Coordinating Multi-Rover Systems: Evaluation Functions for Dynamic and Noisy Environments

Kagan Tumer
NASA Ames Research Center
Mailstop 269-4
Moffett Field, CA 94035
ktumer@mail.arc.nasa.gov

Adrian Agogino
UCSC, NASA Ames Research Center
Mailstop 269-3
Moffett Field, CA 94035
adrian@email.arc.nasa.gov

ABSTRACT
This paper addresses the evolution of control strategies for a collective: a set of entities that collectively strives to maximize a global evaluation function that rates the performance of the full system. Directly addressing such problems by having a population of collectives and applying the evolutionary algorithm to that population is appealing, but the search space is prohibitively large in most cases. Instead, we focus on evolving control policies for each member of the collective. The fundamental issue in this approach is how to create an evaluation function for each member of the collective that is both aligned with the global evaluation function and is sensitive to the fitness changes of the member, while relatively insensitive to the fitness changes of other members. We show how to construct evaluation functions in dynamic, noisy and communication-limited collective environments. On a rover coordination problem, a control policy evolved using aligned and member-sensitive evaluations outperforms global evaluation methods by up to 400%. More notably, in the presence of a larger number of rovers or rovers with noisy and communication limited sensors, the proposed method outperforms global evaluation by a higher percentage than in noise-free conditions with a small number of rovers.

1. INTRODUCTION
In many continuous control tasks such as pole balancing, robot navigation and rocket control, using evolutionary computation methods to develop controllers based on neural networks has provided successful results [14, 8, 9]. Extending those successes to distributed domains such as coordinating multiple robots, controlling constellations of satellites, and routing over a data network promises significant application opportunities [3, 12, 15]. The goal in such distributed control tasks is to evolve a "collective", i.e., a large set of entities that collectively strive to maximize a global evaluation function [20, 16, 17]. In this paper we focus on a collective of data gathering rovers whose task is to maximize the aggregate information collected by the full collective. In order to distinguish the members of the collective from the individuals in the population of an evolutionary algorithm, we will use "rovers" exclusively to refer to the members of a collective through this paper.1
Approaching the design of a collective directly by an evolutionary algorithm (e.g., having a population of collectives and having the evolutionary operators work directly on the collective to produce a solution with high global fitness) is appealing but impractical at best and impossible at worst. The search space for such an approach is simply too large for all but the simplest problems. A more promising solution is to evolve the rovers in the collective by having each of them use their own fitness evaluation function. The key issue in such an approach is to ensure that the rover fitness evaluation function possesses the following two properties: (i) it is aligned with the global evaluation function, ensuring that the rovers that maximize their own fitness do not hinder one another and hurt the fitness of the collective; and (ii) it is sensitive to the fitness of the rover, ensuring that it provides the right selective pressure on the rover (i.e., it limits the impact of other rovers in the fitness evaluation function).
A collective-based approach to controlling a multi-rover system under ideal conditions (static environment, noise-free sensors, unlimited communication capabilities) was presented in [3]. In this paper, we extend those results in four directions:

1. The environment is dynamic, meaning that the conditions under which the rovers evolve changes with time. The rovers need to evolve general control policies, rather than specific policies tuned to their current environment.
2. The rovers' sensors are noisy, meaning that the signals they receive from the environment are not reliable. The rovers need to demonstrate that the control policies are not sensitive to such fluctuations in sensor readings.
3. The rovers have restrictions on their sensing abilities, meaning that the information they have access to is limited. The rovers need to formulate policies that satisfy the global evaluation function based on limited, local information.

1Note, one can have individuals in a population of rovers or in a population of collectives, depending on where the evolutionary operators are applied.
4. The number of rovers in the system can be larger. The rovers need to decouple the impact of other rovers from their fitness functions.

