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Partially-averaged Navier Stokes (PANS) is a suite of turbulence closure models of
various modeled-to-resolved scale ratios ranging from Reynolds-averaged Navier Stokes
(RANS) to Navier-Stokes (direct numerical simulations). The objective of PANS, like
hybrid models, is to resolve large scale structures at reasonable computational expense.
The modeled-to-resolved scale ratio or the level of physical resolution in PANS is quantified
by two parameters: the unresolved-to-total ratios of kinetic energy (fk) and dissipation (fε).
The unresolved-scale stress is modeled with the Boussinesq approximation and modeled
transport equations are solved for the unresolved kinetic energy and dissipation. In this
paper, we first present a brief discussion of the PANS philosophy followed by a description
of the implementation procedure and finally perform preliminary evaluation in benchmark
problems.

I. Introduction

The optimal computation strategy for a turbulent flow dependents on the level of complexity of the
flow and the degree of accuracy needed for the specific application. In a variety of production-dominated
rectilinear flows (zero-pressure gradient boundary layers, straight channel flows, etc.), the current corps of
Reynolds-averaged Navier-Stokes (RANS) models perform well enough to predict the mean flow statistics
to within engineering accuracy. While the RANS method is computationally inexpensive, the range of
flow physics it can adequately represent is severely limited due to the fact that it is a one-point closure.
Many engineering applications (e.g., aeroacoustics, aeroelasticity, flow control) involve flows with large-scale
unsteadiness in which coherent structures play a crucial role in determining the turbulence physics. Such
flows are characterized by large correlation distances and strong non-local effects. One-point closures, by
their very nature, are generally ineffective for flows with significant non-local (in space and time) effects.

Large eddy simulations (LES) typically resolve all the dynamically important scales of motion and a
significant portion of the inertial scales. Thus, LES is well capable of handling wider range of turbulence
physics including flows with large coherent structures. However, the increased range of flow physics and high-
fidelity flow details come at the expense of much greater computational effort. For engineering purposes,
LES is too high a price to pay when the resolution of only the largest scales is needed.
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There is a clear and imminent need for turbulence computational methods of intermediate cost and
degree of accuracy – relative to RANS and LES. The desire is to extract important large-scale unsteady
features at minimal computational expense. Many such methods are currently under consideration: e.g.,
detached-eddy simulations1(DES); hybrid RANS/LES; limited numerical scales method2(LNS); unsteady
Reynolds-averaged Navier Stokes method3,4 (URANS); and very large-eddy simulations5 (VLES).

A recent addition to this list of models of intermediate cost/accuracy is the partially-averaged Navier-
Stokes (PANS) method of Girimaji.6 PANS is a suite of turbulence closure models of various modeled-to-
resolved scale ratios ranging from RANS to Navier-Stokes (direct numerical simulations). The modeled-
to-resolved scale ratio or the level of physical resolution in PANS is quantified by two parameters: the
unresolved-to-total ratios of kinetic energy (fk) and dissipation (fε). The unresolved stress is modeled with
the Boussinessq approximation and modeled transport equations are solved for the unresolved kinetic energy
and dissipation. The unresolved kinetic energy and dissipation equations for various modeled-to-resolved
ratios are systematically derived from a parent RANS model. PANS models of different fk values require
different numerical resolutions. Lower the fk value, the smaller is the modeled-to-resolved ratio, the greater
computational effort and the more accurate the computed physics.

In this paper we will first present the PANS rationale and model equations (Section 2). In Section
3, various PANS model features are discussed and important implementation details are given with clear
guidelines for the lowest possible fk values (leading to maximum flow resolution) that a given grid can
support. Then in Section 4 we present some preliminary results and comparison against popular methods
such DES and LES.

