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ABSTRACT 

In recent years, considerable progress has been made in studying the propa- 
gation and origin of cosmic rays, as new and more accurate data have become 
available. Many models have been developed to study cosmic ray interactions 
and propagation showed flexibility in resembling various astrophysical conditions 
and good agreement with observational data. However, some astrophysical prob- 
lems cannot be addressed using these models, such as the stochastic nature of 
the cosmic rays source, small-scale structures and inhomogeneities in the inter- 
stellar gas that can affect radioactive secondary abundance in cosmic rays. We 
have developed a new model and a corresponding computer code that can ad- 
dress some of these limitations. The model depends on the expansion of the 
backward stochastic solution of the general diffusion transport equation (Zhang 
1999) starting from an observer position to solve a group of diffusion transport 
equations each of which represents a particular element or isotope of cosmic 
ray nuclei. In this paper we are focusing on key abundace ratios such as B/C, 
sub-Fe/Fe, loBe/gBe, 26Al/27Al, 36C1/37C1 and 54Mn/55Mn, which all have well 
established cross sections, to evaluate our model. The effect of inhomogeneousity 
in the interstellar medium is investigated. The contribution of certain cosmic ray 
nuclei to the production of other nuclei is addressed. The contribution of various 
galactic locations to the production of cosmic ray nuclei observed at solar system 
is also investigated. 

Subject headings: ISM: abundance - bubbles - cosmic rays 
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1. Introduction 

The analysis of elemental and isotopic composition of cosmic ray nuclei that reach the 
solar system provides important information about their propagation and sources through- 
out the interstellar medium. Numerous numerical models have been developed for studying 
reacceleration, galactic halo size, antiprotons and positrons in cosmic rays, the interpretation 
of diffuse continuum gamma rays and even dark matter. The elemental and isotopic abun- 
dances ratio calculated using these techniques showed good agreement with observational 
data. 

Many aspects, however, cannot be addressed using these models, e.g. the stochastic 
iiature of the cosmic ray sources in space and time, which is important for high-energy 
electrons, and local inhomogeneities in the gas density that can affect radioactive secondary 
ratios in cosmic rays. Previous approaches to the nucleon propagation problem introduced 
by (Jones 1979) and (Bloemen et al. 1993) showed that energy losses are difficult to treat. 
Reacceleration was not considered in some of these approaches. These limitations motivated 
the need to develop a method that can handle some of these aspects. In this work we 
are introducing a numerical model that allows the study of cosmic rays production and 
propagation in the Galaxy. Using the backward stochastic solution of the general diffusion 
transport equation starting from an observer’s position described by (Zhang 1999), we can 
calculate the elemental or isotopic abundance for a single cosmic ray nuclei. The same 
technique is applied to calculate the abundances for a certain number of nuclei by solving a 
group of diffusion transport equations, each represent a single nucleus. 

In our study we used realistic astrophysical parameters like the gas density distribution, 
total and partial nuclei cross-sections. The code associated with this model is written in 
C++. Our code is sufficiently general such that we can include other physical effects such 
as energy losses and the effects of the local environment, e.g. the effect of the Local Supper 
Bubble surrounding the solar system and the giant clouds. The objective is to generate 
a model that can be improved with new astrophysical inputs and additional observational 
data, reflects realistic astrophysical conditions in the galaxy and finds justification for popular 
models of cosmic ray propagation. In this work we will focus on the calculation of B/C, s u b  
Fe/Fe, 10Be/gBe, 26Al/27Al, 36C1/37C1 and 54Mn/55Mn ratios for evaluating our model. Most 
of these ratios have well established cross sections and accurate observational data over a 
wide energy range. The effect of the low density Local Super Bubble on the elemental and 
isotopic ratios observed at the interplanetary space is investigated. Using this model we can 
also investigate the contribution of some cosmic rays nuclides to the production of other 
nuclides and the contribution of different locations in the galaxy to the cosmic rays nuclei 
production. 
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2. Stochastic Solution to the Diffusion Equation 