This paper provides methods to evolve control policies in dynamic, noisy environments for large collectives of rovers with limited communication capabilities. In Section 2 we discuss the properties needed in a collective, how to evolve rovers using evaluation functions possessing such properties along with a discussion of related work. In Section 3 we present the “Rover Problem” where a planetary rover in a collective use neural networks to determine their movements based on a continuous-valued array of sensor inputs. Section 4 presents the performance of the rover collective evolved using rover evaluation functions in dynamic, noisy and communication limited domains. The results show the effectiveness of the rovers in gathering information is 400% higher with properly derived rover fitness functions than in rovers using a global evaluation function. Finally Section 5 we discuss the implication of these results and their applicability to different domains.

2. EVOLVING A COLLECTIVE

In general, one has three possible approaches based on evolutionary computation to design control policies for collectives.

1. One can operate directly on the collective, treating it as an instance of a solution and operate on populations of collectives. In this case, the standard evolutionary algorithms are used to select for the collective that best satisfies a predetermined global evaluation function.

2. One can operate on members in the collective, treating each rover as an instance of a solution and operate on populations of rovers. In this case, the evolutionary algorithms are used to select the rovers constituting the collective based on how a given rover satisfies the predetermined global evaluation function.

3. One can operate on members in the collective, treating each rover as an instance of a solution and operate on populations of rovers. In this case, the evolutionary algorithms are used to select the rovers constituting the collective based on how a given rover satisfies a specialized rover evaluation function tuned to the fitness of that rover.

The first method presents a computationally daunting task in all but the simplest problems. Finding good control strategies is difficult enough for single controllers, but the search space become prohibitively large when they are concatenated into an “individual” representing the full collective. Even if good rovers are present in the collective, there is no mechanism for isolating and selecting them when the collective to which they belong performs poorly. As a consequence, this approach is practically unworkable in large continuous domains.

The second method addresses part of the issue: Because the rovers in the collective are evolved independently, it avoids the explosion of the state space. However, this method introduces a new problem: How is a rover’s evolution guided when the evaluation function depends on the fitness of all the other rovers? In small collectives, this method provides good solutions, but as the collectives size increases, this problem becomes more and more acute. As a consequence, this approach, though preferable to the first approach in some ways, is unlikely to provide good solutions in large collectives.

The third method provides a specialized rover evaluation function for each rover. This approach, cleans up the fitness signal a rover receives, but introduces a new twist to the problem: How does one ensure that the specialized rover evaluation functions are aligned with the global evaluation function? In other words, the fundamental question is how to guarantee that the collective evolved using rover evaluation functions will have a high fitness with respect to the global evaluation function. In this paper we discuss the second and third approaches, focusing on how to select rover evaluation function in a formal manner as discussed below.

2.1 Rover Evaluation Function Properties

Let us now derive effective rover evaluation functions based on the theory of collectives described in [20]. Let the global evaluation function be given by \(G(z) \), where \(z \) is the state of the full system (e.g., the position of all the rovers in the system, along with their relevant internal parameters and the state of the environment). Let the rover evaluation function for rover \(i \) be given by \(g_i(z) \). First we want the private evaluation functions of each agent to have high factoredness with respect to \(G \), intuitively meaning that an action taken by an agent that improves its private evaluation function also improves the global evaluation function (i.e. \(G \) and \(g_i \) are aligned). Formally, the degree of factoredness between \(g_i \) and \(G \) is given by:

\[
\mathcal{F}_{g_i} = \int_{z} \int_{z'} u([g_i(z) - g_i(z')]
- G(z) - G(z')] dz' dz
\]

where \(z' \) is a state which only differs from \(z \) in the state of rover \(i \), and \(u(x) \) is the unit step function, equal to 1 when \(x > 0 \). Intuitively, a high degree of factoredness between \(g_i \) and \(G \) means that a rover evolved to maximize \(g_i \) will also maximize \(G \).

