NASA PATENT ABSTRACTS BIBLIOGRAPHY
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services also include creating custom thesauri, building customized databases, and organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at (301) 621-0134

- Phone the NASA STI Help Desk at (301) 621-0390

- Write to: NASA STI Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320
Introduction

Several thousand inventions result each year from research supported by the National Aeronautics and Space Administration. NASA seeks patent protection on inventions to which it has title if the invention has important use in government programs or significant commercial potential. These inventions cover a broad range of technologies and include many that have useful and valuable commercial application.

NASA inventions best serve the interests of the United States when their benefits are available to the public. In many instances, the granting of nonexclusive or exclusive licenses for the practice of these inventions may assist in the accomplishment of this objective. This bibliography is published as a service to companies, firms, and individuals seeking new, licensable products for the commercial market.

The *NASA Patent Abstracts Bibliography* is a semiannual NASA publication containing comprehensive abstracts of NASA-owned inventions covered by U.S. patents. The citations included were originally published in NASA’s *Scientific and Technical Aerospace Reports (STAR)* and cover *STAR* announcements made since May 1969.

The citations published in this issue cover the period January 2005 through June 2005. The range of subjects covered includes the NASA Scope and Subject Category Guide’s 10 broad subject divisions separated further into 76 specific categories. However, not all categories have citations during the dates covered for this issue, therefore the Table of Contents does not include all divisions and categories. This scheme was devised in 1975 and revised in 1987 and 2000 in lieu of the 34 category divisions which were utilized in supplements (01) through (06) covering *STAR* abstracts from May 1969 through January 1974. Each entry consists of a citation accompanied by an abstract and, when appropriate, a key illustration taken from the patent or application for patent. Entries are arranged by subject category in ascending order.

Information About Patent Availability and Licenses

Patent Availability
How to obtain copies of NASA patents.

Licenses for Commercial Use
Information on obtaining a license to use a NASA patented invention.

Address of NASA Patent Counsels
Addresses for the NASA center patent counsels having knowledge of the invention.

Patent Licensing Regulations
Information about the policies and procedures for licensing federally owned inventions in the custody of the National Aeronautics and Space Administration. Regulations on the licensing of government-owned inventions are available at: http://www.access.gpo.gov/nara/cfr/waisidx_02/37cfr404_02.html.

The Federal Depository Library Program
The U.S. Congress established the Federal Depository Library Program (FDLP) to ensure access by the American public to U.S. Government information. The program acquires and disseminates information products from all three branches of the U.S. Government to nearly 1,300 Federal depository libraries nationwide. The libraries maintain these information products as part of their existing collections and are responsible for assuring that the public has free access to the information. Locate the Federal Depository Libraries at: http://www.gpoaccess.gov/libraries.html.
Table of Contents

Subject Divisions/Categories

Document citations are grouped by division and then by category, according to the *NASA Scope and Coverage Category Guide*.

Aeronautics

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>Aircraft Design, Testing and Performance</td>
<td>1</td>
</tr>
</tbody>
</table>

Chemistry and Materials

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Composite Materials</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>Inorganic, Organic and Physical Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>Metals and Metallic Materials</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>Nonmetallic Materials</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>Propellants and Fuels</td>
<td>5</td>
</tr>
</tbody>
</table>

Engineering

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Communications and Radar</td>
<td>5</td>
</tr>
<tr>
<td>33</td>
<td>Electronics and Electrical Engineering</td>
<td>8</td>
</tr>
<tr>
<td>34</td>
<td>Fluid Mechanics and Thermodynamics</td>
<td>9</td>
</tr>
<tr>
<td>35</td>
<td>Instrumentation and Photography</td>
<td>10</td>
</tr>
<tr>
<td>36</td>
<td>Lasers and Masers</td>
<td>12</td>
</tr>
<tr>
<td>37</td>
<td>Mechanical Engineering</td>
<td>13</td>
</tr>
<tr>
<td>38</td>
<td>Quality Assurance and Reliability</td>
<td>19</td>
</tr>
</tbody>
</table>

Life Sciences

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Life Sciences (General)</td>
<td>20</td>
</tr>
</tbody>
</table>

Mathematical and Computer Sciences

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Computer Programming and Software</td>
<td>21</td>
</tr>
</tbody>
</table>

Physics

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Nuclear Physics</td>
<td>22</td>
</tr>
<tr>
<td>74</td>
<td>Optics</td>
<td>22</td>
</tr>
<tr>
<td>76</td>
<td>Solid-State Physics</td>
<td>25</td>
</tr>
</tbody>
</table>

Social and Information Sciences

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>Documentation and Information Science</td>
<td>26</td>
</tr>
</tbody>
</table>

Indexes

Two indexes are available. You may use the find command under the tools menu while viewing the PDF file for direct match searching on any text string. You may also select either of the two indexes provided for linking to the corresponding document citation from *NASA Thesaurus* terms and personal author names.

- **Subject Term Index**
- **Personal Author Index**
AIRCRAFT DESIGN, TESTING AND PERFORMANCE

Includes all stages of design of aircraft and aircraft structures and systems. Also includes aircraft testing, performance, and evaluation, and aircraft and flight simulation technology. For related information see also 18 Spacecraft Design, Testing and Performance; and 39 Structural Mechanics. For land transportation vehicles see 85 Technology Utilization and Surface Transportation.

