All Direct Transfer Functions

0.101 Hz
0122 Hz

196 i Ll i Dy S (L (O i
0 005 0.1 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 0.95 1 105 11
Frequency (Hz)

Figure 2-9. Frequency Response of Reduced System

The dashed lines show transfer functions including rotor disturbance inputs while the solid

lines show transfer function including ISS disturbance inputs.
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3 Solution Method

During the estimation of the centrifuge rotor states, two main problems are encountered.
First, the deterministic plant inputs (4 rotor and 4 ISS disturbance inputs) are not available
to the observer for use in the estimation algorithm. Secondly, the ISS disturbance inputs
into the plant are applied in the form of a pulse train of jet/thruster firings rather than as a
sinusoid disturbance. This could pose a problem for the chosen solution method and will

be discuss later in this Chapter.

The first problem will be solved through the use of a plant model which has been
augmented with disturbance states (See Sections 3.1.1 and 3.1.2). Estimation of the states
for absolute rotor motion will be completed by using a Kalman Filter algorithm on this
augmented plant model (See Section 3.4). The use of internal disturbance models will
allow for estimation with a Kalman filter without the need for input measurements. This is
vital to successful estimation, since normal Kalman filter operation requires knowledge of

the inputs.
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Standard Kalman Filter Formulation

d ~
ds -l X el X
Not Viable < Observer
L >
( Kalman Filtering with Internal Disturbance Model
Proposed -
Solution § d, Xrei X
Method d,
~

Figure 3-1. Method Comparison with Standard Kalman Filter Formulation

Figure 3-1 shows the difference between the standard Kalman filter formulation, which
explicitly includes the known, deterministic inputs, and the method that is employed in this
thesis, which instead models these inputs as additional filter states, to circumvent the fact

that the disturbances are not available as inputs into the observer.

The second problem will be solved by using a sinusoidal approximation of the effect of the
ISS pulse train disturbance on the plant dynamics, using only frequencies which result in a
high gain through the plant. Frequencies where the plant attenuates the input signal are not
important since they produce little effect on the measurement. Further explanation follows

in Section 3.1.2.1.
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3.1 Filter Model EOMs

The basic filter model, consisting of the rotor, VIM, and a 2-mass ISS flex model, has the
same EOMs as the plant model (equations ( 2-4 ), ( 2-8 ), ( 2-12 ), and ( 2-13 )), but to
allow for variation, the filter model coefficients will be allowed to deviate form the plant
coefficient values. The filter model is signified by the addition of an ‘f’ at the end of the
coefficient variable names. In addition to modeling the plant within the filter, the rotor and
ISS disturbances also need to be modeled. The process of integrating disturbance models

into the filter model will be explained in Sections 3.1.1 and 3.1.2.

3.1.1 Derivation of Rotor Imbalance Disturbance Forces

The imbalance disturbance forces acting on the rotor have been derived as a function of the
rodent mass, My, the transverse and axial rotor inertias, Iy and Iy, the distance of the center
of mass (cm) from the spin axis, €, the spin rate, @, and the angle between the spin axis

and the vector from the rotor tip to the rotor cm, .

Ty

(€M) - Rotating Coordinate Frame
o - Phase angle from & axis to the CM
B - Angle from { axis to the CM
’ € - Distance from the origin to the CM
i : in the n—C plane
'
/

Figure 3-2. Rotor-Fixed Rotational Reference Frame
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The value for the scalar parameters € and o are used to defined a force vector in a rotor-
fixed, rotating reference frame (n, {, €), then rotated via a coordinate transformation,

equation ( 3-1 ), back into the inertial reference frame (x, y, z).

x| | cos@ sinf|n
y| |-sin@ cos@| ¢
(3-1)

where 0 equals at. The rotor imbalance disturbance equation in the inertial reference

frame is listed below [15].
d,, =Mew!Cos(w,t+f,) d,, =-(,-1,)ow!Sin(w,t+f,)
d, =Mew!Sin(w,t+f,) d,, =, -1,)aw!Cos(w,t+ f,)

(3-2)
Note that these imbalance disturbance forces and torques found in equation ( 3-2 ), are not

available to the filter as inputs. These disturbances are modeled as second order oscillators

of the form
z.lr = ZZr
Z.‘.’.r = wrzzlr
(3-3)
where the solutions to these differential equations are new states: z,, and z,,
z,, = Cos(w,t + B,)
z,, =-,Sin(w,t+ f,)
(34)
Equations ( 3-2 ) can be rewritten in terms of these new disturbance states as
2 .
dxr =M€a)’_ er dar =(Ig _Ip)awrz?.r
. 2
dyr =_Alga)rzlr d¢_vr =(1g _Ip)awr Z2r
(3-5)

Substituting these equations back into the equations of motion for the filter model results in

a filter model with a state vector, x, of length 34 and of the form

x=[z Z]T Zz[xr x.s' xl x?. yr ys yl y2 ¢x, ¢.r, ¢x, ¢x2 ¢y, ¢yI ¢."| ¢y2 er]
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3.1.2 ISS Disturbance Modeling

The rotor imbalance disturbance is sinusoidal in nature due to rotor spin, while the ISS
disturbance force is applied on the ISS in the form of jet impulses. The jet impulses result
from the action of the ISS attitude control system [16]. The magnitude of the jet force is a
constant, thus making the frequency of the jet firings and the overall on-time the only

control variables.

3.1.2.1 Sinusoidal Approximation of a Pulse Train

The effect of the ISS pulse train disturbance input on the output of the plant can be
represented by a Fourier series and its related fundamental frequency. A sinusoid of that
fundamental frequency can be used to model the effect of the pulse train in the observer
model. An example is shown in Figure 3-3 where a pulse train input at 0.399 Hz is applied

to the plant, and the output is a sinusoid with a frequency of 0.399 Hz.

we OQutput From Pulse Input S===_PSD of Output from Pulse Input
raneter FUncUon: S g [ % CutputDue Yo Pules npor o PED FIOof X, GUtpUA dus to Pulve Iput |

©4,=0.399 Hz

Actual Jet Firing
ISS Disturbances

02

Displacement (m)
s
=
i
'ower Spectral Density (PowerfHz)

omf

PLANT e e | ™ T &
Figure 3-3. PSD of Plant Output due to Pulse Train Input is Sinusoidal
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If the ISS pulse train disturbance excites the plant at a high gain frequency, then the output
will have a large contribution as a result of the ISS disturbance. However, if the ISS pulse
train disturbance excites the plant at a low gain frequency, then the output will have a small
contribution resulting from the ISS disturbance. Therefore, it is important to determine the
plant peak gain frequencies. These frequencies are determined from the frequency
response plots (see Figure 3-4). These peak frequencies will now be used for ISS
disturbance modeling within the filter. The discussion of the effect of the amplitude

mismatch between the sinusoid and the jet firing will be conducted in Section 3.1.2.4.

Bode Plot: All Direct Transfer Functions
| = =t | e s SRR | T Nr ey T & & U 1 =4
DO ;o ;G 4 f i1 6§ oif i
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mEw dwr tO .YIel

Gl | . P R b T U ey T
s AL 1 W N N B0 (50 D IS TS N O e LA A e ws ' Yyrel
0 005 01 015 02 025 03 035 04 045 05 055 06 065 0.7 075 08 085 09 095 1 105 11
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Figure 3-4. Frequency Response Plots
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3.1.2.2 ISS Model 1: 4 ISS Disturbance States

Using the approach discussed in Section 3.1.2.1, an ISS disturbance model can be created
representing the jet firing as a sinusoidal disturbance with single translational and single
rotational disturbance frequency of wgs and g, respectively, of the form:

d, =F.Cos(wt+p,) du =-T,Sin(@w,t+y,)
d, =F, Sin(w,t+ B) d os = Ty Cos(@y,t +7,)

(3-6)
The ISS disturbance amplitudes Fy, Fy, Tox, and Tyy, are the known specifications of the

thrusters located on the ISS. The ISS disturbance forces found in equations ( 3-6 ) are

modeled as second order oscillators of the form

2."l.\' = z3s
Z.Z.\‘ = Z4.\‘
23.\' = _wdxt le

Z.Ax = —wd.\'rzzl\‘
(3-7)

where the solutions to this set of differential equations are the new states: z, , z,,, Z,,, and
Z,, » where

Zl.\' = Cos(wdxlt i B\) Z.l.\' = —a)dxl Sin(a){i\'lt ¥ B\)
ZZs = Cos(wdxrt % }/\) 22.\' = _a)derin(wd\-rt . }/\)
(3-8)
Using equations ( 3-8 ) the ISS disturbance equations can be rewritten in term of the new

ISS disturbance states as

Teh'
dx.s' = Frzl.s’ dms = zZs
dsr
F\’ .
d.\’-\' = —w_zl,\' d@n\' = T@rz"s

(39)
Equations ( 3-9 ) can be substituted back into the equations of motion for the filter model.

The resulting filter model has a state vector, x, of length 38 of the form
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x:[z Z]T Zz[xr xs xl x2 y,- ys yl )’z ¢.r, ¢xx ¢x, ¢x3 ¢y, ¢yx ¢y| ¢y1 zlr Z2r Zl.s' ZZs]

This ISS disturbance model will be called “ISS Model 1” for testing purposes.

3.1.2.3 ISS Model 2: 8 ISS Disturbance States

ISS Model 1 is expanded to create a new ISS disturbance model labeled “ISS Model 27,
which contains 8 ISS disturbance states for a total of 12 disturbance state, when including
the rotor disturbance states. ISS Model 2 represents the ISS disturbance as sums of two
sinusoidal disturbances, with two translational and two rotational disturbance frequencies

of Wgst1, Wase2, and Wggr1, Wysr2, TESPECtively, of the form:

d.tsl = F‘lcos(wd.\'llt + 'B.\' ) + Ftlcos(wdsllt <7 ﬂ\) daxl = _TwISin(wdsrlt g }’s )_ T¢(2Sin(wdsr2t + }/‘)
d_vxl = FvlSin(a)dxllt b ﬂ.\' ) + FvlSin(wd.\'Ztt + ﬂs ) d@n\-l = T@/lcos(wdsrlt * y.\' )+ Twzcos(wrlert i y\)
(3-10)

The two ISS disturbance amplitudes in each axis are assumed to equal the known
specifications of the thrusters on the ISS (i.e. Fx=Fy1 =Fx, Fy=F;1 =Fy5, Tox=Tou =
Tox2, and Ty = Tgy1 = Tgy2). The ISS disturbance forces found in equations ( 3-10 ) are

modeled as second order oscillators of the form

4, =, L, = _wdmzzn
5, =%, e "wdnzzzz.\-
23, = Zy, 4, = _wdsrlzzlc
4,24 & ® —wdsr22z4s

(3-11)

where the solutions to this set of differential equations are the new states: z, , z,,, 25, ,

Zas di s 2as Ly, o000 2. WhHere
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2, =Cos(Wy,t + B,) 2, =—0W,,Sin(@W,,t+ B,)
2y, =CoS(Wyot + B,) 25, = =Wy, Sin(@y,t + B.)
2y, =Cos(Wy t +V,) 2y =Wy, Sin(@y,,t+7,)
2y =Cos(Wy 0t +V,) 2y =Wy, Sin(@,,,t +V,)
(3-12)

The ISS force and torque inputs ( 3-10 ) can be rewritten in terms of the ISS disturbance

states as
/ T
- _ e @2 .

d.r.\' i E\'lzls + Fx222s dm K L3y * T4y
a)dsrl wd.\'r”

d = Fyl . FyZ ¢ d =T T

YEIT 5~ 2as os = Lo T 1402,
wdxll wdle

(3-13)

Equations ( 3-13 ) can be substituted back into the equations of motion for the observer
model, increasing the number of states from 34 to 42. The resulting filter has a state

vector, x, of length 42 and is of the form

LT
x:[z Z] Z:[xr x,\' xl x?. yr ys yl y2 ¢x, ¢,r, ¢x| ¢x3 ¢y, ¢Av, ¢y| ¢_v: er er zlx ZZ.\' z].\' Z4.\']

3.1.2.4 PSD Difference between Sinusoid and Pulse Train

It is important to note that there is a power spectral density (PSD) difference in plant
measurements (outputs) between a sinusoid disturbance and a pulse train disturbance; a
sinusoidal disturbance of the same frequency as the pulse train with a small on-time creates
an output with a higher PSD. The Kalman Filter determines the amplitude of the modeled
disturbance sinusoid in order to get an equivalent sinusoid which would have created the
same output as that from the pulse train input. Therefore, it is necessary to take into
consideration the difference in the PSD during ISS disturbance state comparisons. Figure

3-5 illustrates the difference in the PSD of plant outputs when excited by a sinusoidal force
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and a pulse train input force. The pulse on-time, defined as the duration per cycle for
which the value is not equal to zero, is 20% of the period, and the frequencies of the

sinusoid and the pulse train are the same.