Second, the rover evaluation function must be more sensitive to changes in that rover’s fitness than to changes in the fitness of other rovers in the collective. Formally we can quantify the rover-sensitivity of evaluation function \(g_i \) at \(z \) as:

\[
\lambda_{g_i}(z) = E_{z'} \left[\frac{\| g_i(z) - g_i(z - z_i + z_i') \|}{\| g_i(z) - g_i(z' - z_i' + z_i) \|} \right]
\]

where \(E_{z'} \left[\cdot \right] \) provides the expected value possible values of \(z' \), and \((z - z_i + z_i') \) notation specifies the state vector where the components of rover \(i \) have been removed from state \(z \) and replaced by the components of rover \(i \) from state \(z' \). So at a given state \(z \), the higher the rover-sensitivity, the more \(g_i(z) \) depends on changes to the state of rover \(i \), i.e., the better the associated signal-to-noise ratio for \(i \). Intuitively then, higher rover-sensitivity means there is “cleaner” (e.g., less noisy) selective pressure on rover \(i \).

As an example, consider the case where the rover evaluation function of each rover is set to the global evaluation function, meaning that each rover is evaluated based on the fitness of the full collective (e.g., approach 2 discussed in Section 2). Such a system will be fully factored by the definition of Equation 1. However, the rover fitness functions will have low rover-sensitivity (the fitness of each rover depends on the fitness of all other rovers).
2.2 Difference Evaluation Functions

Let us now focus on improving the rover-sensitivity of the evaluation functions. To that end, consider difference evaluation functions \(D_i \), which are of the form:

\[
D_i = G(z) - G(z_i + c_i) \tag{3}
\]

where \(z \) contains all the states on which rover \(i \) has no effect, and \(c_i \) is a fixed vector. In other words, all the components of \(z \) that are affected by rover \(i \) are replaced with the fixed vector \(c_i \). Such difference evaluation functions are fully factored no matter what the choice of \(c_i \), because the second term does not depend on \(i \)‘s states \([20] \) (e.g., \(D_i \) and \(G \) will have the same derivative with respect to \(z_i \)). Furthermore, they usually have far better rover-sensitivity than does a global evaluation function, because the second term of \(D \) removes some of the effect of other rovers (i.e., noise) from \(i \)’s evaluation function. In many situations it is possible to use a \(c_i \) that is equivalent to taking rover \(i \) out of the system. Intuitively this causes the second term of the difference evaluation function to evaluate the fitness of the system without \(i \) and therefore \(D \) evaluates the rover’s contribution to the global evaluation.

Though for linear evaluation functions \(D_i \) simply cancels out the effect of other rovers in computing rover \(i \)’s evaluation function, its applicability is not restricted to such functions. In fact, it can be applied to any linear or non-linear global utility function. However, its effectiveness is dependent on the domain and the interaction among the rover evaluation functions. At best, it fully cancels the effect of all other rovers. At worst, it reduces to the global evaluation function, unable to remove any terms (e.g., when \(z \) is empty, meaning that rover \(i \) affects all states). In most real world applications, it falls somewhere in between, and has been successfully used in many domains including rover coordination, satellite control, data routing, job scheduling and congestion games \([3, 18, 20]\). Also note that the computation of \(D_i \) is a “virtual” operation in that rover \(i \) computes the impact of its not being in the system. There is no need to re-evolve the system for each rover to compute its \(D_i \), and computationally it is often easier to compute than the global evaluation function \([18]\). Indeed in the problem presented in this paper, for rover \(i \), \(D_i \) is easier to compute than \(G \) is (see details in Section 4).

2.3 Related Work

Evolutionary computation has a long history of success in single agent and multi-agent control problems \([19, 10, 7, 2, 11, 1]\). Advances in evolutionary computation methods in single agent domains tend to result from improvements in search methods. In \([10]\) this is accomplished through fuzzy rules in a helicopter control problem, while in \([19]\) cellular encoding is used to improve performance on pole-balancing control. Similarly \([7]\) addresses planetary rover control by having genetic algorithms search through a space of plans generated from a planning algorithm.