20050167880 NASA Langley Research Center, Hampton, VA, USA
Resonant Wingbeat Tuning Circuit using Strain-Rate Feedback for Ornithoptic Micro Aerial Vehicles
Raney, David L., Inventor; January 11, 2005; 9 pp.; In English

A resonant wingbeat tuning circuit automatically tunes the frequency of an actuating input to the resonant frequency of a flexible wing structure. Through the use of feedback control, the circuit produces the maximum flapping amplitude of a mechanical ornithoptic system, tracking the resonant frequency of the vibratory flapping apparatus as it vanes in response to change in flight condition, ambient pressure, or incurred wing damage.

Official Gazette of the U.S. Patent and Trademark Office
Circuits; Tuning; Strain Rate; Flexible Wings; Resonant Frequencies; Feedback Control; Research Vehicles

FIG. 1

COMPOSITE MATERIALS

Includes physical, chemical, and mechanical properties of laminates and other composite materials.

20050168087 NASA Glenn Research Center, Cleveland, OH, USA
Rod-Coil Block Polyimide Copolymers
Meador, Mary Ann B., Inventor; Kinder, James D., Inventor; April 19, 2005; 10 pp.; In English
This invention is a series of rod-coil block polyimide copolymers that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

Official Gazette of the U.S. Patent and Trademark Office

Block Copolymers; Fabrication; Polyimides; Rods; Electric Coils

INORGANIC, ORGANIC AND PHYSICAL CHEMISTRY

Includes the analysis, synthesis, and use of inorganic and organic compounds; combustion theory; electrochemistry; and photochemistry. For related information see category 34 Fluid Dynamics and Thermodynamics. For astrochemistry see category 90 Astrophysics.

20050051403 NASA Kennedy Space Center, Cocoa Beach, FL, USA
High Temperature Decomposition of Hydrogen Peroxide
Parrish, Clyde F., Inventor; September 21, 2004; 7 pp.; In English
Patent Info.: Filed 6 Dec. 2001

Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

Official Gazette of the U.S. Patent and Trademark Office
High Temperature; Nitric Oxide; Nitrogen Dioxide; Oxidation; Decomposition; Hydrogen Peroxide

20050051585 NASA Glenn Research Center, Cleveland, OH, USA
Organic Modification of a Layered Silicate by Co-Ion Exchange of an Alkyl Ammonium and a Mono-Protonated Diamine
Campbell, Sandi G., Inventor; December 07, 2004; 9 pp.; In English

Co-Ion exchange of the interlayer cations of a layered silicate with a mono-protonated aromatic diamine and an alkyl ammonium ion into the silicate galleries. The presence of the alkyl ammonium ion provides low oligomer melt viscosity during processing. The presence of the diamine allows chemical reaction between the silicate surface modification and the
monomers. This reaction strengthens the polymer silicate interface, and ensures irreversible separation of the individual silicate layers. Improved polymer thermal oxidative stability and mechanical properties are obtained.

Official Gazette of the U.S. Patent and Trademark Office
Alkyl Compounds; Ammonia; Diamines; Ion Exchanging; Silicates

26
METALS AND METALLIC MATERIALS
Includes physical, chemical, and mechanical properties of metals and metallic materials; and metallurgy.

20050051620 NASA Johnson Space Center, Houston, TX, USA
Heat Treatment of Friction Stir Welded 7X50 Aluminum
Petter, George E., Inventor; Figert, John D., Inventor; Rybicki, Daniel J., Inventor; Burnes, Timothy H., Inventor; October 12, 2004; 9 pp.; In English
Patent Info.: Filed 17 Mar. 2003; US-Patent-6,802,444; US-Patent-Appp-SN-390678; NASA-Case-MSC-23472-1; No Copyright; Avail: CASI; A02 Hardcopy

A method for treating alloy before and after friction stir welding, the method comprising the following steps. First solution heat treating a multiplicity of aluminum-zinc alloy engineered components for a first time period at a first temperature. First air cooling the components in ambient air at room temperature until the components are cooled to room temperature. Friction stir welding the components to form an assembly. Second solution heat treating the assembly for a second time period at a second temperature. Additional steps and embodiments are considered.

Official Gazette of the U.S. Patent and Trademark Office
Friction Stir Welding; Heat Treatment; Aluminum Alloys
Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys
Raj, Sai V., Inventor; January 04, 2005; 11 pp.; In English

A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

Official Gazette of the U.S. Patent and Trademark Office
Copper Alloys; Thermal Control Coatings; Nickel; Aluminum

High-Solids Polyimide Precursor Solutions
Chuang, Chun-Hua, Inventor; August 31, 2004; 6 pp.; In English

The invention is a highly concentrated stable solution of polyimide precursors (monomers) having a solids content ranging from about 80 to 98 percent by weight in lower aliphatic alcohols i.e. methyl and/or ethylalcohol. the concentrated polyimide precursors solution contains effective amounts of at least one aromatic diamine, at least one aromatic dianhydride, and a monofunctional endcap including monoamines, monoanhydrides and lower alkyl esters of said monoanhydrides. These concentrated polyimide precursor solutions are particularly useful for the preparation of fibrous prepregs and composites for use in structural materials for military and civil applications.