The general diffusion transport equation for the cosmic rays density distribution function 
LYt(t, y j  has the foil11 (Berezinski; et al. 1990) 

aNa a 
dt aP 
-- - f(.’,p) + O * ( I C ,  V Ni) - v’. O N ~  + - [ (bi - i ( v .  v)) Ni] 

a2Ni 1 a 1 1 
aP2 P2 aP Ti 

+ICpp- - - - ( ICppp2) Ni - nvaiNi - - Ni + nvaij Nj + - Nj. 
Ti j j < i  

Here f ( C , p )  is the source term; I C ,  is the spatial diffusion coefficent; bi(?,p) characterizes 
momentum (energy) loss rate d p / d t ;  V is the convection velocity; P ( v  V)/3 describes 
the adiabatic momentum (energy) losses; g i ( p )  is the inelastic scattering cross section of a 
nucleus of type i with nuclei of the interstellar gas; n(?) is the density of the interstellar 
gas; v is the velocity of the nucleus; uij is the production cross section for a nuclei of type 
j from heavier nuclei of type i where j < i; ri is the life time of a nucleus of type i with 
respect to radioactive decay; rij is the mean lifetime for the production of species j as a 
daughter nucleus in the radioactive decay of species i. In case of including reacceleration, 
the momentum-space diffusion coefficient kpp is calculated using the formula suggested by 
(Seo & Ptuskin 1994) and (Berezinski; et al. 1990) where 

4p2vA2 I C -  
pp - 36(4 - 62)(4 - 6)J  

where the ratio of wave energy density to magnetic field energy density J = 1, VA is the 
Alfvin speed and the constant 6 = 0.36. 

The spatial position and momentum of a particle in diffusion process, obeys the following 
set of stochastic differential equations (Zhang 1999): 

where D is a bounded domain, Wx(t),  W,(t) are four dimensional Wiener processes having 
independent increments and continuous trajectories, and for which EWi(t) = 0 (E being the 
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mathematical expectation sign). The parameters Kn, Kpp, b normally depend on particles 
species, however if P is given in momentum per nucleon, the parameters k,,, kw, b are 
assumed to be no longer species dependent. When many particles are simulated, average 
behavior of the diffusion process can be investigated. The stochastic process starts from q 
at time t (s = 0) and it steps back in time as the integration variable s increases until s = 

T or time 0. 

The diffusion equation (1) can be written in the form 

LN = f(r’,p) - CN (4) 

where 

. .  
where the qi{z = 1, .., 4) = {x, p )  is composed of particle position and momentum, a2J 

represents a non-negative and symmetric diffusion coefficient tensor, pi ( t ,  q )  represents the 
drift term. 

Equation (4) has a stochastic solution in the form (see Appendix A): 

where Q = ( 2 , ~ )  is 4-d stochastic process, E [ Y ]  is defined as the 
random variable or a function of random variables [Y] with respect to 

expectation value of a 
the distribution space 

~~ 

of all stochastic processes, T is the time needed for the stochastic process to run backward 
from q at time t till it gets to  the boundary dD.  The stochastic solution in equation (5) 
describe the case where N(t,q) is the number of particles that arrived in a location q at 
time t ,  such as the particles that arrive at the solar system. These particles come through 
various stochastic paths from locations in the galaxy at time 0. The notation Q$q, describes 
the path of the particles starting at time t = 0. The average number of particles arriving 
at  the point q is estimated by averaging all possible stochastic path process for many test 
particles starting at different locations and ended up at  the location q. The exponential term 
contains the integration of c(t, q) along the stochastic path allows the stochastic process to 
be destroyed at an exponential rate as a function of time. The parameter c(t, q) contains 
terms describing the inelastic and production cross sections; density and mean life time. 

Figure 1 shows a graphical representation for the simulation as a number of different 
stochastic processes described by equation (2) or (3) run backward in time from s = 0 to 
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s = t ,  all starting from the same location q at time t until hitting some position 9 0 .  Each 
of these paths should be weighted with the exponential factor exp{ - c(Q$q)ds}.  In other 
words the average number of particles arriving at  the location q is the average value at the 
end of the backward stochastic process weighted by the exponential factor. 