Many advances in evolutionary computation for multi-agent control have been accomplished through the use of domain specific fitness functions. Ant colony algorithms \([6]\) solve the coordination problem by utilizing “ant trails” that provide implicit fitness functions resulting in good performance in path-finding domains. In \([2]\), the algorithm takes advantage of a large number of agents to speed up the evolution process in certain domains, but uses greedy fitness functions that are not generally factored. In \([11]\) beliefs about about other agents are update through global and hand-tailored fitness functions. Also outside of evolutionary computation, coordination between a set of mobile robots has been accomplished through the use of hand-tailored rewards designed to prevent greedy behavior \([13]\). While highly successful in many domains all of these methods differ from the methods used in this paper in that they lack a general framework for efficient evolution in multi-agent systems.

3. CONTINUOUS ROVER PROBLEM

In this section, we show how evolutionary computation with the difference evaluation function can be used effectively in the Rover Problem\(^2\). In this problem, there is a collective of rovers on a two dimensional plane, which is trying to observe points of interests (POIs). Each POI has a value associated with it and each observation of a POI yields an observation value inversely related to the distance the rover is from the POI. In this paper the distance metric will be the squared Euclidean norm, bounded by a minimum observation distance, \(\delta_{\text{min}} \): \(^3\)

\[
\delta(x, y) = \min(|x - y|^2, \delta_{\text{min}}^2) \tag{4}
\]

The global evaluation function is given by:

\[
G = \sum_i \sum_j V_j \min_i \delta(L_{ij}, L_{it}), \tag{5}
\]

where \(V_j \) is the value of POI \(j \), \(L_{ij} \) is the location of POI \(j \) and \(L_{it} \) is the location of rover \(i \) at time \(t \). Intuitively, while any rover can observe any POI, as far as the global evaluation function is concerned, only the closest observation matters\(^4\).

3.1 Rover Capabilities

At every time step, the rover senses the world through eight continuous sensors. From a rover’s point of view, the world is divided up into four quadrants relative to the rover’s orientation, with two sensors per quadrant (see Figure 1). For each quadrant, the first sensor returns a function of the POIs in the quadrant at time \(t \). Specifically the first sensor for quadrant \(q \) returns the sum of the values of the POIs in its quadrant divided by their squared distance to the rover and scaled by the angle between the POI and the center of the quadrant:

\[
\delta_{i, q, t} = \sum_{j \in Q} \frac{V_j}{\delta(L_{ij}, L_{it})} \left(1 - \frac{|\theta_{i, q}|}{90}\right) \tag{6}
\]

where \(Q \) is the set of observable POIs in quadrant \(q \) and \(|\theta_{i, q}| \) is the magnitude of the angle between POI \(j \) and the center of the quadrant. The second sensor returns the sum

\(^2\)This problem was first presented in \([3]\).

\(^3\)The square Euclidean norm is appropriate for many natural phenomenon, such as light and signal attenuation. However any other type of distance metric could also be used as required by the problem domain. The minimum distance is included to prevent singularities when a rover is very close to a POI.

\(^4\)Similar evaluation functions could also be made where there are many different levels of information gain depending on the position of the rover. For example 3-D imaging may utilize different images of the same object, taken by two different rovers.
of square distances from a rover to all the other rovers in the quadrant at time \(t \) scaled by the angle:

\[
S_{q,i,t} = \sum_{i' \in N_q} \frac{1}{d(L_{i',i} - L_{i,t})} \left(1 - \frac{|\theta_{i',q}|}{90} \right)
\]

(7)

where \(N_q \) is the set of rovers in quadrant \(q \) and \(|\theta_{i',q}| \) is the magnitude of the angle between rover \(i' \) and the center of the quadrant.