Official Gazette of the U.S. Patent and Trademark Office
Polyimides; Solids; Methyl Compounds; Fiber Composites

Space Environmentally Durable Polyimides and Copolyimides
Connell, John W., Inventor; Smith, Joseph G., Jr., Inventor; Hergenrother, Paul M., Inventor; Watson, Kent A., Inventor; Thompson, Craig M., Inventor; January 11, 2005; 56 pp.; In English

Polyimides displaying low color in thin films, atomic oxygen resistance, vacuum ultraviolet radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures, and high thermal stability are provided. The poly(amide acid)s, copoly(amide acid)s, polyimides and copolyimides are prepared by the reaction of stoichiometric ratios of an aromatic dianhydride with diamines which contain phenylphosphine oxide groups in polar aprotic solvents. Controlled molecular weight oligomeric (amide acid)s and imides can be prepared by offsetting the stoichiometry according to the Carothers equation using excess diamine and endcapping with aromatic anhydrides The polyimide materials can be processed into various material forms such as thin films, fibers, foams, threads, adhesive film, coatings, dry powders, and fiber coated prepreg, and uses include thin film membranes on antennas, second-surface mirrors, thermal optical coatings, and multilayer thermal insulation (MLI) blanket materials.

Official Gazette of the U.S. Patent and Trademark Office
Polyimides; Durability; Copolymers
PROPELLANTS AND FUELS

Includes rocket propellants, igniters, and oxidizers; their storage and handling procedures; and aircraft fuels. For nuclear fuels see 73 Nuclear Physics. For related information see also 07 Aircraft Propulsion and Power; 20 Spacecraft Propulsion and Power; and 44 Energy Production and Conversion.

20050168079 NASA Marshall Space Flight Center, Huntsville, AL, USA

Liquid Propellant Tracing Impingement Injector

Xenofos, George D., Inventor; Myers, W. Neill, Inventor; Trinh, Huu, Inventor; Michaels, R. Scott, Inventor; March 1, 2005; 6 pp.; In English

An injector for use with the rocket thruster has a plurality of fuel ports separated from a plurality of oxidizer ports. The oxidizer and fuel ports are paired together directing their respective fluids along a path with radial and tangential components so that the two fluids impinge at a predetermined spaced apart distance from the chamber wall of the combustion chamber at an impingement track. By providing the fuel at a steeper angle relative to the chamber walls than the oxidizer, the fuel can be utilized to provide a fuel rich zone near the chamber walls to assist in cooling the chamber walls during operation.

Official Gazette of the U.S. Patent and Trademark Office

Impingement; Injectors; Liquid Rocket Propellants; Rocket Thrust

COMMUNICATIONS AND RADAR

Includes radar; radio, wire, and optical communications; land and global communications; communications theory. For related information see also 04 Aircraft Communications and Navigation; and 17 Space Communications, Spacecraft Communications, Command and Tracking; for search and rescue, see 03 Air Transportation and Safety; and 16 Space Transportation and Safety.

20050051591 NASA Kennedy Space Center, Cocoa Beach, FL, USA

Real Time Calibration Method for Signal Conditioning Amplifiers

Medelius, Pedro J., Inventor; Mata, Carlos T., Inventor; Eckhoff, Anthony, Inventor; Perotti, Jose, Inventor; Lucena, Angel, Inventor; October 05, 2004; 5 pp.; In English

A signal conditioning amplifier receives an input signal from an input such as a transducer. The signal is amplified and processed through an analog to digital converter and sent to a processor. The processor estimates the input signal provided by the transducer to the amplifier via a multiplexer. The estimated input signal is provided as a calibration voltage to the amplifier immediately following the receipt of the amplified input signal. The calibration voltage is amplified by the amplifier and provided to the processor as an amplified calibration voltage. The amplified calibration voltage is compared to the amplified
In a system according to the proposed technique, the signal received by each element of the array antenna would be subjected to downconversion, and spread-spectrum demodulation and correlation as necessary; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. For the GPS implementation, following downconversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudo random-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be a relatively inexpensive and flexible means for exploiting the inherent multiple-peak/multiple-null aiming capability of a phased-array antenna. In the original intended GPS application, the peaks and nulls could be directed independently for each GPS signal being tracked by the GPS receiver. This will improve the SNR simultaneously for each GPS signal being tracked while steering multiple nulls toward sources of interference. The technique could also be applied to other code-division multiple-access communication systems.
A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

Author
Actuators; Microelectromechanical Systems; Patch Antennas; Antenna Components; Reconfigurable Hardware
Methods for Anticipating Problems with Electrical Wiring
Yost, William T., Inventor; Cramer, K. Elliott, Inventor; Perey, Daniel F., Inventor; January 04, 2005; 10 pp.; In English

Passive and active methods for anticipating problems with electrical wiring are provided. An insulative material in contact with an electrical conductor has at least one impurity that is impregnated in the insulative material and/or disposed thereon. An environment around the electrical conductor is monitored for the presence or the level of the impurity(ies) emanating from the insulative material in the form of a gaseous effluent. An alarm signal is generated when a predetermined level of the gaseous effluent is detected.

