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ABSTRACT

State Estimation of International Space Station Centrifuge Rotor with Incomplete

Knowledge of Disturbance Inputs

by

Michael James Sullivan

This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system

where only relative measurements are available with limited knowledge of both rotor

imbalance disturbances and International Space Station (ISS) thruster disturbances. A

Kalman filter is applied to a plant model augmented with sinusoidal disturbance states used

to model both the effect of the rotor imbalance and the ISS thrusters on the CR relative

motion measurement. The sinusoidal disturbance states compensate for the lack of the

availability of plant inputs for use in the Kalman filter. Testing confirms that complete

disturbance modeling is necessary to ensure reliable estimation. Further testing goes on to

show that increased estimator operational bandwidth can be achieved through the

expansion of the disturbance model within the filter dynamics. In addition, Monte Carlo

analysis shows the varying levels of robustness against defined plant/filter uncertainty

variations.
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1 Introduction

The National Aeronautics and Space Administration (NASA), in association with the

Japanese Aerospace Exploration Agency (JAXA), are building a Centrifuge

Accommodation Module (CAM) for attachment onto the International Space Station (ISS).

The CAM houses the Centrifuge Rotor (CR) and will be attached at node 2 on the

International Space Station (ISS) as shown in Figure 1-1.

Figure 1-1. Exploded Diagram of International Space Station Components [1]

The CAMICR is an orbiting laboratory which will study the effects of zero gravity and

micro gravity environments on rodents. More details concerning the CAM/CR can be

found in Section 1.1.
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The CAMICR is an orbiting laboratory which will study the effects of zero gravity and 

micro gravity environments on rodents. More details concerning the CAMICR can be 

found in Section 1.1. 
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Before the CAM/CR can be attached to the ISS, all verification must be completed on the

ground to ensure robust stability and safe operation. This is important not only to for

increasing the probability of mission success, but also to make certain the safety of the ISS

crew members. One issue concerning the safe operation of the CR aboard the ISS is the

occurrence and the effect of rotor imbalances due to changing inertia during CR operation.

The effect of rotor imbalances can be found in everyday life such as an unbalanced

washing machine drum impacting the side of the washing machine or steering issues

caused by unbalanced automotive tires. Although this problem may seen benign in the

washing machine example, if the massive rotor in the CR impacts the CAM, critical

damage to the ISS could result.

One method of solving this problem would be to use counterbalancing masses to cancel out

any imbalances in the rotor. In the case of the CR, a system called the Auto Balancing

System (ABS) employs this method. A problem occurs during implementation of the ABS

due to the unavailability of measurements integral to ABS control, namely the rotor's

absolute (i.e., relative to inertial space) states. These absolute rotor states cannot be

obtained, because the displacement sensors are located in such a manner that only relative

(i.e., between two moving masses) measurement are possible. Therefore an estimator is

needed to estimate absolute rotor states from the relative measurements. This thesis

proposes a method for estimating absolute rotor states from available relative/corrupt

measurements involving the use of a Kalman filter. However using a standard Kalman

filter formulation requires availability of both the rotor imbalance disturbances as well as

the ISS thruster disturbances which are not available. This thesis will also discuss the
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methods used to overcome this problem. Note that the words filter, observer, and estimator

will be used interchangeably throughout the thesis.

Although the goal of this thesis is specific, the basic premise of the problem being solved is

applicable to any field where there is a need to compute absolute measurements from

relative and/or corrupt measurements with limited input knowledge. For example, state

estimation would be helpful in many applications such as determining the core temperature

of a nuclear reactor, where it is too hazardous for sensor location. This is accomplished

with the use of thermodynamics and sensors placed in less intense locations [3]. Also,

optimal filters are useful in the field of aeronautics when applied to estimation of turbine

blade states through dynamics and inferior measurements [4].

1.1 Introduction to Centrifuge Accommodation Module (CAM)

The CAM, shown in Figure 1-2, which is composed of a life sciences glove box and freezer

racks also houses the CR. The CR contains up to 4 habitats designed to house rodents.

The CR will be used to study the long term effects of zero gravity and micro gravity

environments on rodents. An artificial gravitational force of anywhere from 0 to 2 g can be

generated by spinning the rotor anywhere from 0 and 1.4 Hz. The normal operational spin

rate is 0.7 Hz, which is the spin rate necessary for 1 g.
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Figure 1-2. CAM Internal Components [2]

A rotor imbalance will occur whenever the spinning-member center of mass is not on the

spin axis (e.g., due to location of rodents). Also a disturbance caused by the ISS jet-firing

Attitude Control System will act on the rotor through the CAM shroud. Two separate

systems, the Vibration Isolation Mechanism (VIM) and the Auto Balancing System (ABS)

will be used to help minimize the rotor motion caused by these two disturbance sources.

They are shown in Figure 1-3. Excessive rotor motion will result in snubber strikes against

the shroud, causing the system to perform a safety shutdown.
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The ABS controls the counter balancing masses which move in order to cancel out any

rotor imbalance caused by rodent motion [5]. The sensors, which measure the motion of

the rotor relative to the ISS, are located within the VIM. This relative measurement is the

only available measurement with information of rotor motion.

Habitat 
Spin 
Axis 

Dynamic Balance} Auto 
Mechanism Balancing 

Static Balance System 
Mechanism (ABS) 

Figure 1-3. CR Components 

5 

The ABS controls the counter balancing masses which move in order to cancel out any 

rotor imbalance caused by rodent motion [5]. The sensors , which measure the motion of 

the rotor relative to the ISS, are located within the VIM. This relative measurement i the 

only available measurement with information of rotor motion. 



6

Mass 4moves creating
Imbalance Disturbance on Rotor

Sense a change in xre,

ISS Balancer Mass j driven

by ABS to balance out

]BalancingI

x Simplified System:
LLEI 1) Rotor

2) Shroud

3) Equivalent Stiffness/Damping
4) Inertial ISS

Description:
1) Mass,4 , is on spin axis

(No Rotor Disturbance)
77777777777777 2) Balancer Mass, ,

ISS does not move
3) No ISS Vibrations

Improper

ISS Vibrates

Sense a change in xre.

Balancer Mass driven by
ABS despite no rotor

disturbance, effectively
introducing a rotor imbalance

ISS
Figure 1-4. Proper and Improper ABS Control with Using Relative Measurements

ISS 

ISS 

ISS 

Mass moves creating 
Imbalance Disturbance on Rotor 

~ 
Sense a :tee in x"' 

Balancer Mass ven 
by ABS to balance out 

Simplified System: 
1) Rotor 
2) Shroud 
3) Equivalent Stiffness/Damping 
4) Inertial ISS 

Description: 
1) Mass, , is on spin axis 

(No Rotor Disturbance) 
2) Balancer Mass, 

does not move 
3) No ISS Vibrations 

ISS Vibrates 

~ 
Sense a change in xrel 

n 
Balancer Mass . ven by 

ABS despite no rotor 
disturbance, effecti vel y 

introducing a rotor imbalance 

Figure 1-4. Proper and Improper ABS Control with Using Relative Measurements 

6 



7

By sensing only relative motion, if any ISS motion occurs, the relative measurement will

not be the resulting motion due to pure rotor imbalance. In the case of a balanced rotor

with only ISS motion, if the ABS were to act on the relative motion alone, it would drive

the balancing mass away from the spin axis, effectively introducing an imbalance into a

previously balanced rotor. This is shown in Figure 1-4.

The CR controls and sensors do not interface with the ISS controls and sensors. This lack

of system interaction limits the amount of knowledge available for either system's

controllers. The result is no direct knowledge of the ISS disturbance inputs which affect

the relative measurement sensor located within the VIM. Also, since rodent motion is

unpredictable and unmeasured, neither a rotor disturbance measurement, dr, nor an ISS

disturbance measurement, d,, is available for use by the ABS controller or for use by the

Kalman filter during state estimation. However, some rotor and ISS disturbance

parameters (spin frequency, ISS disturbance characteristics, approximant rodent mass, etc.)

are nominally known. Furthermore, the measurement, x r is corrupted by the addition of

sensor noise, vk.

(Vibration Isolation Control) ]V

dr •l Plant Snosre

E ABS X. Kal~man !

(Auto Balancing System) Filter
Figure 1-5. Overall CR System and Control
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Since the main purpose of the VIM is to allow the rotor to follow the rigid body motion of

the ISS while isolating rotor vibrations, a relative measurement is sufficient for the

Vibration Isolation Controller (VIC) (see Figure 1-5); this can achieved by ensuring there is

no change in relative displacement. However, the main purpose of the ABS is to

counterbalance any imbalance caused solely by rodent motion, therefore, a relative

measurement is not sufficient. Instead, absolute rotor state information is necessary for

proper ABS control. This leads to the central question addressed in this thesis; that is,

"How do we calculate absolute rotor states from relative measurements, with only partial

knowledge of the disturbance inputs into the system?" This thesis provides a method of

state estimation through the use of a Kalman Filter applied to a plant model which has been

augmented by disturbance states. A more in depth discussion on the system and the details

of the CR example problem can be found in Chapter 2.

I V
Sxx

Plant Sensors rel
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~~~I x.......................... K a lm a n .

.. II Filter
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Figure 1-6. Open Loop System Used for Thesis
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Since state estimation is the only operation of concern, the controllers in Figure 1-5 will be

eliminated to create the open loop system found in Figure 1-6. This is the system used

during the filter design process.

1.2 Alternative Estimation Options

One approach to resolve the lack of input knowledge is input reconstruction. Input

reconstruction involves the use of the knowledge of the plant and the output time history to

estimate the input, u, which in this case would include both rotor and ISS disturbances.

This is also known as Inverse System Identification technique. This method may be

helpful during state estimation, because if the inputs into the system can be reconstructed,

then they can be used in the estimation process (see Figure 1-7).

(Vibration Isolation Control)
Vk

__ (Rotor + VIM+ ISS)

(Auto Balancing System)+- Filter
System ID P
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A time domain method for estimating the applied forces on a structure was proposed by

Stelzner, Kammer, and Milenkovic [6]. The method uses a non-causal moving average

representation of the inverse structural system and has been successful in estimating the

individual input forces for structures where the sensors are not collocated with the force

input locations. The problem with the implementing of this method is that it only allows

for near-real time estimation of the input forces, while the Kalman filter requires

knowledge of real time input forces for proper estimation. Therefore, the approach

suggested in Figure 1-7 cannot be used to solve the rotor estimation problem.

Another recently developed time domain Inverse System Identification method called the

Sum of Weighted Accelerations Technique (SWAT) has been applied to many different

impact problems [7]. The limitations of using SWAT lie in the fact that it can only

reconstruct the sum of the external forces acting on a body's center of mass and not the

individual applied forces. To overcome this shortcoming, Genaro and Rade created a

variation of SWAT which would yield the input forces [8]. However, this process

introduces a shortcoming of its own in the fact that the number of sensors must be equal to

or be greater than the number of responding modes, which is not the case for the CR.

A further limitation of the input estimation or indirect force measurement techniques is that

the process is found to be numerically ill-conditioned [9]. The numeric ill-conditioning

occurs during calculations that require inverses of matrices which allows very small errors

in measurements to result in large errors in estimated forces.
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Another approach includes the use of general structured (GS) observers for state estimation

during the case where inputs are unknown. A method for designing a full order unknown

input observer (UIO) based on a GS observer is presented by Chang, You, and Hsu which

allows for state estimation despite the existence of unknown inputs or uncertain

disturbances [10]-[13]. However this method cannot be used for the CR problem since it

requires the number of outputs (measurements) to be greater than the number of unknown

inputs. For the CR problem, there are only 4 outputs versus the 8 possible inputs.

1.3 Thesis Overview and Content

Chapter 2 provides a problem overview and a concise description of the CR system. This

description includes a list of assumptions made during problem formulation and the process

used to create a simplified model, which includes the rotor, the shroud, and a two-mass ISS

flex model, for analysis and testing purposes. Also, the reference frames used as well as

the derivations of the equations of motion for the simplified system are presented.

Chapter 3 presents a detailed description of the proposed solution method by introducing a

formulation of the disturbance models. The rotor disturbance is derived as a function of

imbalance geometry, mass/inertia, and spin rate, while the ISS disturbance modeling is

accomplished though a sinusoidal approximation of the effect of a pulse train through the

system dynamics. Issues dealing with the peripheral effects of this sinusoidal

approximation are examined along with both plant and filter system observability.

Examples of both observable and unobservable filter models are presented using a modal

form of the observability test. A time varying observability test is presented and used to
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determine observability during cases of rotor spin-up and ISS operation. Also, the discrete

Kalman filter equations and algorithm are introduced along with a method for calculating

initial Kalman filter parameters.

Chapter 4 provides a summary of the testing conducted to analyze estimation capabilities

using the solution method proposed in Chapter 3. A description of the different

performance measures used to evaluate Kalman filter performance is given. These

measures included percent amplitude error in estimation, error covariance standard

deviation envelope, error duration, and time to convergence. Testing was conducted to

evaluate the validity of the proposed solution method and to show improved performance

through disturbance model expansion within the filter dynamics. Finally, Monte Carlo

analysis was performed to show both robustness of the estimator as well as its sensitivity to

different uncertainties. The following computer programs were used to run all simulations

and to perform all data analysis: Matlab Version 6.5.1.199709 (R13SPI) and Simulink

Version 5.5.1 (R13SPI+).

Chapter 5 provides a summary of the conclusions, along with a description of possible

future work on the estimation process proposed in this thesis.
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2 Problem Overview

This section provides a problem overview and a concise description of the CR system.

This description includes a list of assumptions made during problem formulation and the

process used to create a simplified model, which includes the rotor, the shroud, and a two-

mass ISS flex model, for analysis and testing purposes. Also, the reference frames used as

well as the derivations of the equations of motion for the simplified system are presented.

2.1 Modeling Assumptions

For design and verifications purposes, a simplified model consisting of the CR system on a

flexible ISS platform was used (see Figure 2-1).

z
A

-VY

00,

Figure 2-1. VIM/Rotor Reference Frame
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During the modeling process, in order to simplify the problem all external forces on the ISS

other than attitude control jet firings, such as gravity gradients, ISS Control Momentum

Gyroscopes (CMG) torques, aerodynamic forces, and orbital effects were neglected.

Secondly, all masses which make up the ISS, shroud, and rotor are considered to be rigid

bodies. The rotor is assumed to be cylindrical and therefore symmetric about the axis of

rotation. ISS flexibility was modeled using a two mass-spring-damper system. A nominal

ISS configuration was used for the determination of mass and inertia values of the two

mass ISS flex model created for testing purposes.

The origin of the reference frame is located at the geometric center, gc, which is the point

on the x-y plane of the rotor through which all of the springs and dampers act. The gc is

defined during equilibrium, and is the non-rotating inertial reference frame.

The center of mass, cm, of the shroud and ISS flex model masses are collocated with the

cg, thus eliminating any coupling between translation and rotation in or about the x or y-

axis between the shroud and ISS flex model. Only the rotor's static cm, noted on Figure

2-1, is located directly above the reference frame along the z-axis, which causes coupling

in the translational and rotational equations of motion between the rotor and the shroud.

2.2 Derivation of the Linear, Time-Varying Equations of Motion

In this section, the equations of motion for the simplified model has been developed to

include the rotor, the shroud, and a two-mass ISS flex model. Each of the four masses has

4 degrees of freedom (dofs) for a total of 16 dofs.
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A cross-section of the model, in the x-z plane, that was used in the derivations of the

equation of motion in x-axis is shown in Figure 2-2. This figure is not to scale.

z
Xrel DisturbancesX Xl X otr l

AA,- Translational Spring - Translational Damper

-Rotational Spring P Rotational Damper

Figure 2-2. Simplified Model

Typical 1SS flex modes, between -0.01 and -1.0 Hz, are captured by a two-mass ISS flex

model, which attaches to the shroud through translational and rotational springs and

dampers. Each of the four masses in this simplified model has two translational dofs (x and

y-axis) and two rotational dofs (about x and y-axis), resulting in a model with 16 dofs. In

addition, the disturbance on the rotor, dotor, caused by rodent motion during operation, acts

on the rotor mass, while the disturbance on the ISS, diss, caused by jet firings, acts on the

outside mass of the ISS flex model. Note that the relative measurement, xrei, is a relative

measurement between the rotor ant the shroud. The system is time varying due to variable

rotor spin rate experienced during rotor spin-up and spin-down.
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2.2.1 EOMs for Coupled x Translation and ýy Rotation

The equations of motion describing the x translational motion and the Oy rotational motion

of the simplified model were calculated using Figure 2-3.

z

OPxr Oyr

S .,K • I I• / ' Kzy C ry K,ty C~ry Kl a C2r

-77

LA

Figure 2-3. Model Used for Derivation of X-translation and @-rotation

The rotational dofs shown in Figure 2-3 are relative to the inertial reference frame.

Rotational and translational springs and dampers are located between each mass. Each

mass is depicted separately to show translational and rotational dofs, but it is important to

recognize that all masses of the same label are actually the same mass. That is to say that

there is only one shroud (Ms), one ISS Mass 1 (M1), and one ISS Mass 2 (M2). This is also

the case for the figure used for the derivation of y translational and •x rotational EOMs.
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2.2.1.1 EOMs for x Translation

For the x translation equations of motion,

F=m x
(2-1)

where
I1 _ 1 1,

i, l--Fx , j =-F,., ,--F 1 x , and ,=-F2.,M,. M, MIM2

(2-2)

The variable M represents each mass represented in the simplified model. The forces, F in

equation ( 2-2 ), are provided by the springs, dampers, and external disturbance forces (See

Figure 2-3). These forces are

F,x = -CRg.X, + CRtXXS + CRLsin Oy, - KRIXx, + KRt,•x +KRXLsin (py, + d,,

Fs. = CRtj r - (CRx + Cz, )k, + C7,kj - CR, Lsin (,,

+ KRtxxr -(KRx + Kz,,)x, + KztxX - KR,,Lsinipy,

Fix = Car-, - (Czx + C110 ). + CII.* 2 + Kzxs - (K7,X + K,, )x, + K11 x2

F 2 z = Cl,,ic - (CI,• + C 2, )-2 + Klxxl - (K1 ,x + K 2tx )x2 +dx,

(2-3)

where external disturbance forces are defined by Figure 2-4,

dgh

Axis of Motion -7 I, Location
x = x translation r rotor
Y = y translation = ISS
S= rotation about x
S= rotation about y

Figure 2-4. External Disturbance Naming Convention
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( 2-2 ) 

The variable M represents each mass represented in the simpli fied model. The force , F in 
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( 2-3 ) 
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The naming conventions for the states, the stiffness/damping values, and the mass/inertia

values can be found in Figure 2-5, Figure 2-6 and Figure 2-7, respectively.

