Aerospace Structural Metals Handbook

ALLOY NASA-HR-1

Nickel Base Alloys – Ni

Author: Po-Shou Chen, Michael Mitchell

April 2005
NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its γ matrix and η-free (Ni₃Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included (1) systematically modifying γ-matrix compositions based on JBK-75, (2) increasing γ (Ni₃(Al,Ti)) volume fraction and adding γ-matrix strengthening elements to obtain higher strength, and (3) obtaining precipitate-free grain boundaries.

The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JBK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the γ-matrix, along with the addition of alloying elements to retard η (Ni₃Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.
1.6.1 *Figure* Effects of thermal aging on hardness of solution-annealed NASA-HR-1 and A286.

1.7 **Forms and Conditions Available**

NASA-HR-1 is a wrought superalloy that can be hot- or cold-rolled into billets of various diameters. It should be available as sheet, strip, plate, bar, wire, forgings, seamless tubing, and extrusions in the same commercial range of sizes as A286.

1.8 **Melting and Casting Practice**

Standard melting practice is to combine vacuum induction melting (VIM) and vacuum arc remelting (VAR) in order to minimize alloying element oxidation and reduce inclusions. The combination of VIM + VAR melting improves homogeneity and results in a decreased scatter of mechanical properties. Satisfactory crucible materials include well-cured alumina or zirconia.

1.9 **Hydrogen Embrittlement Resistance**

HEE refers to the loss of notched tensile strength or tensile ductility in an alloy, due to the presence of hydrogen. It is usually reported as loss of ductility (elongation %) in a hydrogen atmosphere. Internal hydrogen embrittlement (IHE) refers to loss of ductility when a tensile test bar is exposed to gaseous hydrogen (GH₂) for a long period of time or through electrochemical hydrogen charging. When HEE tests were conducted on NASA-HR-1 in high-pressure hydrogen (5 ksi), its ductility was slightly reduced at 1250 F but little affected at room temperature (Ref. 3).

2 **Physical Properties and Environmental Effects**

2.1 **Thermal Properties**

2.1.1 Melting Range

Prior to melting, NASA-HR-1 has a homogeneous, single-phase, face-centered cubic structure. Its melting range is 2426 to 2579 F.

2.1.2 Phase Changes

NASA-HR-1 is a γ' (Ni₃(Al,Ti)) strengthened superalloy similar to other Fe-Ni-base superalloys. The matrix phase (gamma) is a solid solution of Fe, Ni, Co, and Cr, whereas the precipitate phase (gamma prime) is composed of hardening elements Ti and Al. Another phase has also been observed in the microstructure. The eta-phase (η), which is a Ti-rich acicular precipitate (Ni₃Ti), generally forms at the grain boundaries under certain heat-treated conditions, and forms within the grains after prolonged exposure to elevated temperatures. When properly heat treated, NASA-HR-1 displays a very clean microstructure in the wrought condition, with none of the grain boundary η precipitate generally present in Fe-Ni-base alloys with high Ti content.

The clean grain boundary observed in NASA-HR-1 could be partly attributed to the addition of W, which has been reported to retard the reaction of the metastable γ' phase (Ni₃(Al,Ti)) to stable η (Ni₃Ti) in some Ni-base superalloys (Ref. 5). This retardation could be caused by either a decreased diffusion rate of the Ti atoms to grain boundaries or by an increased energy of formation of stacking faults.
2.1.3 Thermal Conductivity
 2.1.3.1 [Figure] Thermal conductivity as a function of temperature for wrought NASA-HR-1.