Equation ( 5 )  can be applied to determine the cosmic ray density distribution for any 
nuclei. In this work we consider 87 nuclei starting from 64Ni to 'H. 

In case of 64Ni equation ( 5 )  takes the form: 

and in case of 62Ni we get the form: 

1 ds]  d t  e x p  [ - 1 (?wD(62Ni) + - 
t 

T ( 6 2 N i )  

The first three terms in the right side of equation (7) represent the source of 62Ni including 
that produced from the spallation of 64Ni, however these spallation terms do not appear in 
equation (6) because we assume that 64Ni is the heaviest element under consideration. 

The same procedure can be repeated down to 'H such that the c term will describe all 
possible transformation from heavier nuclei to the nucleus under consideration. 

3. Model Description 

The above described backward stochastic technique can be applied to calculate the ele- 
mental and isotopic abundances of the cosmic ray nuclei reaching the solar system. Cosmic 
ray nuclei observed in the solar system are produced at different locations in the galaxy 
and propagate through different stochastic paths until reaching the solar system. Elemental 
abundance in the solar system are calculated by allowing test particles to start at  time s = 0 
at  the solar system location and propagate backward in time till reaching the galaxy bound- 
ary. The average abundance of a certain cosmic rays nucleus can be estimated by simulating 
many particles trajectories and weighting the average with the exponential function. 
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Nuclei cross sections and their decay life times play a major role in the elemental and 
isotopic abundances observed at  the solar system. Cosmic ray nuclei observed in the solar 
system are produced as a result of interactions and decays of the primary cosmic ray nuclei 
produced at their sources. All of these interactions have to be taken into consideration in 
order to predict the correct abundances. 

(Strong & Moskalenko 1998) introduced a technique to predict the cosmic ray abun- 
dances at the solar system by solving a reaction network starting at the heaviest nuclei (i.e. 
64Ni), solving the propagation equation, computing all the resulting secondary source func- 
tions, and proceeding to the nuclei with A - 1. The procedure is repeated down to A = 1. 
In this way all secondary, tertiary etc. reactions are automatically included. Their method 
showed satisfactory agreement with the observational data; however it is not possible to 
describe the effect of small scale structure in the galaxy using this technique. 

Solving individual diffusion equations for each element is a long and inefficient processes. 
In this work we describe a new method that enables the solution of only one diffusion equation 
that describes all nuclei under consideration. In this case equation (1) is written in the form 

- 8N = F + . ( k ,  v N )  - ? a v N  + - a [ ( b  - P (v - 9)) N ]  
at a P  

a2N 1 8 
+km- - --(kppp2)N - C N  

aP2 P2 aP 

where 

64Nic 
62Nic 
60Nic 

N = [  .. .. 

Hc 

, F =  

where the vector N represents the calculated abundances at the solar system, F represents 
the source abundances and f (.',p) is the source distribution function given as in Table 1. 
The composition of the source is assumed to be uniform. 

The 1 -d c(Q2q) term in equation ( 5 )  is replaced by the ( ( M  x M ) ,  M = 87) C matrix 
in the multidimensional solution where M is the number of nuclei under investigation 
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c =  
c11 0 0 .. 0 
c21 c22 0 .. 0 

. . . . . . . . 
.. . . . . . . . . 

CM1 CMl .. .. CMM 

where the components c are defined as 

1 
7% 

cii = nvai + - 
c..  - -nvg.. - 1 

aJ TrJ 23 - 

In equation (8) we extended equation (1) in a matrix format such that it represents 87 
elements instead of one element. Terms in this equation contain all factors participating in 
the production and the decay of a certain cosmic ray nucleus. For example the matrix row 
that describes "Be should contain the total inelastic cross section of this element and its 
decay life time (destroying terms) and the production cross sections from all other elements 
that are possibly participating in the production of "Be and the mean life time of the 
production of "Be from these elements (production terms). We are assuming same energy 
dependent diffusion coefficient for all participating nuclei and same energy loss rates. The 
model has some limitations as it uses the same diffusion coefficient in all transport equations 
and also the same energy losses have to be used for all the elements. The average interstellar 
medium density was taken as in Moskalenko et al. (2002). The solution of equation (8) is 
given as: 