Axis of Motion . Which Mass
x = x translation r = rotor
Y = y translation s = shroud
k = rotation about x 1 = ISS mass 1
*y = rotation about y 2 = ISS mass 2

Figure 2-5. State Naming Convention

A Direction of Motion
K = Spring .. 4 Bcd x = in the x direction/about the x axis
C = Damper y = in the y direction/about the y axis

Location
R = between Rotor and Shroud Description of Motion
Z = between Shroud and ISS mass 1 t = translation
1 = between ISS mass 1 and ISS mass 2 r = rotation
2 = between ISS mass 2 and inertial

Figure 2-6. Naming Convention for Stiffness and Damping Values

//Ef,
= n Ia \ Which Mass " or - Which Inertia

M = mass r = rotor d, = rotor (transverse)
I = Inertia = shroud p = rotor (axial)

I ISS mass 1 9t = shroud

2 =ISS mass 2 1 = ISS mass 1
2 = ISS mass 2

Figure 2-7. Naming Convention for Mass and Inertia Values
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Assuming small angle rotations allow for linear but coupled equation for x translation

given in equation ( 2-4 ). Substituting equation ( 2-3 ) into equation ( 2-2 ) gives

Mr.ir + CRtx.r -- CRt.is -CR,XLto,, + KRXXr - KR,iX, - KRLopyL = dxr

Mss - CR,.ji• + (CR,, + C Ji)k, - Cz,,, + CRtxL(by,

- KRtx. + (KR,, + Kz,, )xs - Kz~Xt + KR,ý,L(poy = 0

M I.V - Cz xi, + (CzjX + C,., )it - C1 tX1 i2 - Kztx 2 + (Kzr,, + KIX )xI - K1 ,Xx 2 = 0

M 2)2 - C. il + (C1 ,1 + C21, )x 2 - K,1,x + (K1 , + K 2,1 )x2 = d,

(2-4)

2.2.1.2 EOMs for ýy Rotation

The angular momentum equations, in the rotor body reference frame, provide the rotational

equations of motion for the rotor are given by Yamamoto [15] [14] as

Tr = X +=

T ,'ý = Id, y, - 1 p W x,

T•=0

(2-5)

where Id, is the transverse inertia for the rotor, IP is the rotor spin axis inertia, w is the

rotor spin rate about the spin axis, and

Tor = -CRyLYr + CRIyL§, - (CRrA + CR, eL2 )<ox + CRrxOx,,

- KRtyLyr + KRryLy, - (KR,'+ KRy Le')qi, + KRrI(', + dUrr
(2-6)

and

Tyr = +CRx LXr - CRx U,• - (CRry +CR, L 2 )(or, + CRrOy,

+ KR, K L• -KRLxs - (KRr + KRxLP)(Oy, + KRy.O(y + dor

(2-7)
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The angular momentum equations, in the rotor body reference frame, provide the rotational 

equations of motion for the rotor are given by Yamamoto [15] [14] as 

.. . 
T ¢l<r = I d, r/Jx, + I pwr/Jy, 

.. . 
T~r = I rl, r/Jy, - I p{lJr/Jx, 

T~r =0 
(2-5 ) 

where I d, is the transverse inertia for the rotor, I p is the rotor spin axis inertia, w i the 

rotor spin rate about the spin axis, and 

T{/Jxr = -C RtyLYr + C RlyLys - (C Rrx + C RlyL2 )ipx, + C Rrxipx, 

- K RlyLy r + K RlyLy s - (K Rrx + K RlyL2 )ffJx, + K RrxffJx, + d {/Jxr 

(2-6 ) 

and 

Tpyr = +CRlxtir -CRlxtis -(CRry +CRlx L
2

)ipy, +CRry ipy, 

+ K RlxLxr - K RlxLxs - (K Rry + K RlxL2)ffJy, + K Rry ffJy, + dfjr 

(2-7 ) 
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Since the rest of the masses are not involved in rotations, then-r = 1w can be used along

with the small angle approximation to calculate linear but coupled equation for and Oy

rotation

Id, 'A•y, - Ipa)C, - CRILkr + CR,,.L*c + (CRy + CRtXL 2e) y, - CRry Oy

- KRtxLxR +KRxLXs + (KRy + KRfxL 2 )(y, - KRryP, = dor

l 10y, - CR,y Oy, + (CR,.y + CZ, )Oy, - C Zry Or, - KRy .Oy, + (KR,.y + Kzy )(py, - K7 (.o y, = 0

I1I,, - Czry y., + (C Zy + CIry )yI -- Clry y2 - Kzyiy., + (KZ,. + Kr)qyV, - Kip,,, = 0

12Oy2 - Cry/Oyj + (CI ry + C2ry )Oy. - KIry.qy, + (K,.y + K 2ry Y)y = d4 ,
(2-8)

The coupling occurs in the equation for the rotor motion due to the fact that the cm of the

rotor is not collocated with the connection point of the springs/dampers. The distance, L, is

used to account for translation in the x direction due to rotor rotation about the y axis at the

cm and vice versa.
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Since the rest of the masses are not involved in rotations, then iJ. = 1w can be used along 

with the smaJl angle approximation to calculate linear but coupled equation for and <\>y 

rotation 

1dr fPYr -Ip{J)¢Jxr - CRlxti, +CRlxtis + (CRry +CR1Xe)¢JYr -CRry ¢Jy, 

- KR1XLx, + KR'xLxs + (KRry + KR'XL2)({JYr - KRry ({Jy, = d t;y, 

I sfP y, - CRry ¢JYr + (CRry +CZry)¢Jy, -CZry ¢JY1 - KRry ({JYr + (K Rry +KZry)({Jy, -KZry ({Jy, =0 

IlfPy, - CZry ¢Jy, +(CZry +Clry)¢JY1 -Clry ¢JY2 - K zry ({Jy, +(KZry +Klry)({Jy, - K lry ({JY2 =0 

12fPY2 - Cl ry ¢JY1 + (Clry + C2ry )¢JY2 - Kl ry ({J y, + (K lry + K 2ry )({Jh = d t;ys 

(2-8 ) 

The coupling occurs in the equation for the rotor motion due to the fact that the cm of the 

rotor is not collocated with the connection point of the springs/dampers. The distance, L, is 

used to account for translation in the x direction due to rotor rotation about the y axis at the 

cm and vice versa. 
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2.2.2 EOMs for Coupled y Translation and x Rotation

The EOMs describing the y translational motion and the 0x rotational motion of the

simplified model were calculated using Figure 2-8.

Oxrz

Ký K.. K1 VK yr LK~r K=t K r• INt Kzr- K x Krx KR,t

C Zrx :I ;

I Clr Ce iC M2  r

Fge8 Mod2 U f 1o r ivio o i in

K~ty .... " "> " " CRry

K x zty --- o -> a KR..C ,y

Klty ------. C r

012 M K, ~.

K lty ------ > CC2,

Figure 2-8. Model Used for Derivation of Y-translation and 4i-rotation
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2.2.2.1 EOMs for y Translation

For the y translation equations of motion,

(2-9)

where
1 1_1 1.

IF, , Fl .••. and Fz•-:2,z

Mr , M- MI M

(2-10)

M represents each mass of the simplified model. The forces, F, are provided by the

springs, dampers, and external disturbance forces (See Figure 2-8). These forces are

Fy = -CRy'r + CRy ., - CRLsinoD, - KRyy,. + Kmyy, -KRyLsinrp,'r +dy

F~y = CRr - (CRy, + Czy) + CzY, rI + CR,,Lsin<,X

+ KRIyYr - (KRtr + Kzy)y, + K7,yy+ KRtyLsin ipx,
Fly = CZzy 9.--(C7tY + CityV +Y 4 Cily Y2 " K7, y,• - (Kztr + Kijy ) Yj + K•,y Y2

F2Y = C1•,Y - (CIty + C2tr )52 + K1 y Yj - (K11 r + K,~r )Y 2 + d,

(2-11)

Assuming small angle rotations allow for linear but coupled equation for y translation

MrYr +CRIV - CRAY I, + CRyL (OX, + KRy)Y, - KRyY, + KRyLV(, = dy,

M ,Y -CRIVi' + (CRy + C2 y) ý -Czryg -CR4yL(OX,

-KRPy, + (KRY + Kz, )y - Kzty y - KRLqv,, = 0

M I -CZy + (Cz•. + C11:)9I - C11 2 - Kzy y, + (K7,y + Kjy)y 1 - K1 yY2 =0

M 2 Y2 - Cly Y' + (CI. + C21) 92 - K1 y Y1 + (KI,y + K 21y) Y2 = dy,

(2-12)
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(2·9 ) 

where 

.. 1 F 
Y, = M ry ' , 

.. 1 F 
Ys = M sy ' 

s 

.. 1 D d y, =-r,y' an 
M, 

.. 1 F 
Y2 = M 2y 

2 

(2·10 ) 
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Fry =-CRtyY, +CRtyYs -CRtyLsinrpx, -KRtyY, +KRtyYs -KRtyLsinrpx, +dy, 

FSY = CRtyY, -(CRty +CZty)Ys +CZtyY, +CRtyLsinrpx, 

+ K RtyY, - (K Rty + K Zty )ys + K Zty y, + K RtyLsin rpx, 

F, y =CZtyYs -(CZty +C'ty)Y, +C'tyY2 +KZtyYs -(KZty +K" y)y, +K'tyY2 

F2y =C'tyY, -(City +C2ty)Y2 +K'tyY, -(K'ty +K2ty)Y2 +dy, 

(2·11 ) 

Assuming small angle rotations aJlow for linear but coupled equation for y translation 

M ,y, + CRtyY, - CRtyYs + CRtyLrpx, + KRtyY, - KR,yYs + KRtyLrpx, = dy, 

M sY s - CRtyY, + (CRty + CZty)Ys - CZtyY, - CRtyLrpx, 

- KRtyY, + (KRty + KZty)Ys - KZtyY, - KRtyLrpx, = 0 

M,y,-CZtyYs +(CZty +C'ty)y,-C'tyY2 -KZtyYs + (KZty +K" y)y,-K'tyY2 =0 

M 2h - C'IYY' + (C'ty +C2ty)Y2 - K'tyY, + (K'ty + K2ty)Y2 = dy, 

(2-12 ) 
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2.2.2.2 EOMs for ý Rotation

Since the rest of the masses are not involved in rotations, then /- = 1lw can be used along

with the small angle approximation to calculate linear but coupled equation for and 4x

rotation

laid, + lVW<O, + CRyL 9r - CRYLý' + (CRrx + CR, L)*" -- CRrxO."

+ KRtyLyr -KRyLy, +(Kxr. +KRL )VD,, -KRrx(O.' =dcir

1,,A,, -CRrX, ,p x + (CRr. + C7Z,:.)', - C z,.,:(o,, - KRrt(D,,: + (KR,.,: + K. )q,, - K&z,.:( O , = 0

- Czr,(,Ox, + (Cz,•.J f )OX - - Kzr.',,+ (K-,x + Krx )+Ox - K0rr(Ox, =0

120x', -Clrx,.,,r + (CW, + Cr,,,)O.,• - Ki,:Qri, + (KIr.r + K 2rx)(.,:, = d¢rv
(2-13)

Again, the coupling between the y and 0, occurs from the distance L between the rotor cm

and the location where the springs and dampers attach.

The time-varying aspect of the EOMs comes from the spin rate of the rotor, 0), (seen in

equations ( 2-8 ) and ( 2-13 )) which ramps up from 0 Hz to 0.7 Hz over a chosen time

interval. Note that the z-axis translation of the VIM/CR is ignored since knowledge of the

motion in the z direction is not necessary for control applications.
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2.3 Model Frequency Response

Values for the various model parameters such as mass/inertia and stiffness/damping values,

were selected to capture the expected physical system dynamics. Using these assumed

values, the frequency response from all 8 disturbance forces to the corresponding 4 relative

measurements was calculated and is shown in Figure 2-9.

Bod. Plot: All Direct Trengfer Functions

0.0~2 H8 . m-i- .1O1Hz i 9 9 I

1 2 .. -.- dv,,. l.

0.59-11  122H d_ 1*

410 ... ...

. ~ ~~~~.. ... .,. ..... .. •. • ................ ....... • ..••• ...
-1 1 .......... .... .. .... . . ..

AGO. ...... .... ... .. ...•. .. .... .. i......... .. .. ..............
ISO-

0 .05 0.1 0.15 9.2 0.25 0.3 0.35 0.4 9.45 0.5 055 @6 015 . 0.75 0.0 9.85 0.9 0.95 1 1.05 1.I
Frequency (Hz)

Figure 2-9. Frequency Response of Reduced System

The dashed lines show transfer functions including rotor disturbance inputs while the solid

lines show transfer function including ISS disturbance inputs.
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3 Solution Method

During the estimation of the centrifuge rotor states, two main problems are encountered.

First, the deterministic plant inputs (4 rotor and 4 ISS disturbance inputs) are not available

to the observer for use in the estimation algorithm. Secondly, the ISS disturbance inputs

into the plant are applied in the form of a pulse train of jet/thruster firings rather than as a

sinusoid disturbance. This could pose a problem for the chosen solution method and will

be discuss later in this Chapter.

The first problem will be solved through the use of a plant model which has been

augmented with disturbance states (See Sections 3.1.1 and 3.1.2). Estimation of the states

for absolute rotor motion will be completed by using a Kalman Filter algorithm on this

augmented plant model (See Section 3.4). The use of internal disturbance models will

allow for estimation with a Kalman filter without the need for input measurements. This is

vital to successful estimation, since normal Kalman filter operation requires knowledge of

the inputs.
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Standard Kalman Filter Formulation

Not Viable d,

r Kalman Filtering with Internal Disturbance Model
Proposed
Solution d5

Method dr

Figure 3-1. Method Comparison with Standard Kalman Filter Formulation

Figure 3-1 shows the difference between the standard Kalman filter formulation, which

explicitly includes the known, deterministic inputs, and the method that is employed in this

thesis, which instead models these inputs as additional filter states, to circumvent the fact

that the disturbances are not available as inputs into the observer.

The second problem will be solved by using a sinusoidal approximation of the effect of the

ISS pulse train disturbance on the plant dynamics, using only frequencies which result in a

high gain through the plant. Frequencies where the plant attenuates the input signal are not

important since they produce little effect on the measurement. Further explanation follows

in Section 3.1.2.1.

Not Viable 

Propo ed 
Solution 
Method 

" X 

Observer 

-------------------
Kalman Filtering with Internal Disturbance Model 

Figure 3-1. Method Comparison with Standard Kalman Filter Formulation 
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3.1 Filter Model EOMs

The basic filter model, consisting of the rotor, VIM, and a 2-mass ISS flex model, has the

same EOMs as the plant model (equations ( 2-4 ), ( 2-8 ), ( 2-12 ), and ( 2-13 )), but to

allow for variation, the filter model coefficients will be allowed to deviate form the plant

coefficient values. The filter model is signified by the addition of an 'f' at the end of the

coefficient variable names. In addition to modeling the plant within the filter, the rotor and

ISS disturbances also need to be modeled. The process of integrating disturbance models

into the filter model will be explained in Sections 3.1.1 and 3.1.2.

3.1.1 Derivation of Rotor Imbalance Disturbance Forces

The imbalance disturbance forces acting on the rotor have been derived as a function of the

rodent mass, Mat, the transverse and axial rotor inertias, Id, and Ii, the distance of the center

of mass (cm) from the spin axis, E, the spin rate, ol, and the angle between the spin axis

and the vector from the rotor tip to the rotor cm, a.

(•,rl,•) - Rotating Coordinate Frame

a - Phase angle from t axis to the CM
- Angle from ý axis to the CM

e - Distance from the origin to the CM
in the fr- n plane

Figure 3-2. Rotor-Fixed Rotational Reference Frame
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The value for the scalar parameters E and a are used to defined a force vector in a rotor-

fixed, rotating reference frame (rj, ý, ý), then rotated via a coordinate transformation,

equation ( 3-1 ), back into the inertial reference frame (x, y, z).

[x][coso sin 01
yJL-sinO cosOJ][j

(3-1)
where 0 equals akt. The rotor imbalance disturbance equation in the inertial reference

frame is listed below [15].

dxr = MewCos(wrt + fl,) dcr = -(Ig - IP )aW2Sin(69rt +fir)

dyr =Mewr2Sin(wrt +/6r) d r=(Ig - Ip)aXW2COS(Wrt+ fir)

(3-2)
Note that these imbalance disturbance forces and torques found in equation ( 3-2 ), are not

available to the filter as inputs. These disturbances are modeled as second order oscillators

of the form

Zir = Z2r

Z2r (r2ZIr

(3-3)

where the solutions to these differential equations are new states: ZIr and Z2 r

ZIr - Cos((Ort + 8r )

Zzr = -aorSin(wrt +fir)

(3-4)
Equations ( 3-2 ) can be rewritten in terms of these new disturbance states as

dr, = Me, 2 Z, do,, =(Ig -Ip)aWro 2r

dyr = -ME'r ir d =(I - Ip)aW.r2 Z 2r

(3-5)
Substituting these equations back into the equations of motion for the filter model results in

a filter model with a state vector, x, of length 34 and of the form

X=[Z Z]' Z=[Xr X, X. X2 Yr Y, YI Y 2 O •x, 0, 1, %"x2 ,O r Y, YI OY,2 Ziri

,------- ---------- --------------- - ------- ----------------------, 
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3.1.2 ISS Disturbance Modeling

The rotor imbalance disturbance is sinusoidal in nature due to rotor spin, while the ISS

disturbance force is applied on the ISS in the form of jet impulses. The jet impulses result

from the action of the ISS attitude control system [16]. The magnitude of the jet force is a

constant, thus making the frequency of the jet firings and the overall on-time the only

control variables.

3.1.2.1 Sinusoidal Approximation of a Pulse Train

The effect of the ISS pulse train disturbance input on the output of the plant can be

represented by a Fourier series and its related fundamental frequency. A sinusoid of that

fundamental frequency can be used to model the effect of the pulse train in the observer

model. An example is shown in Figure 3-3 where a pulse train input at 0.399 Hz is applied

to the plant, and the output is a sinusoid with a frequency of 0.399 Hz.

Output From Pulse Input PSD of Output from Pulse Input

cds=0"39 9 Hz - _, _.,___

I n n n __ .

Actual Jet Firing Xrel / \
ISS Disturbances ..

PLANT 'n .
Figure 3-3. PSD of Plant Output due to Pulse Train Input is Sinusoidal

----- ----------- -
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If the ISS pulse train disturbance excites the plant at a high gain frequency, then the output

will have a large contribution as a result of the ISS disturbance. However, if the ISS pulse

train disturbance excites the plant at a low gain frequency, then the output will have a small

contribution resulting from the ISS disturbance. Therefore, it is important to determine the

plant peak gain frequencies. These frequencies are determined from the frequency

response plots (see Figure 3-4). These peak frequencies will now be used for ISS

disturbance modeling within the filter. The discussion of the effect of the amplitude

mismatch between the sinusoid and the jet firing will be conducted in Section 3.1.2.4.