II. The PANS method

As seen in the introduction, in the computation of a complex turbulent flow, it is most cost-efficient to
resolve only those features, including coherent structures, that are not amenable to single-point closure and
represent the rest of the flow with easy-to-compute closure models. The optimum resolved-to-modeled ratio
will vary from case to case depending on the flow geometry and physical effects. Therefore, it is essential
to develop closure models that are valid for any arbitrary resolved-to-modeled ratio. Such is the objective
of the suite of models we present in this paper. This family of models is parameterized by the modeled-to-
resolved kinetic energy ratio. As this model family is based on the RANS paradigm and is valid for any
partial average, it is given the name Partially-averaged Navier-Stokes (PANS). We will now briefly describe
the PANS closure model development. The details can be found in Girimaji.6

Incompressible Navier-Stokes equations for the instantaneous velocity (V) and pressure (p) fields are

∂Vi

∂t
+ Vj

∂Vi

∂xj
= − ∂p

∂xi
+ ν

∂2Vi

∂xj∂xj
;

∂2p

∂xi∂xi
= −∂Vi

∂xj

∂Vj

∂xi
. (1)

Consider partially-averaged flow variables – Ui =< Vi >; pU =< p > – where < · · · > denotes an
arbitrary (implicit or explicit) filter which is constant preserving and commutes with spatial and temporal
differentiation. The PANS equations are written in terms of partially averaged or filtered velocity (U) and
pressure (pU ) fields. The evolution equations are7

∂Ui

∂t
+ Uj

∂Ui

∂xj
+

∂τ(Vi, Vj)
∂xj

= −∂pU

∂xi
+ ν

∂2Ui

∂xj∂xj

− ∂2pU

∂xi∂xi
=

∂Ui

∂xj

∂Uj

∂xi
+

∂2τ(Vi, Vj)
∂xj∂xj

. (2)

In the above equation, τ(Vi, Vj) is the generalized central second moment:

τ(A,B) =< AB > − < A >< B > . (3)
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The sub-filter kinetic energy and dissipation can be defined as

Ku =
1
2
τ(Vi, Vi); εu = ντ(

∂Vi

∂xj
,
∂Vi

∂xj
). (4)

Throughout, subscript u indicate PANS statistics
When the averaging is over all scales of motion (denoted by over bar), the filtered velocity becomes the

mean velocity and the SFS stress reduces to Reynolds stress – R(Vi, Vj): where R(A,B) = AB − A B. The
RANS statistics are related to their PANS counterpart according to Germano:7

V j = < Vj > = Uj ; R(Vi, Vj) ≡ ViVj − V iV j = τ(Vi, Vj) + R(Ui, Uj), (5)

The RANS kinetic energy and dissipation are denoted by K and ε. Averaging over all scales also leads
equations (2) and τ(Vi, Vj) equations to collapse to the RANS equations. The form of the statistical hierarchy
of equations is invariant of the filter, when the filtered equations are expressed in terms of the generalized
central moments.7–9 This feature of the Navier-Stokes equation is given the name averaging-invariance
property.

The averaging-invariance property clearly indicates that the sub-filter scale (SFS) stress τ(Vi, Vj) has
the same characteristics as the Reynolds stress and similar closure strategies can be employed. As the
PANS bridging model is purported for use at all degrees of physical resolution (modeled-to-resolved ratios),
there must be at least as much physics incumbent in the PANS models as in some of the more advanced
two-equation RANS models. Most of the popular LES closures that are algebraic in nature (zero-equation
models) are too elementary to be useful in the PANS method. Years of modelling experience is incumbent in
the RANS models and they have been tested widely in important engineering flows. Important issues such
as tensor invariance, realizability and effects of extra strain rate (due to rotation, buoyancy, etc.) are best
addressed at the level of RANS closure using well-tested techniques.10 Therefore, we base the PANS models
on the RANS paradigm. As a first step, the PANS model developed in Girimaji6 is based on the Boussinesq
approximation for the turbulence constitutive relation and evolution equations are solved for the unresolved
kinetic energy (ku) and dissipation (εu).