The sensor space is broken down into four regions to facilitate the input-output mapping. There is a trade-off between the granularity of the regions and the dimensionality of the input space. In some domains, the tradeoff may be such that it is preferable to have more or fewer than four sensor regions. Also, even though this paper assumes that there are actually two sensors present in each region at all times, in real problems there may be only two sensors on the rover, and they do a sensor sweep at 90 degree increments at the beginning of every time step.

3.2 Rover Control Strategies

With four quadrants and two sensors per quadrant, there are a total of eight continuous inputs. This eight dimensional sensor vector constitutes the state space for a rover. At each time step the rover uses its state to compute a two dimensional output. This output represents the \(x, y \) movement relative to the rover's location and orientation. Figure 2 displays the orientation of a rover's output space.

The mapping from rover state to rover output is done through a Multi Layer Perceptron (MLP), with eight input units, ten hidden units and two output units. The MLP uses a sigmoid activation function, therefore the outputs are limited to the range \((0, 1)\). The actual rover motions \(dx \) and \(dy \), are determined by normalizing and scaling the MLP output by the maximum distance the rover can move in one time step. More precisely, we have:

\[
\begin{align*}
\text{dx} &= \text{d}_{\text{max}}(o_1 - 0.5) \\
\text{dy} &= \text{d}_{\text{max}}(o_2 - 0.5)
\end{align*}
\]

where \(\text{d}_{\text{max}} \) is the maximum distance the rover can move in one time step, \(o_1 \) is the value of the first output unit, and \(o_2 \) is the value of the second output unit.

3.3 Rover Selection

The MLP for a rover is selected using an evolutionary algorithm as highlighted in approaches two and three in Section 2. In this case, each rover has a population of MLPs. At each \(N \) time steps (\(N \) set to 15 in these experiments), the rover uses \(\epsilon \)-greedy selection (\(\epsilon = 0.1 \)) to determine which MLP it will use (e.g., it selects the best MLP from its population with 90% probability and a random MLP from its population with 10% probability). The selected MLP is then mutated by adding a value sampled from the Cauchy Distribution (with scale parameter equal to 0.3) to each weight, and is used for those \(N \) steps. At the end of those \(N \) steps, the MLP's performance is evaluated by the rover's evaluation function and re-inserted into its population of MLPs, at which time, the poorest performing member of the population is deleted. Both the global evaluation for system performance and rover evaluation for MLP selection is computed using an N-step window, meaning that the rovers only receive an evaluation after \(N \) steps.

While this is not a sophisticated evolutionary algorithm, it is ideal in this work since our purpose is to demonstrate the impact of principled evaluation functions selection on the performance of a collective. Even so, this algorithm has shown to be effective if the evaluation function used by the rovers is factored with \(G \) and has high rover-sensitivity. We expect more advanced algorithms from evolutionary computation, used in conjunction with these same evaluation functions, to improve the performance collective further.

3.4 Evolving Control Strategies in a Collective

The key to success in this approach is to determine the correct rover evaluation functions. In this work we test three different evaluation function for rover selection. The first evaluation function is the global evaluation function \(G \), which when implemented results in approach two discussed

\[^5 \text{Note that other forms of continuous reinforcement learners could also be used instead of evolutionary neural networks. However neural networks are ideal for this domain given the continuous inputs and bounded continuous outputs.} \]
The second evaluation function is the "perfectly rover-sensitive" evaluation function (P):

\[P_i = \sum_t \sum_j \frac{V_j}{\delta(L_j, L_{i,t})} \]

