Extended abstract to be submitted to 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, California, June 11-18, 2005.

Advances in Software Tools for Pre-processing and Post-processing of Overset Grid Computations

William M. Chan

NASA Ames Research Center
Mail Stop T27B-1
Moffett Field, CA 94035-1000
wchan@nas.nasa.gov

Abstract

Recent developments in three pieces of software for performing pre-processing and post-processing work on numerical computations using overset grids are presented. The first is the OVERGRID graphical interface which provides a unified environment for the visualization, manipulation, generation and diagnostics of geometry and grids. Modules are also available for automatic boundary conditions detection, flow solver input preparation, multiple component dynamics input preparation and dynamics animation, simple solution viewing for moving components, and debris trajectory analysis input preparation. The second is a grid generation script library that enables rapid creation of grid generation scripts. A sample of recent applications will be described. The third is the OVERPLOT graphical interface for displaying and analyzing history files generated by the flow solver. Data displayed include residuals, component forces and moments, number of supersonic and reverse flow points, and various dynamics parameters.

1. Introduction

With the Chimera overset grid method [1] being used for increasingly complex flow simulation problems in the 1990's [2-11], a common complaint at the time was that there were very few software tools available that were specifically tailored for overset structured grid generation. The Chimera Grid Tools (CGT) software project was then started to collect various existing tools such as hyperbolic grid generators [12] into one package, and to further develop new tools for efficient and easy-to-use overset grid generation, flow solver input creation, and flow solution post-processing. Other software packages with a similar goal were also being developed at about the same time [13].

Today, the Chimera Grid Tools package contains about 50 modules for pre-processing and post-processing of overset grid computations. This paper presents recent developments in three of the main modules in Chimera Grid Tools: OVERGRID, CGT script library, and OVERPLOT.

2. OVERGRID Graphical Interface

The OVERGRID graphical interface [14] was originally developed as a much-needed custom interface for performing structured overset grid generation. Over time, it has evolved into an interface for performing most pre-processing tasks before running a flow solver. The software is written primarily in C with some Fortran library calls. Three-dimensional graphics rendering is accomplished using OpenGL, while the user-interface widgets are developed using Tcl/Tk [15].

The main panels of OVERGRID consist of four windows as shown in Figure 1. The Graphics window (upper left) displays the 3-D geometry and grids. The Main Menu window (upper right) is used for file i/o and access to the various modules. The Controls window (lower left) is used to control various display attributes. The Selection window (lower right) is used for entity and subset highlight and selection.

OVERGRID allows structured grids and surface triangulations as input and output data types. Such data types can be treated as geometry definitions or the actual computational grids. Modules are available for
Extended abstract to be submitted to 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, California, June 11-18, 2005.

Grid editing – to swap, reverse grid indices, scale, translate, rotate or mirror entire grids, extract subsets, concatenate, extrapolate, revolve, smooth, or re-order grids.

Grid redistribution – to redistribute grid points on structured curve, surface or volume grids.

Grid projection – to project point or line subsets onto structured or triangulated surface definitions.

Grid diagnostics – to display grid attributes such as tangent and normal vectors, grid identity numbers, iblank locations, chimera fringe and orphan points information, grid quality functions, negative Jacobians reporting, surface topology detection.

Surface grid generation – to generate structured surface grids using hyperbolic or algebraic methods, and to create wake cut surface grids on wing-like geometries.

Volume grid generation – to generate structured volume grids using hyperbolic or Cartesian methods.

Object X-ray map creation – to create object X-ray maps for performing hole cutting [16].

Flow solver boundary conditions creation – to automatically detect and output boundary conditions for the OVERFLOW flow solver. Options are available to modify the boundary conditions and to view the boundary condition types by color.

Figure 1. Main panels of OVERGRID graphical interface.
Extended abstract to be submitted to 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, California, June 11-18, 2005.

More details of these features are described in Ref. [14]. Further recent developments include the following modules:

Calculators – to compute freestream properties such as Mach number, Reynolds number, temperature, density, etc. from input altitude, speed and reference length; to compute mass properties such as total mass and moments of inertia from input closed surface triangulation and mass density.

Component dynamics interface – to prepare inputs for multi-body dynamics simulations using the OVERFLOW-2 or CART3D [17] flow solvers. Component hierarchy, linkage to grids, prescribed or 6-degree-of-freedom (6-dof) dynamics input can be prepared using the interface. Files are written in XML format using the Geometry Manipulation Protocol (GMP) [18] for input to flow solvers mentioned above. Prescribed component dynamics, and 6-dof dynamics without aero-forces and moments can be animated prior to running the flow solver, 6-dof dynamics output files from flow solvers, with aero-forces and moments effects, can be animated after running the flow solver.

OVERFLOW-2 flow solver input preparation – to prescribe commonly used inputs such as freestream conditions, turbulence models, numerical time and spacing differencing schemes for the OVERFLOW-2 flow solver.

Solution viewer – to provide a means to rapidly view time-varying flow solutions generated by OVERFLOW-2 with component dynamics. From entering the solution viewer window, four mouse clicks will start an animation of time-varying color contours or grid wireframes of dynamics solutions. Default surfaces are automatically loaded for display for 3-D cases. For 2-D cases only, all grids are automatically loaded for display where the grid dimensions are allowed to change with time as in adaptive grid simulations. Only commonly used scalar functions are currently available (e.g., Mach number, velocity components and magnitude, density, pressure, sound speed, entropy, etc.). This interface was built for quick viewing of dynamic solutions. For more advanced solution analyses, more sophisticated visualization packages such as Fieldview is still required.