The two-equation PANS model is derived in Girimaji6 by adhering to the following guidelines: (i) The
form of the bridging model closures must be invariant of the modeled-to-resolved field ratio. Averaging
invariance can be a useful constraint even when the filters are slowly-varying functions of space. (ii) The
physical resolution or extent of averaging of a bridging model must be appropriately quantified. For example,
in URANS, the extent of averaging (implied physical resolution) is not clear. (iii) That the PANS model can
achieve the required modeled-to-resolved scale ratio must be verifiable. (iv) The model must change smoothly
and seamlessly from RANS to DNS as the modeled-to-resolved ratio is varied. The URANS approach not
been able to demonstrate a smooth variation.11

A. Closure Modeling.

The PANS model development involves several important steps: (a) Quantification of modeled-to-resolved
ratio – identification of physical-resolution parameter; (b) Specification of the physical resolution parameter.
(c) Closure of PANS SFS stress, τ(Vi, Vj); (d) Modelling of the PANS transport equations; and (e) A priori
verification of model behavior.

(a) In LES, the resolution is quantified in terms of the cut-off wavenumber – λc or filter width. Larger
the cut-off wavenumber, the more accurate the calculation as more scales are resolved exactly. The cut-off
wavenumber enters the calculations via filtering and subgrid-stress constitutive relationship and thus controls
the physical resolution. For PANS it is important to identify the corresponding physical resolution parameter
that (i) quantifies the filtering, and (ii) appears in the closure model to ensure that the required resolution
is achieved. In Girimaji6 it is shown that the extent of PANS averaging – relative to RANS – can be best
quantified using the unresolved-to-total ratios of kinetic energy (fk) and dissipation (fε):

fk =
Ku

K
, fε =

εu

ε
. (6)
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These two parameters are the PANS modeled-to-resolved ratio quantification or resolution-control param-
eters. Note that turbulence physics – large scales contain most of the kinetic energy and much of the
dissipation occurs in the smallest scales – dictates 0 ≤ fk ≤ fε ≤ 1. Smaller the fk, greater is the physical
resolution: fk = 1 represents RANS and fk = 0 indicates DNS. Unity value of fε implies that the RANS
and PANS unresolved small scales are identical.

(b) In order to perform a PANS computation, the resolution control parameters must be specified. It
is generally desirable to have the physical resolution vary as a function of space as in DES. Rapid spatial-
variation of physical resolution will be considered in future works as it introduces an additional complication
of a filtering operation that does not commute with spatial differentiation. In this paper, we will assume that
the specified spatio-temporal variation of the implied PANS filter is slow compared to that of flow variables.
The prescription of fk and fε is discussed in the next section.

(c) As mentioned earlier, in this work we will focus on a two-equation PANS closure. When the Boussinesq
approximation is invoked in conjunction with averaging-invariance requirement for arbitrary filters, we get:

τ(Vi, Vj) = −νuSij ; where νu = Cµ
K2

u

εu
. (7)

Fixed-point analysis (e.g. Girimaji10) has clearly shown that the asymptotic energetics of unresolved scales
does not depend on the value of Cµ. Hence, for the sake of simplicity, we maintain the PANS Cµ at the
RANS value.

(d) The derivation of the model evolution equations for Ku and εu as functions of fK and fε is described
in detail in Girimaji.6 The two-equation PANS model can be summarized as

dKu

dt
= Pu − εu +

∂

∂xj

(
(

νu

σku
+ ν)

∂Ku

∂xj

)

dεu

dt
= fk(Ce1

Puεu

Ku
− C∗

e2

ε2
u

Ku
) +

∂

∂xj

(
(

νu

σeu
+ ν)

∂εu

∂xj

)
. (8)

The modified model coefficients are

C∗
e2 ≡ Ce1 +

fk

fε
(Ce2 − Ce1); σk,εu ≡ σk,ε

f2
k

fε
. (9)

The coefficients Ce1, Ce2, σ’s are those of the parent RANS model, which in this case is the standard two-
equation closure. The values for the various model constants used in our works are: Ce1 = 1.44; Ce2 =
1.92; σk = 1.0; σε = 1.3.