« w= Output From Sine Input wee « we PSD of Output from Sine Input
Modeled Sinusoidal Output From Pulse Input s PSD of Output from Pulse Input

ISS Disturbances o e — | . PSD Plof of Outputs

'
03z Sine Wave

LT St - > 4 ) 1| Pulse Train

P SRR TR 5 ek S S, PR R (O

AW A

VvV VI T A 3

04:=0.399 Hz

{ \ i/ 4
i L '\ [ /
Actual Jet Firing - i > i /\ 0 O
ISS Disturbances PLANT  AEER I .| e

Figure 3-5. Output PSD Differential Between and Sine and Pulse Train Inputs

Ouput om Sine
—— Outputfrom Pulse

The power spectrum is generated by using a Fourier transform and taking the square of the
magnitudes of the complex coefficients [17]. Therefore, the effect of using a pulse train
rather than a sign wave can be calculated as:

\/ i pulse

sine

PSD Ratio =

(3-14)
where Py, is the PSD due to the sine input at the excitation frequency (0.399 Hz in the

example) and Py is the PSD due to the pulse train input at the same excitation frequency.

For the example presented in Figure 3-5, the PSD ratio equals:

! *107*
PSD Ratio =‘/ e _ ¥2:6435+10

= =0.3935
VP V1.7073*107

This result can be interpreted as the factor by which the original sinusoidal input amplitude

would need to be multiplied by in order to get the equivalent plant output with a pulse train
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input. By multiplying the original sinusoid by 0.3935, it can be shown that the PSD of the

output is now exactly the same.

wes « wee  PSD of Output from Sine Input

Modeled Sinusoidal PSD we » s Output From Sine Input s PSD of Output from Pulse Input
ISS Disturbances Ratio i S Dy P O T
AN - B A e e L o By
: " ] ; L.
V VA : = ; B ")
©4,=0.399 Hz i | Mok i'\/ Pl KRR
Actual Jet Firing m.m-..,.....,...,...,.
ISS Disturbances PLANT * s R W

Figure 3-6. Output PSD Results of Amplitude Ratio Sine and Pulse Train Inputs

Since the ISS disturbance frequency could be any value between 0.01 Hz to 1 Hz, the
entire range of frequencies was scanned to determine the actual equivalent disturbance PSD

ratio for all ISS disturbance inputs.

PSD Ratlo (x) <= Average

Fnauoncy (Hz2)

Figure 3-7. PSD Ratio Over All ISS Frequencies for All ISS Disturbance Inputs
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The average PSD ratio over the range of possible ISS frequencies is equal to ~0.3933 for
each disturbance input. Therefore, when comparing the disturbance state estimate to the
actual disturbance state, the PSD ratio will have to be factored into the actual disturbance

state amplitude. This is helpful in determining estimation performance.

3.2 Observability

Observability of the system is necessary in determining the viability of the Kalman filter as
a solution method. The available methods used for determining plant observability include
the well known Popov-Belevith-Hautus (PBH) Criterion [18]-[20] as well as a modal
criterion for observability [21]. Both methods will be examined, but due to problems with
ill-conditioning, the modal criterion for observability will be used to determine
observability of the plant and filter models under time invariant conditions. A time varying
observability test will be used to determine observability during operations such as rotor

spin-up or spin-down and ISS maneuvering.




3.2.1 PBH Criterion for Observability

Consider a continuous time system described by

X =Ax+Bu
(3-15)
y=Cx+Du
(3-16)
where x = state vector (n — vector)
y = output vector (m — vector)
A = System Dynamics (n x n matrix)
B = Input Matrix (n x r matrix)
C = Output Matrix (m x n matrix)
D = Direct Transmission Matrix (m x r matrix)
The solution to equation ( 3-15)is
x(t)=e™x(0)+ Ie"“"’Bu(r)dr
0
(3-17)
and y(t) is
y(t)=Ce™x(0)+C [e*“”Bu(r)d7+Du
0
(3-18)

Since the matrices A, B, C, and D are known and u(t) is also known, then the last two terms

on the right half side of equation ( 3-18 ) are known quantities. Therefore, they can be
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subtracted from the observed value of y(t), and it is sufficient to consider the unforced

system described by

X = Ax
(3-19)
y=Cx
(3-20)
Referring back to equations ( 3-17 ) and ( 3-18 )
n-1
x()=e"x(0) =Y & (HA*x(0)
k=0
(3-21)
and y(t) is
n-1
y()=Ce*x(0)= Y, ()CA*x(0)
k=0
(3-22)

For the system to be observable, given the output y(t) over a time interval 0 <t <t;, x(0) is
uniquely determined from equation ( 3-22 ). It has been shown that for this to occur, the
rank of the Observability matrix, O, of size (n x nm) must be full (i.e rank(O) = n). This is

the so called PBH criterion for observability [18][19].

o=lc ca . ca*f
(3-23)
The problems with using the PBH criterion occur if some eigenvalues of A are greater than
one while others are less than 1. Since the observability matrix, equation ( 3-23 ), requires
A™' then if the number of state, n, is large, then the observability matrix will become

numerically ill-conditioned. The singular values less than 1 will trend towards zero while
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the singular values greater than 1 become large and the value of n increases. Since the rank
test is determined by the number of singular values above a certain tolerance (10° for
Matlab rank command), as n approaches 32, the number of singular values which fall
below the tolerance increases. Since the observability matrix requires A" (A*' when using
the plant dynamics), the rank of the observability matrix, is only 11; a rank of 32 is

required for full rank.

The condition number, which is used to measure the level of ill-conditioning, is defined as
the ratio of the maximum singular value to the minimum singular value. The larger the

condition number, the more ill-conditioned the problem becomes. The observability matrix
has a condition number of 3.432x10*. This shows that with the parameters chosen for
the example, a severe problem of ill-conditioning does exists. Therefore, an alternate

method is needed to determine observability. The modal criterion for observability

eliminates the need to compute high powers of the system dynamics.

3.2.2 Modal Criterion for Observability

The modal criterion for observability is described by Ogata [21]. Consider a system
described by equations ( 3-19 ) and ( 3-20 ). Also suppose that the A matrix is

diagonalizable with the use of a transformation matrix, T, such that

T'AT=A
(3-24)

where A is a diagonal matrix. Let us define

x=1'7

(3-25)
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where z is the transformed state. In terms of the new transformed states, equations ( 3-19 )

and ( 3-20 ) become

2=T'ATz=Az
(3-26)
y=CTz
(3-27)
Using equations ( 3-21 ) and ( 3-22)
y(t)=CTe*2(0)
(3-28)
or
Y=Y [eIT, )¢z, (0)
i=1
(3-29)

where n equals the number of states, CI denotes the k™ row in the C matrix, and A; denotes

the i" eigenvalue. If ¢ T, =0 then the i mode is unobservable in the k™ output. If

CT, =0 then the i"™ mode is unobservable from all outputs.

In other words, the system is observable if none of the columns of the m x n matrix CT
consist of all zero elements. This is easy to see, since with the decoupled dynamics, if the
i"™ column is found to be all zeros, then the corresponding state z;(0) will not be a part of the

output equation.

If the system includes complex conjugate eigenvalues, then a modal A matrix can be

created where the real eigenvalues appear on the diagonal of the matrix and the complex
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conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of the modal A matrix. For

example, a system with eigenvalues (A;, A3, A3), the modal A matrix is of the form

A 0 0.0
= 0 o @)
A=

0 @ =90

0 0 0 4,

(3-30)

where 6 = Re();) and ® = Im(X,).

To test observability for complex conjugate eigenvalues, both the real and imaginary dot
products must be zero for that mode to be unobservable. In this case, columns of all zeros
in the CT matrix would come as single columns for real eigenvalues and as adjoining

columns for complex conjugate pairs.

The modal condition for complete observability is also useful because using the inverse of
the transform makes it possible to determine the combination of original states which cause

the transformed state to be unobservable.

z=T"%

(3-31)
After determining which z states are unobservable by using the CT matrix, it is possible to
determine the combination of x states which make up those unobservable z states by

looking at the corresponding rows in the T"' matrix.
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3.2.3 Time Invariant Observability Test for Time Varying Dynamics

It is important to check observability of both the plant dynamics and the filter dynamics. If
the plant is not observable, then the filter will be unable to produce accurate estimates of
the plant states, even if the filter model is observable. On the other hand, if the filter model
is not observable, then even if the plant is observable, the filter will be unable to produce
accurate estimates. Therefore it is important to check the observability of both plant and
filter models. Testing could require any combination of the time varying parameters (rotor
spin rate and ISS disturbance frequencies) to be held as a constant value. Therefore, some
assurance of observability is required over all possible combinations of time varying

parameters.

3.2.3.1 Observability of Plant Model

The time varying components of the plant dynamics are simply functions of the rotor spin
rate. In order to test the observability for all spin rates the modal observability test was
performed on the plant dynamics with spin rates from 0.001 to 1 Hz, with a frequency step
size of 0.001 Hz. If any of the columns of the CT matrix are all zeros (or less than a
tolerance of 107?) then the system is considered unobservable. A observability plot (Figure
3-8), where 1 means that the system is observable at the given spin frequency, shows that

the plant is observable for the entire range of spin rates.
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Figure 3-8. Plant Observability Test over the Entire Range of Spin Frequencies

=]

3.2.3.2 Observability of Filter Model

The time varying components of the filter dynamics are simply functions of the rotor spin
rate and the ISS disturbance frequencies. ISS disturbance frequencies were assumed to
have a range of 0 to 1.2 Hz and were discritized with a frequency step size of 0.001 Hz. In
order to test the observability of the filter model, the modal observability test was
computed using the filter dynamics for every possible combination of time varying terms
(i.e. each disturbance frequency was tested for a given spin frequency). If any of the
columns of the CT matrix were all zeros (or less than a tolerance of 107) then the system
would be considered unobservable. Figure 3-9 below shows that filter dynamics are
unobservable only during extremely low spin frequencies (below 0.015 Hz). This is not of
concern for two main reasons: 1) At such a low spin frequency, the rotor imbalance force

will be negligible and 2) Since the rotor spins up from 0 to 0.7 Hz, the spin frequency will
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be under 0.015 Hz for less than 7 seconds, assuming a 300 second ramp up period,

therefore the system will only be unobservable for a very short duration (see Figure 3-9).

Observability Test Results (Binary)
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Figure 3-9. Observability Test for All Time-Varying Dynamics Combinations

3.2.3.3 Example of Fully Observable Filter Model

The following are the results of the modal observability test for a fully observable case (w,
= (0.7 Hz and all wgs = 0.4 Hz). The 1-norm of each column of the CT matrix was taken to

simplify data interpretation.




45

1 2 3 4 5 6 ¥ 8 9 10
Eigenvalues of | -0.11682+ | -0.11682- | -0.073389+ | -0.073389- | -0.18089+ | -0.18089- |-7.3227e-5 +| -7.3227e-5 - |-2.3473e-5 +| -2.3473e-5 -
A matrix 10.424i 10.424i 10.317i 10.317i 7.6069i 7.6069i 6.5262i 6 5262 4.9663i 4.9663i
Norm of
Columns of CT| 0.09188 | 0.09210 | 0.07381 | 0.07412 0.08462 0.08461 0.00184 | 0.01591 0.01150 | 0.02006
1wn' olerance)
11 12 13 14 15 16 17 18 19 20
Eigenvalues of |-0.0014442 +] -0.0014442 - | -0.062997 + | -0.062997 - | -0.063107 + | -0.063107 - |-0.0026649 +| -0.0026649 - | -1.877¢-5 + | -1877e-5-
A matrix 4.3275i 4.3275i 3.5895i 3.5895i 3.5478i 3.5478i 2 5059i 2 50591 3.7725i 3.7725i
Norm of
Columns of CT} 0.01318 | 0.19392 | 0.03083 | 0.31019 0.04175 0.29286 | 0.04339 | 0.37691 0.00210 | 0.00364
‘wrr olerance]
21 27 23 24 25 26 27 28 29 30
Eigenvalues of | .0.043358 + | -0.043358 - |-0.0046068 +| -0.0046068 - |-0.00016548 +| -0.00016548 - | -0.036858 + | -0.036858 - | -0.033126 + | -0.033126 -
A matrix 1.619i 1.619i 1.3913i 1.3913 0.38928i 0.38928i 0.78154i 0.78154i 0.76038i | 076038
Norm of
Columns of CT] 0.40752 | 0.40720 | 0.42679 | 0.37970 0.44470 0.19488 | 0.71313 | 0.37802 | 0.76313 | 0.41044
‘wﬂ' olerance!
31 32 33 34 35 36 37 38
Eig:n:‘:l:::(s of ogom + ogom 5‘52.171;;7 + 5,52171637 7.0;;7;;3 + 7.ome ShAT
Norm of
Columns of CT] 0.50741 0.07915 | 0.00007 | 0.00003 0.37055 0.05411 0.00119 0.00118
(w/Tolerance)

Table 3-1. 1- Norm of the Columns of the Modal Observability Matrix (CT)

for a Fully Observable Case

Any number in the CT matrix that is less than a tolerance value of 10° was set to zero. The

1-norm of the rows of the CT matrix, shown in Table 3-1, contains no zero values and is

therefore fully observable.