2.1.4 Thermal Expansion
 2.1.4.1 [Figure] Thermal expansion as a function of temperature for wrought NASA-HR-1.

2.1.5 Specific Heat
 2.1.5.1 [Figure] Specific heat as a function of temperature for wrought NASA-HR-1.

2.1.6 Thermal Diffusivity
 2.1.6.1 [Figure] Thermal diffusivity as a function of temperature for wrought NASA-HR-1.

2.2 Other Physical Properties
 2.2.1 Density is 8.07 g/cc or 0.292 lb/in³ at room temperature.
 2.2.2 Electrical Properties
 2.2.3 Magnetic Properties
 NASA-HR-1 is weakly paramagnetic at room temperature.
 2.2.4 Emittance
 2.2.5 Damping Capacity

2.3 Chemical Environments
 General and stress corrosion.
 General. NASA-HR-1 contains Ni and Cr, which provide excellent corrosion resistance. Since NASA-HR-1 has a composition similar to A286 and JBK-75, it should have excellent resistance to stress corrosion in aqueous NaCl at room temperature but be susceptible to stress corrosion in boiling NaCl.

2.4 Nuclear Properties

2.5 Hydrogen Embrittlement
 General. NASA-HR-1 was designed for hydrogen resistance (Ref. 3). When it is exposed to hydrogen gas, atomic hydrogen enters the matrix and interacts with the dislocations. Hydrogen embrittlement arises from the degree of this interaction and the reduction in mobility of dislocations providing ductility that results. The ductility of NASA-HR-1 is little affected by testing in a high-pressure hydrogen atmosphere. Various mechanical properties have been evaluated by testing NASA-HR-1 in both high-pressure hydrogen and helium (or air) to provide practical data concerning hydrogen resistance.

2.6 Oxygen Embrittlement
 General. NASA-HR-1 contains a significant amount of Cr, which provides oxidation resistance comparable to A286 and JBK-75.

3 Mechanical Properties
 3.1 Specified Mechanical Properties
 3.2 Mechanical Properties at Room Temperature
 3.2.1 Tension stress-strain diagrams and tensile properties.
 3.2.2 Compression stress-strain diagrams and compression properties.
 3.2.3 Impact.
 3.2.4 Bending.
 3.2.5 Torsion and shear.
 3.2.6 Bearing.
 3.2.7 Stress concentration.
 3.2.7.1 Notch properties.
 3.2.7.2 Fracture toughness.
3.3 **Mechanical Properties at Various Temperatures**

3.3.1 Tensile properties.

Typical tensile properties are reported here for thermo-mechanically processed (wrought) NASA-HR-1. As temperatures increase to 1200 F, the tensile strength of NASA-HR-1 slowly drops. As temperatures increase above 1200 F, properties drop significantly.

3.3.1.1 [*Figure*] Temperature dependence of tensile properties of wrought NASA-HR-1.

3.3.1.2 [*Table*] Typical properties of wrought and heat-treated NASA-HR-1 in air and high-pressure hydrogen (5 ksi) at room temperature (Ref. 3).

3.3.1.3 [*Table*] Typical properties of wrought and heat-treated alloys similar to NASA-HR-1 in high-pressure helium and hydrogen (5 ksi) at 1250 F (Ref. 3).

3.3.1.4 [*Table*] Typical strength and ductility of NASA-HR-1 and two similar alloys of comparable strength in wrought and cast conditions at room temperature.

3.3.2 Compression stress-strain diagrams and compression properties.

3.3.3 Impact.

3.3.4 Bending.

3.3.5 Torsion and shear.

3.3.6 Bearing.

3.3.7 Stress concentration.

3.3.7.1 Notch properties.

3.3.7.2 Fracture toughness.

3.3.8 Combined loading.

3.4 **Creep and Creep-Rupture Properties**

3.4.1 [*Figure*] Creep-rupture properties of wrought NASA-HR-1 in heat-treated condition.

3.5 **Fatigue Properties**

NASA-HR-1 has excellent fatigue resistance in air and high-pressure hydrogen at room and elevated temperatures.

3.5.1 Conventional high cycle fatigue.

3.5.2 Low cycle fatigue.

3.5.2.1 [*Figure*] Low cycle fatigue life of wrought NASA-HR-1 in high-pressure hydrogen and helium (5 ksi) at room temperature.

3.5.2.2 [*Figure*] Temperature effects on low cycle fatigue life of wrought NASA-HR-1 in high-pressure hydrogen (5 ksi) at room temperature and 1250 F.