Overall, the form of the equations are clearly invariant to averaging. The resolution-control parameter
manifests only via the modified model coefficients.

(e) Whether the PANS model can achieve the required level of modeled-to-resolved ratio depends on
the production-to-dissipation ratio – Pu/εu.12 The larger the value of Pu/εu, the more energetic are the
unresolved scales. In a bridging model, the energy content of the unresolved fluctuations should decrease as
the resolution goes from RANS (fk = 1) to DNS (fk = 0). When the implied cut-off is in the dissipation
range, Pu/εu should go to unity as all energy cascaded into the dissipation scales is immediately expended
without any accumulation. The long-time global behavior Pu/εu as a function of resolution can be best
evaluated from a fixed point analysis of equations (8) in the absence of transport (which does not create of
destroy energy). A detailed analysis is given in Girimaji et al12 and only the important results are presented
here. At the weak-equilibrium turbulence fixed point, we have only one non-trivial fixed point:(

Pu

εu

)
lim t→∞

=
C∗

e2 − 1
Ce1 − 1

= 1 +
(

fk

fε

)
Ce2 − Ce1

Ce1 − 1
. (10)

Asymptotically, Pu/εu varies linearly with fk – going from the RANS value to DNS value of unity. The
PANS SFS velocity field progressively gets weaker with smaller fk as required. On the contrary in URANS,
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wherein the model coefficients are constants at RANS values, the only non-trivial fixed point is the same
as in RANS. Hence, the URANS unresolved scales will be as energetic as the RANS scales irrespective of
implied resolution as was found by Khorrami et al.3 It is shown in Girimaji et al12 that the trivial fixed
point of RANS leads to K = ε = 0. This corresponds to DNS. Thus, URANS can asymptotically go only to
RANS or DNS as was found by Hedges et al.11

III. PANS features and implementation

The PANS method represents a new modelling paradigm that is distinct from LES, DES, URANS and
hybrid methods. Now, we will identify some of the PANS distinguishing features.

1) The PANS decomposition of the velocity field is based on kinetic energy content rather than on cut-off
wavenumber. The filter demarcating calculated (resolved) and modeled (unresolved) motion is implied rather
than explicit. PANS can be viewed as LES with an implicit filter and a two-equation sub-filter closure.

2) The parameter fk determines the unresolved-to-total kinetic energy and thereby sets the cut-off be-
tween resolved and unresolved scales. Thus, the resolution of the flow is controlled by suitably specifying
fk.

3) The parameter fε dictates the extent of overlap between the energy-containing and dissipation ranges
in the given simulation. The Reynolds number of the simulation is controlled by suitably specifying fε. If
there is a clear separation between energy-containing and dissipation scales (high Reynolds number flow),
then fε = 1. If there is no significant separation between the two ranges (low Reynolds number flow), then
fε ≈ fk. For intermediate Reynolds numbers, the fε value will be between the two limits. In LES closures,
it is difficult to control the Reynolds number of the flow.

4) The parameters fk and fε can be constant throughout the computational domain (some kind of
fractional RANS) or vary as a function of space and time (in the spirit of DES).

5) The SFS (sub-filter scale) model is independent of grid spacing, and dependent only on the parameters
fk and fε. Thus, the physical resolution is decoupled from numerical resolution. This results in a model of
higher fidelity than zero-equation algebraic closures based on grid spacing.

6) The cut-off corresponding to given values of fk and fε cannot be easily estimated a priori. Thus, the
numerical grid required for given fk and fε can only be found using a grid independence study. This can be
the same type of grid-refinement studies used to determine the appropriate grid for a RANS simulation.

7) Due to the nature of PANS no explicit filtering operation is necessary. The SFS closure model is
designed to ensure the right balance between the resolved and modeled kinetic energies.