Bode Plot: All Direct Transfer Functions
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3.1.2.2 ISS Model 1: 4 ISS Disturbance States

Using the approach discussed in Section 3.1.2.1, an ISS disturbance model can be created

representing the jet firing as a sinusoidal disturbance with single translational and single

rotational disturbance frequency of w1dst and (wdsr, respectively, of the form:

d,, = FXCos(a),,t + fl,) do = -TOSin((od.t+ +y)

dy, = FySin(wd,,t +/6J,) do, =T Cos(wdt + y•,)

(3-6)
The ISS disturbance amplitudes F,, Fy, Tx, and T~y, are the known specifications of the

thrusters located on the ISS. The ISS disturbance forces found in equations ( 3-6 ) are

modeled as second order oscillators of the form

ZIs = Z3s

Z2s = Z4s

23s = -(Lds, 2Z15

4s= -W 4 sr 2Zs

(3-7)

where the solutions to this set of differential equations are the new states: z1,, z14, zý15, and

z2s, where

ZIs = COs(.Odst + B, ) tl,= -wdSin(jd.,,t + B )
Z2. = COS(Wdsrt + Y, ) Z2. = -(odsSin(Wdsrt + Y)

(3-8)
Using equations ( 3-8 ) the ISS disturbance equations can be rewritten in term of the new

ISS disturbance states as

dx, = FxZIs d¢u = T*2s
(A)dsr

dys = YZ, doys = TO Z2s(adst

(3-9)
Equations ( 3-9 ) can be substituted back into the equations of motion for the filter model.

The resulting filter model has a state vector, x, of length 38 of the form
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x = [z Z = [Xr X, X, X2 Yr Y, YI Y2 Ox, O'x, Ox, Ox, Oy, Oy , Oy2 ZIr Z2, Zis Z2,]

This ISS disturbance model will be called "ISS Model 1" for testing purposes.

3.1.2.3 ISS Model 2: 8 ISS Disturbance States

ISS Model 1 is expanded to create a new ISS disturbance model labeled "ISS Model 2",

which contains 8 ISS disturbance states for a total of 12 disturbance state, when including

the rotor disturbance states. ISS Model 2 represents the ISS disturbance as sums of two

sinusoidal disturbances, with two translational and two rotational disturbance frequencies

of Wcdsti, (Odst2, and Wdsri, adsr2, respectively, of the form:

dý. 1 = Fr1 Cos(cqd,,1t + fi, )+ Fr2 COS(oda,2 t + /B.) do'.'1 = -T¢,, Sin(rOdq,,t + Y, )- Tc2Sin((Ljsr2t + Y,)
dyI = FySin(q,,It +8fl,)+ FV2Sin(&2tt +fl.,) do,, = T drJCos(W2\,.rt + y,)+ T 2Cos((o,2t + YI)

(3-10)

The two ISS disturbance amplitudes in each axis are assumed to equal the known

specifications of the thrusters on the ISS (i.e. F, = F, = F. 2, Fy = FyI = Fy2, TO. = To.1 =

To, 2, and Ty = T,0yl = Ty 2). The ISS disturbance forces found in equations ( 3-10 ) are

modeled as second order oscillators of the form

Zls = Z5 s s Z =-(')dstl2 Z1 s

Z2s = Z6  Z6  -- (61dst2 Z 2s

ts=Z 7s Z7s - dvri2 '.3s

z4s = Z8s z4 = -dsr2 2Z 4 ,

(3-11)

where the solutions to this set of differential equations are the new states: z1 ,, z2s , z33,

Z4s, ZI., zI 2, z 3s , and z4 where
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This ISS disturbance model will be called "ISS Modell" for testing purposes. 
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zIs = ( Od, t + fl,8) E; = -- OdtSin( odS,It + fi.;)
Z2.= Cos(todst2 t + A3.;) Z 2, = -ds, 2Sin(°Wd,,2t +fis)

Z3= CosOdsrt + y.;) Z3, = -td,,rl Sin((Od, rt + y., )

Z4= COS(Odsr2 t + '4,) 44 = -(-d.¶r2 SiSn(Wdr 2 t + Y)

(3-12)

The ISS force and torque inputs ( 3-10 ) can be rewritten in terms of the ISS disturbance

states as

axs =FA1 zs + Fx2 Z2s d =r = T*I 3+ 2= - d z, I--ds ,2
F F

dy.;=- ' I Y 2 . d~y; = TyIZ3. +T~y2Z4.

(3-13)

Equations ( 3-13 ) can be substituted back into the equations of motion for the observer

model, increasing the number of states from 34 to 42. The resulting filter has a state

vector, x, of length 42 and is of the form

X = [Z Z]T Z =-[Xr X., XI X 2 Y, Y., YI Y 2 Ox, 0., ,x2 Oy •y , Oy, 2 ZIr Z2r Zhs Z2 s Z Z 4 ]J

3.1.2.4 PSD Difference between Sinusoid and Pulse Train

It is important to note that there is a power spectral density (PSD) difference in plant

measurements (outputs) between a sinusoid disturbance and a pulse train disturbance; a

sinusoidal disturbance of the same frequency as the pulse train with a small on-time creates

an output with a higher PSD. The Kalman Filter determines the amplitude of the modeled

disturbance sinusoid in order to get an equivalent sinusoid which would have created the

same output as that from the pulse train input. Therefore, it is necessary to take into

consideration the difference in the PSD during ISS disturbance state comparisons. Figure

3-5 illustrates the difference in the PSD of plant outputs when excited by a sinusoidal force

Zi s = Cos(mdsrlt + fls) Zis = -mdsrISin(mdsr lt + flJ 
Z2s = Cos(mdsr2t + flJ Z2s = -mdsr2 Sin(mdsr2t + fls) 

Z3s = Cos(mdsrl + Ys) Z3s = -mdsrISin(mdsrl + yJ 
Z4s = Cos(mdsr2t + Ys) Z4S = -mdsr2 Sin(md.~r2 t + Ys) 
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and a pulse train input force. The pulse on-time, defined as the duration per cycle for

which the value is not equal to zero, is 20% of the period, and the frequencies of the

sinusoid and the pulse train are the same.

oe •. Output From Sine Input .. . PSD of Output rm Sinet [opt
Modeled Sinusoidal Output From Pe Input PS) of Output frum Pulse Input
ISS Disturbamnces Pao P55 .1 C5

ds=0.399 Hz X , ni:

Actual Jet Firing
ISS DishurbacerPANm

Figure 3-5. Output PSD Differential Between and Sine and Pulse Train Inputs

The power spectrum is generated by using a Fourier transform and taking the square of the

magnitudes of the complex coefficients [17]. Therefore, the effect of using a pulse train

rather than a sign wave can be calculated as:

PSD Ratio- pus

(3-14)

where P is the PSD due to the sine input at the excitation frequency (0.399 Hz in the

example) and Ppuie, is the PSD due to the pulse train input at the same excitation frequency.

For the example presented in Figure 3-5, the PSD ratio equals:

PSD Ratio -jppse V2.6435* 1 0-
PS Ratio- 1.7073 * 10-3

This result can be interpreted as the factor by which the original sinusoidal input amplitude

would need to be multiplied by in order to get the equivalent plant output with a pulse train
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The power spectrum is generated by using a Fourier transfonn and taking the square of the 

magnitudes of the complex coefficients [17]. Therefore, the effect of using a pulse train 

rather than a sign wave can be calculated as: 

PSD R · JP;::: 
atLO = ~. 

'" ~ine 
(3-14 ) 

where Psine is the PSD due to the sine input at the excitation frequency (0.399 Hz in the 

example) and Ppul e is the PSD due to the pulse train input at the same excitation frequency. 

For the example presented in Figure 3-5, the PSD ratio equals: 
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This result can be interpreted as the factor by which the original sinusoidal input amplitude 
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input. By multiplying the original sinusoid by 0.3935, it can be shown that the PSD of the

output is now exactly the same.

S- PSD of Output from Sloe Input

Modeled Sinusoidal PSD - . . Output Fron Sine Input PSD Of Output from Pul Input

ISS Disturbances Ratio Output Pr puler Input

[IV v ,.I
odas=0.399 Hz J x,

Actual Jet Firing --

1sS Disturbances PLANT I-_...........________....

Figure 3-6. Output PSD Results of Amplitude Ratio Sine and Pulse Train Inputs

Since the ISS disturbance frequency could be any value between 0.01 Hz to 1 Hz, the

entire range of frequencies was scanned to determine the actual equivalent disturbance PSD

ratio for all ISS disturbance inputs.
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input. By multiplying the original sinusoid by 0.3935, it can be shown that the PSD of the 
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The average PSD ratio over the range of possible ISS frequencies is equal to -0.3933 for

each disturbance input. Therefore, when comparing the disturbance state estimate to the

actual disturbance state, the PSD ratio will have to be factored into the actual disturbance

state amplitude. This is helpful in determining estimation performance.

3.2 Observability

Observability of the system is necessary in determining the viability of the Kalman filter as

a solution method. The available methods used for determining plant observability include

the well known Popov-Belevith-Hautus (PBH) Criterion [18]-[20] as well as a modal

criterion for observability [21]. Both methods will be examined, but due to problems with

ill-conditioning, the modal criterion for observability will be used to determine

observability of the plant and filter models under time invariant conditions. A time varying

observability test will be used to determine observability during operations such as rotor

spin-up or spin-down and ISS maneuvering.
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3.2.1 PBH Criterion for Observability

Consider a continuous time system described by

i = Ax+Bu
(3-15)

y =Cx+Du

(3-16)

where x = state vector (n - vector)

y = output vector (m - vector)

A = System Dynamics (n x n matrix)

B = Input Matrix (n x r matrix)

C = Output Matrix (m x n matrix)

D = Direct Transmission Matrix (m x r matrix)

The solution to equation ( 3-15 ) is

t

x(t) = eAtx(O)+ JeA~t-)Bu(r)dr
0

(3-17)

and y(t) is
I

y(t)= Ce Ax(O)+Ce A(tr)Bu(r)dr+ Du
0

(3-18)

Since the matrices A, B, C, and D are known and u(t) is also known, then the last two terms

on the right half side of equation ( 3-18 ) are known quantities. Therefore, they can be
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subtracted from the observed value of y(t), and it is sufficient to consider the unforced

system described by

k = Ax
(3-19)

y=Cx

(3-20)

Referring back to equations ( 3-17 ) and ( 3-18)

n-I

x(t)= eAIx(O) = -ak(t)A x(O)
k=0

(3-21)

and y(t) is

n-I

y(t) = CeA, x(O) = •a•k (t)CAk x(O)
k--O

(3-22)

For the system to be observable, given the output y(t) over a time interval 0 < t < ti, x(0) is

uniquely determined from equation ( 3-22 ). It has been shown that for this to occur, the

rank of the Observability matrix, 0, of size (n x nm) must be full (i.e rank(O) = n). This is

the so called PBH criterion for observability [18][191.

O=[C CA ... CA
(3-23)

The problems with using the PBH criterion occur if some eigenvalues of A are greater than

one while others are less than 1. Since the observability matrix, equation ( 3-23 ), requires

An', then if the number of state, n, is large, then the observability matrix will become

numerically ill-conditioned. The singular values less than 1 will trend towards zero while
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the singular values greater than 1 become large and the value of n increases. Since the rank

test is determined by the number of singular values above a certain tolerance (10"16 for

Matlab rank command), as n approaches 32, the number of singular values which fall

below the tolerance increases. Since the observability matrix requires An- (A31 when using

the plant dynamics), the rank of the observability matrix, is only 11; a rank of 32 is

required for full rank.

The condition number, which is used to measure the level of ill-conditioning, is defined as

the ratio of the maximum singular value to the minimum singular value. The larger the

condition number, the more ill-conditioned the problem becomes. The observability matrix

has a condition number of 3.432 x 102'. This shows that with the parameters chosen for

the example, a severe problem of ill-conditioning does exists. Therefore, an alternate

method is needed to determine observability. The modal criterion for observability

eliminates the need to compute high powers of the system dynamics.

3.2.2 Modal Criterion for Observability

The modal criterion for observability is described by Ogata [21]. Consider a system

described by equations ( 3-19 ) and ( 3-20 ). Also suppose that the A matrix is

diagonalizable with the use of a transformation matrix, T, such that

V-AT=A
(3-24)

where A is a diagonal matrix. Let us define

x =Tz
(3-25)
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where z is the transformed state. In terms of the new transformed states, equations ( 3-19)

and ( 3-20 ) become

S= T 'ATz =Akz
(3-26)

y = CTz
(3-27)

Using equations (3-21) and ( 3-22)

y(t) = CTe Atz(0)

(3-28)

or

Yk (t) = k(c'T1 ) etz, (0)
i=l

(3-29)

where n equals the number of states, cT denotes the kth row in the C matrix, and Xi denotes

the ith eigenvalue. If cT T =0 then the ith mode is unobservable in the kth output. If

CTi = 0 then the ith mode is unobservable from all outputs.

In other words, the system is observable if none of the columns of the m x n matrix CT

consist of all zero elements. This is easy to see, since with the decoupled dynamics, if the

ith column is found to be all zeros, then the corresponding state zi(0) will not be a part of the

output equation.

If the system includes complex conjugate eigenvalues, then a modal A matrix can be

created where the real eigenvalues appear on the diagonal of the matrix and the complex

40 

where z is the transformed state. In terms of the new transformed states, equations ( 3-19 ) 

and (3-20) become 

(3-26 ) 

y=CTz 
(3-27 ) 

Using equations ( 3-21 ) and ( 3-22 ) 

(3-28 ) 

or 

Y k (t) = I (c ; Tj) e Ait Zj (0) 
j= 1 

(3-29 ) 

where n equals the number of states, c ; denotes the kth row in the C matrix , and Ai denotes 

the ilh eigenvalue. If c; Tj = 0 then the ilh mode is unobservable in the klh output. If 

CTj = 0 then the ith mode is unobservable from all outputs. 

In other words, the system is observable if none of the columns of the m x n matrix CT 

consist of all zero elements. This is easy to see, since with the decoupled dynamics, if the 

ith column is found to be all zeros, then the corresponding state Zi(O) will not be a part of the 

output equation. 

If the system includes complex conjugate eigenvalues, then a modal A matrix can be 

created where the real eigenvalues appear on the diagonal of the matrix and the complex 



41

conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of the modal A matrix. For

example, a system with eigenvalues (0l, X3, ,) the modal A matrix is of the form

- 0 0ro 0
A=0 o 0

-0 0 0 2

(3-30)

where a = Re(, 2) and W = Im(, 2).

To test observability for complex conjugate eigenvalues, both the real and imaginary dot

products must be zero for that mode to be unobservable. In this case, columns of all zeros

in the CT matrix would come as single columns for real eigenvalues and as adjoining

columns for complex conjugate pairs.

The modal condition for complete observability is also useful because using the inverse of

the transform makes it possible to determine the combination of original states which cause

the transformed state to be unobservable.

z=T' x

(3-31)

After determining which z states are unobservable by using the CT matrix, it is possible to

determine the combination of x states which make up those unobservable z states by

looking at the corresponding rows in the T- matrix.
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3.2.3 Time Invariant Observability Test for Time Varying Dynamics

It is important to check observability of both the plant dynamics and the filter dynamics. If

the plant is not observable, then the filter will be unable to produce accurate estimates of

the plant states, even if the filter model is observable. On the other hand, if the filter model

is not observable, then even if the plant is observable, the filter will be unable to produce

accurate estimates. Therefore it is important to check the observability of both plant and

filter models. Testing could require any combination of the time varying parameters (rotor

spin rate and ISS disturbance frequencies) to be held as a constant value. Therefore, some

assurance of observability is required over all possible combinations of time varying

parameters.

3.2.3.1 Observability of Plant Model

The time varying components of the plant dynamics are simply functions of the rotor spin

rate. In order to test the observability for all spin rates the modal observability test was

performed on the plant dynamics with spin rates from 0.001 to 1 Hz, with a frequency step

size of 0.001 Hz. If any of the columns of the CT matrix are all zeros (or less than a

tolerance of 10-) then the system is considered unobservable. A observability plot (Figure

3-8), where I means that the system is observable at the given spin frequency, shows that

the plant is observable for the entire range of spin rates.
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3.2.3.20Observability of Filter Model

The time varying components of the filter dynamics are simply functions of the rotor spin

rate and the ISS disturbance frequencies. ISS disturbance frequencies were assumed to

have a range of 0 to 1.2 Hz and were discritized with a frequency step size of 0.001 Hz. In

order to test the observability of the filter model, the modal observability test was

computed using the filter dynamics for every possible combination of time varying terms

(i.e. each disturbance frequency was tested for a given spin frequency). If any of the

columns of the CT matrix were all zeros (or less than a tolerance of 10-) then the system

would be considered unobservable. Figure 3-9 below shows that filter dynamics are

unobservable only during extremely low spin frequencies (below 0.015 Hz). This is not of

concern for two main reasons: 1) At such a low spin frequency, the rotor imbalance force

will be negligible and 2) Since the rotor spins up from 0 to 0.7 Hz, the spin frequency will
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3.2.3.2 Observability of Filter Model 
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The time varying components of the filter dynamics are simply functions of the rotor pin 

rate and the ISS disturbance frequencies, ISS disturbance frequencie were as umed to 

have a range of 0 to 1.2 Hz and were discritized with a frequency step size of 0.001 Hz. In 

order to test the observability of the filter model, the modal ob ervability test wa 

computed using the filter dynamics for every possible combination of time varying terms 

(i.e. each disturbance frequency was tested for a given spin frequency) . If any of the 

columns of the CT matrix were all zeros (or less than a tolerance of 10.5 ) then the y tern 

would be considered unobservable. Figure 3-9 below shows that filter dynamics are 

unobservable only during extremely low spin frequencies (below 0.015 Hz), This is not of 

concern for two main reasons: 1) At such a low spin frequency, the rotor imbalance force 

will be negligible and 2) Since the rotor spins up from 0 to 0,7 Hz, the spin frequency will 
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be under 0.015 Hz for less than 7 seconds, assuming a 300 second ramp up period,

therefore the system will only be unobservable for a very short duration (see Figure 3-9).
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Figure 3-9. Observability Test for All Time-Varying Dynamics Combinations

3.2.3.3 Example of Fully Observable Filter Model

The following are the results of the modal observability test for a fully observable case (wr

= 0.7 Hz and all Wds = 0.4 Hz). The I-norm of each column of the CT matrix was taken to

simplify data interpretation.
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3.2.3.3 Example of Fully Observable Filter Model 

The following are the results of the modal observability test for a fully observable case (wr 

= 0.7 Hz and all Wd = 0.4 Hz). The I-norm of each column of the CT matrix was taken to 

simplify data interpretation. 



45

1 2 3 4 5 6 7 a 9- 10
EIgenvalues of -416+ -0.11662- -073389. -0-0730w- -0 1 + 01606- -7.927e-+ -73227e- - -2,37-5. -2.3730-5.