3.6 **Elastic Properties**

3.6.1 Poisson’s ratio.

3.6.2 Young’s modulus at room temperature – 29.5×10^6 psi or 204 GPa.

3.6.3 Modulus of rigidity.

3.6.4 Tangent modulus.

3.6.5 Secant modulus.
4 Fabrication

NASA-HR-1 can be easily cast using vacuum induction melting. Recommended casting temperature range is 2600 to 2700 F. Air melting is possible, but will lead to loss of alloying elements with property degradation.

NASA-HR-1 ingots can be easily formed, machined, and welded using conventional procedures for Fe-Ni base superalloys. Deformation and thermo-mechanical processes are easy to perform, due to low hardener contents. Studies indicate that NASA-HR-1 is readily weldable (Ref. 3).

Fine grain microstructure can be obtained by hot-rolling in the temperature range of 1800 to 2000 F. NASA-HR-1 can also be cold-rolled at room temperature to 60% reduction, with no signs of cracking. When cold-rolled and aged, NASA-HR-1 exhibits hardnnesses over 50 HRC.

4.1 Forming

In general, the formability of NASA-HR-1 plate in the annealed condition is similar to that of other Fe-Ni-based superalloys, such as A286 and JBK-75.

4.1.1 Forging characteristics are similar to those of A286 and JBK-75.

4.1.2 NASA-HR-1 has good ductility at elevated temperatures, which facilitates hot working. Forging characteristics are similar to those of A286 and JBK-75.

4.2 Machining and Grinding

NASA-HR-1 does not machine well in the solution-treated condition. However, it can be easily machined in the fully heat-treated condition after being hardened.

4.3 Joining

NASA-HR-1 is weldable, preferably in the solution-treated condition. Varestraint weld test results indicated that NASA-HR-1 has weldability superior to that of IN-718.

4.3.1 [Figure] Varestraint weld test results for NASA-HR-1 and IN-718.

4.4 Surface Treating

References

1. AMS Specifications, Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096.

Table 1.3.1 Suggested AMS and ASTM Specifications for wrought NASA-HR-1 (Refs. 1–2)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS 2261</td>
<td>Tolerances, nickel, nickel alloys, and cobalt alloys, bars and forging stock</td>
</tr>
<tr>
<td>AMS 2262</td>
<td>Tolerances, nickel, nickel alloys, and cobalt alloys, sheet, strip and plate</td>
</tr>
<tr>
<td>AMS 2269</td>
<td>Chemical check analysis limits, wrought nickel alloys and cobalt alloys</td>
</tr>
<tr>
<td>AMS 2350</td>
<td>Standards and test methods</td>
</tr>
<tr>
<td>AMS 2806</td>
<td>Identification of bars, wire, mechanical tubing and extrusions, carbon and alloy steels, and corrosion and heat resistant steels and alloys</td>
</tr>
<tr>
<td>AMS 2808</td>
<td>Identification, forgings</td>
</tr>
<tr>
<td>ASTM E8</td>
<td>Tension testing of metallic materials</td>
</tr>
<tr>
<td>ASTM E112</td>
<td>Determining average grain size</td>
</tr>
<tr>
<td>ASTM E139</td>
<td>Conducting creep, creep rupture, and stress rupture tests of metallic materials</td>
</tr>
<tr>
<td>ASTM E354</td>
<td>Chemical analysis of high temperature, electrical, magnetic, and other similar iron, nickel, and cobalt alloys</td>
</tr>
</tbody>
</table>

Table 1.4.1 NASA-HR-1 specified composition of cast ingots from primary supplier (wt %)