Official Gazette of the U.S. Patent and Trademark Office
Wiring; Manufacturing

Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack
Keys, Andrew S., Inventor; Fork, Richard L., Inventor; April 26, 2005; 9 pp.; In English

An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.

Official Gazette of the U.S. Patent and Trademark Office
Bandwidth; Dielectrics; Phase Modulation; Laminates; Optical Properties
FLUID MECHANICS AND THERMODYNAMICS

Includes fluid dynamics and kinematics and all forms of heat transfer; boundary layer flow; hydrodynamics; hydraulics; fluidics; mass transfer and ablation cooling. For related information see also 02 Aerodynamics.

20050167855 NASA Langley Research Center, Hampton, VA, USA
Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement
Bryant, Robert G., Inventor; Working, Dennis C., Inventor; February 15, 2005; 19 pp.; In English

A fluid-control electro-active device includes a piezo-diaphragm made from a ferroelectric material sandwiched by first and second electrode patterns configured to introduce an electric field into the ferroelectric material when voltage is applied thereto. The electric field originates at a region of the ferroelectric material between the first and second electrode patterns, and extends radially outward from this region of the ferroelectric material and substantially parallel to the plane of the ferroelectric material. The piezo-diaphragm deflects symmetrically about this region in a direction substantially perpendicular to the electric field. An annular region coupled to and extending radially outward from the piezo-diaphragm perimetrically borders the piezo-diaphragm, A housing is connected to the region and at least one fluid flow path with piezo-diaphragm disposed therein.

Official Gazette of the U.S. Patent and Trademark Office
Electric Fields; Fluid Flow; Piezoelectricity; Ferroelectric Materials
INSTRUMENTATION AND PHOTOGRAPHY

Includes remote sensors; measuring instruments and gages; detectors; cameras and photographic supplies; and holography. For aerial photography see 43 Earth Resources and Remote Sensing. For related information see also 06 Avionics and Aircraft Instrumentation; and 19 Spacecraft Instrumentation and Astrionics.

20050051589 NASA Langley Research Center, Hampton, VA, USA
Method of Improving a Digital Image as a Function of its Dynamic Range
Woodell, Glenn, Inventor; Jobson, Daniel J., Inventor; Rahman, Zia-ur, Inventor; December 21, 2004; 12 pp.; In English

The present invention is a method of processing a digital image that is initially represented by digital data indexed to represent position on a display. The digital data is indicative of an intensity value \(I(x,y) \) for each position \((x,y)\) in each i-th spectral band. A classification of the image based on its dynamic range is then defined in each of the image’s S spectral bands. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with

\[
SIGMA(Wn(log[I(x,y)] - log[I(x,y)*F(x,y)]), i=1,...,S
\]

where \(Wn \) is a weighting factor, "*" is the convolution operator and \(S \) is the total number of unique spectral bands. For each \(n \), the function \(F(x,y) \) is a unique surround function applied to each position \((x,y)\) and \(N \) is the total number of unique surround functions. Each unique surround function is scaled to improve some aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value to each position in each i-th spectral band of the image is then filtered with a filter function that is based on the dynamic range classification of the image.

Official Gazette of the U.S. Patent and Trademark Office
Digital Data; Dynamic Range; Image Classification

20050051590 NASA Glenn Research Center, Cleveland, OH, USA
Method of Assembling a Silicon Carbide High Temperature Anemometer
Okojie, Robert S., Inventor; Fralick, Gustave C., Inventor; Saad, George J., Inventor; September 21, 2004; 10 pp.; In English

A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bondpads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the...
substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.

Official Gazette of the U.S. Patent and Trademark Office

Anemometers; Assembling; Silicon Carbides; High Temperature; Engine Monitoring Instruments

The present invention is a method of processing a digital image that is initially represented by digital data indexed to represent positions on a display. The digital data is indicative of an intensity value \(I(x,y) \) for each position \((x,y)\) in each i-th spectral band. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value \(R_i(x,y) \) in accordance with

\[
\sigma_n \log R_i(x,y) = \sum_{n=1}^{N} w_n \log \frac{I_i(x,y)}{F_n(x,y)}, \quad i = 1, \ldots, S
\]

where \(w_n \) is a weighting factor, \(\ast \) is the convolution operator and \(S \) is the total number of unique spectral bands. For each \(n \), the function \(F_n(x,y) \) is a unique surround function applied to each position \((x,y)\) and \(N \) is the total number of unique surround functions. Each unique surround function is scaled to improve some aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value for each position in each i-th spectral band of the image is then filtered with a filter function to generate a filtered intensity value \(R_i(x,y) \). To prevent graying of white zones in the image, the maximum of the original intensity value \(I_i(x,y) \) and filtered intensity value \(R_i(x,y) \) is selected for display.