3.2.3.4 Example of Unobservable Filter Model

The following are the results of the modal observability test for an unobservable case (o, =

0.01 Hz and all wgs = 0.7 Hz). Similar to the observable test case, the 1-norm of each

column of the CT matrix was taken to simplify data interpretation.
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1 2 3 4 5 6 4 8 9 10
Eigenvalues of A] -0.0805+ -0.0805 - -0.0801 + -0.0801- | -7.38e-005+ | -7.38e-005- | -3.33e-005 + -3.33e-005 - -0.00149 + -0.00148 -
matrix 10.336i 10.336i 10.335i 10.3351 6.5262i 6.5262i 4.9663i 4.96631 4.3278i 4.3278i
Norm of Columns
of CT 0.06352 | 0.08756 | 0.06335 | 0.08746 | 0.00076 | 0.01465 | 0.00364 0.04355 | 0.01654 | 0.18903
(w/Tolerance)
11 12 13 14 15 16 17 18 19 20
Eigenvalues of A] -0.00213 -0.00213 - -0.0977 -0.0977 - -0.0663 + -0.0663 - -0.0906 -0.0906 -
At 250811 | 2508t Py 3a792i 3.4423i sasa | 0128 +6e0i| 0n20-amazei | TS 3.62351
Norm of Columns
of CT 0.01778 | 0.35617 | 0.13410 | 0.22749 | 0.10347 | 0.24106 | 0.10366 0.24204 | 0.05677 | 0.26287
(w/Tolerance)
21 22 23 24 25 26 27 28 29 30
Eigenvalues of AJ -0.000217 + | -0.000217- | -2.07e-005 + | -2.07e-005- | -0.0351 + -0.0351 - -0.0364 + -0.0364 - -0.00014 + -0.00014 -
matrix 1.41124 1.4112i 3.7725i 3.7725i 0.7686i 0.7686i 0.78016i 0.780161 0.39094i 0.39094i
Norm of Columns
of CT 0.01993 | 0.07976 | 0.01219 | 0.01677 | 0.73708 | 0.00972 | 0.75301 0.01150 | 0.40435 | 0.00686
(w/Tolerance)
31 32 33 34 35 36 37 38
Eigenvalues of A] -0.0011+ 00011- | 6.240-017 + | 6.24e-017- | 2446016 + | 2.44e-016- 1.38e-016 + 1.38e-016 -
matrix 0.63506i 0.63508i 3.7699i 3.76991 0.062832 0.062832i 0.63461 0.63461
Norm of Columns
of CT 0.45802 | 0.03761 | 0.00032 | 0.00024 0 0 0.33446 0.04833
(w/Tolerance)

Table 3-2. Modal 1- Norm of the Columns of the Modal Observability Matrix
(CT) for an Unobservable Case

Also, the same 10° tolerance was used in order to determine zero values.

The table

including the 1-norm of the columns of the CT matrix, shown in Table 3-2, does contain

values of zero.

Therefore, zero column vectors exist in the CT matrix, resulting in

transformed states 37 through 40 being unobservable. Equation ( 3-31 ) is used to solve for

the x state combinations which result in the unobservable transformed states. The rows of

the T"' matrix which account for the unobservable transformed states can be found in Table

3-3 below. The x state combinations which make up the z states can be calculated using

Table 3-3.




% x states 17 | x states 36 X states
: 1-16 Z4r 18-35 Z1r 37,38
21235 1.002 0
2 O 0 0
n I 0 15.947

Table 3-3. Rows of the T"! Matrix which Account For Unobservable Z States

Therefore,

Z,s =1.002z,,
2,6 =15.9472,,

This shows that none of the rotor disturbance states can be observed at low spin rates. This
finding is reasonable because since the rotor disturbance amplitude is a function of the
square of the spin rate,w’, a small spin rate would equal a very small disturbance

amplitude; essentially, there is nothing to be observed.




3.2.4 Time Variant Observability Test

Under conditions of spin-up or ISS maneuvering, the time invariant observability test is not
sufficient in determining observability. An observability test is required which takes into
account the time-varying system dynamics. Gelb discusses observability under the
assumption of a time-invariant system [23], however, his approach applies to time-varying

systems as well. Consider the discrete system

The solution to ( 3-32 ) is

x(t) = P(t, ty) X,

where @(t,t,) is the solution to the matrix differential equation

2
dt

(®(t,t,))= A@t) P(t,t,)
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Using equations ( 3-33 ) and ( 3-35)

(3-37)
or
y(to) C(t,)
i) || el |
: & : Ly
y(tn—l) ‘ C(tZ)(D(th’tO )J
Z:nt‘;xn

(3-38)

where n is the number of states and m is the number of measurements. The condition for

which xg is observable for the measurement times to, t;, ", t,.; is that

rank(Z) =n
(3-39)

Matlab and Simulink can be used to numerically calculate ®(t,t,), using the following

algorithm
d

_((D(tisto)) 1 (D(tivto)
-EL_) = /t e q’(’o»’o)
Inxn _'> S . (b(tl’to)
IC. 1 ( 5 )
. @ LY 18

Product Al B!
ALYo(s1,) L s

Figure 3-10. Numerical Solution for ®(t,t,)
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where A(t) is the time varying dynamics and the ® matrices are captured at each time step,
i. Using the algorithm described in Figure 3-10 and equation ( 3-38 ), the plant, the filter
using ISS Model 1, and the filter using ISS Model 2 are all full rank and therefore

conditionally observable.

3.3 Introduction to Optimal Linear Filtering

Now that it has been proven that the system is observable, a filter can be used to estimate
the necessary rotor states. The term filter refers to the estimation of state at the present
moment using previous measurements. An unbiased estimate is one whose expected value
is the same as the expected value of the quantity being estimated. A minimum variance
estimate has the property that its error variance is less than or equal to that of any other
unbiased estimate. A consistent estimate is one which converges to the true value as the
number of measurement increase. By these definitions provided by Gelb [23], we are

looking for an unbiased, minimum variance, consistent filter.

When a controller requires state feedback, but the available measurements do not include
all necessary states, there must be a method of estimating the missing states that contains
minimal error. This requires the following [24]:
e The ability to define a state-estimate error metric to be minimized in estimation
e A knowledge of measurement error statistics, dynamic system models, and system
input statistics
e Algorithms for using this information to compute minimum-error state estimates

The Kalman Filter is one such suitable algorithm for state estimation.
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3.4 Advanced Optimal Linear Filtering: The Kalman Filter

In 1960, R. E. Kalman published his paper entitled, “A New Approach to Linear Filtering
and Prediction Problems,” describing the use of a recursive filter to solve the Weiner
problem for gauss-markov sequences through the use of state-space representation from the
viewpoint of conditional distributions and expectations [25]. The Kalman filter is powerful
because it not only supports estimation of the past, present, and future, but can do so even
if the modeled system is not known precisely. The following concise derivation is from

Welch and Bishop [26].

A discrete time process, with a state vector x€ R" is governed by the following linear

stochastic difference equation

Xy =A X, +Bu_ +w,
(3-40)

with a measurement output vector z€ R™

2, =Cx, +v,

(3-41)

where wy and vy are process noise and measurement noise, respectively. These noise terms
are assumed to be white noise, having a Gaussian distribution with a mean of zero and a
covariance of Q and R, where Q is the process noise covariance and R is the measurement

noise covariance.

p(w)~N(0,Q)
p(v)~ N(O,R)
(3-42)
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The A, B, and C matrices from equations ( 3-40 ) and ( 3-41 ) are standard discrete-time
state space matrices, with the following dimensions: A€ R™, Be R™, Ce R™". The

input vector has the dimensionue R".

Given that

X, = apriori state estimate at time step k, given knowledge of the
process prior to step k
X, = aposteriori state estimate at step k given measurement zy

where the a priori, e;, and a posteriori, €y, state estimate errors are

(3-43)

Therefore the a priori estimate error covariance, Py, and the a posteriori estimate error

covariance, Py, are
- £ id) T
P =Elece; ] P, =E[e,e, ]
(3-44)
Also, the Kalman filter works in such a way that it sets the estimated state’s value at the

expected value of the actual state.

X, =E[x,]
(3-45)

Therefore, it is important to point out that the Kalman filter maintains the first two
moments of the state distribution found in equation ( 3-44 ) and equation ( 3-45 ) above.

Because of this, the a posteriori state estimate, X, , reflects the mean of the state distribution

and the a posteriori estimate error covariance reflects the variance of the state distribution
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[23]. In other words, the conditional probability density function of xy, conditioned on a

value of zy, is defined as
p(xk | Zk) = N(E[Xk],E[(Xk—ik)(xk—ik)T])

=NR&,.P,)
(3-46)

To derive the Kalman filter equations we begin with the goal of finding an equation that

computes X, as a linear combination of X, and a weighted difference between the actual

measurement, Z, , and a measurement prediction CX; .
k k

(3-47)

where the term multiplied by the gain, Ky, is the measurement residual. If the measurement
residual is equal to zero (the difference between estimated output and actual output is zero)
then the a priori state estimate does not need to be altered before it becomes the state
estimate at time step k. The n x m matrix Ky, called the Kalman Gain, is used to minimize

the a posteriori error covariance, Py, found in equation ( 3-44 ).

Given equation ( 3-43 ) and by using equation ( 3-47 ) you get

€, =X, -X; _Kk(zk _Cki;()
(3-48)

Substituting equation ( 3-48 ) into equation ( 3-44 ) you get

Pk =E[(Xk 'ii _Kk(zk _Cki;c)xxk ‘ii —Kk(zk _Ckii))T]
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After performing the indicated expectation, then taking the derivative of the sum of the
diagonal terms of the result with respect to k, and setting that result equal to zero, the

equation can be solved for the Kalman Gain.

K, =P.C{(C,P,C +R]'
(3-50)

A more rigorous derivation of the Kalman gain is provided by Gelb [23] and by Mangoubi
[22] and follows below. Gelb begins with the following assumed form of a linear,

recursive estimator

=K ox. K. 2,

(3-51)
where K, and K, are time-varying weighting matrices to be defined later.
Given that
X, =x, +e,
X, =X, +e,
(3-52)

by substituting equations ( 3-41 ) and ( 3-52 ) into equation ( 3-51 ) results in the following

definition for a posteriori error at time step k.
e, =[K, +K,C, -1Ix, +K e, +K, v,
(3-53)
Since v is defined as white noise with a mean of zero, the expectation of vy = 0. Then, if
the expectation of the a priori estimation error equals zero (E[ex’] = 0) then the estimator is
unbiased (i.e. E[ex] = 0) for any state vector if the bracketed terms in equation ( 3-53 ) are

equal to zero. Therefore
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[K, +K,C, -1]=0
(3-54)

and K, must be defined as

K, =1-K,C,
(3-55)

Rearranging the terms in equation ( 3-52 ) and substituting them into equation ( 3-53 )

results in

&, -x, =[I-K,C, +K,C, +IIx, +[I-K,C,]1&; - x,) +K, v,
X, =[I-K,C, IX; —x,)+K,v, +x,
=[0-K,Colk; ~[-K,C,Ix, +K, v, +x,
S{l=K,CLIK;, =%, +K. Cox, K. v #X;
=[I-K{C, X, +K,[C,x, +v,]

(3-56)
By substituting equation ( 3-41 ) into equation ( 3-56 ) the state update is obtained.
&, =[1-K,C, I&; +K,z,
or
&, =%, +K,[z, -C,&;]
(3-57)
Using equation ( 3-41 ), ( 3-52 ), and ( 3-57 ) the error dynamics are
e, =[1-K,C, e, +K, v,
(3-58)

This equation for e is used in order to update the error covariance Py defined in equation

(3-44).
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P, =E[((I-K,C,)e; +K, v, )((A-K,C,)e; +K,v,)]

(3-59)
Expansion of this equation leads to
P, =E[(I-K,C,)e;e; (I-K,C,)" +(-K,C,)e,v/K'
+K,v,e; (I-K,C, )" +K,v,v/K']
(3-60)
By definition
Eleie; |=P;
(3-61)
and
Elv,v,]1=R,
(3-62)
Since measurement errors are uncorrelated
Ele;v/]=E[v,e; 1=0
(3-63)

By substituting equations ( 3-61 ), ( 3-62 ), and ( 3-63 ) into equation ( 3-60 ) the error
covariance update is
P, =(-K,C )P,(I-K,C,)" +K,R, K}
(3-64)
The selection of Ky is used to minimize the weighted sum of the diagonal elements of this
error covariance matrix. Therefore, the cost function is

J, =E[e/Se, ]
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where S is any positive semidefinite matrix (i.e. I). Hence the cost function is just the trace
of the error covariance matrix, which would be the same as minimizing the length of the
estimation error vector.
], =trace[P, |
(3-66)
To determine the value of Ky that provides a minimum, it is necessary to create the
Jacobian of the cost function with respect to the gain and set it equal to zero. Since it is

known that [23]

a%\[trace(ABAT )]=2AB

(3-67)
then
0=-2(1-K,C, )P,C; +2K,R,
(3-68)
Solving for Ky results in
K, =PCIC.P[C; +R,]"
(3-69)

Gelb notes that the value of Ky calculated by using this equation is optimal and can be
proven so through the examination of the Hessian of the cost function (i.e. Hessian of J is

positive semidefinite).

(3-70)
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Using equation ( 3-69 ) and equation ( 3-64 ), the optimized value of the estimation error
covariance matrix is calculated as

P, =P, -P,CT[C,P,CT +R,]"'C,P;
=[1-K,C, IP;
(3-71)

The state estimation and error covariance are extrapolated from one time step to another by

721\ = Ak-lik-l
P = Ak-lpk-IAlC-l +Qy,
(3-72)

It is helpful to see the discrete time Kalman filter variables in a graphical timing diagram.