Debris tracing interface – to provide a means to prepare inputs for debris tracing computations. These may include debris shape, dimensions, density, surface offset distance, initial positions and velocities. Options are available to execute NASA’s Debris code [] and view debris trajectories and impact points for simple cases.

3. Chimera Grid Tools Script Library

For grid generation on complex configurations using overset structured grids, it is highly desirable to encode the procedure in a script that can easily reproduce all the steps in the process [19]. Key parameters such as grid spacings, stretching ratios, geometry dimensions, etc. can then be modified and the entire grid system regenerated automatically. The CGT Script Library, developed in the Tcl scripting language, was originally designed to assist the user in configuration scripting, i.e., given the surface grids, procedures in the script library are available to automatically build volume grids, and create the input files needed for domain connectivity, flow solver and post-processing [20].

Recently, a suite of new procedures was developed for the CGT Script Library for building surface and volume grid generation scripts. Typical surface grid generation procedures for complex configurations such as the flowliner and turbopump inducer combination in Figure 2 can involve hundreds of steps. Each step usually involves executing an independent batch code for some grid operations such as extracting a grid line, concatenating different grid parts, etc. Coding the input files for hundreds of instances of executing such steps is very tedious and error-prone. The new procedures in the CGT Script Library allows the execution of each grid generation step with one procedure call.
The new procedures in the library can be classified as follows:

1. File manipulation – combine files, change file formats.
2. Grid information interrogation – return grid dimensions, coordinates, arc lengths, etc.
3. Grid editing and redistribution – analogous to similar functions in OVERGRID.
5. Math functions.
6. Program execution and error checking.

By removing the need to write input files for each step, use of the new CGT Script Library procedures can typically result in a factor of 10 or more compact scripts, and about a factor of 3 or more faster script creation time.

A recent application of the CGT Script Library is shown in Figure 3 for the air flow simulation in a modern computer room. The room and components geometry and grids were all created using a script utilizing the CGT Script Library in about 3 man-days. Components modeled in the room include the CPU and disk racks, cable trays, coolers, power units, and the mass storage system. The room dimensions, the component locations and dimensions, surface and volume grid attributes (grid spacings, stretching ratios), and the locations of specific boundary condition applications are all parameterized in the script. On changing any of the above parameters, the entire grid system and flow solver boundary conditions input can be regenerated in a few minutes on a desktop computer.

4. OVERPLOT Graphical Interface

For steady state computations, output from a flow solver typically includes histories of residuals of the flow equations of each grid, and the forces and moments acting on each component of the simulation. More sophisticated history output may also include the turbulence model equations residuals, the number of supersonic points and reverse flow points, and the minimum values of density and pressure in the entire flow field. For unsteady and moving-body problems, additional output may include residuals of Newton or dual time step sub-iterations, as well as dynamics data such as component center of mass coordinates and translational velocity, and component angular position and velocity. Some or all of the above history outputs can be used to determine convergence of a steady
Extended abstract to be submitted to 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, California, June 11-18, 2005.

state computation, or to determine whether an unsteady computation has reached a quasi-periodic state or exhibits chaotic behavior.

Figure 3. Surface grids for various components in computer room air flow simulation.

The OVERPLOT graphical interface was designed to assist in the analysis of all the datasets mentioned above in one convenient environment. Acceptable history file formats are tuned to the output of the OVERFLOW flow solver, but simple conversion tools can be easily built to allow acceptance of output from other solvers. The graphical interface is written entirely in Tcl/Tk and hence is portable between Unix, Linux and Mac OS-X machines. All history data are displayed as 2-D plots using free-ware plotting engines such as GNU PLOT or XMGRACE. For each 2-D plot, OVERPLOT provides a convergence analysis tool where minimum, maximum, average and standard deviation values of the data and slope of the data are reported.

OVERPLOT provides 5 different panels based on the type of the input history file:

1. Residual panel – residuals of flow equations or turbulence model equations for the main time steps and sub-iterations (Figure 4).
2. Force/moment panel – forces and moments of components with breakdown of contributions from pressure and viscous terms, and the mass flow rate through defined components (Figure 5).
3. Other flow parameters panel – minimum density/pressure, number of supersonic/reverse-flow points.
4. Dynamics panel – component center of mass coordinates and velocity, component angular positions and velocity.
5. Cp cuts panel – plots of multiple cuts over constant x, y, or z planes on a component to display surface pressure variations.
Figure 4. Residuals panel of OVERPLOT

Figure 5. Forces and moments panel of OVERPLOT
Extended abstract to be submitted to 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, California, June 11-18, 2005.

5. Concluding Remarks

Recent developments in three pieces of software for performing pre-processing and post-processing of overset grid computations have been presented. The OVERGRID interface can now be used not just for grid generation tasks but also for performing various pre-processing tasks prior to running the flow solver. For multi-body dynamics simulations, OVERGRID can be used to animate and validate the dynamic motions of the components both prior and after running the flow solver. The CGT Script Library was expanded to include many new procedures for performing different steps in surface and volume grid generation, resulting in an order of magnitude more compact scripts and much faster script creation time. The OVERPLOT interface was also extended to analyze sub-iteration residuals and history of dynamics data that arise as output in multi-body dynamics simulations. The software tools discussed here, together with domain connectivity software such as the PEGASUS 5 code [21] or the DCF module in OVERFLOW-2, and the OVERFLOW-2 flow solver, form a complete analysis package for steady flow simulations and unsteady multi-body dynamics flow simulations on complex configurations.

References


Extended abstract to be submitted to 9th International Conference on Numerical Grid Generation in Computational Field Simulations, San Jose, California, June 11-18, 2005.