Official Gazette of the U.S. Patent and Trademark Office

Digital Data; Image Processing
Ultrafast Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity, Surface-Emitting Lasers (VCSELS)

Goorjian, Peter M., Inventor; Ning, Cun-Zheng, Inventor; March 08, 2005; 8 pp.; In English

Ultrafast directional beam switching is achieved using coupled VCSELs. This approach is demonstrated to achieve beam switching frequencies of 40 GHz and more and switching directions of about eight degrees. This switching scheme is likely to be useful for ultrafast optical networks at frequencies much higher than achievable with other approaches.

Official Gazette of the U.S. Patent and Trademark Office
Cavities; Surface Emitting Lasers; Beam Switching
Thermal Insulation Testing Method and Apparatus
Fesmire, James E., Inventor; Augustynowicz, Stanislaw D., Inventor; November 30, 2004; 10 pp.; In English
Patent Info.: Filed 11 Dec. 2002

A test apparatus and method of its use for evaluating various performance aspects of a test specimen is disclosed. A chamber within a housing contains a cold mass tank with a contact surface in contact with a first surface of a test specimen. The first surface of the test specimen is spaced from the second surface of the test specimen by a thickness. The second surface of the test specimen is maintained at a constant temperature by a liquid disposed within the cold mass tank. A boil-off flow rate of the gas is monitored and provided to a processor along with the temperature of the first and second surfaces of the test specimen. The processor calculates thermal insulation values of the test specimen including comparative values for heat flux and apparent thermal conductivity k-value). The test specimen may be placed in any vacuum pressure level ranging from about 0.01 millitorr to 1,000,000 millitorr with different residual gases as desired. The test specimen may be placed under a mechanical load with the cold mass tank and another factors may be imposed upon the test specimen so as to simulate the actual use conditions.

Thermal Insulation; Mechanical Engineering; Cryogenics; Thermal Conductivity
Self-Tuning Impact Damper for Rotating Blades
Pufy, Kirsten P., Inventor; Brown, Gerald V., Inventor; Bagley, Ronald L., Inventor; December 07, 2004; 18 pp.; In English

A self-tuning impact damper is disclosed that absorbs and dissipates vibration energy in the blades of rotors in compressors and/or turbines thereby dramatically extending their service life and operational readiness. The self-tuning impact damper uses the rotor speed to tune the resonant frequency of a rattling mass to an engine order excitation frequency. The rating mass dissipates energy through collisions between the rattling mass and the walls of a cavity of the self-tuning impact damper, as well as through friction between the rattling mass and the base of the cavity. In one embodiment, the self-tuning impact damper has a ball-in-trough configuration with tire ball serving as the rattling mass.

Official Gazette of the U.S. Patent and Trademark Office
Rotation; Rotor Blades (Turbomachinery); Tuning; Damping

Design and Manufacturing Processes of Long-Life Hollow Cathode Assembles
Patterson, Michael J., Inventor; Verhey, Timothy R., Inventor; Soulas, George C., Inventor; December 14, 2004; 17 pp.; In English

A process for testing an impregnated insert of a Hollow Cathode Assembly (HCA) subsequent to every exposure of the HCA to air, and prior to ignition, using a heater and an oil-free assembly having a base pressure of less than 5.0 x 10^-6 torr. The process comprises the steps of: installing the HCA in a vacuum; energizing the heater to a particular current level; de-energizing the heater after one-half hour; again energizing the heater to a particular current level; and de-energizing the heater for at least one-half hour.

Official Gazette of the U.S. Patent and Trademark Office
Hollow Cathodes; Manufacturing; Service Life
Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein

Grugel, Richard N., Inventor; October 12, 2004; 6 pp.; In English

A method is provided for the fabrication of a protective coating for a crucible with channels being formed in the coating. A material is adhered to the outer wall of the crucible to form a pattern thereon. The outer wall of the crucible along with the pattern of material adhered thereto is next coated with another material. The material used to form the pattern should extend through the outer material coating to define at least one port therein. Next, the crucible with its pattern of material and outer coating material is heated to a temperature of transformation at which the pattern of material is transformed to a fluidic state while the crucible and outer coating material maintain their solid integrity. Such transformation could also be accomplished by using a solvent that causes the pattern of material to dissolve. Finally, the material in its fluidic state is removed via the at least one port formed in the outer material coating thereby leaving channels defined in the coating adjacent the outer wall of the crucible.

Official Gazette of the U.S. Patent and Trademark Office

Noncontacting Finger Seal

Proctor, Margaret P., Inventor; Steinetz, Bruce M., Inventor; November 02, 2004; 19 pp.; In English

An annular finger seal is adapted to be interposed between a high pressure upstream region and a lower pressure downstream region to provide noncontact sealing along a rotatable member. The finger seal comprises axially juxtaposed downstream and upstream finger elements, each having integrally spaced fingers. The downstream fingers each have a lift pad, whereas the upstream fingers lack a pad. Each pad extends in a downstream direction. Each upstream finger is spaced from the rotating member a greater distance than each pad. Upon sufficient rotational speed of the rotating member, each pad is operative to lift and ride on a thin film of fluid intermediate the rotating member and the Pad.