This helps to visually understand the steps needed in Kalman filtering.

Ck-1, Ri-1 Ck, R
A

A A

A A
Xk-1 Xk-1 Xk Xk

P | Pas B | B

tk-1 tk

Figure 3-11. Discrete Kalman Filter Timing Diagram [23]




A summary of the discrete time Kalman Filter Equations can be found below.

Kalman Filter Equations

System M odel Xk on Ak—lxk—l o Wk_| ) wk—l o N(Ova)

M easurement M odel %, 2L X 4V, v, ~N(O,R,)

Initial Conditions E[x(0)] = &,, E[(X(O)— %, (x(0)-R,)" ]= P

Other Assumptions E[WkVJ-TJ= 0 for all j,k

State Estimation Extrapolation Xy SA X W

- i
Error Covariance Extrapolation Pk — Ak_lpk_lAk_| 3 Qk_l

Kalman Gain M atrix K. =PFC [CkPQCI +R. Tl

State Esitmate Update X, =X, +K, [z, -C,X;]

Measurement

Error Covariance Update P, =[I-K,C.JF;

Table 3-4. Summary of Discrete Kalman Filter Equations [23]

As Welsh and Bishop [26] describe it, the Kalman filter estimates a process by using a
form of feedback control; the filter estimates the process state at some time and then
obtains feedback in the form of noisy measurements. Therefore, the Kalman filter
equations can be dividend into a two stage algorithm, a time update group and a

measurement update group. The time update portion involves the forward projection of the

current state and error covariance estimates to gain the a priori estimates needed for the

measurement update. In the measurement update, the so called feedback occurs allowing
for changes based on the new measurements. This new knowledge improves upon the a

priori estimates and forms the improved a posteriori estimates.
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Welsh and Bishop [26] liken this algorithm to a predictor (time update) corrector
(measurement update) algorithm. Gelb has also named the two stages of the Kalman filter
algorithm in a similar fashion as the extrapolation stage (time update) and the update stage
(measurement update). The time update equation can be found in rows 5 and 6 of Table

3-4 and the measurement update equations can be found in rows 7, 8, and 9 of Table 3-4.

7 T\

Time Update Measurement Update
(“Predict”) (*“Correct”)

o SR g

Figure 3-12. Predictor - Corrector Model [26]

Notice that the time update equations project the state and error covariance estimates
forward from time step k-1 to k, while the measurement update equations all work at time
step k. In the measurement update the first step is to calculate a new Kalman gain Ky. The
next step is to take a measurement of the process to get zy. Then with this measurement, an
a posteriori state estimate, X, , can be calculated. Then the final step of the Kalman filter
algorithm iteration is to calculate the a posteriori error covariance matrix. The next
iteration starts by using the last iteration’s a posteriori estimates as the new iteration’s a
priori estimate. The recursive nature of the Kalman filter algorithm provides a large
computational improvement on the Wiener filter, which is designed to operate on all of the

data directly for each estimate [26].
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A block diagram of the plant and estimator can be found in Figure 3-13, which shows the

State Estimate Extrapolation and the State Estimate Update as listed in Table 3-4.

vk Measurement
Discrete System (Plant) error
D v, h s e T o L R e G A sl
Uy Xy i1 C :
Disturbance | B : ; k | Sensor
inputs are | i1 ' Measurement
not available | I
for Observer |
’f PRI i oot i M g P, . NS I
1= \TV """""""
B i Yk
0 X
I
|
|
|
|
I A, {[€Delay €
|
State Estimate Extrapolation State Estimate Update

Figure 3-13. Block Diagram of Discrete System and State Estimator

The Kalman gain, Ky, in Figure 3-13 is calculated using the equations from Table 3-4 and
is show in Figure 3-14. It is important to note that in the example used in this thesis, the
deterministic input into the estimator is a zero vector since no disturbance measurements
are available for state estimation. Figure 3-14 shows the Error Covariance Extrapolation,

Error Covariance Update, and the Kalman Gain Computation as shown in Table 3-4.
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Error
|- | Error Covariance Update Covariance
” gL oo P Estiiak

1 P : v P
Qk-"‘_’@ : >

I 1 | Measurement

i | Error

I I | Covariance

I - | Ik

1A  (9A ! 1

I k-1 k-1 " i s l

! 1 ! P P, C, [CkPka _Rk}

I 1 g e T .

' : Kalman Gain Computation (to estimator)

: ~ Delay (€]

Error Covariance Extrapolation

Figure 3-14. Block Diagram Kalman Gain Computation

The measurement noise covariance, Ry, is usually known since some measurements are
taken. This allows for the calculation of Ri prior to the operation of the filter or at the
beginning of the operation in some off-line process. On the other hand, the measurement
of the process noise covariance is more difficult to calculate. This is reasonable due to the
fact that there is no way to observe the process that is being estimating; if there was, there
would be no need for estimation in the first place. However, acceptable results can result if
one “injects” enough uncertainty into the process via the selection of Q [26]. This
statement may seem vague, but it is important to understand that the process noise
covariance is specific to each application. Therefore, performance will change for different
values of Q. Common engineering techniques were used to find an initial value for Q (see
Section 3.5), which remained constant throughout the testing process in order to

standardize the results.
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Albeit the limitations for Q, superior filter performance can still be achieved through tuning
of Q and R. This usually involves an off-line process, involving a separate Kalman Filter,
referred to as system identification. Increasing the process noise covariance effectively
increases the bandwidth of the filter, which improves its tracking capabilities at the expense
of more noise transmission [27]. If the value of Q is small it represents the belief that the
Kalman filter model is a good representation of the plant. If the value of Q is large that
represents our belief that the filter model is a poor representation and that trust in the
measurement must be increased. In the special case where both Q and R are constants,
both the estimation covariance and the Kalman gains are guaranteed to stabilize quickly

and remain constant.

3.5 Initial Kalman Filter Parameter Calculations

Standard engineering methods were used in the determination of unknown initial
measurement noise covariance, R, process noise covariance, Q, and error covariance, P.
The initial Q matrix was set equal to a diagonal matrix representing a standard deviation of

5% of the steady state amplitude, Ay, for the corresponding state.

Q = diag(A,, *0.05)
(3-73)

The steady state amplitudes can be calculated prior to filter operation through time domain

simulations of the filter model.
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The initial R matrix was set equal a diagonal matrix representing a standard deviation of

2% of the steady state amplitude for the corresponding plant state.

R = diag(A, *¥0.02)
(3-74)

The initial P matrix was set to equal a diagonal matrix, whose elements represent the

square of three times the steady state amplitude for each state.

P =diag(A, *3)
(3-75)

Since there is no knowledge of the plant’s initial conditions, the initial conditions for the
observer model were set to zero, even though the actual initial conditions applied to the
plant were not. The initial conditions were set to equal the product of the steady state
amplitude and a random number, rand, defined by a Gaussian distribution with a mean of
zero and a standard deviation of 1. Using this distribution allowed for the initial conditions

to be 180° out of phase.

x_0_env=A_ *rand
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4 Results

Three different sets of tests were performed: 1) The first set of tests were conducted to
verify the performance of disturbance modeling within the filter model, ISS Model 1,
2) The second set of tests show the increased range of disturbance frequencies under which
the Kalman filter is able to operate by using an expanded ISS disturbance model, ISS
Model 2 and 3) The third set of tests included Monte Carlo analysis to determine
robustness and investigate factors which have the most influence on the estimation error.
These factors include differences between the plant and filter models (parameter variation),

imbalance disturbance amplitude variation, and ISS disturbance frequency variation.

4.1 Performance Measures

Performance will be evaluated by using different metrics to include a measure of percent
amplitude error in estimation, the duration of error, estimation error standard deviation, and

time to convergence.

4.1.1 Estimation Percent Amplitude Error

Estimation percent amplitude error is defined as the ratio of the 2-norm of the error over

the 2-norm of the actual state at steady state multiplied by 100%

x—X
% amplitude error = | 2 *100% = —

. |

2 *100 %

2

(4-1)
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where X is the actual state, x is defined as the estimated state, and the error, X, is defined

as the difference between the actual state and the estimated state.

4.1.2 Error Duration

Corresponding to the percent amplitude error there is also an “error duration”, which
measures the time that is spent within a certain percent amplitude error range with respect
to the duration of the simulation. The percent amplitude estimation error, which is
calculated at each time step, is collected into bins which divide the total range of percent
amplitude estimation error (0 to 100%) equally (e.g., bin 1: 0 to 5%, bin 2: 6 to 10%, bin 3:
11 to 15%, etc). Dividing the number of occurrences in a given bin by the total number of
simulation data point collected gives the percent of simulation time that resulted in an error

within that bin’s range. See Figure 4-1 for an example of the error duration plot.

Step Plot of Amplitude Error Percentage Duration

- T T T T T T T T T
L3
-
=
. | . i | | i ; _ ™ This point is interpreted
S [ . TR, SN 5 . 8 . i 1 as ~32% of all sim time
£ s s s s z s z s
S ., ; g g ; ; ; ; ; has an error between 0%
o it iR e Rt R i e e e S W oty F = =
a s e ' i { : and 5%

] R 1]_\_L ---------------------------------- g

K IR IV N ..~ = P TR BOR]

0 10 20 30 40 50 60 70 80 90 100

Amplitude Error Percentage

Figure 4-1. Example of Error Duration Performance Metric
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While the percent amplitude error measures the error magnitude, the error duration
provides insight to the severity of the estimation error. For instance a time history of brief
but large error spikes may produce a large percent amplitude error, but looking at the error
duration plot will show that the estimation error is relatively benign and may still be

acceptable to slower controllers with appropriate robustness.

4.1.3 Estimation Error Standard Deviation Envelope

Yet another useful metric is the estimation error standard deviation envelope created by
plotting the +/- square root of the error covariance, P, time history for a given state
[27](28][29]. Plotting the amplitude error and the estimation envelope provides an
indication of how often the error is outside of one standard deviation of the expected or
predicted error values. From this plot, the percent of time the error spends outside of the
estimation envelope can be calculated to assess the quality of the estimation. Figure 4-2 is
an example plot of estimation error with the superimposed error standard deviation
envelope for a case of excellent estimation, while an example of unacceptable estimation

can be found in Figure 4-3.
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State: X Error Standard Deviation Envelope (Zoomed In) (% win = 100%)
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Figure 4-2. Example Plot of Estimation Error and Error Standard Deviation
Envelope for Excellent Estimation (100% within bounds)
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Figure 4-3. Example Plot of Estimation Error and Standard Deviation Envelope for
Unacceptable Estimation (~40% within bounds)
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4.1.4 Time to Convergence

Time to convergence is defined as the time it takes for the estimated state to converge to
the actual state. This can be determining by the time it takes for the error covariance to
settle to a steady state value. For example in Figure 4-3, the square root of the error
covariance settles sometime between ~3 seconds. As confirmed by the time history plot of
the actual state and estimated state for the same case found in Figure 4-4, the state estimate

converges to the actual state within 2.5 seconds.

State: x, (1% 10 sec) (Actual vs Estimate)
0.02

0.015

0.01

0.005

Displacement (m)

o
[—
]

0.01

0.015

0 2 4 6 8 10
Time (sec)

Figure 4-4. Time History Showing Convergence within 2.5 Seconds



4.2 ISS Disturbance Models Used for Testing

The first ISS disturbance model, called “ISS Model 1” is the 4 state ISS disturbance model
described by equations ( 3-6 ) though ( 3-9 ) in Section 3.1.2.2. This model captures one

translational ISS disturbance frequency (m4s) and one rotational disturbance frequency

(mdsr)-

The second ISS disturbance model, called “ISS Model 2” is the 8 state ISS disturbance
model described by equations ( 3-10 ) through ( 3-13 ) in Section 3.1.2.3. ISS Model 2
represents the ISS disturbance as sums of two sinusoidal disturbances, with two
translational and two rotational disturbance frequencies of mgs, Wgsr2, and W, Wgsr2,

respectively.

4.3 ISS Model 1 Test: Performance

The first set of tests attempt to answer two important questions: 1) Will disturbance
modeling, of both the rotor disturbance and/or the ISS disturbance, inside the observer
model, allow for estimation of absolute rotor states from relative measurement corrupted by
sensor noise? 2) How much of an improvement is made over an observer with no

disturbance modeling within the observer model?

To answer these two questions, the same disturbances will be applied to: 1) an observer

model with rotor and ISS disturbances modeling, 2) an observer model with only rotor
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disturbance modeling, 3) an observer model with only ISS disturbance modeling, and 4) an

observer model with no disturbance modeling.

4.3.1 ISS Model 1 Test Set-Up

Testing parameters will be chosen using two different ratios: 1) Frequency Ratio (FR) and
2) Amplitude Ratio (AR). FR is the ratio of the ISS disturbance frequency, wys, to the rotor

disturbance frequency, wqr, as shown in equation ( 4-2 ).

(4-2)

This ratio is used as a guide to identify worst case conditions. A worst case scenario for
separating a single relative measurement into its components will occur when those
components have similar frequency content. Therefore, after the rotor disturbance
frequencies have been chosen, testing will occur such that the ISS disturbance frequency

will be 90%, 100%, and 110% of the rotor disturbance frequency.