A matrix 10.424 1424i 103171 10 31'A 7 60M 7. 6 &262 652621 4 9WN 4.963

Norm of I
Columns of CT 0.09186 0.09210 0.07381 0.07412 0.08462 0.08461 0.00184 0.01591 0.01150 0.02006
(wlTolrance)

11 12 13 14 15 16 17 18 19 20
Elgenvalues of -. 0014442 +-0.0014442 - 40B67 + -0.062997 - -0683107+ -0.063107 - -0.00266490 -0.0062W69- -1,877e-5+ .1 877.-5 .

A matrix 14371U 1.3615 3.5891 3 .59 3.30431 086 31 .3 0714 075478 25 2ý 05 3.76725 3.77251

Colurm of .41044
Columns of CT 0.0378 0.15 0.03083 0.31019 0.04175 0.29051 0.00119 0.08.04

wITolerance . . ,

SElgenvallues of -- ~s+ -~438 o04W o04M 00064+-.015a 00W + -,3 S 0032 032

A matrix 111 109 .9,1 1311 O39 .8 .85i 0714 ,631 0 W 8
JNorm of

JColumns of CT 04720471 .2903M 044001480733138 .I .14

tNorm of
[Columns of CT M7100950007OO0 .75 .51 .01 .01

3.234Exa mple ofU osraleFleIoe

Table 3-o l - Norm of the Columns of the Modal Observability Matrix (CT)
for a Fully Observable Case

Any number in the CT matrix that is less than a tolerance value of 10n. was set to zero. The

I-norm of the rows of the CT matrix, shown in Table 3-1, contains no zero values and is

therefore fully observable.

3.2.3.4 Example of Unobservable Filter Model

The following are the results of the modal observability test for an unobservable case (0),

0.01 Hz and all owds = 0.7 Hz). Similar to the observable test case, the 1-norm of each

column of the CT matrix was taken to simplify data interpretation.

1 2 3 4 5 6 7 8 9 
Eigenvalues of .() 11682+ -0.11682- .() 073389 + '()073389 - .() 18089 + .() 18089 - -7 3227e-5 + -73227905 - -2.34739-5 + 

A matrix 104241 10.4241 103171 10 3171 760691 7.6069i 652621 652621 496631 

Norm of 
Columns of CT 0.09188 0.09210 0.07381 0.07412 0.08462 0.08461 0.00184 0.01591 0.01150 
IwlTolerancel 

11 12 13 14 15 16 17 18 19 
Eigenvalues of .() 0014442 + -00014442 - '()062997 + ·0062997 - .() 063107 + .() 063107 - -00026649 + -00026649 - -1877905 + 

A matrix 43275i 43275i 35895i 35895i 354780 354781 250591 250591 37725i 

Norm of 
Columns of CT 0.01318 0.19392 0.03083 0.31019 0.04175 0.29286 0.04339 0.37691 0.00210 
(wlTolerance) 

21 22 23 24 25 26 27 28 29 
Eigenvalues of .().043358 + '()043358 - '()0046068+ -00046068 - -0 00016548 + '()00016548 - '()036858 + -0036858 - .() 033128 + 

A matrix 1 8191 1.6191 1.39131 139131 0389280 o 38928i 078154. 0781541 078038. 

Norm of 
Columns of CT 0.40752 0.40720 0.42679 0.37970 0.44470 0.19488 0.71313 0.37802 0.76313 
(wlTolerance) 

31 32 33 34 35 36 37 38 
Eigenvalues of .() 0012268 + .() 0012268 - 555119017 + 555119017 - 707779016 + 707779016 -

0+ 4 3962. 0 - 4.3982. 
A matrix 0634960 o 63496t 3.76991 376990 o 6346i o 6346i 

Norm of 
Columns of CT 0.50741 0.07915 0.00007 0.00003 0.37055 0.05411 0.00119 0.00118 
(wlTolerance) 

Table 3-1. 1- Norm of the Columns of the Modal Observability Matrix (CT) 
for a Fully Observable Case 
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-23473e·5 -
49663i 

0.02006 

20 
-1 877e-5 -

37725i 

0.00364 

30 
-0033128 • 

o 76038i 

0.41044 

Any number in the CT matrix that is less than a to lerance value of 10-5 wa set to zero_ The 

I-norm of the rows of the ~T matrix, shown in Table 3-1, contain no zero value and is 

therefore fully observable. 

3.2.3.4 Example of Unobservable Filter Model 

The following are the results of the modal observability test for an unobservable case (wr = 

0.01 Hz and all Wds = 0.7 Hz). Similar to the observable test case, the I-norm of each 

column of the CT matrix was taken to simplify data interpretation. 
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1 12 3 4 L 5 a 7 a 9 10
Elprivaues. of A[ -mowts -OuuW J -OO -0.09 - -739-0 -7,386-M -&3I 0 +~9S -3301 5 -~ 44914+ 4490*4*

fmtrx 10,3~30 10!2-in ob.U5 10.335 O.Sm 6.6m 4.96M 4.98 4.2MI 43U&-°T'1 - I . " II
of CT 0.06352 0.087S6 0.06335 0.08746 0.00076 0.01465 0.00364 0.04355 0.01654 0.18603

w/Tolerance)

11_ _ 12 I 13 I 14 1 15 16 17 is 19 20
Eiganvaluesof A -o.=1 3, -0.00213- .0.0977+ -0.06W - -049.O .W 4 .0.283.629 -02-b 4W 00W 0

of CT 0.01778 0.35617 0.13410 0.22749 0.10347 0.24106 0.10366 0.24204 0.05677 0.2626Nor of Cotmn 0.10[ I
21 22 23 24 25 26 27 2•2 29 ! 30

Elgenvalues of A* -oooa÷17+ -0000217 - 207*4G6. + .07.06- -0.01 40061- I4664 + -0,0354 I -0.00014+ 3 I o014*
matrix I 1I.41J121 1 a772N•[ 7721 5 0j !7 0 o.7 I 1 0 I . !±L. .0
of CT 0.01993 0.07976 0.01219 0.01677 0.73706 0.00972 0.75301 0.01160 0.40435 0.00666

__ _ 31 I32 33134135136 -37 1 36
Elgenvalues of AI 41 +001 -0 6I ,-64"17. 0,24017. 2A4.416. • 21•0 I 4016 1.316 + 1.3I51- I

matrix I0.03501 0.66661 370M 3• 6 • 0.0!8=i 34620m1 0i 0,6346 I

of CT 0.450 0.03761 0.000320.00024 0 0 0.3344W o.03
(wToranoo)I I I I I I I

Table 3-2. Modal 1- Norm of the Columns of the Modal Observability Matrix
(CT) for an Unobservable Case

Also, the same 10' tolerance was used in order to determine zero values. The table

including the 1-norm of the columns of the CT matrix, shown in Table 3-2, does contain

values of zero. Therefore, zero column vectors exist in the CT matrix, resulting in

transformed states 37 through 40 being unobservable. Equation ( 3-31 ) is used to solve for

the x state combinations which result in the unobservable transformed states. The rows of

the T- matrix which account for the unobservable transformed states can be found in Table

3-3 below. The x state combinations which make up the z states can be calculated using

Table 3-3.

46 

1 2 3 4 5 6 7 6 9 10 
Eigenvalues of A ·00805 -+ -0,0805 - -0.0801 .. -0,0801 - -7:J8e.005 -+ -7,38e-005 - -3 33e-005 + -3 33e-005 - -0001419 + -0001'9 -

matrix 10336i 103361 103351 103351 85282; 652821 • 9863l ' ,9863l • . 3278i • 32781 

Norm of Columns 
of CT 0_06352 0.08756 0_06335 0_08746 0_00076 0_01465 0_00364 0_04355 0_01654 0_18903 

(wlTolerance\ 

11 12 13 14 15 16 17 18 19 20 
Eigenvalues of A .000213 + -000213 - -GCXJn + -ooon - -00663 + -0 oe63 -

-0,128 + 3 60291 -0128 - 3 80291 
-00906 + -0 0II0e -

matrix 250511 250511 3.37921 3 .37921 3 .. 231 3 ,0023/ 382351 382351 

Norm of Columns 
of CT 0.01n8 0.35617 0.13410 0.22749 0.10347 0.24106 0.10366 0.24204 0.056n 0.26287 

(wlTolerance\ 

21 22 23 24 25 26 27 28 29 30 
Eigenvalues of A -0000217 + -0000217 - -2 07e-005 + -207.005 - 4),0351 + -00351 - -OO36C + -00364 - -0,0001. + -0,0001' -

matrix 1.411121 141121 3,n251 3 .7725i o 7688i 0 .7_ 0,780161 0,780181 0,_1 0_ 

Norm of Columns 
of CT 0.01993 0.07976 0.01219 0.016n 0.73708 0.00912 0.15301 0.01150 0.40435 0.00686 

(wlTolerance\ 

31 32 33 34 35 36 37 38 
Eigenvalues of A -00011 -+ -0,0011 - 62 .... 017 + 62"017 - 2 .. .016+ 2,".018 - 1 JlIe.018 + 1_018 -

matrix 0 .635061 0835061 3,78991 378991 0,0828321 0,0828321 0,830&81 0830&81 

Norm of Columns 
of CT 0.45802 0.03761 0.00032 

{wlTolerancel 
0.00024 0 0 0.33446 0.04833 

Table 3-2. Modal 1- Norm of the Columns of the Modal Observability Matrix 
(CT) for an Unobservable Case 

Also, the same 10-5 tolerance was used in order to determine zero values. The table 

including the I-nonn of the columns of the CT matrix, shown in Table 3-2, does contain 

values of zero. Therefore, zero column vectors exist in the CT matrix, resulting in 

transfonned states 37 through 40 being unobservable. Equation (3-31 ) is used to solve for 

the x state combinations which result in the unobservable transfonned states. The rows of 

the TI matrix which account for the unobservable transfonned states can be found in Table 

3-3 below. The x state combinations which make up the z states can be calculated using 

Table 3-3. 
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x states 17 x states 36 x states
0 1-16 Zir 18-35 37,38

001.002 0
0 0 0 15.947

Table 3-3. Rows of the T"1 Matrix which Account For Unobservable Z States

Therefore,

z 35 = 1.002Zr

Z36 = 15"947Zlr

This shows that none of the rotor disturbance states can be observed at low spin rates. This

finding is reasonable because since the rotor disturbance amplitude is a function of the

square of the spin rate, a•, a small spin rate would equal a very small disturbance

amplitude; essentially, there is nothing to be observed.

I Q) 
x states 17 x states 36 x states -co - 18-35 • 37,38 In 1-16 Z1r Z1r >< 

Q) Z35 0 
1.002 0 0 0 -co --In 

Z36 0 15.947 N 

Table 3-3. Rows of the T"l Matrix which Account For Unobservable Z States 

Therefore, 

Z35 = 1.002zlr 

Z 36 = 15.947 Zir 
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amplitude; essentially, there is nothing to be observed. 
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3.2.4 Time Variant Observability Test

Under conditions of spin-up or ISS maneuvering, the time invariant observability test is not

sufficient in determining observability. An observability test is required which takes into

account the time-varying system dynamics. Gelb discusses observability under the

assumption of a time-invariant system [23], however, his approach applies to time-varying

systems as well. Consider the discrete system

i=Ax, x(t 0 )=xo
(3-32)

y=Cx
(3-33)

The solution to ( 3-32 ) is

x(t) = 4)(t, t0 ) x0

(3-34)

where (D(t, to) is the solution to the matrix differential equation

d (((t, to))= a(t)(D(t, to)

dt
(3-35)

where

42(to,t 0 ) = I
(3-36)
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Using equations ( 3-33 ) and ( 3-35)

y(to)= C(to)et(toto)Xo = C(to)Xo

y(tr ) = C(t, )4(t, to0 )xo

y0 2 ) = C(t2 )4D(t 2 ,to )Xo

y(t- 1 ) = C(t n- )4(tn'.,to )xo

(3-37)
or

y(t°1  C(t°______ to) x
y(t n-I) LC(t 2)4)(t n.-Ito)

Z: noem x n

(3-38)

where n is the number of states and m is the number of measurements. The condition for

which xo is observable for the measurement times to, t1, ", tn-1 is that

rank(Z) = n
(3-39)

Matlab and Simulink can be used to numerically calculate D(t, to), using the following

algorithm

dt %I
E-- (it).tl-> S. •(tot(t.,,to)

LC. t2

Product AM

A(t)(D(tto) tn-I

Figure 3-10. Numerical Solution for c1(t,to)

Using equations ( 3-33 ) and ( 3-35 ) 

or 

y(to) = C(to )<I>( to' to) x 0 = C(to)x 0 

y(t,) = C(t, )<I>(t" to )x o 

y(t2)= C(tJ<I>(t 2 , t O)X O 
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where n is the number of states and m is the number of measurements. The condition for 

which Xo is observable for the measurement times to, t(, .. . , tn-I is that 

rank(Z) = n 

(3-39 ) 

Matlab and Simulink can be used to numerically calculate <D(t, to)' using the fo llowing 

algorithm 

s 
I. e. 

....... _....j Product 
A(t)<I>(t;,to) L-__ ~---

... --"'"i)~ <1>(to,to) 

<1>(t" to) 

Figure 3-10. Numerical Solution for <I>(t,1o) 
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where A(t) is the time varying dynamics and the D matrices are captured at each time step,

i. Using the algorithm described in Figure 3-10 and equation ( 3-38 ), the plant, the filter

using ISS Model 1, and the filter using ISS Model 2 are all full rank and therefore

conditionally observable.

3.3 Introduction to Optimal Linear Filtering

Now that it has been proven that the system is observable, a filter can be used to estimate

the necessary rotor states. The term filter refers to the estimation of state at the present

moment using previous measurements. An unbiased estimate is one whose expected value

is the same as the expected value of the quantity being estimated. A minimum variance

estimate has the property that its error variance is less than or equal to that of any other

unbiased estimate. A consistent estimate is one which converges to the true value as the

number of measurement increase. By these definitions provided by Gelb [23], we are

looking for an unbiased, minimum variance, consistent filter.

When a controller requires state feedback, but the available measurements do not include

all necessary states, there must be a method of estimating the missing states that contains

minimal error. This requires the following [24]:

"* The ability to define a state-estimate error metric to be minimized in estimation

"* A knowledge of measurement error statistics, dynamic system models, and system

input statistics

"* Algorithms for using this information to compute minimum-error state estimates

The Kalman Filter is one such suitable algorithm for state estimation.
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3.4 Advanced Optimal Linear Filtering: The Kalman Filter

In 1960, R. E. Kalman published his paper entitled, "A New Approach to Linear Filtering

and Prediction Problems," describing the use of a recursive filter to solve the Weiner

problem for gauss-markov sequences through the use of state-space representation from the

viewpoint of conditional distributions and expectations [25]. The Kalman filter is powerful

because it not only supports estimation of the past, present, and future, but can do so even

if the modeled system is not known precisely. The following concise derivation is from

Welch and Bishop [26].

A discrete time process, with a state vector x ( 91' is governed by the following linear

stochastic difference equation

Xk =Ak-lxk_1 +Buk_1 +Wk-1

(3-40)

with a measurement output vector z E 9m

Zk =Cxk +vk

(3-41)

where Wk and Vk are process noise and measurement noise, respectively. These noise terms

are assumed to be white noise, having a Gaussian distribution with a mean of zero and a

covariance of Q and R, where Q is the process noise covariance and R is the measurement

noise covariance.

p(w) - N(0,Q)
p(v) - N(O,R)

(3-42)
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p(v) - N(O,R) 

(3-42 ) 



52

The A, B, and C matrices from equations ( 3-40 ) and ( 3-41 ) are standard discrete-time

state space matrices, with the following dimensions: AE 9in", Be 91"Xr, CE 91'. The

input vector has the dimension u e 91.

Given that

Xk- a priori state estimate at time step k, given knowledge of the
process prior to step k

xk =a posteriori state estimate at step k given measurement Zk

where the a priori, ek-, and a posteriori, ek, state estimate errors are

ek =Xk -Xk

ek = Xk - Xk

(3-43)

Therefore the a priori estimate error covariance, Pk-, and the a posteriori estimate error

covariance, Pk, are

Pk = E[ekeklT Pk = E[ekekT]

(3-44)

Also, the Kalman filter works in such a way that it sets the estimated state's value at the

expected value of the actual state.

xk =E[xk]

(3-45)

Therefore, it is important to point out that the Kalman filter maintains the first two

moments of the state distribution found in equation ( 3-44 ) and equation ( 3-45 ) above.

Because of this, the a posteriori state estimate, ' k, reflects the mean of the state distribution

and the a posteriori estimate error covariance reflects the variance of the state distribution
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[23]. In other words, the conditional probability density function of Xk, conditioned on a

value of Zk, is defined as

p(xk I Zk) N(E[Xk] ^IX ,,)(k- kv

= N(ik,Pk)

(3-46)

To derive the Kalman filter equations we begin with the goal of finding an equation that

computes Xk as a linear combination of x and a weighted difference between the actual

measurement, Zk, and a measurement prediction Ci.

Rk = k+ Kk (Zk - C' k

(3-47)

where the term multiplied by the gain, Kk, is the measurement residual. If the measurement

residual is equal to zero (the difference between estimated output and actual output is zero)

then the a priori state estimate does not need to be altered before it becomes the state

estimate at time step k. The n x m matrix Kk, called the Kalman Gain, is used to minimize

the a posteriori error covariance, Pk, found in equation ( 3-44 ).

Given equation ( 3-43 ) and by using equation ( 3-47 ) you get

ek = Xk -xk-Kk(Zk -CkXk)

(3-48)

Substituting equation (3-48 ) into equation ( 3-44 ) you get

Pk = E[t(Xk -iX -Kk(Zk -Ckik)'xk -ik -Kk(Zk CkXk))]

(3-49)
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After performing the indicated expectation, then taking the derivative of the sum of the

diagonal terms of the result with respect to k, and setting that result equal to zero, the

equation can be solved for the Kalman Gain.

Kk Pk (Ck k +R)'

(3-50)

A more rigorous derivation of the Kalman gain is provided by Gelb [23] and by Mangoubi

[22] and follows below. Gelb begins with the following assumed form of a linear,

recursive estimator

ik =K'kXk+ Kkzk

(3-51)

where Kk and Kk are time-varying weighting matrices to be defined later.