A. PANS implementation

Any computational tool that is capable of simulating different modeled-to-resolved ratios must be made up
of two important components: high-fidelity physical model; and, effective and efficient numerical implemen-
tation scheme. The first component is a closure model possessing the turbulence physics to ensure that
the right amount of energy is modeled. The PANS method described above is theoretically proven to yield
the desired level of unresolved kinetic energy. The second component ensures that the full benefits of the
physical model are realized, resulting in the best possible physical accuracy at a given level of computational
effort. We will now briefly describe a scheme to effectively implement PANS. More details on the scheme
and a sample implementation can be found in.13

The objective of the implementation scheme is to determine the lowest fk and fε a given grid can
support for a specified flow geometry and boundary conditions. Recall that, the lower the values of the
PANS parameters, the more accurate the computations as more scales are resolved. In our analysis, we will
restrict our consideration to high Reynolds number turbulence with the implicit cut-off located anywhere
except in the dissipation range. This should cover almost all cases of practical interest. Since the dissipation
scales are not resolved in these cases, it can be assumed that fε ≈ 1.

The physical criterion used in assessing the lowest fk that can be supported at a given grid location is
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derived from the requirement that the grid-size should be larger than the smallest resolved length scale. But,
what is the smallest resolved length scale for a given fk? This can be estimated by adapting Kolmogorov
type arguments to resolved motion. The smallest resolved length scale (ηr) is likely to be determined by
local dissipation and local eddy viscosity:

ηr ∼
(

ν3
u

ε

) 1
4

(11)

This is the resolved-field equivalent of the Kolmogorov scale. From equation (7) we can write (noting fε = 1,
εu = ε)

νu = Cµ
K2

u

εu
≈ Cµf2

k

K2

ε
. (12)

The resolved-field Kolmogorov scale is
ηr = C0.75

µ f1.5
k Λ (13)

where Λ = K1.5/ε is the Taylor scale of turbulence. The smallest resolved length scale in PANS is related
to fk and the Taylor scale of turbulence which is to be expected.

A typical guideline in DNS is that the grid-spacing should be of the order of the Kolmogorov length scale.
A similar requirement for PANS would lead to

ηr = C0.75
µ f1.5

k Λ ∼ ∆ (14)

where ∆ is the smallest grid dimension. Thus, the smallest fk a grid can support at a given location is

fk(x) =
1√
Cµ

(
∆
Λ

) 2
3

≈ 3
(

∆
Λ

) 2
3

(15)

In order to judiciously specify fk(x) we must know the spatial distribution of the Taylor microscale or,
equivalently, the distributions of the total kinetic energy and dissipation. Since, this is not known a priori
we propose two possible approaches. First is an in situ approach, in which we start the computation with
a plausible fk distribution and compute the total energy and dissipation by suitable averaging. Then, the
fk(x) value is continually updated using equation (15). This method will be similar to dynamic Smagorinsky
approach which requires on-the-fly averaging to determine the Smagorinsky closure constant. While this
approach may appear to be physically correct, we expect it to be susceptible to statistical errors in the
averaging process, especially if there are no homogeneous directions. At this stage of PANS development, we
propose a second approach which is simpler and more robust even if not as theoretically correct as the first
method. We suggest a one-time RANS calculation for specifying the fk(x) distribution which will then be
maintained constant in time. While a RANS calculation may not yield very accurate results, it can serve as
a guide for fk specification. The inaccuracy of RANS will not affect the accuracy ensuing PANS calculation
too much. The inaccurate RANS can only cause the fk distribution to be less than fully optimal, resulting
in the use of slightly different fk than the grid can optimally support. Based on the second method, we now
prescribe a four-step implementation scheme:

1. For the flow of interest, the (most affordable) grid is first generated. Then a RANS calculation is
performed. This can be done quite expeditiously. This is called the pre-processing computational step.

2. The RANS data is then used to determine the Taylor-scale distribution.

3. The lowest possible fk distribution is then found from equation (15).

4. Once the fk-field is specified, the full calculation can the be performed by modifying the model coeffi-
cients as per PANS closure. The fk-field is held constant throughout the computation.