The rotor disturbance frequencies were chosen to equal the peak mode for each of the
following transfer functions from ISS disturbance inputs to relative measurements: 1) ISS
disturbance in the x-axis to relative measurement in the x-axis (dys t0 Xp1), 2) ISS
disturbance in the y-axis to relative measurement in the y-axis (dys to ), 3) ISS
disturbance about the x-axis to relative measurement about the x-axis (dgxs t0 Qxrer), and 4)
ISS disturbance about the y-axis to relative measurement about the y-axis (dgys t0 Qyrer).

See Figure 4-5 for Bode plots and peak frequencies used to determine testing frequencies.
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The “dof of focus” will be determined by using the peak mode in a certain axis. For

example, the dof of focus will be in the x-axis when a 0.399 Hz disturbance is used.

Bode Plot: All ISS Disturbance Inputs

T

¥~ 0.101 Hz

Magnitude (dB)

0.6
Frequency (Hz)

Figure 4-5. Bode Plot Used to Determine Testing Frequencies

AR is the output contribution ratio or the ratio of the relative measurement content due to

the rotor disturbance, yre dr, and due to ISS disturbance, yre| ds-

AR = yrel_ds

yrel_dr

(4-3)

Since the system is linear, superposition can be used. First, the relative motion is measured
when only the rotor disturbances act on the plant. Then the relative motion is measured

when only the ISS disturbances act on the plant. The amplitude of the ISS disturbances, Fj,
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are adjusted until the ratio of the plant output due to only ISS disturbance, is 10% and
100% of the plant output due to only rotor disturbances. See Figure 4-6 below. Note that

all other disturbance amplitudes are set to 1. See Table 4-1 for further explanation.

Rotor
Disturbance [/
Only

Rotor
Dist_urbanqe F

N\

Yrel_dr

Yrel

l-u-u-"-ﬂ-nﬂL E 0
ISS
Disturbance ISS Yrel_ds
Disturbance
Only

(yrel= yrel_dr > yrel_ds)

Figure 4-6. Amplitude Ratio Components

Figure 4-7 shows a flow chart describing the method used for determining the ISS

disturbance force amplitudes necessary to produce the desired ARs.

Set @, and F,

Set a value for ISS disturbance

Amplitude (F)) e
Run sim with only Rotor Run sim with only ISS
Disturbance Disturbance
yrel dr 1 Yrel ds
— S Yrel a/Yre or What you * I -
desire?
Yes No

v

Store F, for Testing

Figure 4-7. Flow Chart to Determine F; Necessary for Desired Amplitude Ratios




determined to get the desired AR. Table 4-1 contains the parameters used for testing ISS

Model 1.

Dof of

Disturbance
Frequencies

With the rotor disturbance frequencies determined from Figure 4-5, the F values were

ISS Force/Torque Amplitudes

Focus

g (H2)

ay (Hz)

Fys (N)

Fys (N)

Toxs (NmM)

Toys (NM)

0.9

0.359

0.399

819.18

0.9

0.359

0.399

8192.2

1.0

0.399

0.399

9.9342

1.0

0.399

0.399

99.316

1.1

0.439

0.399

608.06

X
X
X
X
X
X

1.1

0.439

0.399

6081.2

bt ed | | d || =

b | eh | b | |

b | eh | ch b | | =

y |0.9] 0.091|0.101}| 0.1 1 22.272 1 1
y |0.9] 0.091 | 0.101 1 1 222.73 1 1
y |1.0] 0.101 | 0.101}| O.1 1 0.45137 1 1
y |1.0] 0.101 | 0.101 1 1 4.5132 1 1
y |1.1]10111]0.101§f 0.1 1 9.1608 1 1
y |1.1] 0.111 ] 0.101 1 1 91.66 1 1
o« |10.9] 0.540 ] 0.600f O.1 1 1 118340 1
o, ]0.9] 0.540 | 0.600 1 1 1 1183800 1
¢« |1.0] 0.600 | 0.600f O.1 1 1 950.29 1
¢« |1.0] 0.600 | 0.600 1 1 1 9508 1
o« |1.1] 0.660 | 0.600| O.1 1 1 152230 1

1 1 1

¢« |1.1] 0.660 | 0.600 1 1522900
¢, 10.9] 0.711 ] 0.790 O.1 30856

1 1 1
¢y ]10.9] 0.711 | 0.790 1 1 1 308650
¢, ]1.0] 0.790 | 0.790|| 0.1 1 1 1 181.8
¢y |1.0] 0.790 | 0.790 1 1 1 1 1818.4
¢y |1.1]10.869]0.790 0.1 1 1 1 39414
¢y |1.1] 0.869 | 0.790 1 1 1 1 394250

Table 4-1. Testing Parameters Determined for Desired FR and AR
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4.3.2 ISS Model 1 Test Results

As a summary of the data presented later in this section, Table 4-2 below helps to clearly
show the conclusions that can be drawn with the examination of all test cases, which is: All
disturbance modeling is necessary in order to perform good estimation. Table 4-2 shows
the percent amplitude error in estimation for a case where all disturbances are modeled
within the filter and a case where none of the disturbances are modeled, where each percent

error value was given for the case were AR = FR = 1 for the given dof of focus.

Percent Amplitude Error
Dof of
Focus| All Disturbance No Disturbance
Models Models
X 2.86% 39.95%
y 0.18% 30.33%
Ox 0.43% 91.47%
by 1.45% 59.67%

Table 4-2. Percent Amplitude Error in Estimation between a Filter Model with All
Disturbances Modeled and a Filter Model with No Disturbance Modeling

Table 4-2 shows that without all disturbance modeling, estimation within acceptable error
bounds is not possible. The rest of this section will go into further detail and give data for
the different levels of disturbance modeling fidelities, but the conclusion that all

disturbance modeling is necessary is still the same.

A comparison of the results from using all disturbance models versus only rotor

disturbance model for each test case can be found in Table 4-3.
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Percent Am, TtﬁeErr‘or

e gr::::?n.:;: ISS Force/Torque Amplitudes X, Ye Oxr Oy
FOoUs| bR |aue )| (M) AR | Fu) | Fu) | Towim) | Ty vm] A% INo g, | ALY [No g | AN INodu| AL [No g
x 109]0359]0399] 0.1 |819.18] 1 1 T | 542 |1424] 304 | 415] 1.02 | 1.02] 1.45 | 1.45
x |o9| 0359|0399 1 |s1e22| 1 1 1 | 11.32|32.94] 326 | 328 1.24 | 1.24| 1.80 | 1.80
x |1.0| 0399|0399 0.1 |90342| 1 1 1 | 347 | 347 | 401 | 401 098 | 098] 1.38 | 1.38
x |10 0399 0399 1 |99316] 1 1 1 | 286 | 298| 444 | 444 | 0.91 | 0.91 | 1.42 | 1.42
x |1.1] 0439|0399 0.1 |60806| 1 1 1 | 414 [11.14] 402 | 421 1.01 | 1.01] 1.37 | 1.37
x |1.1]|0439]0399] 1 |eos12| 1 1 1| 7.60 |44.43] 438 | 447 1.25 | 1.25| 1.37 | 1.37
y losg| 0091 o.101] 0.1 1 | 22272 1 1 | 110 | 1.11] 047 [ 394 1.10 | 494 1.26 | 1.26
y los[ o091 o101 1 1 | 22273 1 1 | 1147 | 1.17 | 242 |2352] 219 | 520 | 1.42 | 1.42
y 1.0] 0.101 ] 0.101 0.1 1 0.45137 1 1 1.09 109 0.20 | 0.24 | 0.80 | 0.81 1.24 1.24
y 1.0] 0.101 | 0.101 1 1 45132 1 1 110 | 110§ 0.18 | 0.63 || 0.64 | 0.87 1.24 1.24
y |11]0111]o101] 01 1| 9.1608 1 1 | 100 | 1.00] 032 | 206] 0.85 | 200| 1.28 | 1.28
y 1.11 0.111 ] 0.101 1 1 91.66 1 1 113 | 1.13 )| 1.51 | 13.90) 1.22 | 2.56 1.59 1.59
o |o.9] 0.540 | 0.600] 0.1 1 1 118340 | 1 | 246 | 257 050 | 0.65 | 0.66 | 3.80 | 1.40 | 1.45
o |0.9] 0.540 [0.600] 1 1 1 | 1183800 | 1 | 031 |032] 011|013 0.15 | 0.78 | 0.88 | 0.94
o |1.0] 0.600 ] 0.600] 0.1 1 1 950.29 1 | 627 | 637] 390 | 399 1.00 | 1.25] 1.25 | 1.25
o |1.0] 0.600 | 0.600] 1 1 1 9508 1 | 180 |180] 0.34 | 035] 0.43 | 056 | 0.93 | 0.93
o |1.1]| 0.660 | 0.600] 0.1 1 1 152230 | 1 | 203 | 203 0.40 | 0.40 | 053 | 282 1.55 | 1.60
o |1.1] 0.660 | 0.600] 1 1 1 | 1522000 | 1 | 020 | 0.30 | 0.09 | 0.09| 0.13 | 0.60 | 0.95 | 1.00
o, |o.9[ 0711 [o.790] 0.1 1 1 1 30856 | 3.15 | 7.28 | 3.83 | 6.80 | 1.28 | 1.43 | 1.50 | 6.98
o, |o9] 0711 [o.7e0] 1 1 1 1 |308650| 482 | 9.48| 4.14 | 637 1.46 | 1.76 | 1.39 | 14.95
o, |1.0] 0790 [0.790] 0.1 1 1 1 1818 | 286 | 287 | 387 | 388 1.20 | 120 | 1.39 | 1.47
o, |10] 07900790 1 1 1 1 1818.4| 296 | 297 | 380 | 380 1.07 | 1.07 | 1.45 | 1.54
o |1.1] 0.869 ]| 0.790 0.1 1 1 1 39414 | 3.20 | 364 | 376 | 380 | 1.31 | 1.44 | 1.51 | 5.85
o, |1.1] 0.869 | 0.790[ 1 1 1 1 | 394250 4.12 | 453 | 4.00 | 408 1.60 | 1.78 | 1.44 | 10.72
T

able 4-3. Comparison between Using All Disturbance Models and Only Rotor
Disturbance Model: Test Results

The percent amplitude error resulting from the use of all disturbance models is always less
than or equal to the percent amplitude error resulting from using a disturbance model that
does not include ISS disturbance. This is true for every rotor state and every test case.
Test cases where the percent amplitude error is the same, or similar, for both disturbance
modeling fidelities occurs only when the AR is small (i.e. rows where AR = 0.1) or if the
frequency of the disturbances is not a peak mode frequency in that dof (i.e. all non

highlighted results). This is reasonable since these two cases (small AR and non-peak
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mode excitation) would cause a small response, therefore it would be expected that ISS

disturbance modeling is not necessary for those cases.

A comparison of the results from using all disturbance models versus only ISS disturbance

model for each test case can be found in Table 4-4.

Percent Am@ Error

ISS Force/Torque Amplitudes Ye L

Disturbance
Fnluc ancies

@y, (H2) | @y (H2) Fu (N) Tea (NM) | Ty, (NM)

0.359 | 0.399 i 819.18 1
0.359 | 0.399 8192.2 1
0.399 | 0.399 : 9.9342 1
1
1
1

0.399 | 0.399 99.316
0.439 | 0.399 ’ 608.06
0.439 | 0.399 6081.2

0.9] 0.091 | 0.101 ’ 22.272 1.10 11.49 || 047 | 117.97| 1.10 | 1164.70|| 1.26
0.9] 0.091 | 0.101 22273 1897 6.13 || 2.42 | 238.83] 2.19 | 499.13 | 142
1.0] 0.101 | 0.101 ; 0.45137 1.09 1526 | 0.20 | 57.16 | 0.80 | 1209.10 1.24
1.0 0.101 | 0.101 4.5132 1.10 13.31 | 0.18 | 30.33 | 064 | 831.74 | 1.24
1.1} 0.111 | 0.101 ; 9.1608 1.09 1263 || 0.32 | 97.20 § 0.85 | 123460 1.28
1.1] 0.111 | 0.101 91.66 1.13 994 | 1.51 | 256.85] 1.22 | 571.91 | 159

0.9] 0.540 | 0.600 ; 118340 246 | 4209 050 | 7.16 | 0.66 | 108.09 | 1.40
0.9] 0.540 | 0.600 1183800 0.31 3.98 | 0.11 129 | 0.15 | 2089 | 0.88
1.0] 0.600 | 0.600 5 950.29 6.27 |109.91f 3.90 | 5242 | 1.09 | 18367 | 1.25
1.0] 0.600 | 0.600 9508 1.80 | 3096 )| 0.34 | 416 | 043 | 9267 | 093
1.1] 0.660 | 0.600 i 152230 2,03 | 3345 040 | 562 | 053 | 98.85 1.65
1.1] 0.660 | 0.600 1522900 0.29 312 | 009 | 104 | 013 | 1738 | 095

0.9] 0.711 | 0.790 ; 30856 | 3.15 | 83.30 || 3.83 | 79.40 | 1.28 | 26.99 1.50
0.9] 0.711 | 0.790 1 308650 482 | 9378 | 4.14 | 5564 | 146 | 2348 1.39
1.0] 0.790 | 0.790 | 0.1 181.8 286 | 7562 || 3.87 | 8380 §| 1.20 | 25.91 1.39
1.0] 0.790 | 0.790 1 18184 | 296 | 4589 | 3.80 | 82.75 | 1.07 | 20.85 1.45
1110869 | 0.790f 0.1 39414 320 | 45.08 | 3.76 | 80.46 | 1.31 24.03 1.51
1.1] 0.869 | 0.790 1 394250 4.12 7297 | 400 | 51.58 | 1.60 | 24.83 1.44

able 4-4. Comparison between Using All Disturbance Models and Only ISS
Disturbance Model: Test Results

The percent amplitude error resulting from the use of all disturbance models is always less

than or equal to the percent amplitude error resulting from using a disturbance model that

does not include rotor disturbance. This is true for every rotor state and every test case. By
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comparing Table 4-3 to Table 4-4, it is evident that the rotor disturbance modeling is most

important in reducing the percent amplitude error.