The P evaluation function is equivalent to the global evaluation function in the single rover problem. In a collective of rover settings, it has infinite rover-sensitivity (in the way rover sensitivity is defined in Section 2). This is because the P evaluation function for a rover is not affected by the states of the other rovers, and thus the denominator of Equation 2 is zero. However, the P evaluation function is not factored. Intuitively, P and G offer opposite benefits, since G is by definition factored, but has poor rover-sensitivity. The final evaluation function is the difference evaluation function. It does not have as high rover-sensitivity as P, but is still factored like G. For the rover problem, the difference evaluation function, D, becomes:

\[D_i = \sum_t \left[\sum_j \min_{i,t} \delta(L_j, L_{i,t}) - \sum_j \min_{i,t} \delta(L_j, L_{i,t}) \right] \]

\[= \sum_t \sum_j I_{j,i,t}(z) \frac{V_j}{\delta(L_j, L_{i,t})} \]

where \(I_{j,i,t}(z) \) is an indicator function, returning one if and only if rover \(i \) is the closest rover to POI \(j \) at time \(t \). The second term of the \(D \) is equal to the value of all the information collected if rover \(i \) were not in the system. Note that for all time steps where \(i \) is not the closest rover to any POI, the subtraction leaves zero. As mentioned in Section 2.2, the difference evaluation in this case is easier to compute as long as rover \(i \) knows the position and distance of the closest rover to each POI it can see. In that regard it requires knowledge about the position of fewer rovers than if it were to use the global evaluation function. In the simplified form, this is a very intuitive evaluation function yet it was generated mechanically from the general form if the difference evaluation function [20]. In this simplified domain we could expect a hand-crafted evaluation function to be similar. However the difference evaluation function can still be used in more complex domains with a less tractable form of the global evaluation, even when it is difficult to generate and evaluate hand-crafted solution. Even in domains where an intuitive feel is lacking, the difference evaluation function will be provably factored and rover-sensitive.

In the presence of communication limitations, it is not always possible for a rover to compute its exact \(D_i \), nor is it possible for it to compute \(G \). In such cases, \(D_i \) can be computed based on local information with minor modifications, such as limiting the radius of observing other rovers in the system. This has the net effect of reducing the factoredness of the evaluation function while increasing its rover-sensitivity.

4. RESULTS

We performed extensive simulation to test the effectiveness of the different rover evaluation function under a wide variety of environmental conditions and rover capabilities. In these experiments, each rover had a population of MLPs of size 10. The world was 75 units long and 75 units wide. All of the rovers started the experiment at the center of the world. Unless otherwise stated as in the scaling experiments, there were 30 rovers in the simulations. The maximum distance the rovers could move in one direction during a time step, \(d_{max} \), was set to 3. The rovers could not move beyond the bounds of the world. The minimum observation distance, \(\delta_{min} \), was equal to 5.

In these experiments the environment was dynamic, meaning that the POI locations and values changed with time. There were as many POIs as rovers, and the value of each POI was set to between three and five using a uniformly random distribution. In these experiments, each POI disappeared with probability 2.5%, and another one appeared with the same probability at 15 time step intervals. Because the experiments were run for 3000 time steps, the initial and final environments had little similarities.

Results for episodic environments where the agents were restored to their initial state at the end of each trial were reported in [3]. In such a case the rovers evolved control policies tuned to the particular environment in which they are trained. Though useful in domains where the simulated environment closely matches the environment in which the rovers will operate, this approach has limited applicability in general. A more desirable approach is for the rovers to evolve efficient policies that are solely based on their sensor inputs and not on the specific configuration of the POIs. The dynamic environment experiments reported here explore this premise and provide rover control policies that can be generalized from one set of POIs to another, regardless of how significantly the environment changes. Figures 3 shows an instance of change in the environment throughout a simulation. The final POI set is not particularly close to the initial POI set and the rovers are forced to focus on the sensor input-output mappings rather than focus on regions in the \((x, y)\) plane.

4.1 Evolution in Noise Free Environment

The first set of experiments tested the performance of the three evaluation functions in a dynamic noise-free environment for 30 rovers. Figure 4 shows the performance of each evaluation function. In all cases, performance is measured by the same global evaluation function, regardless of the evaluation function used to evolve the system. All three evaluation functions performed adequately in this instance, though \(D_i \) outperformed both \(P \) and \(G \).