N = E lT ezp [ - I' Cds] F(t )d t  (9) 

Each of the C diagonal elements represents a loss of a certain nuclei either by spallation 
and / or decay as each of these diagonal elements stands for the multiplication of [(average 
ISM density x velocity of the cosmic rays nucleus x inelastic cross section of the nucleus) 
+ (life time of that nucleus)], on the other hand, the off diagonal elements describe the 
production of the cosmic rays nuclei and each term represents the multiplication of [-(average 
ISM density x velocity of the cosmic rays nucleus x production cross section of the nucleus) 
- (mean life time for the production of the nucleus from other nuclei)]. The simulation 
includes a few thousand stochastic trajectories and the average abundance for each element 
at the solar system is estimated. We allow free escape at galactic radius Rh and the halo 
size kzh. We take Rh = 30 kpc and zh = 4 kpc. The He/H ratio is 0.11 by number and 
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d V / d z  = 0. Isotopic cross sections are calculated using (Webber et al. 1990; Sihver et al. 
1993). The solar modulation numerical model ("SolMod" Fisk (1971)) is used to modulate 
interstellar medium spectrum. 

4. Model Verification 

We mainly investigated the B/C ratio for testing our model as it is one of the most 
accurately measured ratios covering a wide energy range and having well established cross 
sections. 

Figure 2 shows the calculated B/C ratio in local interstellar space (LIS) (solid curve) 
and 500 MV modulated (dashed curve) B/C ratio compared with the observational data 
from HEAO-3 (Webber et al. 1996), ACE (Davis et al. 2000) and Ulysses (DuVernois et al. 
1996). Model parameters are shown in Table 1. ko, 6, po, and zh and dV/dz  are chosen to 
best fit the observational data and to produce the characteristic shape of the measured B/C 
ratio. Since the inclusion of the convection effects is not sufficient to  fit the data even at 
low modulation level, we have to use a model with a break in the spatial diffusion coefficient 
IC,, at po = 3 GV. The value of 
sat,isfactory agreement with the 

6 = 0.36 gives the best match, while other values gives less 
data where 

6={ 0.36 if p > po; 
-0.36 if p < po. 

The model reproduces the peak very well and fit the data for energies above 1 GeV/nucleon 
as the effect of the solar modulation is negligible for high energy ranges. The modulation 
parameter is used to describe the modulation level. However the modulation effects pro- 
duced by different modulation models using the same modulation parameter are slightly 
different. The uncertainty due to the variation in the halo size is only about 10% (Strong & 
Moskalenko 2001). A halo size of 4 kpc shows satisfactory agreement with the data. High 
energy B/C ratio shows little disagreement with HEAO-3 data and this is because we use a 
single power-law injection index. 

In Figure 3 we calculate the (LIS) (solid curve) and 500 MV modulated (dashed curve) 
for the second key cosmic rays ratio (Sc+Ti+V)/Fe compared with observations from HEAO- 
3 (Binns et al. 1988), ACE (Davis et al. 2000) and Sanriku experiment (Hareyama 1999). 
The ratio shows the best consistentcy with observations because the sub-iron elements are 
mainly produced from iron. 

Figure 4 shows 10Be/gBe (LIS) (solid curve) and 450 MV modulated (dashed curve). 
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The model did not show a satisfactory agreement compared to the observational data from 
ISOMAX, ISEE3 and IMP7 and 8 and shows better agreement with Voyager (Lukasiak et al. 
1999) and Ulysses (Connell 1998) observations. Large uncertainty ~ 1 5 %  in the production 
cross sections of ''Be will produce this disparity. An over prediction of 'Be compared to 
the measurements (Connell 1998) and (Lukasiak et al. 1999) is another potential reason 
for data contradictory. Modifying the source abundance will not change the 10Be/gBe ratio 
since both products are mainly secondaries. Uneven diffusion coefficient across the halo will 
also help in better data fitting but will not completely solve the fitting problem. Figures 5 
- 7 show the heavier radioactive nuclei 26Al/27Al, 36C1/37C1 and 54Mn/55Mn. A scale height 
of zh = 4 kpc and d V / d z  = 0 was applied in all the above calculations. 