A comparison of the results from using all disturbance models versus no disturbance

models for each test case can be found in Table 4-5.

Percent Ampiitude Error
ISS Force/Torque Amplitudes X, ¥r Oxr

Fr‘wmclu
Nod Nod | Alld | Nod
s (H2)] ane (H2) Fa (M) | Fre () | Toa (Nm) | Toys (Nm) Models Models | Models | Modeis
| Models | _Models | Models |_Models _

0.359 | 0.399 : 819.18 ; 60.88 113.96 | 1.02 23.32
0.359 | 0.399 81922 56.74 79.24 1.24 19.28
0.399 | 0.399 , 9.9342 58.07 117.71 | 0.98 22.93
0.399 | 0.399 99.316 2.86 | 39.95 | 444 | 13059 | 0.91 20.65
1.1] 0.439 | 0.399 ! 608.06 62.08 11744 | 1.01 23.28
1.1] 0.439 | 0.399 6081.2 760 | 79.74 | 438 | 12585 || 1.25 23.70

Disturbance

0.9] 0.091 | 0.101 ; 22.272 110 | 1155 | 047 | 11797 | 1.10 | 1170.30
0.9] 0.091 | 0.101 22273 117 | 624 | 242 | 23883 || 2.19 | 497.87
1.0] 0.101 | 0.101 : 0.45137 1.09 | 1274 | 0.20 | 57.16 0.80 | 1236.90
1.0] 0.101 | 0.101 4.5132 1.10 | 1242 | 0.18 | 30.33 0.64 | 850.12
1.1] 0.111 ] 0.101 b 9.1608 1.09 | 12.60 § 0.32 | 97.20 0.85 |1239.10
111 0.111 | 0.101 91.66 1.13 | 9.81 151 | 25685 | 1.22 | 577.49

0.9] 0.540 | 0.600 L 118340 246 | 4217 | 0.50 6.88 066 | 106.97 | 1.40
0.9] 0.540 | 0.600 1183800 031 | 398 | 0.11 1.28 0.15 20.74 0.88
1.0} 0.600 | 0.600 : 950.29 6.27 | 111.26§ 3.90 | 57.58 109 | 13293 | 1.25
1.0] 0.600 | 0.600 9508 1.80 | 31.18 | 0.34 4.90 0.43 91.47 0.93
1.1] 0.660 | 0.600 ! 152230 2.03 | 3348 | 0.40 5.46 0.53 96.71 1.55
1.1] 0.660 | 0.600 1522900 029 | 3.12 | 0.09 1.04 0.13 17.20 0.95

AP dEdEdEe

¢ ]0.9] 0.711 ] 0.790 ) 30856 | 3.15 | 43.01 | 3.83 | 82.92 1.28 25.32 1.50
¢ ]0.9] 0.711 | 0.790 1 308650 482 | 86.70 | 4.14 | 56.65 1.46 22.58 1.39
¢ ]1.0]0790}]0.790} 0.1 1818 | 286 | 76.93 | 3.87 | 83.73 1.20 26.23 1.39
¢ ]1.0] 0.790 | 0.790 1 18184 | 2.96 | 46.15 | 3.80 | 82.87 1.07 21.04 1.45
&

&

T

1.1]1 0.869 | 0.790) 0.1 39414 | 3.20 | 4250 | 3.76 | 81.66 1.31 25.14 1.51
1.1] 0.869 | 0.790 1 3942504 4.12 | 71.13 | 4.00 | 51.89 1.60 24.50 1.44

able 4-5. Comparison between Using All Disturbance Models and Only ISS
Disturbance Model: Test Results

The percent amplitude error resulting from the use of all disturbance models is always less
than or equal to the percent amplitude error resulting from using no disturbance modeling.

This is true for every rotor state and every test case. This is expected because without
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disturbance modeling, the filter model has no knowledge of the disturbances that act on the

plant.

The time history plots of one case (x; with AR =1 and FR = 0.9) are used to highlight the
need for full disturbance modeling within the filter model. The results for all different

disturbance modeling fidelity levels can be found in Table 4-6.

Percent Amplitude Error (x,)

All Disturbances Only Rotor Only ISS No Disturbance
Models Disturbance Model | Disturbance Model Models
11.32% 32.94% 49.57% 56.74%

Table 4-6. Performance Verification Test Case for x. (AR =1, FR = (0.9)

It can be concluded from the results shown in Table 4-6 that both the rotor disturbance
and ISS disturbance models are necessary for improving estimation capabilities. The rotor
disturbance seems to have the highest effect on improving estimation capabilities. A
possible explanation of this may be the facts that: 1) the rotor disturbance in the filter
model is collocated with the relative measurement sensor, 2) due to the ‘nature’ or the plant
being used, the relative measurement is mostly comprised of the rotor motion. In
explanation of fact 2, the plant is stiff everywhere except between the shroud and the rotor
(see Figure 2-2). Consequently, regardless of whether the disturbance is acting on the rotor
or the outside mass of ISS flex model, the majority of the relative motion will come from
the motion of the rotor. The frequency content of the sensor measurement, X, shows that
the rotor motion, which is at a frequency of 0.399 Hz, is more important than the shroud

motion, which is at a frequency of 0.356 Hz.
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Figure 4-8. Sensor Measurement x, Time History (left) and PSD (right)

From this reasoning, one would expect that marginal estimation could be achieved when a
rotor disturbance model exists, regardless of whether or not the ISS disturbance model is
implemented, as long as sensor measurement content does not include a large component
with the ISS disturbance frequency. The Kalman gains for the rotor disturbance model can
adjust in order to compensate for the excess motion caused by the “unknown” disturbance
source; the ISS disturbance is “unknown” to the filter since it is not modeled within the
filter. With this said, the rotor-disturbance-only model can be improved upon with the
modeling of the ISS disturbance, especially for the case where the relative measurement
contains motion at the ISS disturbance frequency. Another compensation method would be
to force the motion of the shroud to minimize the difference between the estimated relative
measurement and the actual relative measurement. Error in shroud state estimation is of no

concern since it is not an ABS controller input.
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The following plots show for each level of disturbance modeling fidelity: 1) A comparison
of the 1* 10 seconds (left) and the last 10 seconds (right) of the actual and estimated value
of x, (Figure 4-9 through Figure 4-12). 2) The actual amplitude error and the error bounds

produced by the square root of the error covariance value (Figure 4-13 though Figure 4-16).

State: X (1“ 20 sec) (Actual vs Estimate) 0° State: X, (Last 20 sec) (Actual vs Estimate)
0.025 v v - v v v
[ > ] | B e Lot .- 0, (NN | SOUIr & SRR o) 16 SRS : TISONOUU T8 SOOI S
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Figure 4-9. Results of Implementation of All Disturbance Models
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Figure 4-10. Results of Implementation of Only Rotor Disturbance Model
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State: X (1% 20 sec) (Actual vs Estimate) £40° State: X (Last 20 sec) (Actual vs Estimate)
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Figure 4-11. Results of Implementation of Only ISS Disturbance Model
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Figure 4-12. Results of Implementation of No Disturbance Models

The Kalman filter estimate converges very quickly (within 5 seconds) to the actual state in
all four different disturbance modeling fidelity levels. As expected, when all of the
disturbances that are applied to the plant are being modeled within the filter model, good
estimation is achieved (Figure 4-9). Also, the estimation error is well within the one

standard deviation envelope 100% of the time (Figure 4-13).
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The lack of ISS disturbance modeling in the Only Rotor Disturbance Model (Figure 4-10)
creates amplitude error between the actual and the estimated rotor state. The estimation
error cycles in and out of being within one standard deviation of expected error (Figure
4-14). This shows that there are some problems with the filter process when no ISS

disturbance is being modeled within the filter model.

When the rotor disturbance is not modeled within the filter model, there seems to be some
phase error due to the lack of information of the rotor disturbance within the filter model
(Figure 4-11). This causes the cycling estimation error (Figure 4-15) to stray further from
the error standard deviation envelope and for longer periods of time when compared to the

result for the Only Rotor Disturbance Model results shown in Figure 4-14.

The No Disturbance Models test (Figure 4-12) resulted in both phase error and amplitude
error, which combined to create the largest error. Poor estimation as evidenced by the

increased occurrence of the estimation error exceeding the standard deviation envelope

(Figure 4-16).
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Figure 4-13. Standard Deviation Envelope Resulting from Implementation of
All Disturbance Models
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Figure 4-14. Standard Deviation Envelope Resulting from Implementation of
Only Rotor Disturbance Model
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Figure 4-15. Standard Deviation Envelope from Implementation of Only ISS
Disturbance Model
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Figure 4-16 Standard Deviation Envelope from Implementation of No
Disturbance Models
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The error duration plots continue to prove that without the use of all disturbance models

within the filter, poor estimation will result.

Step Plot of Amplitude Error Percentage Duration

35 L | 1 ) 1 A b Al b )
. ' ' ' ' ' ' ' '

Percentage of Sim Time
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Amplitude Error Percentage

Figure 4-17. Duration of Error of x; Estimation from Implementation of
All Disturbance Models

Step Plot of Amplitude Error Percentage Duration

Percentage of Sim Time
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Amplitude Error Percentage

Figure 4-18. Duration of Error of x; Estimation from Implementation of
Only Rotor Disturbance Model
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Figure 4-19. Duration of Error of x, Estimation from Implementation of
Only ISS Disturbance Model

Step Plot of Amplitude Error Percentage Duration

8 T T L j Al A T T Y Al
. ' ' ' . ' '
' 1l '

Percentage of Sim Time

2

1

H :
0 10 20 30 40 50 60 70 80 90 100
Amplitude Error Percentage

Figure 4-20. Duration of Error of x, Estimation from Implementation of
No Disturbance Models
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As the disturbance modeling fidelity decreases, the percent amplitude error durations
become more distributed. For instance, when all disturbances are modeled, ~55% of the
simulation time had an error of under 10%, while only ~14% of the simulation time was

under 10% error when using no disturbance models.

4.3.3 ISS Model 2 Testing: Increased Disturbance Frequency
Range Test

These tests attempt to answer the question: Will the use of additional disturbance states
increase the range of ISS disturbance frequencies under which the Kalman filter is able to
operate? This question is answered by comparing the performance of ISS Model 1 to ISS
Model 2. The rotor disturbance frequency was set to 0.399 Hz, when focusing on x and ¢y
dofs, and set to 0.101 Hz when focusing on y and ¢4 dofs. These frequencies are the peak
modes in the following transfer functions: ISS disturbance in the x-axis to X, measurement
(dxs to Xrer) and ISS disturbance in the y-axis to yr measurement (dys to yrer), respectively.
See Figure 4-21 for more details. Since the peak frequencies are being used, the coupled
motions (x and ¢y) and (y and ¢x) will have the greatest amplitude when excited by those
frequencies with respect to the other degrees of freedom. Each axis will be examined

separately to help provide clear result from which sound conclusions can be drawn.
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4.4 ISS Model 2 Test Set-Up

The ISS translation and rotational disturbance frequencies for each test can be found in
Table 4-7. In summary, the ISS translational disturbance frequencies were set to 90% of

the rotor disturbance frequency for Test A and 110% of the rotor disturbance frequency for

test B.
Bode Plot: Translational TF with ISS Inputs
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Figure 4-21. Bode Plots Used For Rotor Disturbance Frequencies

As for the rotational ISS disturbance frequencies, when focusing on x and ¢y, the rotational
ISS disturbance frequency was centered on the peak mode frequency (0.79 Hz) of the
transfer function from the rotational ISS disturbance about the y axis to the @y
measurement (dgys t0 Oyrel). The rotational ISS disturbance frequency was set to 90% of

this peak value (0.711 Hz) for Test A and 110% of this peak value (0.869 Hz) for Test B.
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When focusing on y and ¢y, the rotational ISS disturbance frequency was centered on the
peak mode frequency (0.6 Hz) of the transfer function from the rotational ISS disturbance
about the y axis to the (y; measurement (dgys to @ye). The rotational ISS disturbance

frequency was set at 90% of this peak value (0.54 Hz) for Test A and 110% of this peak

value (0.66 Hz) for Test B.