This procedure is shown in a flow chart in Fig. 1. Results obtained from implementation of this scheme will
be shown in the next section.
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IV. Results

The results are presented in two parts. In the first part, we present preliminary results from fixed fk

calculations. In the second part, the results from spatially varying (temporally constant) fk computation
are shown.

Fixed fk computations. Our first objective is to show that PANS models produce progressively better
results with decreasing fk. This demonstration is best achieved with constant fk computations. Several
large-scale constant-fkPANS computations of flow past square cylinder, high and low-Reynolds number flow
past circular cylinder, flow in a square cavity, and flow over a surface mounted cube have been completed.
In all these studies, the commercial CFD code FLUENT is used with the model coefficients appropriately
modified depending on the specified resolution control parameter. Standard wall-function approach is used
for the first near-wall grid point.

In the square cylinder study, the PANS results of various physical resolutions are compared with URANS,
LES14 and experimental data.15 In Table 1, the Strouhal number, mean coefficient of drag, rms (root-mean
square) of drag, rms of lift are given for three PANS computations of different fk values. The fk = 1
computation can be viewed as the URANS method. All the PANS and URANS computations are performed
on the same grid to ensure that the difference in calculated results is only due to the modeling effects.
Except in the case of Strouhal number, URANS compares poorly with LES or experiments. With decreasing
fk (increasing physical resolution), the PANS results approach the experimental values for all quantities
considered. The fk = 0.4 case is nearly as accurate as LES which employs twice as many grid points.
The centerline mean streamwise velocity profile obtained from the three PANS calculations are compared
in Fig. 2 against experimental and LES results. Clearly, with decreasing fk, the PANS profile approaches
the experimental data resulting in excellent agreement. The reason for the improved performance with
decreasing fk can be surmised from flow structures shown in Fig. 3. More and more of the flow features are
resolved with decreasing fk. Whereas, in fk = 1 case, the flow appears nearly laminar, a variety of small-
scale turbulent structures can be seen in fk = 0.4 case. Another dramatic change resulting from decreasing
fk can be seen in Fig. 4 where instantaneous iso-surfaces of transverse (Z) velocity are shown for fk = 1 and
fk = 0.7 cases. In the fk = 1 case, there is absolutely no transverse velocity indicating a two-dimensional
flow. In the fk = 0.7 case, there is clearly a great deal of three-dimensional motion.

The Cp profiles computed from various fk computations of flow past circular cylinder are shown in Fig.
5 for high Reynolds number flow and in Fig. 6 for low Reynolds number case. Experimental, DES and LES
data are also shown for comparison. In the DES calculation, the turbulence model is activated only past
the laminar separation point. Hence, the DES computation is hard-wired to predict separation correctly. In
our PANS calculation, the turbulence model is always activated. The PANS model does miss the separation
point, but captures the remainder of the details quite well. Even here, it is quite evident that the results
improve substantially with decreasing fk.

The conclusion from the constant fk studies is clearly that the PANS can go from RANS to experiments
smoothly as fk value is decreased – thus achieving our objective.