The evolution of this system also demonstrate the different properties of the rover evaluation functions. After initial
improvements, the system with the G evaluation function improves slowly. This is because the G evaluation function has low rover-sensitivity. Because the fitness of each rover depends on the state of all other rovers, the noise in the system overwhelms the evaluation function. P on the other hand has a different problem: After an initial improvement, the performance of systems with this evaluation function decline. This is because though P has high rover-selectivity, it is not fully factored with the global evaluation function. This means that rovers selected to improve P do not necessarily improve G. D on the other hand is both factored and has high rover-sensitivity. As a consequence, it continues to improve well into the simulation as the fitness signal the rovers receive are not swamped by the states of other rovers in the system. This simulation highlights the need for having evaluation function that are both factored with the global evaluation function and have high rover-sensitivity. Having one or the other is not sufficient.

4.2 Scaling in Noise-free Environments

The second set of experiments focuses on the scaling properties of the three evaluation functions in a dynamic noise-free environment. Figure 5 shows the performance of each evaluation function at $t=3000$ for a collective of 10 to 70 rovers. For each different collective size, the results are qualitatively similar to those reported above, except where there are only 5 rovers, in which case P performs as well as G. This is not surprising since with so few rovers, there are almost no interactions among the rovers, and in as large a space as the one used here, the 5 rovers act almost independently.

As the size of the collective increases though, an interesting pattern emerges: The performance of both P and G drop at a faster rate than that of D. Again, this is because G has low rover-sensitivity and thus the problem becomes more pronounced as the number of rovers increases. Similarly, as the number of rovers increases, P becomes less and less factored. D on the other hand handles the increasing number of rovers quite effectively. Because the second term in Equation 3 removes the impact of other rovers from rover t, increasing the number of rovers does very little to limit the effectiveness of this rover evaluation function. This is a powerful result suggesting that D is well suited to evolve large collectives in this and similar domains where the interaction among the rovers prevents both G and P from performing well. This results also supports the intuition expressed in Section 2 that approach two (i.e., evolving rovers based on the fitness of the full collective) is ill-suited to evolving effective collectives in all but the smallest examples.

4.3 Evolution in Noisy Environment

The third set of experiments tested the performance of the three evaluation functions in a dynamic environment for 30 rovers with noisy sensors. Figure 6 shows the performance of each evaluation function when both the input sensors and the output values of the rovers have 5% noise added. All three evaluation functions handle the noise well. This result is encouraging in that it shows that not only simple evaluation functions such as P can handle moderate amounts of noise in their sensors and outputs, but so can D. In other words, taking considering the impact of other rovers to yield a factored evaluation function does not cause to compound moderate noise in the system and overwhelm the rover evaluation.

Figure 7 shows the noise sensitivity of the three different evaluation functions. The performance is reported as a function of additive noise to sensors as the percentage shown on the x-axis (e.g., 0.5 means the magnitude of the added noise is half that of the sensor value.) The results are shown as the D is the most sensitive to high levels of noise, though at 80% noise it still far outperforms both G and P. This is is an encouraging result in the the power of the D evaluation function is that it “cleans up” the evaluation function for a rover (e.g., it has high rover-sensitivity). Adding noise, starts to cancel this property of D, but even when half the signal being noise does not prevent D from far outperforming D and P.

4.4 Evolution with Communication Limitations

The fourth set of experiments tested the performance of the three evaluation functions in a dynamic environment
Figure 6: Performance of a 30-rover collective for all three evaluation functions when the rover sensors and outputs have 5% noise.

Figure 7: Sensitivity of the three evaluation functions to the degree of noise in their sensors.

where not only the rover sensors were noisy, but the rovers were subject to communication limitations. Figure 8 shows the performance of all three evaluation function when the rovers were only aware of other rovers when they were within a radius of 4 units from their current location. This amounts to the rovers being able to communicate with only 1% of the grid. (Because P is not affected by communication restrictions, its performance is the same as that of Figure 4.)