Given that

k =xk +ek

Xk = Xk +ek

(3-52)

by substituting equations ( 3-41 ) and ( 3-52 ) into equation ( 3-51) results in the following

definition for a posteriori error at time step k.

ek =[Kk +KkCk -I]xk +K'kek +Kkvk

(3-53)

Since Vk is defined as white noise with a mean of zero, the expectation of Vk = 0. Then, if

the expectation of the a priori estimation error equals zero (E[ek-] = 0) then the estimator is

unbiased (i.e. E[ekl = 0) for any state vector if the bracketed terms in equation ( 3-53 ) are

equal to zero. Therefore
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[K.k +KkCk 1-]=0

(3-54)

and Kk must be defined as

Kk =I-KkCk

(3-55)

Rearranging the terms in equation ( 3-52 ) and substituting them into equation ( 3-53 )

results in

Xk - Xk =[I-KkCk + KkCk + I]Xk +[I-KkCk Y('k -Xk)+KkVk

Xk =[I-KkCk](Xk -Xk)+ KkVk + Xk

-[I-- KkCk]k -[I-KkCk]Xk +KkVk + Xk

=[I-KkCkIXk -- Xk + KkCkxk +Kkvk +Xk

[IX- KkCk]k + Kk[CkXk + Vk

(3-56)

By substituting equation (3-41) into equation ( 3-56 ) the state update is obtained.

xk =[I-KkCk I' +Kkzk

or

XkXk + Kk[Zk "Ckxk]

(3-57)

Using equation ( 3-41), (3-52), and ( 3-57 ) the error dynamics are

ek =[I-KkCk]ek +Kkvk

(3-58)

This equation for ek is used in order to update the error covariance Pk defined in equation

(3-44).
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Pk = E[((I - KkCk)ek + Kk Vk )((I - KkCk)ek + Kk vk )

(3-59)

Expansion of this equation leads to

T )T -VT T
Pk= E[(I - KkCk )eke- (I - KkCk + (I- KkCk )ekVk k

+Kkvkek (I-KkCk) +KkVkVTKT]

(3-60)

By definition

EtekekT] =P

(3-61)

and

E[vkvT] = Rk

(3-62)

Since measurement errors are uncorrelated

E[ekVT] =Evke[ ]=0

(3-63)

By substituting equations ( 3-61 ), (3-62 ), and ( 3-63 ) into equation ( 3-60 ) the error

covariance update is

= (I-KkCkK( -KkCk) +KkRkKk

(3-64)

The selection of Kk is used to minimize the weighted sum of the diagonal elements of this

error covariance matrix. Therefore, the cost function is

Jk = EteTSek]

(3-65)
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where S is any positive semidefinite matrix (i.e. I). Hence the cost function is just the trace

of the error covariance matrix, which would be the same as minimizing the length of the

estimation error vector.

Jk =trace[Pk]

(3-66)

To determine the value of Kk that provides a minimum, it is necessary to create the

Jacobian of the cost function with respect to the gain and set it equal to zero. Since it is

known that [23]

•A[trace(ABAT)] = 2AB

(3-67)

then

-2(-KkCk)PCk+2KkRk

(3-68)

Solving for Kk results in

K k -CT -CT ]-

Kk kPC[CkP Ck +Rk

(3-69)

Gelb notes that the value of Kk calculated by using this equation is optimal and can be

proven so through the examination of the Hessian of the cost function (i.e. Hessian of Jk is

positive semidefinite).

(3-70)
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Using equation ( 3-69 ) and equation ( 3-64 ), the optimized value of the estimation error

covariance matrix is calculated as

pk=pk- -P~k[Ck PkC +Rk]-'CkPk

=[I-KkCkIPk

(3-71)

The state estimation and error covariance are extrapolated from one time step to another by

ik = Ak-I~k-1

P; = Ak-IPk.- AT- +Qk-.

(3-72)

It is helpful to see the discrete time Kalman filter variables in a graphical timing diagram.

This helps to visually understand the steps needed in Kalman filtering.

Ck-1, Rk-1  Ck, Rk

Xk-1 Xk-1 Xk Xk

Ak-1, Qk-1 Ak, Qk

Pk1 Pk-1 Pk Pk

tk-1 tk

Figure 3-11. Discrete Kalman Filter Timing Diagram [23]
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A summary of the discrete time Kalman Filter Equations can be found below.

Kalman Filter Equations

System Model Xk =Ak-lXk- 1 +Wk-1, Wk-1 ~ N(O,Qk)

Measurement Model Zk CkXk + Vk, Vk - N(O,Rk)

Initial Conditions E[x(O)] = x0,, EI(x(o) - i0 Xx(O) - 0 )T] P.

Other Assumptions E[wk vTl]=O for all j,k

i State Estimation Extrapolation Xk = Ak-IXk-I + Wk_1

e Error Covariance Extrapolation Pk = Ak-Iek-IAkTI + Qk-I

KalmanGainMatrix Kk =PkC[k pkC +Rj

S• State Esitmate Update Xk =ik+Kk[Zk-Ck k]

Error Covariance Update Pk= [I - KkCkk

Table 3-4. Summary of Discrete Kalman Filter Equations [23]

As Welsh and Bishop [26] describe it, the Kalman filter estimates a process by using a

form of feedback control; the filter estimates the process state at some time and then

obtains feedback in the form of noisy measurements. Therefore, the Kalman filter

equations can be dividend into a two stage algorithm, a time update group and a

measurement update group. The time update portion involves the forward projection of the

current state and error covariance estimates to gain the a priori estimates needed for the

measurement update. In the measurement update, the so called feedback occurs allowing

for changes based on the new measurements. This new knowledge improves upon the a

priori estimates and forms the improved a posteriori estimates.
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Welsh and Bishop [26] liken this algorithm to a predictor (time update) corrector

(measurement update) algorithm. Gelb has also named the two stages of the Kalman filter

algorithm in a similar fashion as the extrapolation stage (time update) and the update stage

(measurement update). The time update equation can be found in rows 5 and 6 of Table

3-4 and the measurement update equations can be found in rows 7, 8, and 9 of Table 3-4.

Time Update Measurement Update
("Predict") ("Correct")

Figure 3-12. Predictor - Corrector Model [26]

Notice that the time update equations project the state and error covariance estimates

forward from time step k-i to k, while the measurement update equations all work at time

step k. In the measurement update the first step is to calculate a new Kalman gain Kk. The

next step is to take a measurement of the process to get Zk. Then with this measurement, an

a posteriori state estimate, ik, can be calculated. Then the final step of the Kalman filter

algorithm iteration is to calculate the a posteriori error covariance matrix. The next

iteration starts by using the last iteration's a posteriori estimates as the new iteration's a

priori estimate. The recursive nature of the Kalman filter algorithm provides a large

computational improvement on the Wiener filter, which is designed to operate on all of the

data directly for each estimate [26].
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A block diagram of the plant and estimator can be found in Figure 3-13, which shows the

State Estimate Extrapolation and the State Estimate Update as listed in Table 3-4.

V k Measurement

Discrete System (Plant) error
r iI -

Uk-I I X kII,

Disturbance Sensor
Inputs are I I Measurement

not available Z k
for Observer I A

I k.

B] W k II
A I

ik-1 Delay I

State Estimate Extrapolation State Estimate Update

Figure 3-13. Block Diagram of Discrete System and State Estimator

The Kalman gain, Kk, in Figure 3-13 is calculated using the equations from Table 3-4 and

is show in Figure 3-14. It is important to note that in the example used in this thesis, the

deterministic input into the estimator is a zero vector since no disturbance measurements

are available for state estimation. Figure 3-14 shows the Error Covariance Extrapolation,

Error Covariance Update, and the Kalman Gain Computation as shown in Table 3-4.
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Error

Error Covariance Update Covariance
r C n EstimaE

Fiue -4 Blok iara Kama GaiCoputtio

Qk-I [I - KýC,

Seasurement easurement
S Erron Rk p- t t - t o
I Covariancei Ti ir r- - - -I- - -I -I

(°A"Ik-CT p-CT -R ' K

wolenneostms PlaCe. H -R a Kale n r ain

Error Covariance Extrapolation

Figure 3-14. Block Diagram Kalman Gain Computation

The measurement noise covariance, Rk, is usually known since tate measurements are

taken. This allows for the calculation of Rk prior to the operation of the filter or at the

beginning of the operation in some off-line process. On the other hand, the measurement

of the process noise covariance is more difficult ue to findean i nal v ue fo the

fact that there is no way to observe the process that is being estimating; if there was, there

would be no need for estimation in the first place. However, acceptable results can result if

one "injects" enough uncertainty into the process via the selection of Q [26]. This

statement may seem vague, but it is important to understand that the process noise
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Albeit the limitations for Q, superior filter performance can still be achieved through tuning

of Q and R. This usually involves an off-line process, involving a separate Kalman Filter,

referred to as system identification. Increasing the process noise covariance effectively

increases the bandwidth of the filter, which improves its tracking capabilities at the expense

of more noise transmission [27]. If the value of Q is small it represents the belief that the

Kalman filter model is a good representation of the plant. If the value of Q is large that

represents our belief that the filter model is a poor representation and that trust in the

measurement must be increased. In the special case where both Q and R are constants,

both the estimation covariance and the Kalman gains are guaranteed to stabilize quickly

and remain constant.

3.5 Initial Kalman Filter Parameter Calculations

Standard engineering methods were used in the determination of unknown initial

measurement noise covariance, R, process noise covariance, Q, and error covariance, P.

The initial Q matrix was set equal to a diagonal matrix representing a standard deviation of

5% of the steady state amplitude, Ass, for the corresponding state.

Q = diag(A,,. * 0.05)2

(3-73)

The steady state amplitudes can be calculated prior to filter operation through time domain

simulations of the filter model.
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The initial R matrix was set equal a diagonal matrix representing a standard deviation of

2% of the steady state amplitude for the corresponding plant state.

R = diag(A. *0.02)2

(3-74)

The initial P matrix was set to equal a diagonal matrix, whose elements represent the

square of three times the steady state amplitude for each state.

P = diag(A, *#3)2

(3-75)

Since there is no knowledge of the plant's initial conditions, the initial conditions for the

observer model were set to zero, even though the actual initial conditions applied to the

plant were not. The initial conditions were set to equal the product of the steady state

amplitude and a random number, rand, defined by a Gaussian distribution with a mean of

zero and a standard deviation of 1. Using this distribution allowed for the initial conditions

to be 1800 out of phase.

x 0 env=A,, *rand
(3-76)
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4 Results

Three different sets of tests were performed: 1) The first set of tests were conducted to

verify the performance of disturbance modeling within the filter model, ISS Model 1,

2) The second set of tests show the increased range of disturbance frequencies under which

the Kalman filter is able to operate by using an expanded ISS disturbance model, ISS

Model 2 and 3) The third set of tests included Monte Carlo analysis to determine

robustness and investigate factors which have the most influence on the estimation error.

These factors include differences between the plant and filter models (parameter variation),

imbalance disturbance amplitude variation, and ISS disturbance frequency variation.

4.1 Performance Measures

Performance will be evaluated by using different metrics to include a measure of percent

amplitude error in estimation, the duration of error, estimation error standard deviation, and

time to convergence.

4.1.1 Estimation Percent Amplitude Error

Estimation percent amplitude error is defined as the ratio of the 2-norm of the error over

the 2-norm of the actual state at steady state multiplied by 100%

% amplitude error =- 1142 *10% - *100%

(4-1)
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where x is the actual state, i is defined as the estimated state, and the error, xe, is defined

as the difference between the actual state and the estimated state.

4.1.2 Error Duration

Corresponding to the percent amplitude error there is also an "error duration", which

measures the time that is spent within a certain percent amplitude error range with respect

to the duration of the simulation. The percent amplitude estimation error, which is

calculated at each time step, is collected into bins which divide the total range of percent

amplitude estimation error (0 to 100%) equally (e.g., bin 1: 0 to 5%, bin 2: 6 to 10%, bin 3:

11 to 15%, etc). Dividing the number of occurrences in a given bin by the total number of

simulation data point collected gives the percent of simulation time that resulted in an error

within that bin's range. See Figure 4-1 for an example of the error duration plot.

Step Plot of Amplitude Error Percentage Duration
35 ,

30 -------------------------------

E 0 - - - - -- -- - -- - - --- This point Is interpreted

5 . -as -32% of all sim time
has an error between 0%

0" and 5%

0 10 20 30 40 50 60 70 s0 90 100

Amplitude Error Percentage

Figure 4-1. Example of Error Duration Performance Metric
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While the percent amplitude error measures the error magnitude, the error duration

provides insight to the severity of the estimation error. For instance a time history of brief

but large error spikes may produce a large percent amplitude error, but looking at the error

duration plot will show that the estimation error is relatively benign and may still be

acceptable to slower controllers with appropriate robustness.

4.1.3 Estimation Error Standard Deviation Envelope

Yet another useful metric is the estimation error standard deviation envelope created by

plotting the +/- square root of the error covariance, P, time history for a given state

[27][28][29]. Plotting the amplitude error and the estimation envelope provides an

indication of how often the error is outside of one standard deviation of the expected or

predicted error values. From this plot, the percent of time the error spends outside of the

estimation envelope can be calculated to assess the quality of the estimation. Figure 4-2 is

an example plot of estimation error with the superimposed error standard deviation

envelope for a case of excellent estimation, while an example of unacceptable estimation

can be found in Figure 4-3.
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4.1.4 Time to Convergence

Time to convergence is defined as the time it takes for the estimated state to converge to

the actual state. This can be determining by the time it takes for the error covariance to

settle to a steady state value. For example in Figure 4-3, the square root of the error

covariance settles sometime between -3 seconds. As confirmed by the time history plot of

the actual state and estimated state for the same case found in Figure 4-4, the state estimate

converges to the actual state within 2.5 seconds.

State: xr (1st 10 sec) (Actual vs Estimate)
0.02 ,

Act

0.015 ----- - ---------- - at

0 .01, -- - - -,-, - - - -- - - - - - - - -- - - - - - - - -
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0.005 ----------------

kA P

.0 .0 1 .............. " -------0.0 15 ------ -- --- ---------- -- --

-0.015 .
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Time (sec)

Figure 4-4. Time History Showing Convergence within 2.5 Seconds
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4.2 ISS Disturbance Models Used for Testing

The first ISS disturbance model, called "ISS Model 1" is the 4 state ISS disturbance model

described by equations ( 3-6 ) though ( 3-9 ) in Section 3.1.2.2. This model captures one

translational ISS disturbance frequency (od&t) and one rotational disturbance frequency

(O),sr).

The second ISS disturbance model, called "ISS Model 2" is the 8 state ISS disturbance

model described by equations ( 3-10 ) through ( 3-13 ) in Section 3.1.2.3. ISS Model 2

represents the ISS disturbance as sums of two sinusoidal disturbances, with two

translational and two rotational disturbance frequencies of (Odsti, (0 dst2, and (Odsr], (-dsr2,

respectively.

4.3 ISS Model 1 Test: Performance

The first set of tests attempt to answer two important questions: 1) Will disturbance

modeling, of both the rotor disturbance and/or the ISS disturbance, inside the observer

model, allow for estimation of absolute rotor states from relative measurement corrupted by

sensor noise? 2) How much of an improvement is made over an observer with no

disturbance modeling within the observer model?

To answer these two questions, the same disturbances will be applied to: 1) an observer

model with rotor and ISS disturbances modeling, 2) an observer model with only rotor
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disturbance modeling, 3) an observer model with only ISS disturbance modeling, and 4) an

observer model with no disturbance modeling.

4.3.1 ISS Model 1 Test Set-Up

Testing parameters will be chosen using two different ratios: 1) Frequency Ratio (FR) and

2) Amplitude Ratio (AR). FR is the ratio of the ISS disturbance frequency, wd, to the rotor

disturbance frequency, o&dr, as shown in equation ( 4-2).

FR = (Ods

(4-2)

This ratio is used as a guide to identify worst case conditions. A worst case scenario for

separating a single relative measurement into its components will occur when those

components have similar frequency content. Therefore, after the rotor disturbance

frequencies have been chosen, testing will occur such that the ISS disturbance frequency

will be 90%, 100%, and 110% of the rotor disturbance frequency.

The rotor disturbance frequencies were chosen to equal the peak mode for each of the

following transfer functions from ISS disturbance inputs to relative measurements: 1) ISS

disturbance in the x-axis to relative measurement in the x-axis (d,, to xr1), 2) ISS

disturbance in the y-axis to relative measurement in the y-axis (dys to Yrel), 3) ISS

disturbance about the x-axis to relative measurement about the x-axis (d4xs to ýxrej), and 4)

ISS disturbance about the y-axis to relative measurement about the y-axis (dyy to ýyrei).

See Figure 4-5 for Bode plots and peak frequencies used to determine testing frequencies.
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The "dof of focus" will be determined by using the peak mode in a certain axis. For

example, the dof of focus will be in the x-axis when a 0.399 Hz disturbance is used.

Bode Plot: All ISS Disturbance Inputs
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Figure 4-5. Bode Plot Used to Determine Testing Frequencies

AR is the output contribution ratio or the ratio of the relative measurement content due to

the rotor disturbance, y,,1_4,, and due to ISS disturbance,Yu.

ARl- dr,-

(4-3)

Since the system is linear, superposition can be used. First, the relative motion is measured

when only the rotor disturbances act on the plant. Then the relative motion is measured

when only the ISS disturbances act on the plant. The amplitude of the ISS disturbances, F,,
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Figure 4-5, Bode Plot Used to Determine Testing Frequencies 

AR is the output contribution ratio or the ratio of the relative measurement content due to 

the rotor disturbance, YreUin and due to ISS disturbance, YreLds. 

AR = Yrel _ ds 

Y rel _ dr 

(4-3 ) 

Since the system is linear, superposition can be used. First, the relative motion is measured 

when only the rotor disturbances act on the plant. Then the relative motion is measured 

when only the ISS disturbances act on the plant. The amplitude of the ISS disturbance, F , 
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are adjusted until the ratio of the plant output due to only ISS disturbance, is 10% and

100% of the plant output due to only rotor disturbances. See Figure 4-6 below. Note that

all other disturbance amplitudes are set to 1. See Table 4-1 for further explanation.

Rotor Rotor

Disturbance Disturbance r
A I•,\ nIl F, Only Yrelhdr

r Yre I_- 
+

lU U Fs0

Disturbance ISS iefltdseflcesar Yrelteds
Disturbance v a uOnly

(Yrf ..... d + Ye-s
Figure 4-6. Amplitude Ratio Components

Figure 4-7 shows a flow chart describing the method used for determining the ISS

disturbance force amplitudes necessary to produce the desired ARs.

IConstant o),,, F,I Set (od, and Fr

S~Set a value for ISS disturbance

Amplitude (F)

Run sire with only Rotor I Run sim with only ISS

Disturbance I Disturbance

- Is y,,,di/yr,, what youY Id
LL desire?

Store F. for Testing

Figure 4-7. Flow Chart to Determine Fs Necessary for Desired Amplitude Ratios
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With the rotor disturbance frequencies determined from Figure 4-5, the F, values were

determined to get the desired AR. Table 4-1 contains the parameters used for testing ISS

Model 1.