Official Gazette of the U.S. Patent and Trademark Office
Coaxial valves usually contain only one moving part. It has not been easy, then, to provide for electric motor actuation. Many actuators being proposed involve designs which lead to bulky packages. The key facing those improving coaxial valves is the provision of suitable linear actuation. The valve herein includes a valve housing with a flow channel there-through. Arranged in the flow channel is a closing body. In alignment with the closing body is a ball screw actuator which includes a ball nut and a cylindrical screw. The ball nut sounds a threaded portion of the cylindrical screw. The cylindrical screw is provided with a passageway there-through through which fluid flows. The cylindrical screw is disposed in the flow channel to become a control tube adapted to move toward and away from the valve seat. To rotate the ball nut an actuating drive is employed driven by a stepper motor.

Official Gazette of the U.S. Patent and Trademark Office

Valves; Actuators; Electromechanical Devices; Screws

The present invention uses the generation and detection of acoustic guided waves to evaluate the condition of the insulation on electrical wiring. Low order axisymmetric and flexural acoustic modes are generated in the insulated wire and travel partially in the center conductor and partially in the outer insulation. The stiffness of the insulation and the insulation’s condition affect the overall wave speed and amplitude of the guided wave. Analysis of the received signal provides information about the age or useful life of the wire insulation. In accordance with the present invention, signal transmission occurs at one location on the electrical wire to be evaluated, and detection occurs at one or more locations along the electrical wire. Additional receivers can be used to improve measurement accuracy. Either the transmission transducer or one or more receiver transducers may be angled at other than 90 degrees to the wire. Generation of the guided waves can be accomplished by imparting a pressure pulse on the wire. Alternative embodiments include generation via a laser, such as a Q-switched laser or a laser diode.

Official Gazette of the U.S. Patent and Trademark Office

Nondestructive Tests; Wire; Insulation; Coating
20050167856 NASA Glenn Research Center, Cleveland, OH, USA

Mechanically Resilient Polymeric Films Doped with a Lithium Compound

Meador, Mary Ann B., Inventor; Kinder, James D., Inventor; February 15, 2005; 8 pp.; In English

This invention is a series of mechanically resilient polymeric films, comprising rod-coil block polyimide copolymers, which are doped with a lithium compound providing lithium ion conductivity, that are easy to fabricate into mechanically resilient films with acceptable ionic or protonic conductivity at a variety of temperatures. The copolymers consist of short-rigid polyimide rod segments alternating with polyether coil segments. The rods and coil segments can be linear, branched or mixtures of linear and branched segments. The highly incompatible rods and coil segments phase separate, providing nanoscale channels for ion conduction. The polyimide segments provide dimensional and mechanical stability and can be functionalized in a number of ways to provide specialized functions for a given application. These rod-coil black polyimide copolymers are particularly useful in the preparation of ion conductive membranes for use in the manufacture of fuel cells and lithium based polymer batteries.

Official Gazette of the U.S. Patent and Trademark Office

Doped Crystals; Lithium Compounds; Polymeric Films; Fabrication

20050167857 NASA Glenn Research Center, Cleveland, OH, USA

Mouse Cleaning Apparatus and Method

Williams, Glenn L., Inventor; February 08, 2005; 11 pp.; In English

The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

Official Gazette of the U.S. Patent and Trademark Office

Equipment; Cleaning
Wide Operational Range Thermal Sensor

Goebel, John H., Inventor; McMurray, Robert E., Jr., Inventor; January 04, 2005; 8 pp.; In English

Bolometer system and method for detecting, at BLIP levels, presence of radiation over a broad range of wavelengths in an infrared spectrum and in a temperature range from 20 K to as high as room temperature. The radiation is received by a Si crystal having a region that is doped with one or more of In, Ga, Se, Te, B, Al, P, As and Sb in a concentration ratio in a range such as 5 x 10^{-11} to 5 x 10^{-6}. Change in electrical resistance delta R due to receipt of the radiation is measured through a change in voltage difference or current within the crystal, and the quantity delta R is converted to an estimate of the amount of radiation received. Optionally, incident radiation having an energy high enough to promote photoconductivity is removed before detection.

Official Gazette of the U.S. Patent and Trademark Office

Bolometers; Temperature Sensors
MEMS Direct Chip Attach Packaging Methodologies and Apparatuses for Harsh Environments

Okojie, Robert S., Inventor; January 25, 2005; 30 pp.; In English

Methods of bulk manufacturing high temperature sensor sub-assembly packages are disclosed and claimed. Sensors are sandwiched between a top cover and a bottom cover so as to enable the peripheries of the top covers, sensors and bottom covers to be sealed and bound securely together are disclosed and claimed. Sensors are placed on the bottom covers leaving the periphery of the bottom cover exposed. Likewise, top covers are placed on the sensors leaving the periphery of the sensor exposed. Individual sensor sub- assemblies are inserted into final packaging elements which are also disclosed and claimed. Methods of directly attach- ing wires or pins to contact pads on the sensors are disclosed and claimed. Sensors, such as pressure sensors and accelerometers, and headers made out of silicon carbide and aluminum nitride are disclosed and claimed. Reference cavities are formed in some embodiments disclosed and claimed herein where top covers are not employed.

Official Gazette of the U.S. Patent and Trademark Office

Manufacturing; Microelectromechanical Systems; Chips (Electronics); High Temperature

QUALITY ASSURANCE AND RELIABILITY

Includes approaches to, and methods for reliability analysis and control, quality control, inspection, maintainability, and standardization.