The performance of D is almost identical to that of full communication D. G on the other hand suffers significantly. The most important observation is that communication limited G is no longer factored with respect to the global evaluation function. Though the rover-sensitivity of G goes up in this case, the drop in factoredness is more significant and as a consequence collectives evolved using G cannot handle the limited communication domain.

Figure 9 expands on this issue by showing the dependence of all three evaluation function on the communication radius for the rovers (P is flat since rovers using P ignore all other rovers). Using D provides better performance across the board and the performance of D does not degrade until the communication radius is dropped to 2 units. This is a severe restriction that practically cuts the rover from other rovers in the system. G on the other hand needs a rather large communication radius (over 20) to outperform the collectives evolved using P. This result is significant in that it shows that D can be effectively used in many practical information-poor domains where neither G nor "full" D as given in Equation 3 can be accurately computed.

Another interesting phenomenon appears in the results presented in Figure 9, where there is a dip in the performance of the collective when the communication radius is at 10 units for both D and G (the "bowl" is wider for G than D, but it is the same effect). This phenomenon is caused by the interaction between the degree of factoredness of the evaluation functions and their rover-specificity. At the maximum communication radius (no limitations) D is highly factored and has high rover-sensitivity. Reducing the communication radius starts to reduce the factoredness, while increasing the rover-sensitivity. However, the rate at which these two properties change is not identical. At a
communication radius of 10, the drop in factoredness has
outpaced the gains in rover-sensitivity and the performance
of the collective suffers. When the communication radius
drops to 5, the increase in rover-sensitivity compensates for
the drop in factoredness. This interaction among the rover-
sensitivity and factoredness is domain dependent and has
also been observed in previous application of collectives [15,
17].

5. DISCUSSION

Extending the success of evolutionary algorithms in con-
tinuous single-controller domains to large, distributed multi-
controller domains has been a challenging endeavor. Un-
fortunately the direct approach of having a population of
collectives and applying the evolutionary algorithm to that
population results in a prohibitively large search space in
most cases. As an alternative, this paper presents a method
for providing rover specific evaluation functions to directly
evolve individual rovers in collective. The fundamental issue
in this approach is in determining the rover specific evalua-
tion functions that are both aligned with the global evalua-
tion function and are as sensitive as possible to changes in
the fitness of each member.

In dynamic, noise-free environments rovers using the dif-
erence evaluation function D, derived from the theory of col-
clectives, were able to achieve high levels of performance be-
cause the evaluation function was both factored and highly
rover-sensitive. These rovers performed better than rovers
using the non-factored perfectly rover-sensitive evaluation
and more than 400% better (over random rovers) than rovers
using the hard to learn global evaluations. These rovers performed better than rovers
using the hard to learn global evaluations.

We then extended these results to rovers with noisy sen-
sors. rovers with limited communication capabilities and
larger collectives. In each instance the collectives evolved
using D performed better than alternative and in most cases
(e.g., larger collectives, communication limited rovers) the
gains due to D increase as the conditions worsened. These
results show the power of using factored and rover-sensitive
fitness evaluation functions, which allow evolutionary com-
putation methods to be successfully applied to large dis-
tributed systems in real world applications where communica-
tion among the rovers cannot be maintained or where the
rover sensors cannot be noise-free.

6. REFERENCES

controller for decentralized multi-agent robotic
systems. In In Proc. of the IEEE International
Conference on Evolutionary Computing, Nagoya,
Japan, 1996.
interactive neuro-evolution. Neural-Processing Letters,
functions for multi-rover systems. In The Genetic and
Evolutionary Computation Conference, pages 1–12,
cooperation. In Proc. of SPIE ’99 Workshop on
mobile robots able to display collective behavior.

...