5.  Results 

5.1. Effect of the  Local Supper Bubble 

The effect of the inhomogeneities in the interstellar medium can be described using this 
model. Figure 8 shows the effect of the low-density 0.06 particles/cm3 and an average radius 
of 200 pc region, which simulates the Local Super Bubble surrounding the solar system on 
the production of the ''Be/'Be. The ratio apparently decreased at lower energies due to the 
decay of the radioactive "Be with lifetime of 3.1 million years which decrease its diffusion 
distance and make the effect of the Bubble significant; however the effect of the low-density 
region will be negligible at very high energies due to the relativistic lifetime of the nuclei 
at  these energies. The existence of the bubble was found to  have a minimal effect on the 
abundance ratio of stable nuclei while having significant effects on radioactive nuclei (Farahat 
et al. 2003) because the half life limits the distance of the radioactive elements source. The 
Source/Solar system abundances have been taken from (Anders et al. 1989), however the 
source abundance error can be as large as 100% (Strong & Moskalenko 2001). 

5.2. Elemental Contr ibut ion 

Cosmic ray elements and isotopes observed at the solar system are either primary or 
produced due to interaction of primary and secondary nuclide with the interstellar medium 
or due to the decay of radioactive nuclide. The contribution of a heavy nuclide to the 
production of lighter ones is mainly dependent on the production cross sections, however 
these cross sections are different from one interaction to the other which results in an unequal 
participation of the nuclide to the production of other elements or isotope. 
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Using the new propagation model we can determine which nuclides make the most con- 
tribution to the production of other element or isotope at certain energies. In the simple case 
and by using equation (5) we can calculate the contribution of any element to the production 
of aiiother element by knowing the production cross section and the source distribution. The 
solution can be expanded, as mentioned previously, in the form of equation (9) where we can 
calculate the abundance of any element due to the contribution of other nuclide. In this case 
each component in the lower triangular matrix is describing the contribution of one nuclide 
to the production of another element or isotope. 

Carbon is mainly contributing to the production of Boron - 55% as shown in figure 
9, Oxygen is contributing by - 30%, and the rest - 15% from the participation of other 
nuclei. The partial production cross-section of the B from C is high when compared to 
the production from other elements. Carbon has a fairly high source abundance which 
makes it one of the major primary nuclei participating in the production of secondary Boron 
components observed at the solar system. 

Figure 10 shows that about - 45% of the produced Beryllium is produced by Carbon 
contribution while - 30% is produced by Oxygen contribution; the remaining - 25% are 
mainly produced by the contribution of Iron, Magnesium, Neon, Silicon and others. Most 
of the observed Carbon is primary; other contributions are mainly due to  the interaction of 
Oxygen nuclei with the interstellar medium as shown in figure 11. 

In Figure 12  we show that Iron is the main contributor - 90% to the Chlorine produc- 
tion. Figure 13 shows that the main three elements contributing to  the production of Neon 
are the Neon, Magnesium - 30% and Silicon - 28%. From Figures 9 - 13 we conclude that 
cosmic rays nuclei are mainly created due to a major contribution of only few cosmic rays 
nuclei and minor or zero contribution of others. This result can lead to simplify numerical 
models used to calculate the elemental and isotopic abundance of cosmic rays by only in- 
cluding elements that really contribute to the production of a certain nuclei. Using these 
results we are able to track the primary cosmic rays nuclei to determine what percentage 
will contribute to the production of other nuclei and what will remain without contribution 
to other members and arrive to  the interplanetary space. Production cross sections and the 
source abundances are the main two factors determining the production contribution for 
each nucleus. The local density of the interstellar space is also considered as an important 
factor to  determine the production of elements since the propagated nuclei pass through low 
and high density regions. The results in figures 9 - 13 were calculated at 1 GeV/nucleon. 
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5.3. Location Contr ibut ion 