Bode Plot: Rotational TFs with ISS Disturbance Inputs
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Figure 4-22. Bode Plots Used For ISS Rotational Disturbance Center Frequencies

ISS Model 2 has both “90%” and “110%” frequencies modeled, while ISS Model 1 has
only the “90%" frequencies modeled. All of these frequencies are summarized in Table
4-7. A second set of tests were run incorporating a rotor spin-up from 0 to 0.7 Hz over 300

seconds.
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ISS disturbance Iss Model 1 Iss Model 2
Rotor Spin| Frequencies Applied (4 dgs Filter (8 dys Filter States)
Units: Hz Frequency to Plant States) 188
(®spin) ¢ o, 90% Frequencies Both 90% and 110% Frequencies
_ applied | applied | Wgst1 | Ddsr1 | Odst1 | Ddst2 | Odsr1 | Odsr2
Test A (90% Freq) 0.359 0.711 :
0.399 0.359 | 0.711 0.359 | o0.439 | 0711 | o.869
x and &y [~ B (110% Freq) . 0.439 0.869
Test A (90% Freq) 0.091 0.54 .
0.101 0.091 0.54 0.091 0.111 0.54 0.66
Yy and Ox [—o5B (170% Freq) 0111 0.66
Test A (90% F 0.359 0.711
x and ¢y £ - - 0.399 0.359 0.711 0.359 0.439 0.711 0.869
(wispin-up) | TestB (110% Freq) 0.439 0.869
19,
y and §, |_VesA 0% R 0.101 e e 0.091 0.54 0.091 0.111 0.54 0.66
(w/spin-up) Test B (110% Freq) 0.111 0.66

Table 4-7. Test Matrix

To interpret of Table 4-7, the testing focusing on x and ¢y proceeded as follows:

1) Focusing on x and ¢y, Test A was conducted by exciting the 32 state plant with

4 rotor disturbances with a frequency equal to the spin rate (0.399 Hz), and 4
ISS disturbances. The translational ISS disturbances are pulse trains with a
frequency of 0.359 Hz while the rotational ISS disturbances are pulse trains
with a frequency of 0.711 Hz. These two frequencies have been labeled the
“90%” frequencies. The relative measurement, X, is fed into two different
Kalman Filters. The first Kalman filter includes the rotor disturbance model
and the ISS (disturbance) Model 1 within the filter dynamics. ISS Model 1
contains information about the two ISS disturbance frequencies applied (0.359
and 0.711 Hz, the 90% frequencies). The second Kalman Filter includes the
rotor disturbance model and the ISS (disturbance) Model 2 within the filter
dynamics. ISS Model 2 contains knowledge of the same two ISS disturbance
frequencies as modeled in ISS Model 1, the 90% frequencies, but also contains
information about 2 additional ISS disturbance frequencies (0.439 and 0.869

Hz, the 110% frequencies). State estimation error, x,, for ISS Model 1 and
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X4, fOr ISS Model 2, are computed by taking the difference from the estimated

states from ISS Model 1, X,, and the estimated states from ISS Model 2, X,,

and actual state, x, in order to determine performance.

Again focusing on x and ¢y, Test B was conducted by exciting the 32 state plant
with 4 rotor disturbances with a frequency equal to the spin rate (0.399 Hz), and
4 ISS disturbances as was done in Test A, but this time, the translational ISS
disturbance pulse trains are input at a frequency of 0.439 Hz while the rotational
ISS disturbances are input at a frequency of 0.869 Hz. These two frequencies
have been named the “110%” frequencies. The output of the plant, the relative
measurement (X,), is fed into the same two Kalman Filters as in Test A, and the

process used to determine performance is also the same

These same two tests are also run while focusing on y and ¢« dofs. The testing algorithm is

show in Figure 4-23.
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Figure 4-23. Testing Algorithm for Improving Operational Bandwidth

The expectation for Test A is that both Kalman filters should produce similar errors. ISS
Model 2 may have slightly higher error due to the fact that it is modeling a disturbance
frequency that does not exist, but the filter gains that error state so the amplitude of the
force with the unapplied frequency is very small. For Test B, the expectation is that the
error in ISS Model 2 should be much less than in ISS Model 1. This is due to the fact that
ISS Model 1 does not have the “110%” ISS disturbance frequency information modeled
within the filter dynamics, while the ISS Model 2 does. See Figure 4-24 for a logic flow

diagram that sums up the previous discussion.




Both ISS Model 1 and ISS Yisnd
Test A| a Madet 2 contsin-spplied _) Expect Similar performance

disturbance frequencies

Expect befter
9 Only ISS Model 2 contains the performance with
M applied disturbance frequencies ISS Model 2 than
with ISS Model 1
Figure 4-24. Logic Flow Diagram for Testing Regimen

The test results found in Section 4.4.1 confirm this hypothesis.

4.4.1 ISS Model 2 Test Results: Focusing on x and ¢y

When focusing on x and ¢y, the following frequencies were used for Test A and Test B.

Test Aﬁm‘,'r Test B o,

©0,=0.711Hz | | ©,=0.869 Hz |
%3 1

Llot: ISS Diltuth

Frequencies Modeled
In ISS Model 2

Frequencies Modeled
In ISS Model 1

Rotor Spin Frequency
(Rotor Disturbance Frequency)

Frequency (Hz)

Figure 4-25. Disturbance Frequencies Used when Focusing on x and ¢y

The results from focusing on coupled x and ¢y rotor motion, without spin-up, can be found

in Table 4-8.
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Axis of Focus : x and ¢,
Test: A B
ISS Model #:| 1 2 1 2 % imp
% Amp Error (x,) 6.57% 6.85% 17.18% 3.62% 78.93%
5 ﬁ % Amp Error (y,) 1.52% 1.53% 1.20% 1.18% 2.16%
e 3 % Amp Error (o) 0.74% 0.74% 1.08% 1.03% 5.01%
% Amp Error (¢yr) 1.21% 1.13% 7.02% 0.67% 90.44%

Table 4-8. Test Results Focusing on x and ¢y (no spin-up)

As predicted, the percent amplitude error, calculated with equation ( 4-1 ), is nearly
identical for both ISS Model 1 and ISS Model 2 for the Test A case. Also as expected,
during Test B, ISS Model 2 shows a percent amplitude error improvement over ISS Model
1 for all rotor states, and the largest improvements are for the x, and ¢,, dofs as predicted.
The percent improvement (% imp) is calculated as the difference between the ISS Model 1
result and the ISS Model 2 result divided by the ISS Model 1 result, therefore it is a
measure of percent improvement in percent amplitude error over the ISS Model 1 error.
This shows that the range of ISS disturbance frequencies that the filter will operate under
can be increased by expanding and improving the disturbance model within the filter

dynamics.

As an example of the estimation improvement made by using ISS Model 2, the estimation
of x, during Test B will be compared between ISS Models 1 and 2. The time history plot
comparisons are shown in Figure 4-26 and Figure 4-27, the estimation error envelope
comparisons are shown in Figure 4-28 and Figure 4-29, and the error duration comparisons

are shown in Figure 4-30 and Figure 4-31
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Figure 4-26. Time History of Actual, Estimated, and Error for x; Using ISS Model 1
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Figure 4-27. Time History of Actual, Estimated, and Error for x, Using ISS Model 2
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Both observers converge very quickly, but the steady state error for ISS Model 2, shown in

Figure 4-27, is much smaller than when using ISS Model 1, shown in Figure 4-26.

State: X Standard Deviation Envelope (Zoomed In) (% win = 40.4472%)
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Figure 4-28. Estimation Error and Error Standard Deviation Envelope of x;
Estimation with ISS Model 1

State: X, Standard Deviation Envelope (Zoomed In) (% win = 99.99%)
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Figure 4-29. Estimation Error and Error Standard Deviation Envelope of x,
Estimation with ISS Model 2

The estimation error for ISS Model 1, shown in Figure 4-28, stays within the standard

deviation envelope only 40.44% of the time while the estimation error for ISS Model 2,
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shown in Figure 4-29, stays within the standard deviation envelope nearly 100% of the

time, showing the superior estimation capabilities when using ISS Model 2.

Step Plot of Amplitude Error Percentage Duration

Percentage of Sim Time
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Figure 4-30. Duration of Error of x; Estimation with ISS Model 1
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Figure 4-31. Duration of Error of x; Estimation with ISS Model 2
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Figure 4-31 shows that state estimation is close at all times when using ISS Model 2. In
fact over 75% of the simulation time has an estimation amplitude error less than 5%, and
nearly 100% of the simulation time experiences an error of less than 20%. However, when
using ISS Model 1, Figure 4-30, there is a greater distribution of error durations. In fact, a
significant amount of the simulation time has a resulting estimation amplitude error of

greater than 30%.

Results with a rotor spin-up can be found in Table 4-9 below.

Axis of Focus : x and ¢, w/ spin-up
Test: A B
ISS Model #: 1 2 1 2 % imp
% Amp Error (x,) 20.20% 20.89% 50.53% 9.14% 81.90%
58 % Amp Error (y,) 0.01% 0.01% 0.05% 0.01% 89.42%
& § % Amp Error (¢) 0.00% 0.00% 0.00% 0.00% 20.00%
% Amp Error (¢y) 2.84% 2.75% 7.30% 1.57% 78.45%

Table 4-9. Results Focusing on x and ¢, (with spin-up)

The hypothesis also holds true during rotor spin-up from 0 to 0.7 Hz over 300 seconds. In
fact, for rotor state x; during Test B a substantial improvement is made from an amplitude
error of 50.53% to an amplitude error of 9.14% with the use of ISS Model 2. The large

percent improvement values for y, and ¢y, should be disregarded as it is a numerical
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artifact, meaning that the values are very small and therefore any small changes will
produce a large improvement, even though the actual improvement is minuscule.

As an example of the estimation improvement made by using ISS Model 2 with time-
varying inputs and dynamics, the estimation of x, during Test B will be compared between
ISS Models 1 and 2. The time history plot comparisons are shown in Figure 4-32 and
Figure 4-33, the estimation error envelope comparisons are shown in Figure 4-34 and

Figure 4-35, and the error duration comparisons are shown in Figure 4-36 and Figure 4-37.
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Figure 4-32. Time History of Actual, Estimated, and Error for x; Using ISS Model 1

(with rotor spin-up)
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Figure 4-33. Time History of Actual, Estimated, and Error for x, Using ISS Model 2

(with rotor spin-up)
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Both observers converge very quickly, but the steady state error for ISS Model 2, Figure
4-33, is much smaller than when using ISS Model 1, Figure 4-32. The error when using

ISS Model 1 is mainly due to amplitude estimation error rather than phase estimation error.

State: X, Standard Deviation Envelope (Zoomed In) (% win = 42.6011%)

Est Error

Estimation Error x

Time (sec)

Figure 4-34. Estimation Error and Error Standard Deviation Envelope of x;

Estimation with ISS Model 1 (with rotor spin-up)

State: X, Standard Deviation Envelope (Zoomed In) (% win = 99.996%)
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Figure 4-35. Estimation Error and Error Standard Deviation Envelope of x,
Estimation with ISS Model 2 (with rotor spin-up)
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The estimation error for ISS Model 1, Figure 4-34, stays within the standard deviation

envelope only 42.5% of the time while the estimation error for ISS Model 2, Figure 4-35,

stays within the standard deviation envelope nearly 100% of the time, showing the superior

estimation capabilities when using ISS Model 2.
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Figure 4-36. Duration of Error of x, Estimation with ISS Model 1 (with
rotor spin-up)
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Figure 4-37. Duration of Error of x; Estimation with ISS Model 2 (with
rotor spin-up)
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Figure 4-37 shows that state estimation is close at all times when using ISS Model 2. In
fact nearly 70% of the simulation time has an estimation amplitude error less than 5%, and
nearly 100% of the simulation time experiences an error of less than 20%. However, when
using ISS Model 1, Figure 4-38, there is a greater distribution of error durations. In fact, a
significant amount of the simulation time has a resulting estimation amplitude error of

greater than 30%

4.4.2 ISS Model 2 Test Results: Focusing on y and ¢y

When focusing on y and ¢y, the following frequencies were used for Test A and Test B.

| Test Aag, | [Tost Aug,

I 012-0.091 Hz ” @=0.111 mJodo Plot: ISS Disturbance lnpuhl ©,=0.54 Hz I

-

;
T T Ll

——

;
1

Frequencies Modeled
In ISS Model 2

Frequencies Modeled
In ISS Model 1

Rotor Spin Frequency
(Rotor Disturbance Frequency)

Magnitude (dB)

(R S g —
: ' Y

200 E4 ‘ A .
10 0.2 0.3 04 05 0.6

o= 0001 e || GpaOT ]
Figure 4-38. Disturbance Frequencies used when focusing on y and ¢y
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The results from focusing on coupled y and ¢, rotor motion, without spin-up, can be found

in Table 4-10.
Axis of Focus : y and 0,
Test: A B

ISS Model #:| 1 2 1 2 % imp

% Amp Error (x,) 2.79% 2.79% 2.01% 2.00% 0.24%

8 g % Amp Error (y,) 0.61% 0.75% 4.72% 0.78% 83.38%
€ 3 % Amp Error (¢xr) 0.58% 0.58% 3.67% 0.44% 87.99%
% Amp Error (¢y) 0.91% 0.92% 0.60% 0.59% 0.41%

Table 4-10. Results Focusing on y and ¢y (no spin-up)

Again as predicted, the percent amplitude error is nearly identical for the Test A case for
both ISS Model 1 and ISS Model 2. Also, the Test B shows an improvement, in the
percent amplitude error for all rotor states, and shows large improvements for y, and ¢y, as

predicted.