<table>
<thead>
<tr>
<th>Element</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.2 – 0.3%</td>
</tr>
<tr>
<td>C</td>
<td>0.01% (maximum)</td>
</tr>
<tr>
<td>Cr</td>
<td>14 – 16%</td>
</tr>
<tr>
<td>Co</td>
<td>3.0 – 3.5%</td>
</tr>
<tr>
<td>Fe</td>
<td>29 – 33%</td>
</tr>
<tr>
<td>Ni</td>
<td>33 – 35%</td>
</tr>
<tr>
<td>Ti</td>
<td>2.5 – 2.7%</td>
</tr>
<tr>
<td>Mo</td>
<td>1.8 – 2.2%</td>
</tr>
<tr>
<td>Si</td>
<td>0.05% (maximum)</td>
</tr>
<tr>
<td>W</td>
<td>1.5 – 2.0%</td>
</tr>
<tr>
<td>V</td>
<td>0.3 – 0.5%</td>
</tr>
<tr>
<td>S</td>
<td>0.005% (maximum)</td>
</tr>
<tr>
<td>P</td>
<td>0.005% (maximum)</td>
</tr>
<tr>
<td>O, N</td>
<td>0.002% (maximum)</td>
</tr>
</tbody>
</table>
Figure 1.6.1 Effects of thermal aging on hardness of solution-annealed NASA-HR-1 and A286 (Ref. 3)

Figure 2.1.3.1 Thermal conductivity as a function of temperature for wrought NASA-HR-1
Figure 2.1.4.1 Thermal expansion as a function of temperature for wrought NASA-HR-1.

Figure 2.1.5.1 Specific heat as a function of temperature for wrought NASA-HR-1.
Figure 2.1.6.1 Thermal diffusivity as a function of temperature for wrought NASA-HR-1

Figure 3.3.1.1 Temperature dependence of tensile properties of wrought NASA-HR-1
Table 3.3.1.2 Typical properties of wrought and heat-treated NASA-HR-1 in air and high-pressure hydrogen (5 ksi) at room temperature

<table>
<thead>
<tr>
<th>Environment</th>
<th>Yield Strength (ksi)</th>
<th>Ultimate Tensile Strength (ksi)</th>
<th>Elongation (%)</th>
<th>Reduction in Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>136.9</td>
<td>182.8</td>
<td>23.6</td>
<td>34.0</td>
</tr>
<tr>
<td>5-ksi GH₂</td>
<td>128.9</td>
<td>175.3</td>
<td>23.4</td>
<td>34.7</td>
</tr>
</tbody>
</table>

Table 3.3.1.3 Typical properties of wrought and heat-treated alloys similar to NASA-HR-1 in high-pressure helium and hydrogen (5 ksi) at 1250 F

<table>
<thead>
<tr>
<th>Environment</th>
<th>Yield Strength (ksi)</th>
<th>Ultimate Tensile Strength (ksi)</th>
<th>Elongation (%)</th>
<th>Reduction in Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-ksi GHe</td>
<td>114.4</td>
<td>126.2</td>
<td>22.6</td>
<td>33.1</td>
</tr>
<tr>
<td>5-ksi GH₂</td>
<td>114.0</td>
<td>128.8</td>
<td>19.4</td>
<td>25.6</td>
</tr>
</tbody>
</table>

Table 3.3.1.4 Typical strength and ductility of NASA-HR-1 and two similar alloys of comparable strength in wrought and cast conditions at room temperature

<table>
<thead>
<tr>
<th>ALLOY</th>
<th>WROUGHT/Thermo-Mechanically Processed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield Strength (ksi)</td>
</tr>
<tr>
<td>NASA-HR-1</td>
<td>137</td>
</tr>
<tr>
<td>A286</td>
<td>104</td>
</tr>
<tr>
<td>JBK-75</td>
<td>108</td>
</tr>
</tbody>
</table>
Figure 3.4.1 Creep-rupture properties of wrought NASA-HR-1 in heat-treated condition

Figure 3.5.2.1 Low cycle fatigue life of wrought NASA-HR-1 in high-pressure hydrogen and helium (5 ksi) at room temperature
Figure 3.5.2.2 Temperature effects on low cycle fatigue life of wrought NASA-HR-1 in high-pressure hydrogen (5 ksi) at room temperature and 1250 °F

Figure 4.3.1 Varestaint test results for NASA-HR-1 and IN-718