Different locations in the galaxy are unequally participating into the production of 
elenierits and isotopes observed in the solar system. Using the new method introduced in 
this paper we can determine the locations in galaxy containing the sources of the production 
of a certain nuclide, this means if I2C: 56Fe, ..etc participate in the production of 'OB observed 
at the solar system we determine the locations at which I2C, 56Fe, ..etc were produced. A test 
particle is allowed to follow a stochastic path starting from the solar system at time t and 
runs backward in time till hitting the galaxy boundary. The abundance for each nucleus is 
recorded at certain energy and a single location in the stochastic path. The smaller the time 
step the more detailed information can be obtained from the locations contribution however, 
computational time is inversely proportional to  the time step. We divide the galaxy into a 
set of squares each 40x40 pc and the sum of all abundances. 

The upper plots of figures 14 - 17 show an image plot for different locations contributing 
to the production of the sources of 'OB, 1°Be, 20Ne and 12C respectively normalized to carbon 
= 100 and the lower plots show the abundance at Y = 0 kpc and X runs from -20 to 20 kpc. 
Due to the decay of "Be the curve is more peaked than the stable Boron curve. The results 
in figures 14 - 17 were calculated at 1 GeV/nucleon 

We investigated several locations contribution within certain region surrounding the 
solar system. The model shows that most of the cosmic rays observed in the solar system 
are from sources within 10 kpc around the solar system. The very low abundance regions 
appear in the 'OB and l0Be distributions near the center of the galaxy is due to the interstellar 
medium density distribution (Moskalenko et al. 2002) with lower number density around the 
galactic center which will be reflected on the number of interactions with the interstellar 
medium producing l0Be and 'OB. 

6. Conclusion 

We introduced a new numerical model to  calculate the elemental and isotopic abun- 
dances of cosmic rays. The model depends on solving a group of diffusion transport equa- 
tions each representing a particular element or isotope using the backward Markov Stochastic 
technique staring at an observer location in the solar system and stoping at the galaxy bound- 
aries. Diffusion coefficient, halo size and rigidity are the main parameters contributing to 
this model and are chosen to best fit the observational data. Primary to secondary ratio 
have been used to validate the model. The results show good agreement with the B/C ratio 
which have the best determined cross sections over a wide energy range. SubFe/Fe fits the 
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data very well. The model show less satisfactory agreement in the case of 'oBe/gBe due 
to  the over estimated source abundance of 'Be and poorly determined cross sections. The 
uncertainty in estimating the cross sections ranged from 20% - 35%. The effect of the inho- 
mogeneities in the interstellar space is investigated as the model allows us to  address small 
scale structure inside the galaxy in our calculations. The solar system is embedded in a very 
low density region with a radius of 200 pc called the Local Super Bubble. The existence 
of the Bubble affects the abundances of the short lived isotopes as the size of the Bubble 
is significantly compared to their diffusion length. 10Be/gBe abundance ratio is reduced by 
taking the low density Bubble region into consideration. The low density region also results 
in less interaction of the cosmic ray nuclei with the interstellar space which will clearly affect 
the observed solar system elemental abundance. The model can describe not only the ele- 
mental and isotopic abundances variation at the solar system but anywhere in the Galaxy. 
The model shows that nuclei observed in the interplanetary space are produced due to an 
uneven contribution of the elements in the galaxy. In this model, the source contribution to 
a particular cosmic ray species observed at the solar system can be calculated. Carbon was 
found as a dominant contributor to  the production of loB and l0Be due to its large produc- 
tion cross section. Elemental percent contribution to various cosmic rays nuclei investigated 
using this model. Carbon and Oxygen found to be the main source for Boron production. 
About N 45% of the produced Beryllium come from Carbon. The production of Carbon 
is mainly related to the interaction of Oxygen nuclei with the interstellar medium. Iron is 
the main element contributing to the Chlorine production and N 42% are primary Carbon. 
Neon is produced from the interactions of Magnesium, Silicon and small iron percentage 
Iron. The model shows flexibility not only in determination of the elements contribution but 
also to  find the locations which mainly contributing to  the production of a certain element. 
The contribution of different locations in the galaxy to the production of 'OB, "Be, 20Ne 
and 12C and was investigated. Different diffusion coefficients and different energy losses in 
the diffusion equations describing various nuclei can't be handled using this model. The ma- 
jor uncertainty in our calculations resulted from the cross-sections and modulation errors. 
Observations at higher energies are greatly helpful in reducing the uncertainty in modulation. 