Tributary Analysis Monitoring System

Woodard, Stanley, E., Inventor; Coffey, Neil C., Inventor; Taylor, Bryant D., Inventor; Woodman, Keith L., Inventor; April 12, 2005; 16 pp.; In English

A monitoring system for a fleet of vehicles includes at least one data acquisition and analysis module (DAAM) mounted on each vehicle in the fleet, a control module on each vehicle in communication with each DAAM, and terminal module located remotely with respect to the vehicles in the fleet. Each DAAM collects/analyzes sensor data to generate analysis results that identify the state of a plurality of systems of the vehicle. Each vehicle’s control module collects/analyzes the analysis results from each onboard DAAM to generate vehicle status results that identify potential sources of vehicle anomalies. The terminal module collects/analyzes the analysis results and vehicle status results transmitted from each control module from the fleet of vehicles to identify multiple occurrences of vehicle anomalies and multiple occurrences of those vehicle systems operating at a performance level that is unacceptable. Results of the terminal module’s analysis are provided to organizations responsible for the operation, maintenance and manufacturing of the vehicles in the fleet as well as the plurality of systems used in the fleet.

Author
Systems Health Monitoring; Data Acquisition; Multisensor Fusion

FIG. 1

51
LIFE SCIENCES (GENERAL)
Includes general research topics related to plant and animal biology (non-human); ecology; microbiology; and also the origin, development, structure, and maintenance of animals and plants in space and related environmental conditions. For specific topics in life sciences see categories 52 through 55.

20050051638 NASA Marshall Space Flight Center, Huntsville, AL, USA
Health Monitoring System for Car Seat
Elrod, Susan Vinz, Inventor; Dabney, Richard W., Inventor; October 26, 2004; 9 pp.; In English

A health monitoring system for use with a child car seat has sensors mounted in the seat to monitor one or more health conditions of the seat’s occupant. A processor monitors the sensor’s signals and generates status signals related to the monitored conditions. A transmitter wireless transmits the status signals to a remotely located receiver. A signaling device coupled to the receiver produces at least one sensory (e.g., visual, audible, tactile) output based on the status signals.

Official Gazette of the U.S. Patent and Trademark Office
Systems Health Monitoring; Children; Transport Vehicles
In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a 'bounce' mode in which the rotor axis is displaced from the principal axis defined between the bearings and a 'tilt' mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the 'bounce' or 'tilt' modes.

Official Gazette of the U.S. Patent and Trademark Office

Computer Programs; Rotors; Magnetic Suspension; Electronic Control; Magnetic Bearings; Automatic Control
NUCLEAR PHYSICS

Includes nuclear particles; and reactor theory. For space radiation see 93 Space Radiation. For atomic and molecular physics see 72 Atomic and Molecular Physics. For elementary particle physics see 77 Physics of Elementary Particles and Fields. For nuclear astrophysics see 90 Astrophysics.

Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development
Sims, William Herbert, III, Inventor; Godfroy, Thomas J., Inventor; Bitteker, Leo, Inventor; October 05, 2004; 14 pp.; In English

Apparatus and methods are provided through which a radio-frequency dielectric heater has a cylindrical form factor, a variable thermal energy deposition through variations in geometry and composition of a dielectric, and/or has a thermally isolated power input.

Optical Gazette of the U.S. Patent and Trademark Office

Radio Frequencies; Heating Equipment; Dielectrics

OPTICS

Includes light phenomena and the theory of optical devices; for specific optical devices see also 35 Instrumentation and Photography. For lasers see 36 Lasers and Masers.

Strongly-Refractive One-Dimensional Photonic Crystal Prisms
Ting, David Z., Inventor; November 30, 2004; 21 pp.; In English

One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a 1D photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The 1D photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

Author
Prisms; Crystal Optics; Photonics; Wave Dispersion
An apparatus and method for performing quality inspections on a test surface based on optically stimulated emission of electrons. In one embodiment, the apparatus comprises a device for producing optical radiation having a plurality of different spectrum lines, selecting at least one of the spectrum lines, and directing the selected spectrum line to the test surface, and circuitry for detecting a current of photoelectrons emitted from the test surface, generating a signal indicative of photoelectron current, and for indicating a condition of quality based on the generated signal indicative of the photoelectron current. In one embodiment, the method comprises producing optical radiation having a plurality of different spectrum lines, selecting at least one of the spectrum lines and directing the selected spectrum line to the test surface, detecting a current of photoelectrons emitted from the test surface and generating a signal indicative of photoelectron current, and indicating a condition of quality based on the generated signal indicative of the photoelectron current.
Diffraction-Based Optical Switch
Sperno, Stevan M., Inventor; Fuhr, Peter L., Inventor; Schipper, John F., Inventor; January 25, 2005; 15 pp.; In English