Disturbance ISS Force/Torque Amplitudes

Dof of Fr~equencies5
Focus

FR o%, (Hz) ar(Hz) AR F. (N) Fy (N) T•, (Nm) T#, (Nm)

x 0.9 0.359 0.399 0.1 819.18 1 1 1

x 0.9 0.359 0.399 1 8192.2 1 1 1
x 1.0 0.399 0.399 0.1 9.9342 1 1 1

x 1.0 0.399 0.399 1 99.316 1 1 1

x 1.1 0.439 0.399 0.1 608.06 1 1 1

"x 1.1 0439 0.399 1 6081.2 1 1 1

y 0.910.091 0.101 0.1 1 22.272 1 1

y 0.9 0.091 0.101 1 1 222.73 1 1

y 1.0 0.101 0.101 0.1 1 0.45137 1 1

y 1.0 0.101 0.101 1 1 4.5132 1 1

y 1.1 0.111 0.101 0.1 1 9.1608 1 1

"y 1.1 0.111 0.101 1 1 91.66 1 1

S0.9 0.540 0.600 0.1 1 1 118340 1
S0.9 0.540 0.600 1 1 1 1183800 1

S1.0 0.600 0.600 0.1 1 1 950.29 1

Ox 1.0 0.600 0.600 1 1 1 9508 1

1 1.1 0.660 0.600 0.1 1 1 152230 1

4k 1.1 0.660 0.600 1 1 1 1522900 1

6 "0.9 0.711 0.790 0.1 1 1 1 30856

S0.9 0.711 0.790 1 1 1 1 308650

1.0 0.790 0.790 0.1 1 1 1 181.8

S1.0 0.790 0.790 1 1 1 1 1818.4

1.1 0.869 0,790 0.1 1 1 1 39414

-1.1 0.869 0.790 1 1 1 1 394250

Table 4-1. Testing Parameters Determined for Desired FIR and AR

,------------------------------------------------------------- - - - ----- ---------------
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4.3.2 ISS Model 1 Test Results

As a summary of the data presented later in this section, Table 4-2 below helps to clearly

show the conclusions that can be drawn with the examination of all test cases, which is: All

disturbance modeling is necessary in order to perform good estimation. Table 4-2 shows

the percent amplitude error in estimation for a case where all disturbances are modeled

within the filter and a case where none of the disturbances are modeled, where each percent

error value was given for the case were AR = FR = 1 for the given dof of focus.

Percent Amplitude Error
Dof of
Focus All Disturbance No Disturbance

Models Models

x 2.86% 39.95%
y 0.18% 30.33%

OX 0.43% 91.47%
Oy 1.45% 59.67%

Table 4-2. Percent Amplitude Error in Estimation between a Filter Model with All
Disturbances Modeled and a Filter Model with No Disturbance Modeling

Table 4-2 shows that without all disturbance modeling, estimation within acceptable error

bounds is not possible. The rest of this section will go into further detail and give data for

the different levels of disturbance modeling fidelities, but the conclusion that all

disturbance modeling is necessary is still the same.

A comparison of the results from using all disturbance models versus only rotor

disturbance model for each test case can be found in Table 4-3.
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___________________________ _________ Percent R•dude Error ______
m Disturbanc&w

Dit F ISS Rftaoroque AMpfltudes X, y, 4 ,0
Dot f -- - - - - - -

Focu po (Hz) m(W) AR F. (N) F T T (N-) MidNo A d id Nod, Aid
(N) (Nm) mdeft ls Models Models M ods

x 0.9 0.359 0.399 0.1 819.18 1 1 1 5.42 14.24 3.94 4.15 1.02 1.02 1.45 1 1.45

0.9 0.359 0.399 1 8192.2 1 1 1 11.32 32.94 3.26 3.28 1.24 1.24 1.80 1.80

x 1.010399 0.399 0.1 9.9342 1 1 1 3.47 3.47 4.01 4.01 0.98 0.98 1.38 1.38

x 1.010.399 0.399 1 99.316, 1 1 1 2.86 1 2.98 4.44 4.44 0.91 0.91 1.42 1.42

x 1.110.439 0.399 0.1 608.061 1 1 1 4.14 111.14 4.02 4.21 1.01 1.01 1.37 1.37

.1.1 0.43910.39,1 6081.2 1 1 1 7.60 144.43 4.38 1 4.47 1.25 1.25 1.37 1.37

y 0.9 0091 0101 0.1 1 22.272 1 1 1.10 1.11 0 47 3.94 1.10 4.94 1.26 1.26

y 0.9 0091 0101 1 1 222.73 1 1 1.17 1.17 2,42 23.52 2.19 5.2o 1.42 1.42
y 1.0 0101 0101 0.1 1 0.45137 1 1 1.09 1.09 0.20 0.24 0.80 0.81 1.24 1.24

y 1.0 0101 0101 1 1 4.5132 1 1 1.10 1.10 018 0.63 0.64 0.87 1.24 1.24

y 1.1 0111 0101 0.1 1 9"1608 1 1 1,09 1.09 0.32 2-06 0.85 2.00 1.28 1.28

y 1.1 1 1 0 91.66 1 1 1 1 13 1.13 1.51 13190 1.22 2.56 1.59 1.59

k 0905400.W 0.1 1 1 I118340 1 2.468 2.57 0.50 0.65 0.68 380 1.40 1.45

0.91 0540060 1 1 1 1183800 1 0.31 0.32 0.11 0.13 0.15 0.78 0.88 0.94

1.0 0800 060 0.1 1 1 950.29 1 6.27 6.37 3.90 3.99 1.09 1.25 1.25 1.25

€ 1010600 0.600 1 1 1 9508 1 1.80 1.80 0.34 0.35 0.43 0.56 0.93 0.93

4 1.1 0860 060 0.1 1 1 152230 1 2.03 2.03 0.40 0.40 0.53 2.82 1.55 1.60

1.1 1 1 0 80 1522900 1 0.29 0.30 0.09 0.09 0.13 0.60 0.95 1.00

0.9 0711 0790 0.1 1 1 1 30856 3.15 7.28 3.83 6.80 1.28 1.43 1.560 698

0.9 0711 0790 1 1 1 1 1 308650 4.82 9.48 4.14 6.37 1.46 1.76 1,39 14.95

10 0790 0790 0.1 1 1 1 181.8 2.86 2.87 3.87 3.88 1.20 1.20 1.39 1.47

S1.0 0790 0790 1 1 1 1 1818.4 2.96 2.97 3.60 13.80 1.07 1.07 1.45 1,54

11 089 0790 0.1 1 1 1 39414 3.20 3.64 3.76 3.80 1.31 1.44 1.51 5,85

€• 1.110.869 0790 1 1 1 1 1394250 4.12 4.53 4.00 4.08 1.60 1.78 1.44 10.72

Table 4-3. Comparison between Using All Disturbance Models and Only Rotor
Disturbance Model: Test Results

The percent amplitude error resulting from the use of all disturbance models is always less

than or equal to the percent amplitude error resulting from using a disturbance model that

does not include ISS disturbance. This is true for every rotor state and every test case.

Test cases where the percent amplitude error is the same, or similar, for both disturbance

modeling fidelities occurs only when the AR is small (i.e. rows where AR = 0.1) or if the

frequency of the disturbances is not a peak mode frequency in that dof (i.e. all non

highlighted results). This is reasonable since these two cases (small AR and non-peak

ISS ForcafTorque Amplitudes 

Table 4-3. Comparison between Using All Disturbance Models and Only Rotor 
Disturbance Model: Test Results 
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mode excitation) would cause a small response, therefore it would be expected that ISS

disturbance modeling is not necessary for those cases.

A comparison of the results from using all disturbance models versus only ISS disturbance

model for each test case can be found in Table 4-4.

knolltre Enfo

1W Of ofve IW Faefrorqu" Amplitudes X, y, +d E

Foous FR e& (Hz) ma.,(Hz) AR F- (N) Fý.(N) T.. (Nm) T. (Nm) Models Nod, Modes Modls dIModels Models Mo del s Alod, Nod

0.9 0-359 0.399 01 819A18 1 1 1 5.42 60.38 3494 113.95 1,02 23.32 1.45 31.34

x 0.9 0.359 0.399 1 8192.2 1 1 1 11.32 49.57 326 79.24 1.24 19.28 1.80 24.97

x 1.0 0.399 0.399 0.1 9.9342 1 1 1 3.47 119.09 4.01 93.95 0.98 23.96 1.38 31.30

x 1.0 0.399 0.399 1 99.316 1 1 1 2.86 5.19 4.44 128.49 0.91 1 20.70 1.42 32.25

x 1.1 0.439 0.399 0.1 608.06 1 1 1 4.14 61.94 4.02 117.45 1.01 23.28 1.37 30.97

x 11 0.439 10.399 1 6081.2 1 1 1 1 7.60 70.35 4.38 125.85 1.25 1 23.70 1.37 27.53

y 09 0.091 0.101 01 1 22,272 1 1 110 11.49 0A7 117.97 1.10 11164.70 126 97.72

y 0.9 0.091 0101 1 1 222.73 1 1 1.17 6.13 2.42 238.3 2.19 1499.13 142 41.11

y 1.0 0.101 0.101 0.1 1 045137 1 1 1.09 15.26 0.20 716 0.80 1209.10 124 127.06

y 1.0 0.101 0.101 1 1 45132 1 1 1.10 13.31 0.18 3033 0.64 1831.74 124 11959
y 1.1 0.111 0.101 01 1 9.1608 1 1 1.09 12.63 0.32 9720 0.85 1234.60 128 98.37

y 11 0.111 0.101 1 1 91,66 1 1 1313 9.94 1.51 25.85 1.22 1 571.91 159 62.17

-k 0,9 0.540 0800 01 1 1 118340 1 2.46 42.09 0.50 716 0M66 108.09 140 2725

S0.9 0.540 0.6800 1 1 1183800 1 0.31 3.98 0.11 1.29 0.15 20.89 088 18.03

S1.0 00.600 .1 1 1 950.29 1 6.27 109.91 3.90 52.42 1.09 133.67 1.25 22.95
4t 1.0 0.600 0.600 1 1 9508 1 1.80 30.96 0.34 4.16 0.43 92.67 0.93 17.99

-0. 1.1 0.660 0.1 1 152230 1 2.03 33.45 0.40 5.62 0.53 98.85 1.55 29.88

1.1 0.660 0. 1 1 1522900 1 0.29 3.12 0.09 1.04 0.13 17-38 0.95 15.93

0L9 0.711 0790 0.1 1 1 30856 315 83.30 3.83 79.40 1.28 26.99 1.50 124.09

0.9 0.711 0.790 1 1 1 1 308650 4.82 93.78 4.14 55.64 1.46 23.48 139 152.23

0, 1.0 0.790 0.790 0.1 1 1 1 181.8 2,86 75.62 3.87 83.80 1.20 25.91 1.39 29.75
10 0790 0790 1 1 1 1 1818.4 2.96 45.89 380 82.75 1.07 20.85 1 45 61.52

1.1 0.869 0.790 01 1 1 1 39414 3.20 45.08 3.76 80.46 1.31 24.03 51 79.70
1.1 0.869 0.790 1 1 1 1 394250 412 72.97 4.00 51.58 1.60 24.83 1.44 146.92

Table 4-4. Comparison between Using All Disturbance Models and Only ISS
Disturbance Model: Test Results

The percent amplitude error resulting from the use of all disturbance models is always less

than or equal to the percent amplitude error resulting from using a disturbance model that

does not include rotor disturbance. This is true for every rotor state and every test case. By

,---------------- ----------~--------------------------------, 
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comparing Table 4-3 to Table 4-4, it is evident that the rotor disturbance modeling is most

important in reducing the percent amplitude error.

A comparison of the results from using all disturbance models versus no disturbance

models for each test case can be found in Table 4-5.

Oof of F W Foferforque •Wfltul. X, y, #. 40W

Foa . mAlid Nod Alid Nod Ald Nod Aid NodosFR • (Ni)Ie(HZ) AR F.MN) I *(N) T(m)(Nm) M t Moes MOtfAs MOdols Mo08 mocS

X 0.9 0.359 0.399 0.1 819.18 1 1 1 5.42 00.88 3.94 113.96 1.02 23.32 1.45 31.35

X 0.9 0.359 0.399 1 8192.2 1 1 1 11.32 574 3.26 79.24 1.24 19.28 1.80 2497

X 1.0 0.399 0.399 0.1 9.9342 1 1 1 3.47 50.07 4.01 117.71 0.98 22.93 1.38 31.44

X 1.0 0.399 0.399 1 99.316 1 1 1 2.86 39.95 4.44 130.59 0.91 20.65 1.42 32.13

1.1 0.439 0.399 0.1 608.06 1 1 1 4.14 62.06 4.02 117.44 1.01 23.28 1.37 30.97

.1 0,439 0.399 1 6081.2 1 1 1 7.60 79.74 4.38 125.85 1.25 23.70 1.37 27.53

y 09 0091 0.101 0.1 1 22272 1 1.10 1155 047 117.97 1.10 1170.30 1.26 127.01

y 0.9 0091 I 0.101 1 1 222.73 1 1 1.17 624 242 238.83 2,19 497,87 1.42 376,26

y 1.0 0.101 0.101 0.1 1 0.45137 1 1 1.09 1274 020 5716 0.80 1236.90 1.24 99.28

y 1.0 0.101 0.101 1 4.5132 1 1 1.10 1242 018 30.33 0.64 850.12 1.24 91.66

y 1.1 0.111 0.101 0.1 9.1608 1 1 1.09 1260 032 97.20 0.85 1239.10 1.28 101.46

1.1 0.111 0.101 1 91.66 1 1.13 91 151 256.85 1.22 577.49 1.59 414.95

S0.9 0,540 0.600 01 1 1 118340 1 2.46 427 050 6.88 0.66 106.97 1.40 26.18

ok0.9 0.540 0.600 1 1 1 1183800 1 0.31 398 011 128 0.15 20.74 088 1788

1.0 0.600 0.600 0.1 1 1 950.29 1 6.27 111.26 390 57.58 1.00 132.93 1.25 21.86

Ox- 1.0 0.600 0.600 1 1 1 9508 1 1.80 3118 03 4.90 0.43 91.47 0.93 17.87

x 1.1 0.660 0.600 0.1 1 1 152230 1 2.03 3348 040 5.46 0.53 96.71 1.55 28.72

S1.1 0,660 I00.600 1 1 152290 029 1.04 0.13 17.20 0.95 15.76

0.9 0.711 0.790 0.1 1 1 1 30856 3.15 4301 383 82.92 1.28 25.32 1.50 51.10

S0.9 0.711 0.790 1 1 1 1 308650 4.82 88.70 4.14 5&65 1.46 22.58 1.39 136.A3

1.0 0.790 0.790 0.1 1 1 1 181.8 2.88 76.93 3.87 83.73 1.20 26.23 1.30 28.12

1.0 0.790 0.790 1 1 1 1 1818.4 2.96 4.82.87 1.07 21.04 1.45 59.67

1.1 0.869 0.790 0.1 1 1 1 3.20 4 3 81. 1.31 25.14 1.51 56.61

1.1 0.869 0.790 1 1 1 1 3 4 12 75189 1.60 24.50 1.44 140.08

Table 4-5. Comparison between Using All Disturbance Models and Only ISS
Disturbance Model: Test Results

The percent amplitude error resulting from the use of all disturbance models is always less

than or equal to the percent amplitude error resulting from using no disturbance modeling.

This is true for every rotor state and every test case. This is expected because without

-------- ------ -- - - - -----------~ 
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disturbance modeling, the filter model has no knowledge of the disturbances that act on the

plant.

The time history plots of one case (xr with AR = 1 and FR = 0.9) are used to highlight the

need for full disturbance modeling within the filter model. The results for all different

disturbance modeling fidelity levels can be found in Table 4-6.

Percent Amplitude Error (Xr)

All Disturbances Only Rotor Only ISS No Disturbance
Models Disturbance Model Disturbance Model Models

11.32% 32.94% 49.57% 56. 74%

Table 4-6. Performance Verification Test Case for xr (AR = 1, FR = 0.9)

It can be concluded from the results shown in Table 4-6 that both the rotor disturbance

and ISS disturbance models are necessary for improving estimation capabilities. The rotor

disturbance seems to have the highest effect on improving estimation capabilities. A

possible explanation of this may be the facts that: 1) the rotor disturbance in the filter

model is collocated with the relative measurement sensor, 2) due to the 'nature' or the plant

being used, the relative measurement is mostly comprised of the rotor motion. In

explanation of fact 2, the plant is stiff everywhere except between the shroud and the rotor

(see Figure 2-2). Consequently, regardless of whether the disturbance is acting on the rotor

or the outside mass of ISS flex model, the majority of the relative motion will come from

the motion of the rotor. The frequency content of the sensor measurement, xrel, shows that

the rotor motion, which is at a frequency of 0.399 Hz, is more important than the shroud

motion, which is at a frequency of 0.356 Hz.
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Relative Measurement: x eI 1- 100 sec PSD of Relative Measurement:
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Figure 4-8. Sensor Measurement Xred Time History (left) and PSD (right)

From this reasoning, one would expect that marginal estimation could be achieved when a

rotor disturbance model exists, regardless of whether or not the ISS disturbance model is

implemented, as long as sensor measurement content does not include a large component

with the ISS disturbance frequency. The Kalman gains for the rotor disturbance model can

adjust in order to compensate for the excess motion caused by the "unknown" disturbance

source; the ISS disturbance is "unknown" to the filter since it is not modeled within the

filter. With this said, the rotor-disturbance-only model can be improved upon with the

modeling of the ISS disturbance, especially for the case where the relative measurement

contains motion at the ISS disturbance frequency. Another compensation method would be

to force the motion of the shroud to minimize the difference between the estimated relative

measurement and the actual relative measurement. Error in shroud state estimation is of no

concern since it is not an ABS controller input.
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From this reasoning, one would expect that marginal estimation could be achieved when a 

rotor disturbance model exists, regardless of whether or not the ISS disturbance model is 

implemented, as long as sensor measurement content does not include a large component 

with the ISS disturbance frequency. The Kalman gains for the rotor disturbance model can 

adjust in order to compensate for the excess motion caused by the "unknown" disturbance 

source; the ISS disturbance is "unknown" to the filter since it is not modeled within the 

filter. With this said, the rotor-disturbance-only model can be improved upon with the 

modeling of the ISS disturbance, especially for the case where the relative measurement 

contains motion at the ISS disturbance frequency. Another compensation method would be 
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measurement and the actual relative measurement. Error in shroud state estimation is of no 

concern since it is not an ABS controller input. 
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The following plots show for each level of disturbance modeling fidelity: 1) A comparison

of the 1st 10 seconds (left) and the last 10 seconds (right) of the actual and estimated value

of Xr (Figure 4-9 through Figure 4-12). 2) The actual amplitude error and the error bounds

produced by the square root of the error covariance value (Figure 4-13 though Figure 4-16).
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The Kalman filter estimate converges very quickly (within 5 seconds) to the actual state in

all four different disturbance modeling fidelity levels. As expected, when all of the

disturbances that are applied to the plant are being modeled within the filter model, good

estimation is achieved (Figure 4-9). Also, the estimation error is well within the one

standard deviation envelope 100% of the time (Figure 4-13).