We are grateful to A. W. Strong, I. W. Moskalenko for providing cross sections used in 
this work and for helpful discussions. We thank B. Ball for useful suggestions. The work is 
supported in part by NASA under grants NAG5-10888 and NAG5-11036 and the Egyptian 
government grant GM477. For any questions contact ashraf@pss.fit.edu. 
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A. Applications to the Ito Formula 

The general diffusion equation takes the form 

w, + q)G, (2) = f(4 4, q E D (AI) 
where D is a bounded domain with a smooth boundary d o ,  functions c( t ,  q), f ( t ,  q) are 
assumed bounded and continuous. 

The second-order differential operator is defined as 

where CY is the diffusion coefficent tensor, p is the drift term containing the components bz 

The Ito formula expresses the calculus of changing stochastic variables. Let the Ito 
formula to be applied on the function 

where 

d ~ : ~  = ~ C J  (Q; q ) dW, + /3 ( Q>q) ds, Qiq = q 

and the vector CT is related to the diffusion coefficient tensor CY by 

CYyt, q) = c ai@, q)aj(t,  q); 

we get 

u (t - t 2 ,  Q::) exp {Y (Q::)} - u (t - tl, Q::) = 

[Lu (t - t l ,  Q:;9) - f ( t  - t i ,  Q::) + c (Qtiq) u (t - t l ,  &:?)I ~ X P  {Y (Q>q)} d t  

Using equation (Al) ,  the first integral on the right-hand side of equation (A3) becomes 0. 
Then, taking average of both sides of (A3), since (dW) = 0, we get 
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Let tl = 0 and t 2  = T the first exit time for the stochastic process get to the boundary 
all. since, Q;q = q, E [u ( t ,  Q2q)] = u (t,  q)Therefore, from equation (A3) we get the 
solution for the general diffusion equation (Al)  as 

For detailed proof of the above formula and more applications of stochastic differential 
equations see (Freidlin 1985; Gardiner 1983; Bksendal 1992) 

B. Matrix Exponential 

The exponential of a matrix could be calculated in many ways such as Pad6 approxima- 
tion, differential equations, the matrix eigenvectors, series method, and the matrix character- 
istic polynomial. The method used is depending on the naive approach of finding eigenvalues 
D and eigenvectors V of the matrix A,, such that 

since V is nonsingular we have 

ezp(A,,) = Ve D V -1 . 

Matrix exponential calculation is very reliable and straightforward using this method, 
however theoretical difficulty occurs if there is no invertible matrix of eigenvectors V .  For 
detailed description of methods that can be used to compute the exponential of a matrix 
and additional comparisons between these methods see (Moler & Loan 2003). 
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Injection Spectrum 

Convection Velocity (z-direction) 

Table 1. Model Parameters 

df l d p  0: p-2.35 

V = 2 0 k m / s  

Source Distribution 

Halo Height 

Galactic Radius 

fo is a normalization constant 

Zh = 1 - 1Okpc 

Rh = 30kpc 

Spatial Diffusion Coefficient = ( z )  ko (;>", 

Distance from the Sun to  the Galactic Center Ro = 8.5kpc 
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Fig. 1.- Graphical illustration of using backward stochastic processes to  obtain the solution 
to general diffusion equations. 
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Fig. 2.- B/C ratio calculated for zh = 4 kpc and dV/dz = 0. Solid curve (lower) local 
interstellar medium, dashed-dotted curve (upper) modulated 4 = 500 MV. 