As an example of the estimation improvement made by using ISS Model 2, the estimation
of y; during Test B will be compared between ISS Models 1 and 2. The time history plot
comparisons are shown in Figure 4-39 and Figure 4-40, the estimation error envelop
comparisons are shown in Figure 4-41 and Figure 4-42, and the error duration comparisons

are shown in Figure 4-43 and Figure 4-44.
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Figure 4-39. Time History of Actual, Estimated, and Error for y, Using ISS Model 1
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Figure 4-40. Time History of Actual, Estimated, and Error for y, Using ISS Model 2
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Event though the estimation using ISS Model 1 is good, Figure 4-40 shows that the steady

state error can be nearly eliminated with the use of increased disturbance modeling found

in ISS Model 2.

State: Y, Standard Deviation Envelope (Zoomed In) (% win = 87.2483%)

Est Error

Estimation Error Y,
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Figure 4-41. Estimation Error and Error Standard Deviation Envelope of
yr Estimation with ISS Model 1
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Figure 4-42. Estimation Error and Error Standard Deviation Envelope of
yr Estimation with ISS Model 2
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Improved estimation using ISS Model 1 is also evident from the fact that estimation error

does not stray outside the bounds of the estimation error standard deviation envelope

(Figure 4-42).
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Figure 4-43. Duration of Error of y, Estimation with ISS Model 1
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Figure 4-44. Duration of Error of y, Estimation with ISS Model 2
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Figure 4-44 shows that the occurrence of high estimation error can be decreased by using

the expanded disturbance modeling found in ISS Model 2.

Axis of Focus :

y and ¢, w/ spin-up

Test:

A

ISS Model #:| 1 2 1 2 | % imp
% Amp Error (x,) 0.00% 0.00% 0.04% 0.04% 0.00%
g8 % Amp Error (y,) 0.81% 0.93% 458% | 0.81% | 82.34%
e 3 % Amp Error (¢x) 0.82% 0.80% 2.66% | 0.71% | 73.32%
% Amp Error (dy,) 0.00% 0.00% 0.00% | 0.00% | 0.00%

Table 4-11. Results Focusing on y and ¢, (with spin-up)

The hypothesis also holds true during the rotor spin-up from 0 to 0.7 Hz over 300 seconds.

The results are shown in Table 4-11.

4.5 Monte Carlo Analysis: Robustness Test Set-Up

In order to test robustness to parameter uncertainty, each plant stiffness value was

independently allowed to deviate from its nominal value where the deviations were defined

by Gaussian distributions with a mean of zero and a 3¢ value of 20% of the nominal value.

To test robustness to rotor imbalance disturbance amplitude, the components which make
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up the rotor imbalance disturbance (M, €, o), see Figure 3-2, were allowed to individually
deviate from their nominal value where the deviations were defined by Gaussian
distributions with a mean of zero and a 3¢ value of 2 kg, 0.1 m, and 0.05 radians for M, &,
and «, respectively. To test robustness to ISS disturbance frequency uncertainty, the
disturbance frequencies were allowed to deviate from their nominal values where the
deviations were defined by Gaussian distributions with a mean of zero and a 3¢ value of

20% of the nominal value.

Special care was taken in defining the distributions of the different deviations in order to
prevent impossible deviations such as negative rodent mass, M. The Monte Carlo testing
involved 1000 test runs of each uncertainty category using ISS Model 2. Other than the
allowed deviations on the plant, nothing else in the simulation or the observer model was
changed. The nominal spin frequency used equals 0.7 Hz, while the nominal ISS
translational and rotational disturbance frequencies were chosen as the peak mode

frequencies from the following two transfer functions, respectively: 1) dys to yrei and 2) dgys

to Oxrel (see Figure 4-38).

4.5.1 Monte Carlo Analysis: Parameter Uncertainty Results

The following distributions are the result of the variation on the plant stiffness parameters

as defined in Section 4.5.
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The variation of stiffness values forces a distribution of the plant’s frequency response.
The modal frequency distributions for the direct transfer functions (i.e. dys to Xy) caused by
the change in the stiffness parameters of the plant are shown in Figure 4-47 through Figure
4-50. The nominal Bode plots have been superimposed on the modal frequency
distributions to show the variation from the nominal plant modal frequencies caused by the
distribution of the plant stiffness parameters. Figure 4-47 through Figure 4-50 also
provide information on which frequencies are more likely to be effected; that is, which

frequencies will shift or appear/disappear due to variations in the stiffness parameters.
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Figure 4-47. Modal Frequency Distribution Caused by AK (for dys to X;¢)
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Figure 4-48 and Figure 4-49 show that the higher modal frequencies will have a larger

standard deviation from the nominal value than the lower frequencies.

TFy Bode and Distribution of Modal ® Due to AK
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Figure 4-48. Modal Frequency Distribution Caused by AK (for dys to y,«)
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Figure 4-49. Modal Frequency Distribution Caused by AK (for dgy to ¢xre)
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Figure 4-50. Modal Frequency Distribution Caused by AK (for dgys to ¢yre)

Figure 4-49 shows that the high frequencies are likely to shift away from the nominal value
since the mean is not equal to the nominal value. Also in Figure 4-50, a new modal
frequency appears around 0.58 Hz due to variations in plant stiffness parameters.

The Monte Carlo analysis results, testing estimation performance under conditions of

parameter uncertainty can be found in Figure 4-51 below.
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Figure 4-51. Monte Carlo Results Testing Parameter Uncertainty (no spin-up)
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The largest percent amplitude error occurs in the translation of the rotor in the x axis. The

estimation of the other dofs are very accurate.

It is important to note that the process noise covariance matrix, Q, does not change from
the nominal Q during the Monte Carlo simulations. Since Q is determined by the level of
uncertainty in the observer model, by increasing Q as the difference between the plant
model and the observer model increased due to parameter changes, improved estimation
would be expected. Time history plots, displayed in Figure 4-52 through Figure 4-55, were
created using a set of parameters that produced the approximate mean amplitude error
values, resulting from the Monte Carlo analysis, for all four motions of the rotor (x;, y;
translations and Oy, ¢y rotations). These parameter values produced a percent amplitude

error of x, — 11.79%, y. — 6.3%, Oxr — 2.5%, and ¢yr — 1.7%.
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It is clear from Figure 4-52 through Figure 4-55 that the error is caused purely by

amplitude differences between the actual and estimated states and not by phase lag or lead.
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The Monte Carlo analysis results, with the time-varying case of rotor spin-up, can be found

in Figure 4-56 below.
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Figure 4-56. Monte Carlo Results Testing Parameter Uncertainty (with spin-up)

By comparing Figure 4-51 with Figure 4-56, it is evident that the Kalman filter

performance is nearly identical regardless of time varying dynamics or time varying inputs.
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4.5.2 Monte Carlo Analysis: Rotor Disturbance Amplitude

Uncertainty Results

The following distributions are the result of the variation of the parameters that determine

the amplitude of the rotor disturbance as defined in Section 4.5.
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Figure 4-57. Distribution of Rotor Disturbance Amplitude Parameters

The Monte Carlo analysis results, testing estimation performance under conditions of rotor

disturbance amplitude uncertainty can be found in Figure 4-58.
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5 Conclusions

This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system
where only relative measurements are available with limited knowledge of both rotor
imbalance disturbances and ISS thruster disturbances. A Kalman filter is applied to a plant
model augmented with sinusoidal disturbance states used to model the effect of the ISS
thrusters on the CR relative motion measurement. The sinusoidal disturbance states
compensate for the lack of the availability of plant inputs for use in the Kalman filter.
Testing confirms that complete disturbance modeling is necessary to ensure reliable
estimation. Further testing goes on to show that increased estimator operational bandwidth
can be achieved through the expansion of the disturbance model within the filter dynamics.
In addition, Monte Carlo analysis shows the varying levels of robustness against defined

plant/filter uncertainty variations.

Chapter 2 provided a problem overview and a concise description of the CR system. This
included a description of the simplified model as well as the list of assumptions necessary
for simplification. The model used for analysis and testing included a 4 mass (Rotor,
shroud, ISS Mass 1, and ISS Mass 2), 16 degree of freedom, time-varying system. From

this model, linearized equations of motion were derived.

In Chapter 3 a detailed description of how the disturbance models were implemented
within the filter dynamics was formulated. This formulation required the derivation of both
rotor and ISS disturbances. The rotor disturbance was derived as a function of imbalance

geometry, mass/inertia, and spin rate, while the ISS disturbance modeling was done though
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Relatively large errors result from the combination of all three uncertainty categories.

Error in estimating ¢y, and ¢y, rotations remain relatively low while the errors in both x, and

yr translation are relatively high. The two uncertainties having the most effect on

estimation error are the plant parameter uncertainty and the ISS disturbance frequency

uncertainty, both of which create frequency disparities between the plant and the filter

models.




4.5.4 Monte Carlo Analysis: Combination of All Uncertainties
Results

Monte Carlo analysis was conducted combining the plant parameter uncertainty, the rotor
disturbance amplitude uncertainty, and the ISS disturbance frequency uncertainty in order
to determine the error for a case with all uncertainties acting at the same time. The results
for this analysis can be found in Figure 4-63 for the time-invariant case, and in Figure 4-64

for the rotor spin-up case.
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Figure 4-63. Monte Carlo Results Testing Combination of All Uncertainties (no
spin up)
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Figure 4-61 shows that the largest errors are caused by ISS disturbance frequency
uncertainly. Therefore, it will be important to determine the ISS disturbance frequencies of

concern and to expand the ISS disturbance model to capture all of them.

The Monte Carlo analysis result, considering a time-varying plant and disturbance inputs,

can be found in Figure 4-62.
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Figure 4-62. Monte Carlo Results Testing ISS Disturbance Frequency
Uncertainty (with spin up)

Again, similar results are found between the time-invariant and time-varying Monte Carlo

analysis, supporting the conclusion that the Kalman Filter operates similarly for both cases.
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4.5.3 Monte Carlo Analysis: ISS Disturbance Frequency
Uncertainty Results

The distributions, shown in Figure 4-60, are the result of the variation of both the

translational and rotational ISS disturbance frequencies as defined in Section 4.5.
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The Monte Carlo analysis results, testing estimation performance under conditions of ISS

disturbance frequency uncertainty can be found in Figure 4-61.
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From Figure 4-58 it is evident that the Kalman filter performance is insensitive to rotor
disturbance amplitude per the defined distributions. This result is important, because
rodent motion and rodent mass modeling discrepancies are expected during normal
operations due to the fact that there is no way to predetermine the rodent motion or to

predict the rodent mass fluctuations over extended study periods.

The Monte Carlo analysis result, considering a time-varying plant and disturbance inputs,

can be found in Figure 4-59.
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Similar results are seen between the time-invariant and time-varying Monte Carlo analysis,

supporting the conclusion that the Kalman Filter is effective for both cases.
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a sinusoidal approximation of the effect of a pulse train through the system dynamics.
Modeling the ISS disturbances in such a manner introduced another complexity (i.e. the
modeling of a pulse train disturbance input) into the CR state estimation example.
Observability for both the plant and filter models was evaluated. Since both models are
time varying, observability needed to be checked for each variation of the model dynamics
using both a time-invariant test as well as a time-varying test for observability. It was
shown that the plant model is observable over the entire range of spin frequencies, and the
filter model is observable over the entire range of the combinations of constant spin and
ISS disturbance frequencies, except for low spin frequencies below 0.015 Hz. This is
reasonable since low spin frequencies would create very small rotor disturbances, thus not
affecting the system. Also, the discrete Kalman filter equations and algorithm are

introduced along with a method for calculating initial Kalman filter parameters.

In Chapter 4 the results from testing using the solution method proposed in Chapter 3 were
presented. After determining performance measures, comparisons were made between
different fidelities of disturbance modeling to show that it is necessary to model all of the
disturbances which act on the plant in order to achieve good estimation. Also, comparisons
were made between two filter models (ISS Model 1 and ISS Model 2), with different levels
of ISS disturbance frequency modeling, show that expanding the disturbance model within
the filter model will increase the range of disturbance frequencies for which the Kalman
filter is effective. Finally Monte Carlo analysis shows that errors are sensitive to plant
uncertainties as well as ISS disturbance frequency uncertainties. Therefore, care must bet

taken to ensure that the filter model is as close to the plant model as possible. An on-line
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system identification process may be necessary to detect and automatically adjust for any
changes between the plant and the filter models [33][34][35]. Monte Carlo analysis also
showed that it will be important to expand the filter model to cover the entire range of ISS

disturbance frequencies.

In conclusion, the use of disturbance modeling within the filter dynamics has proven to be
useful in situations where the disturbance inputs into the plant are not available. Since
many user defined parameters are not changed through the testing process, namely the
process noise covariance, Q, and the initial error covariance, Py, the results provided are not
the best possible. Therefore, for future work a method for updating Q and calculating Py in

an optimal fashion should be investigated.
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