State : x, (1 st 20 IIC) (Actual vs Estimate) 
0.025 .-------.,r---------.------~--=== 

0.02 

0.015 

g 0.01 

~ 0.005 
E .. 
u • 0. is .11 .005 

.11 .01 

.11 .015 

.11 .02
0
'----------'5'---------"10--------'-'5--------'20 

TIme (IIC) 

82 

• 10" Stat. : x, (Last 20 sec) (Actual VII Eatimata) 
4~----~r-----~------~-------' 

985 990 
Time (sec) 

995 1000 

Figure 4-11. Results of Implementation of Only ISS Disturbance Model 

State: x, (1 11 20 sec) (Actual vs Estimate) 

········1············· [ ................ j .... = :~ 

.II .020~----~~-------:':'0-------1~5-------:ZIl· 

TIm. (uc) 

.. State : x (Lnt20 IIC) (Actual v. Estimate) 
~r·~'O----~'------~------~~=~ 

1~~-----9~8~5----~9=~~----~9~=------I~OOO 
Time (uc) 
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The Kalman filter estimate converges very quickly (within 5 seconds) to the actual state in 

all four different disturbance modeling fidelity levels. As expected, when all of the 

disturbances that are applied to the plant are being modeled within the filter model, good 

estimation is achieved (Figure 4-9). Also, the estimation error is well within the one 

standard deviation envelope 100% of the time (Figure 4-13). 
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The lack of ISS disturbance modeling in the Only Rotor Disturbance Model (Figure 4-10)

creates amplitude error between the actual and the estimated rotor state. The estimation

error cycles in and out of being within one standard deviation of expected error (Figure

4-14). This shows that there are some problems with the filter process when no ISS

disturbance is being modeled within the filter model.

When the rotor disturbance is not modeled within the filter model, there seems to be some

phase error due to the lack of information of the rotor disturbance within the filter model

(Figure 4-11). This causes the cycling estimation error (Figure 4-15) to stray further from

the error standard deviation envelope and for longer periods of time when compared to the

result for the Only Rotor Disturbance Model results shown in Figure 4-14.

The No Disturbance Models test (Figure 4-12) resulted in both phase error and amplitude

error, which combined to create the largest error. Poor estimation as evidenced by the

increased occurrence of the estimation error exceeding the standard deviation envelope

(Figure 4-16).
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The error duration plots continue to prove that without the use of all disturbance models

within the filter, poor estimation will result.
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Figure 4-17. Duration of Error of Xr Estimation from Implementation of
All Disturbance Models
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As the disturbance modeling fidelity decreases, the percent amplitude error durations

become more distributed. For instance, when all disturbances are modeled, -55% of the

simulation time had an error of under 10%, while only -14% of the simulation time was

under 10% error when using no disturbance models.

4.3.3 ISS Model 2 Testing: Increased Disturbance Frequency

Range Test

These tests attempt to answer the question: Will the use of additional disturbance states

increase the range of ISS disturbance frequencies under which the Kalman filter is able to

operate? This question is answered by comparing the performance of ISS Model 1 to ISS

Model 2. The rotor disturbance frequency was set to 0.399 Hz, when focusing on x and 4y

dofs, and set to 0.101 Hz when focusing on y and 41 dofs. These frequencies are the peak

modes in the following transfer functions: ISS disturbance in the x-axis to xrj measurement

(d,, to xrj) and ISS disturbance in the y-axis to yrei measurement (dys to yrei), respectively.

See Figure 4-21 for more details. Since the peak frequencies are being used, the coupled

motions (x and Oy) and (y and 0,) will have the greatest amplitude when excited by those

frequencies with respect to the other degrees of freedom. Each axis will be examined

separately to help provide clear result from which sound conclusions can be drawn.

-------- --------
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separately to help provide clear result from which sound conclusions can be drawn. 
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4.4 ISS Model 2 Test Set-Up

The ISS translation and rotational disturbance frequencies for each test can be found in

Table 4-7. In summary, the ISS translational disturbance frequencies were set to 90% of

the rotor disturbance frequency for Test A and 110% of the rotor disturbance frequency for

test B.

Bode Plot: Translational TF with ISS Inputs
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Figure 4-21. Bode Plots Used For Rotor Disturbance Frequencies

As for the rotational ISS disturbance frequencies, when focusing on x and 4,y, the rotational

ISS disturbance frequency was centered on the peak mode frequency (0.79 Hz) of the

transfer function from the rotational ISS disturbance about the y axis to the •yreI

measurement (dy tO Pyrei)- The rotational ISS disturbance frequency was set to 90% of

this peak value (0.711 Hz) for Test A and 110% of this peak value (0.869 Hz) for Test B.
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Figure 4-21. Bode Plots Used For Rotor Disturbance Frequencies 

As for the rotational ISS disturbance frequencies , when focusing on x and <j>y, the rotational 

ISS disturbance frequency was centered on the peak mode frequency (0.79 Hz) of the 

transfer function from the rotational ISS disturbance about the y axis to the <j>yrel 

measurement (d$Ys to <j>yrel) ' The rotational ISS disturbance frequency was set to 90% of 

this peak value (0.711 Hz) for Test A and 110% of this peak value (0.869 Hz) for Te t B. 
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When focusing on y and 0,, the rotational ISS disturbance frequency was centered on the

peak mode frequency (0.6 Hz) of the transfer function from the rotational ISS disturbance

about the y axis to the OyreI measurement (dcy, to 0,I),e. The rotational ISS disturbance

frequency was set at 90% of this peak value (0.54 Hz) for Test A and 110% of this peak

value (0.66 Hz) for Test B.

Bode Plot: Rotational TFs with ISS Disturbance Inputs
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Figure 4-22. Bode Plots Used For ISS Rotational Disturbance Center Frequencies

ISS Model 2 has both "90%" and "110%" frequencies modeled, while ISS Model 1 has

only the "90%" frequencies modeled. All of these frequencies are summarized in Table

4-7. A second set of tests were run incorporating a rotor spin-up from 0 to 0.7 Hz over 300

seconds.
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ISS Model 2 has both "90%" and "110%" frequencies modeled, while ISS Model 1 has 

only the "90%" frequencies modeled. All of these frequencies are summarized in Table 

4-7. A second set of tests were run incorporating a rotor spin-up from 0 to 0.7 Hz over 300 

seconds. 
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ISS disturbance ISS Model 1 ISS Model 2
Rotor Spin Frequencies Applied (4 digs Filter (8 ModF l a

Units: Hz Frequency tO Plant States) (8 digs Filter State*)

(0)spin) Wt (or 90% Fro uencles Both 90% and 110% Frequ ncle

applied applied )dastl O)dsrl Wdstl 0)dst2 0
)dsrl 03dsr2

x and TestA (90% Freq) 0.39 3 0.359 0711 0.359 0.111 0,359 0.439 0,711 0.869"X Test B (110% Froq) 0.439 0.869
TestA (90% Froq) 0.091 0.54 0.091 0.54 0.091 0111 054 066

y and ,x Test A (110% Freq) 0.101 0.135 0.667

X and *y TestA (90% Fmq) 0.399 00359 0.711 0.359 0.711 0.359 0.439 0.711 0.869
(wlspln-uu) Test B (110% Froq) 0.439 0.869

y and • Test A (90% Freq) 0.101 0.091 0.54 0O91 0+54 0.091 0.111 054 0.66
(wlspln-up) Test B (110% Freq) 0.111 0.66

Table 4-7. Test Matrix

To interpret of Table 4-7, the testing focusing on x and ýy proceeded as follows:

1) Focusing on x and Oy, Test A was conducted by exciting the 32 state plant with

4 rotor disturbances with a frequency equal to the spin rate (0.399 Hz), and 4

ISS disturbances. The translational ISS disturbances are pulse trains with a

frequency of 0.359 Hz while the rotational ISS disturbances are pulse trains

with a frequency of 0.711 Hz. These two frequencies have been labeled the

"90%" frequencies. The relative measurement, xre, is fed into two different

Kalman Filters. The first Kalman filter includes the rotor disturbance model

and the ISS (disturbance) Model 1 within the filter dynamics. ISS Model 1

contains information about the two ISS disturbance frequencies applied (0.359

and 0.711 Hz, the 90% frequencies). The second Kalman Filter includes the

rotor disturbance model and the ISS (disturbance) Model 2 within the filter

dynamics. ISS Model 2 contains knowledge of the same two ISS disturbance

frequencies as modeled in ISS Model 1, the 90% frequencies, but also contains

information about 2 additional ISS disturbance frequencies (0.439 and 0.869

Hz, the 110% frequencies). State estimation error, x for ISS Model 1 and
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x8e for ISS Model 2, are computed by taking the difference from the estimated

states from ISS Model 1, R4, and the estimated states from ISS Model 2, R8 ,

and actual state, x, in order to determine performance.

2) Again focusing on x and Oy, Test B was conducted by exciting the 32 state plant

with 4 rotor disturbances with a frequency equal to the spin rate (0.399 Hz), and

4 ISS disturbances as was done in Test A, but this time, the translational ISS

disturbance pulse trains are input at a frequency of 0.439 Hz while the rotational

ISS disturbances are input at a frequency of 0.869 Hz. These two frequencies

have been named the "110%" frequencies. The output of the plant, the relative

measurement (xrei), is fed into the same two Kalman Filters as in Test A, and the

process used to determine performance is also the same

These same two tests are also run while focusing on y and 0,, dofs. The testing algorithm is

show in Figure 4-23.
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Figure 4-23. Testing Algorithm for Improving Operational Bandwidth

The expectation for Test A is that both Kalman filters should produce similar errors. ISS

Model 2 may have slightly higher error due to the fact that it is modeling a disturbance

frequency that does not exist, but the filter gains that error state so the amplitude of the

force with the unapplied frequency is very small. For Test B, the expectation is that the

error in ISS Model 2 should be much less than in ISS Model 1. This is due to the fact that

ISS Model 1 does not have the "110%" ISS disturbance frequency information modeled

within the filter dynamics, while the ISS Model 2 does. See Figure 4-24 for a logic flow

diagram that sums up the previous discussion.
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The expectation for Test A is that both Kalman filters should produce similar errors . ISS 

Model 2 may have slightly higher error due to the fact that it is modeling a disturbance 

frequency that does not exist, but the filter gains that error state so the amplitude of the 

force with the unapplied frequency is very small. For Test B, the expectation is that the 

error in ISS Model 2 should be much less than in ISS ModelL Thi i due to the fact that 

ISS Modell does not have the "110%" ISS disturbance frequency information modeled 

within the filter dynamics, while the ISS Model 2 does. See Figure 4-24 for a logic flow 

diagram that sums up the previous discussion. 
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Figure 4-24. Logic Flow Diagram for Testing Regimen

The test results found in Section 4.4.1 confirm this hypothesis.

4.4.1 ISS Model 2 Test Results: Focusing on x and

When focusing on x and O•y, the following frequencies were used for Test A and Test B.
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Figure 4-25. Disturbance Frequencies Used when Focusing on x and ý

The results from focusing on coupled x and 4y rotor motion, without spin-up, can be found

in Table 4-8.
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The results from focusing on coupled x and <py rotor motion, without spin-up, can be found 

in Table 4-8. 
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Axis of Focus: x and Oy
Test: A B

ISS Model #: 1 2 1 2 % imp
%Amp Error (Xr) 6.57% 6.85% 17.18% 3.62% 78.93%
%Amp Error (Yr) 1.52% 1.53% 1.20% 1.18% 2.16%
%Amp Error (4ýr) 0.74% 0.74% 1.08% 1.03% 5.01%
% Amp Error (0ý,) 1.21% 1.13% 7.02% 0.67% 90.44%

Table 4-8. Test Results Focusing on x and 4, (no spin-up)

As predicted, the percent amplitude error, calculated with equation ( 4-1 ), is nearly

identical for both ISS Model 1 and ISS Model 2 for the Test A case. Also as expected,

during Test B, ISS Model 2 shows a percent amplitude error improvement over ISS Model

1 for all rotor states, and the largest improvements are for the x, and Oyr dofs as predicted.

The percent improvement (% imp) is calculated as the difference between the ISS Model I

result and the ISS Model 2 result divided by the ISS Model 1 result, therefore it is a

measure of percent improvement in percent amplitude error over the ISS Model 1 error.

This shows that the range of ISS disturbance frequencies that the filter will operate under

can be increased by expanding and improving the disturbance model within the filter

dynamics.

As an example of the estimation improvement made by using ISS Model 2, the estimation

of Xr during Test B will be compared between ISS Models 1 and 2. The time history plot

comparisons are shown in Figure 4-26 and Figure 4-27, the estimation error envelope

comparisons are shown in Figure 4-28 and Figure 4-29, and the error duration comparisons

are shown in Figure 4-30 and Figure 4-31

95 

Axis of Focus: X and <Py 
Test: A 8 

ISS Model #: 1 2 1 2 %imp 
% Amp Error (x r) 6.57% 6.85% 17.18% 3.62% 78.93% 

... 1/1 
!as % Amp Error (Yr) 1.52% 1.53% 1.20% 1.18% 2.16% 
o J!I a: en % Amp Error (~r ) 0.74% 0.74% 1.08% 1.03% 5.01 % 

% Amp Error (~r ) 1.21 % 1.13% 7.02% 0.67% 90.44% 

Table 4-8. Test Results Focusing on x and cj)y (no spin-up) 

As predicted, the percent amplitude error, calculated with equation ( 4-1 ), is nearly 

identical for both ISS Model 1 and ISS Model 2 for the Test A case. Also as expected, 

during Test B, ISS Model 2 shows a percent amplitude error improvement over ISS Model 

1 for all rotor states, and the largest improvements are for the Xr and (j>yr dofs as predicted. 

The percent improvement (% imp) is calculated as the difference between the ISS Modell 

result and the ISS Model 2 result divided by the ISS Model 1 result, therefore it is a 

measure of percent improvement in percent amplitude error over the ISS Modell error. 

This shows that the range of ISS disturbance frequencies that the filter will operate under 

can be increased by expanding and improving the disturbance model within the filter 

dynamics . 

As an example of the estimation improvement made by using ISS Model 2, the estimation 

of Xr during Test B will be compared between ISS Models 1 and 2. The time history plot 

comparisons are shown in Figure 4-26 and Figure 4-27, the estimation error envelope 

comparisons are shown in Figure 4-28 and Figure 4-29, and the error duration compari ons 

are shown in Figure 4-30 and Figure 4-31 



96

Stats: , (10 20 sec) (Actual vs Estimate) State: x, (Lost 20 se) (Actual vs Eatimate)
Gal 0.015

Act . II--.-Act
0.03 o .ot ...... . ...... .. . .. Est

0.02

Osi GAO~~~~000 - --- . - - -- ...

. . . . . . ... . ... . . . . ---

-- --- - .... ..0.... ..

0..0, ... ... ... ... ............. ...... ............. ......

......o l ......... . .. ....... . . .. . ..........-0.03 .

0`01 -. 015

"Time (-ac) Tims (tec)

Stat: x, (10 20 sac) (Actual ve Error) State: x (Last 20 sac) (Actual ve Error)
0.04 1.1 . . ,

0.3 -- - --- - -- -- -- - Err * . .

Figure.4- 26 Time Hi.tory of----- A o r U M
0.0. ..t.. ... E.t

0.02Oae

..0 --- -------- ..... .......... -......0 0 ... ... .. .. ......... ......... ..... + . ... + ++ + ,.. ... ., + ...., + .....
,.+, ... ........ . .... ... ...... .. ..... .. ............... `0 ' + ,

S .... ....... ...... r+ ' ........ " "+" . ..... " T+ ........ .+ " -......... .+ i ... .... ............. ."+ ............... +:" :'
a mo ................ + . ....... ...... + ......... . . .............. . 4.o.. 5 . . . .+ +. . . . . . ........ . +. . . . . . . . . . . . . . . .

0.041*.........

0 5 10 1S 20 -0

Tim .(sac) 
Tim e (sec)
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Figure 4-27. Time History of Actual, Estimated, and Error for Xr Using ISS Model 2
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Figure 4-27. Time History of Actual, Estimated, and Error for Xr Using ISS Model 2 
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Both observers converge very quickly, but the steady state error for ISS Model 2, shown in

Figure 4-27, is much smaller than when using ISS Model 1, shown in Figure 4-26.
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The estimation error for ISS Model 1, shown in Figure 4-28, stays within the standard

deviation envelope only 40.44% of the time while the estimation error for ISS Model 2,
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Estimation with ISS Model 2 

The estimation error for ISS Model 1, shown in Figure 4-28, stays within the standard 

deviation envelope only 40.44% of the time while the estimation error for ISS Model 2, 
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shown in Figure 4-29, stays within the standard deviation envelope nearly 100% of the

time, showing the superior estimation capabilities when using ISS Model 2.
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Figure 4-30. Duration of Error of xr Estimation with ISS Model 1
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Figure 4-31. Duration of Error of Xr Estimation with ISS Model 2
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Figure 4-30. Duration of Error of Xr Estimation with ISS Modell 
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Figure 4-31. Duration of Error of Xr Estimation with ISS Model 2 
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Figure 4-31 shows that state estimation is close at all times when using ISS Model 2. In

fact over 75% of the simulation time has an estimation amplitude error less than 5%, and

nearly 100% of the simulation time experiences an error of less than 20%. However, when

using ISS Model 1, Figure 4-30, there is a greater distribution of error durations. In fact, a

significant amount of the simulation time has a resulting estimation amplitude error of

greater than 30%.

Results with a rotor spin-up can be found in Table 4-9 below.

Axis of Focus: x and Oy w/ spin-up
Test: A B

- ISS Model#: 1 2 1 2 % imp
% Amp Error (Xr) 20.20% 20.89% 50.53% 9.14% 81.90%

3 % Amp Error (Yr) 0.01% 0.01% 0.05% 0.01% 89.42%
% Amp Error (4,,) 0.00% 0.00% 0.00% 0.00% 20.00%
%Amp Error (4ýyr) 2.84% 2.75% 7.30% 1.57% 78.45%

Table 4-9. Results Focusing on x and • (with spin-up)

The hypothesis also holds true during rotor spin-up from 0 to 0.7 Hz over 300 seconds. In

fact, for rotor state Xr during Test B a substantial improvement is made from an amplitude

error of 50.53% to an amplitude error of 9.14% with the use of ISS Model 2. The large

percent improvement values for y, and 0xr, should be disregarded as it is a numerical
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artifact, meaning that the values are very small and therefore any small changes will

produce a large improvement, even though the actual improvement is minuscule.