Spatially-varying fk computation. Having established that PANS model suite does perform as re-
quired with decreasing constant-fk, we now compute with spatially varying fk. The objective, as in DES, is
to use RANS model (no fluctuating scales resolved) in the near-wall regions and progressively resolve more
scales of motion in the areas of interest. For these computations we use the NASA Langley code PAB3D. The
test case is an axisymmetric Mach 0.55 jet with a nozzle exit diameter (Dj) of 2in (experiment of Bridges and
Brown16).The freestream Mach number is 0.01. The computational mesh is a three-dimensional grid with
120 cells in the circumferential direction. The domain is divided into 48 parts. Grids are clustered around
the solid surfaces and the shear layer (Fig. 7). Uniform grid is used in the region 2 < x/Dj < 12. The value
of y+ at the first grid point is maintained between 0.2 and 2.0. PANS computation is performed at three
different grid resolutions: coarse (500,000 cells); medium (2,000,000 cells) and fine (4,000,000 cells). The
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fk-distribution is specified using the procedure outlined in the previous section. Unsteady RANS calculation
is also performed for comparison. Figure 8 shows an instantaneous two-dimensional snap shot from the
medium resolution PANS computation. The jet breakdown as it interacts with the external flow is clearly
seen. In Fig. 9, the time-averaged stream-wise mean velocity profiles obtained from RANS and PANS are
compared against experimental data. Clearly, the PANS result is much closer to the experimental data than
the RANS calculation. It should be mentioned that the instantaneous and time-averaged RANS results were
very similar. This shows that the RANS model does not capture important unsteady effects. The RANS
core, due to insufficient mixing, extends farther downstream than observed in experimental data. In Fig. 10,
the centerline mean stream-wise velocity obtained from PANS simulations of different resolutions are com-
pared against experimental data. The coarse simulation results overpredict the jet penetration, consistent
with poor turbulent mixing characteristics. The medium and fine resolution simulations, on the other hand,
agree well with the experiment. The fact that the medium and fine results are in close agreement indicates
the grid insensitivity of the results. Finally, in Fig. 11, we compare the total centerline kinetic energy with
the unresolved kinetic energy as computed in the fine-resolution PANS. The total experimental centerline
kinetic energy is also shown. The two important observations are: (i) the total PANS kinetic energy agrees
reasonably well with the experimental data; and (ii) most of the kinetic energy is in the resolved scales.

In this paper, we provide a brief introduction to the theory and practice of the PANS method of turbulence
simulation. The initial results are encouraging. This material is based upon work supported by NASA under
NNl04AA41G.
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Table 1. Square Cylinder Flow Predictions

Case Re/103 St (CD)mean (CD)rms (CL)rms

PANS (fk = 1.0) 22 0.132 1.44 0.0022 0.27
PANS (fk = 0.7) 22 0.133 1.77 0.129 0.994
PANS (fk = 0.4) 22 0.130 1.97 0.216 1.19

LES 22 0.126 – 0.132 2.03 – 2.32 0.16 – 0.20 1.23 – 1.54
Exp Lyn 21.4 0.132 2.1 – –

Exp Durao 14 0.138 – – –
Exp McLean 15 – 40 – – – 1.4
Exp Berman 5.8 – 32 0.130 – – 1.2
Exp Norberg 13 0.132 2.16 – –

Exp Luo 34 0.13 2.2 0.18 1.2

R ANS 
Pre-calculation

Assign fk

Compute 
Taylor scale

PANS 
simulation

Figure 1. Four-step implementation scheme.
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Figure 2. Streamwise mean velocity profiles along the centerline from various experiments and simulations.
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Figure 3. Instantaneous contour plots of Z-vorticity .

f  = 1 k f  = 0.7 k

Figure 4. Instantaneous iso-surface of Z-velocity.
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Figure 5. Profiles of Coefficient of Pressure Distribution Along the Cylinder Surface for Various fk Values at
ReD = 1.4×105. , Experimental Data from Achenbach for Flow Reynolds Number of ReD = 1×105; ∗, LES Data
from Wang et al. at ReD = 106; ◦, DES Data from Travin et al. (run LS8); −, Data from PANS with fk = 0.5;
· · ·, Data from PANS with fk = 0.7; − · − · −, Data from PANS with fk = 1.0.

Figure 6. Profiles of Coefficient of Pressure Distribution Along the Cylinder Surface for Various fk Values at
ReD = 3900. ∗, DNS Data from Ma et al.; ◦, LES Data from Breuer; �, DES Data from Hansen and Forsythe;
−, Data from PANS with fk = 0.5; · · ·, Data from PANS with fk = 0.7; − · − · −, Data from PANS with fk = 1.0.

11 of 14

American Institute of Aeronautics and Astronautics Paper 2005-0502



Figure 7. Computational grid for axisymmetric jet.

Figure 8. Instantaneous PANS velocity field.
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Figure 9. Axial mean velocity field.

Figure 10. Centerline mean axial velocity .
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Figure 11. Centerline turbulent kinetic energy .
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