- 20 - 

0.4 

0.35 

0.3 

0.25 

0.2 

0.1 5 

0.1 

0.05 

0 
10 100 1000 10000 100000 1 e+06 

kinetic energy, MeVhucleon 

Fig. 3.- subFe/Fe ratio calculated for zh = 4 kpc and dV/dz = 0. Solid curve (lower) local 
interstellar medium, dashed-dotted curve (upper) modulated q5 = 500 MV. 
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Fig. 4.- 10Be/gBe ratio calculated 'for zh = 4 kpc and dV/dz  = 0. Solid curve (lower) local 
interstellar medium, dashed-dotted curve (upper) modulated 4 = 450 MV. 
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Fig. 5.- 26Al/27Al ratio calculated for zh = 4 kpc and d V / d z  = 0. Solid curve (lower) 
interstellar medium, dashed-dotted curve (upper) modulated C$ = 450 MV. 
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Fig. 6.- 36C1/37C1 ratio calculated for zh = 4 kpc and dV/dz = 0. Solid curve (lower) local 
interstellar medium, dashed-dotted curve (upper) modulated = 450 MV. 
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Fig. 7.- 54Mn/55Mn ratio calculated for zh = 4 kpc and d V / d z  = 0. Solid curve (lower) 
local interstellar medium, dashed-doted curve (upper) modulated 4 = 450 MV. 
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Fig. 9.- Elements percent contribution to the production of 'OB at 1 GeV/nucleon. 
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Fig. 10.- Elements percent contribution to the production of "Be at  1 GeV/nucleon. 
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Fig. 11.- Elements percent contribution to the production of 12C at 1 GeV/nucleon. 
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Fig. 12.- Elements percent contribution to the production of 35Cl at 1 GeV/nucleon. 
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Fig. 13.- Elements percent contribution to the production of 20Ne at 1 GeV/nucleon. 
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Fig. 14.- Upper plot: Contribution of various locations around the galaxy to the production 
of 'OB sources; model W/O Local Bubble; Energy = 1 GeV/nucleon and no modulation. 
Lower plot: loB Abundance normalized to (Carbon = 100) at Y = O'and runs from -20 to 
20 kpc. The solar system is located at X = 8.5 kpc, Y = 0 kpc and Z = 0 kpc; Curves are 
normalized to (Carbon = 100) at  1 GeV/nucleon. 
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Fig. 15.- Upper plot: Contribution of various locations around the galaxy to the production 
of "Be sources; model W/O Local Bubble; Energy = 1 GeV/nucleon and no modulation. 
Lower plot: l0Be Abundance normalized to (Carbon = 100) at  Y = 0 and runs from -20 to 
20 kpc. The solar system is located at X = 8.5 kpc, Y = 0 kpc and Z = 0 kpc; Curves are 
normalized to  (Carbon = 100) at 1 GeV/nucleon. 
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Fig. 16.- Upper plot: Contribution of various locations around the galaxy to the production 
of 2"Ne sources; model W/O Local Bubble; Energy = 1 GeV/nucleon and no modulation. 
Lower plot: 20Ne Abundance normalized to (Carbon = 100) at  Y = 0 and runs from -20 to 
20 kpc. The solar system is located at X = 8.5 kpc, Y = 0 kpc and Z = 0 kpc; Curves are 
normalized to (Carbon = 100) at 1 GeV/nucleon. 
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Fig. 17.- Upper plot: percent Contribution of various locations around the galaxy to the 
production of 12C; model W/O Local Bubble; Energy = 1 GeV/nucleon and no modulation. 
Lower plot: "C percent contribution at Y = 0 and runs from -20 to 20 kpc. The solar 
system is located at X = 8.5 kpc, Y = 0 kpc and Z = 0 kpc at  1 GeV/nucleon. 