As an example of the estimation improvement made by using ISS Model 2 with time-

varying inputs and dynamics, the estimation of x, during Test B will be compared between

ISS Models 1 and 2. The time history plot comparisons are shown in Figure 4-32 and

Figure 4-33, the estimation error envelope comparisons are shown in Figure 4-34 and

Figure 4-35, and the error duration comparisons are shown in Figure 4-36 and Figure 4-37.
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Figure 4-32. Time History of Actual, Estimated, and Error for Xr Using ISS Modell 
(with rotor spin-up) 
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Both observers converge very quickly, but the steady state error for ISS Model 2, Figure

4-33, is much smaller than when using ISS Model 1, Figure 4-32. The error when using

ISS Model 1 is mainly due to amplitude estimation error rather than phase estimation error.
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The estimation error for ISS Model 1, Figure 4-34, stays within the standard deviation

envelope only 42.5% of the time while the estimation error for ISS Model 2, Figure 4-35,

stays within the standard deviation envelope nearly 100% of the time, showing the superior

estimation capabilities when using ISS Model 2.
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Figure 4-36. Duration of Error of Xr Estimation with ISS Model 1 (with
rotor spin-up)
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Figure 4-37 shows that state estimation is close at all times when using ISS Model 2. In

fact nearly 70% of the simulation time has an estimation amplitude error less than 5%, and

nearly 100% of the simulation time experiences an error of less than 20%. However, when

using ISS Model 1, Figure 4-38, there is a greater distribution of error durations. In fact, a

significant amount of the simulation time has a resulting estimation amplitude error of

greater than 30%

4.4.2 ISS Model 2 Test Results: Focusing on y and Ox

When focusing on y and 0, the following frequencies were used for Test A and Test B.
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Figure 4-38. Disturbance Frequencies used when focusing on y and 41
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The results from focusing on coupled y and 4N rotor motion, without spin-up, can be found

in Table 4-10.

Axis of Focus: y and O
Test: A B

ISS Model#: 1 2 1 2 % Imp
% Amp Error (x,) 2.79% 2.79% 2.01% 2.00% 0.24%

S% Amp Error (y,) 0.61% 0.75% 4.72% 0.78% 83.38%
% Amp Error (kr) 0.58% 0.58% 3.67% 0.44% 87.99%
% Amp Error (*r) 0.91% 0.92% 0.60% 0.59% 0.41%

Table 4-10. Results Focusing on y and 4• (no spin-up)

Again as predicted, the percent amplitude error is nearly identical for the Test A case for

both ISS Model 1 and ISS Model 2. Also, the Test B shows an improvement, in the

percent amplitude error for all rotor states, and shows large improvements for Yr and 0,xr as

predicted.

As an example of the estimation improvement made by using ISS Model 2, the estimation

of y, during Test B will be compared between ISS Models 1 and 2. The time history plot

comparisons are shown in Figure 4-39 and Figure 4-40, the estimation error envelop

comparisons are shown in Figure 4-41 and Figure 4-42, and the error duration comparisons

are shown in Figure 4-43 and Figure 4-44.
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Figure 4-39. Time History of Actual, Estimated, and Error for Yr Using ISS Modell 
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Figure 4-40. Time History of Actual, Estimated, and Error for Yr Using ISS Model 2 
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Event though the estimation using ISS Model 1 is good, Figure 4-40 shows that the steady

state error can be nearly eliminated with the use of increased disturbance modeling found

in ISS Model 2.
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Improved estimation using ISS Model 1 is also evident from the fact that estimation error

does not stray outside the bounds of the estimation error standard deviation envelope

(Figure 4-42).
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Figure 4-43. Duration of Error of Yr Estimation with ISS Modell 
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Figure 4-44. Duration of Error of Yr Estimation with ISS Model 2 
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Figure 4-44 shows that the occurrence of high estimation error can be decreased by using

the expanded disturbance modeling found in ISS Model 2.

Axis of Focus: y and Ox w/ spin-up
Test: A B

ISS Model#: 1 2 1 2 % imp
% Amp Error (Xr) 0.00% 0.00% 0.04% 0.04% 0.00%

r % Amp Error (Yr) 0.81% 0.93% 4.58% 0.81% 82.34%

% Amp Error ($,r) 0.82% 0.80% 2.66% 0.71% 73.32%
% Amp Error (r) 0.00% 0.00% 0.00% 0.00% 0.00%

Table 4-11. Results Focusing on y and 4• (with spin-up)

The hypothesis also holds true during the rotor spin-up from 0 to 0.7 Hz over 300 seconds.

The results are shown in Table 4-11.

4.5 Monte Carlo Analysis: Robustness Test Set-Up

In order to test robustness to parameter uncertainty, each plant stiffness value was

independently allowed to deviate from its nominal value where the deviations were defined

by Gaussian distributions with a mean of zero and a 3ca value of 20% of the nominal value.

To test robustness to rotor imbalance disturbance amplitude, the components which make
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independently allowed to d viate from its nominal value where the deviations were defined 

by Gaussian distributions with a mean of zero and a 30" value of 20% of the nominal value. 

To test robustness to rotor imbalance disturbance amplitude, the components which make 
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up the rotor imbalance disturbance (M, F,, a), see Figure 3-2, were allowed to individually

deviate from their nominal value where the deviations were defined by Gaussian

distributions with a mean of zero and a 3R value of 2 kg, 0.1 m, and 0.05 radians for M, E,

and a, respectively. To test robustness to ISS disturbance frequency uncertainty, the

disturbance frequencies were allowed to deviate from their nominal values where the

deviations were defined by Gaussian distributions with a mean of zero and a 3cR value of

20% of the nominal value.

Special care was taken in defining the distributions of the different deviations in order to

prevent impossible deviations such as negative rodent mass, M. The Monte Carlo testing

involved 1000 test runs of each uncertainty category using ISS Model 2. Other than the

allowed deviations on the plant, nothing else in the simulation or the observer model was

changed. The nominal spin frequency used equals 0.7 Hz, while the nominal ISS

translational and rotational disturbance frequencies were chosen as the peak mode

frequencies from the following two transfer functions, respectively: 1) dys to Yrel and 2) doxs

to 0xrel (see Figure 4-38).

4.5.1 Monte Carlo Analysis: Parameter Uncertainty Results

The following distributions are the result of the variation on the plant stiffness parameters

as defined in Section 4.5.
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The variation of stiffness values forces a distribution of the plant's frequency response.

The modal frequency distributions for the direct transfer functions (i.e. dxs to xrel) caused by

the change in the stiffness parameters of the plant are shown in Figure 4-47 through Figure

4-50. The nominal Bode plots have been superimposed on the modal frequency

distributions to show the variation from the nominal plant modal frequencies caused by the

distribution of the plant stiffness parameters. Figure 4-47 through Figure 4-50 also

provide information on which frequencies are more likely to be effected; that is, which

frequencies will shift or appear/disappear due to variations in the stiffness parameters.

TFx Bode and Distribution of Modal wn Due to AK
150. -50

loo0000
5nl0 -• •.1o02"0 0U "

0 0.2 OA4 0.6 0.8 1 1.2 1
Modal w Variation (Hz)

Figure 4-47. Modal Frequency Distribution Caused by AK (for d,. to xrj)
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Figure 4-48 and Figure 4-49 show that the higher modal frequencies will have a larger

standard deviation from the nominal value than the lower frequencies.
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Figure 4-48. Modal Frequency Distribution Caused by AK (for dys to Yre)
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Figure 4-50. Modal Frequency Distribution Caused by AK (for deys to yrei)

Figure 4-49 shows that the high frequencies are likely to shift away from the nominal value

since the mean is not equal to the nominal value. Also in Figure 4-50, a new modal

frequency appears around 0.58 Hz due to variations in plant stiffness parameters.

The Monte Carlo analysis results, testing estimation performance under conditions of

parameter uncertainty can be found in Figure 4-51 below.
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Figure 4-49 shows that the high frequencies are likely to shift away from the nominal value 

since the mean is not equal to the nominal value. Also in Figure 4-50, a new modal 

frequency appears around 0.58 Hz due to variations in plant stiffness parameters. 

The Monte Carlo analysis results, testing estimation performance under conditions of 

parameter uncertainty can be found in Figure 4-51 below. 
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Figure 4-51. Monte Carlo Results Testing Parameter Uncertainty (no spin-up)

The largest percent amplitude error occurs in the translation of the rotor in the x axis. The

estimation of the other dofs are very accurate.

It is important to note that the process noise covariance matrix, Q, does not change from

the nominal Q during the Monte Carlo simulations. Since Q is determined by the level of

uncertainty in the observer model, by increasing Q as the difference between the plant

model and the observer model increased due to parameter changes, improved estimation

would be expected. Time history plots, displayed in Figure 4-52 through Figure 4-55, were

created using a set of parameters that produced the approximate mean amplitude error

values, resulting from the Monte Carlo analysis, for all four motions of the rotor (xr, y,

translations and • 4,Oy, rotations). These parameter values produced a percent amplitude

error of xr - 11.79%, Y, - 6.3%, Oxr -* 2.5%, and lyr -+ 1.7%.
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Figure 4-51. Monte Carlo Results Testing Parameter Uncertainty (no spin-up) 
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The largest percent amplitude error occurs in the translation of the rotor in the x axis. The 

estimation of the other dofs are very accurate. 

It is important to note that the process noise covariance matrix , Q, does not change from 

the nominal Q during the Monte Carlo simulations. Since Q is determined by the level of 

uncertainty in the observer model , by increasing Q as the difference between the plant 

model and the observer model increased due to parameter changes, improved estimation 

would be expected. Time history plots, displayed in Figure 4-52 through Figure 4-55, were 

created using a set of parameters that produced the approximate mean amplitude error 

values, resulting from the Monte Carlo analysis, for all four motions of the rotor (xr, Yr 

translations and <Pxr, <Pyr rotations). These parameter values produced a percent amplitude 

error of Xr ~ 11.79%, Yr ~ 6.3%, <Pxr ~ 2.5%, and <Pyr ~ 1.7%. 
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Figure 4-55. (Iyr Estimation

It is clear from Figure 4-52 through Figure 4-55 that the error is caused purely by

amplitude differences between the actual and estimated states and not by phase lag or lead.
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Figure 4-55. </>Yr Estimation 

It is clear from Figure 4-52 through Figure 4-55 that the error is cau ed purely by 

amplitude differences between the actual and estimated states and not by phase lag or lead. 
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The Monte Carlo analysis results, with the time-varying case of rotor spin-up, can be found

in Figure 4-56 below.
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Figure 4-56. Monte Carlo Results Testing Parameter Uncertainty (with spin-up)

By comparing Figure 4-51 with Figure 4-56, it is evident that the Kalman filter

performance is nearly identical regardless of time varying dynamics or time varying inputs.
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Figure 4-56. Monte Carlo Results Testing Parameter Uncertainty (with spin-up) 

By comparing Figure 4-51 with Figure 4-56, it is evident that the Kalman filter 

performance is nearly identical regardless of time varying dynarrtics or time varying input 
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4.5.2 Monte Carlo Analysis: Rotor Disturbance Amplitude
Uncertainty Results

The following distributions are the result of the variation of the parameters that determine

the amplitude of the rotor disturbance as defined in Section 4.5.
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Figure 4-57. Distribution of Rotor Disturbance Amplitude Parameters

The Monte Carlo analysis results, testing estimation performance under conditions of rotor

disturbance amplitude uncertainty can be found in Figure 4-58.
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The following distributions are the result of the variation of the parameters that determine 

the amplitude of the rotor disturbance as defined in Section 4.5. 
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The Monte Carlo analysis results, testing estimation performance under condition of rotor 

disturbance amplitude uncertainty can be found in Figure 4-58. 
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5 Conclusions

This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system

where only relative measurements are available with limited knowledge of both rotor

imbalance disturbances and ISS thruster disturbances. A Kalman filter is applied to a plant

model augmented with sinusoidal disturbance states used to model the effect of the ISS

thrusters on the CR relative motion measurement. The sinusoidal disturbance states

compensate for the lack of the availability of plant inputs for use in the Kalman filter.

Testing confirms that complete disturbance modeling is necessary to ensure reliable

estimation. Further testing goes on to show that increased estimator operational bandwidth

can be achieved through the expansion of the disturbance model within the filter dynamics.

In addition, Monte Carlo analysis shows the varying levels of robustness against defined

plant/filter uncertainty variations.

Chapter 2 provided a problem overview and a concise description of the CR system. This

included a description of the simplified model as well as the list of assumptions necessary

for simplification. The model used for analysis and testing included a 4 mass (Rotor,

shroud, ISS Mass 1, and ISS Mass 2), 16 degree of freedom, time-varying system. From

this model, linearized equations of motion were derived.

In Chapter 3 a detailed description of how the disturbance models were implemented

within the filter dynamics was formulated. This formulation required the derivation of both

rotor and ISS disturbances. The rotor disturbance was derived as a function of imbalance

geometry, mass/inertia, and spin rate, while the ISS disturbance modeling was done though
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Figure 4-64. Monte Carlo Results Testing Combination of All Uncertainties
(with spin up)

Relatively large errors result from the combination of all three uncertainty categories.

Error in estimating 0xr and 0,, rotations remain relatively low while the errors in both xr and

yr translation are relatively high. The two uncertainties having the most effect on

estimation error are the plant parameter uncertainty and the ISS disturbance frequency

uncertainty, both of which create frequency disparities between the plant and the filter

models.
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Relatively large errors result from the combination of all three uncertainty categ01ies. 

Error in estimating <!>xr and <!>yr rotations remain relatively low while the errors in both Xr and 

Yr translation are relatively high. The two uncertainties having the most effect on 

estimation error are the plant parameter uncertainty and the ISS disturbance frequency 

uncertainty, both of which create frequency disparities between the plant and the filter 

models. 
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4.5.4 Monte Carlo Analysis: Combination of All Uncertainties
Results

Monte Carlo analysis was conducted combining the plant parameter uncertainty, the rotor

disturbance amplitude uncertainty, and the ISS disturbance frequency uncertainty in order

to determine the error for a case with all uncertainties acting at the same time. The results

for this analysis can be found in Figure 4-63 for the time-invariant case, and in Figure 4-64

for the rotor spin-up case.
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Figure 4-63. Monte Carlo Results Testing Combination of All Uncertainties (no
spin up)
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Figure 4-61 shows that the largest errors are caused by ISS disturbance frequency

uncertainly. Therefore, it will be important to determine the ISS disturbance frequencies of

concern and to expand the ISS disturbance model to capture all of them.

The Monte Carlo analysis result, considering a time-varying plant and disturbance inputs,

can be found in Figure 4-62.
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Figure 4-62. Monte Carlo Results Testing ISS Disturbance Frequency
Uncertainty (with spin up)

Again, similar results are found between the time-invariant and time-varying Monte Carlo

analysis, supporting the conclusion that the Kalman Filter operates similarly for both cases.
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Again, similar results are found between the time-invariant and time-varying Monte Carlo 

analysis, supporting the conclusion that the Kalman Filter operates similarly for both ca es. 
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4.5.3 Monte Carlo Analysis: ISS Disturbance Frequency
Uncertainty Results

The distributions, shown in Figure 4-60, are the result of the variation of both the

translational and rotational ISS disturbance frequencies as defined in Section 4.5.
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Figure 4-60. Distribution of Translational and Rotational ISS Disturbance
Frequencies

The Monte Carlo analysis results, testing estimation performance under conditions of ISS

disturbance frequency uncertainty can be found in Figure 4-61.
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The distributions, shown in Figure 4-60, are the result of the variation of both the 

translational and rotational ISS disturbance frequencies as defined in Section 4.5. 
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The Monte Carlo analysis results, testing estimation performance under conditions of ISS 

disturbance frequency uncertainty can be found in Figure 4-61. 
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From Figure 4-58 it is evident that the Kalman filter performance is insensitive to rotor

disturbance amplitude per the defined distributions. This result is important, because

rodent motion and rodent mass modeling discrepancies are expected during normal

operations due to the fact that there is no way to predetermine the rodent motion or to

predict the rodent mass fluctuations over extended study periods.

The Monte Carlo analysis result, considering a time-varying plant and disturbance inputs,

can be found in Figure 4-59.

%AmpftudeError (x t) ,- 0.861 0 o .O 07 % AmplltudeError (yV,.) iL-0.2161o-O
180 •200

160 lee

140 ISO
1 4 0 

1 4120. 140

5200

8.82 OM .Jil , 0.85 OM8 0 ,067 OAS OM8 0S3 0.214 0.2145 0215 0.215 5 0.211 0.2165% Amplitude Error 
% Amplitude Error

% Am p litud e E rror (* •,. ) oL " 0 .990 1 o- 0 .16 5 % A m plitu d e E rro r (' r jL ' 1.463 1 a o- 0 .605

'6

o 00 

120-• 

-"

O 40 
IS0

20 2

%.4 0.8 O 1 0 2 0 A 0. A 1.8 
_0 0.5 1 0.5 2 2.5 I 0.2 , .5% Amplitude Error 

% Amplitude Error

Figure 4-59. Monte Carlo Results Testing Rotor Disturbance Amplitude

Uncertainty (with spin-up)

Similar results are seen between the time-invariant and time-varying Monte Carlo analysis,

supporting the conclusion that the Kalman Filter is effective for both cases.
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Similar results are seen between the time-invariant and time-varying Monte Carlo analysis, 

supporting the conclusion that the Kalman Filter is effective for both cases. 
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a sinusoidal approximation of the effect of a pulse train through the system dynamics.

Modeling the ISS disturbances in such a manner introduced another complexity (i.e. the

modeling of a pulse train disturbance input) into the CR state estimation example.

Observability for both the plant and filter models was evaluated. Since both models are

time varying, observability needed to be checked for each variation of the model dynamics

using both a time-invariant test as well as a time-varying test for observability. It was

shown that the plant model is observable over the entire range of spin frequencies, and the

filter model is observable over the entire range of the combinations of constant spin and

ISS disturbance frequencies, except for low spin frequencies below 0.015 Hz. This is

reasonable since low spin frequencies would create very small rotor disturbances, thus not

affecting the system. Also, the discrete Kalman filter equations and algorithm are

introduced along with a method for calculating initial Kalman filter parameters.

In Chapter 4 the results from testing using the solution method proposed in Chapter 3 were

presented. After determining performance measures, comparisons were made between

different fidelities of disturbance modeling to show that it is necessary to model all of the

disturbances which act on the plant in order to achieve good estimation. Also, comparisons

were made between two filter models (ISS Model I and ISS Model 2), with different levels

of ISS disturbance frequency modeling, show that expanding the disturbance model within

the filter model will increase the range of disturbance frequencies for which the Kalman

filter is effective. Finally Monte Carlo analysis shows that errors are sensitive to plant

uncertainties as well as ISS disturbance frequency uncertainties. Therefore, care must bet

taken to ensure that the filter model is as close to the plant model as possible. An on-line
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system identification process may be necessary to detect and automatically adjust for any

changes between the plant and the filter models [33][34][35]. Monte Carlo analysis also

showed that it will be important to expand the filter model to cover the entire range of ISS

disturbance frequencies.

In conclusion, the use of disturbance modeling within the filter dynamics has proven to be

useful in situations where the disturbance inputs into the plant are not available. Since

many user defined parameters are not changed through the testing process, namely the

process noise covariance, Q, and the initial error covariance, P0, the results provided are not

the best possible. Therefore, for future work a method for updating Q and calculating PO in

an optimal fashion should be investigated.
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