Method and system for controllably redirecting a light beam, having a central wavelength lambda, from a first light-receiving site to a second light-receiving site. A diffraction grating is attached to or part of a piezoelectric substrate, which is connected to one or two controllable voltage difference sources. When a substrate voltage difference is changed and the diffraction grating length in each of one or two directions is thereby changed, at least one of the diffraction angle, the diffraction order and the central wavelength is controllably changed. A diffracted light beam component, having a given wavelength, diffraction angle and diffraction order, that is initially received at a first light receiving site (e.g., a detector or optical fiber) is thereby controllably shifted or altered and can be received at a second light receiving site. A polynomially stepped, chirped grating is used in one embodiment. In another embodiment, an incident light beam, having at least one of first and second wavelengths, lambda1 and lambda2, is received and diffracted at a first diffraction grating to provide a first diffracted beam. The first diffracted beam is received and diffracted at a second diffraction grating to produce a second diffracted beam. The second diffracted beam is received at a light-sensitive transducer, having at least first and second spaced apart light detector elements that are positioned so that, when the incident light beam has wavelength lambda1 or lambda2 (lambda1 not equal to lambda2), the second diffracted beam is received at the first element or at the second element, respectively; change in a selected physical parameter at the second grating can also be sensed or measured. A sequence of spaced apart light detector elements can be positioned along a linear or curvilinear segment with equal or unequal spacing.

Bragg Gratings; Optical Switching; Control Theory

Fabrication of Fiber Optic Grating Apparatus and Method
Wang, Ying, Inventor; Sharma, Anup, Inventor; Grant, Joseph, Inventor; March 29, 2005; 8 pp.; In English

An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.

Bragg Gratings; Optical Fibers; Coherent Light
Method for the Production of Nanometer Scale Step Height Reference Specimens
Abel, Phillip B., Inventor; Powell, Anthony, Inventor; Neudeck, Philip G., Inventor; March 22, 2005; 27 pp.; In English

Methods are disclosed that provide for structures and techniques for the fabrication of ordered arrangements of crystallographically determined nanometer scale steps on single crystal substrates, particularly Sic. The ordered nanometer scale step structures are produced on the top surfaces of mesas by a combination of growth and etching processes. These structures sometimes referred to herein as artifacts are to enable step-height calibration, particularly suitable for scanning probe microscopes and profilometers, from less than one nanometer (nm) to greater than 10 nm, with substantially no atomic scale roughness of the plateaus on either side of each step.

Fabrication; Scale Height; Single Crystals; Crystallography
A keyterm search is a method of searching a database for subsets of the database that are relevant to an input query. First, a number of relational models of subsets of a database are provided. A query is then input. The query can include one or more keyterms. Next, a gleaning model of the query is created. The gleaning model of the query is then compared to each one of the relational models of subsets of the database. The identifiers of the relevant subsets are then output.
ELECTRON EMISSION
- Optically Stimulated Electron Emission
- Contamination Monitor and Method – 29

ELECTRONIC CONTROL
- Software for System for Controlling a Magnetically Levitated Rotor – 21

ELECTROSTIRICTION
- Membrane Tension Control – 18

ENGINE MONITORING INSTRUMENTS
- Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein – 15
- Rod-Coil Block Polyimide Copolymer – 1

EQUIPMENT
- Mouse Cleaning Apparatus and Method – 17

FABRICATION
- Mechanically Resilient Polymeric Films Doped with a Lithium Compound – 17
- Method for the Production of Nanometer Scale Step Height Reference Specimens – 25
- Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein – 15
- Rod-Coil Block Polyimide Copolymers – 1

FEEDBACK CONTROL
- Resonant Wingbeat Tuning Circuit using Strain-Rate Feedback for Ornithopter Micro Aerial Vehicles – 1

FERROELECTRIC MATERIALS
- Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement – 9

FIBER COMPOSITES
- High-Solids Polyimide Precursor Solutions – 4

FLEXIBLE WINGS
- Resonant Wingbeat Tuning Circuit using Strain-Rate Feedback for Ornithopter Micro Aerial Vehicles – 1

FLUID FLOW
- Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement – 9

FRICITION STIR WELDING
- Heat Treatment of Friction Stir Welded 7X50 Aluminum – 3

GLOBAL POSITIONING SYSTEM
- Digitally Synthesized Phased Antenna for Multibeam Global Positioning – 6

GROOVES
- Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein – 15

HEAT TREATMENT
- Heat Treatment of Friction Stir Welded 7X50 Aluminum – 3

HEATING EQUIPMENT
- Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development – 22

HEATING EQUIPMENT
- Heat Treatment of Friction Stir Welded 7X50 Aluminum – 3

HEAT TREATMENT
- Heat Treatment of Friction Stir Welded 7X50 Aluminum – 3

HEAT TREATMENT
- Method of Assembling a Silicon Carbide High Temperature Anemometer – 10

HOLLOW CATHODES
- Design and Manufacturing Processes of Long-Life Hollow Cathode Assemblies – 14

HYDROGEN PEROXIDE
- High Temperature Decomposition of Hydrogen Peroxide – 2

IMAGE CLASSIFICATION
- Method of Improving a Digital Image as a Function of Its Dynamic Range – 10

IMAGE PROCESSING
- Methods of Improving a Digital Image Having White Zones – 11

IMPELLER
- Liquid Propellant Tracing Impingement Injector – 5

INJECTION
- Liquid Propellant Tracing Impingement Injector – 5

INSULATION
- Non-Destructive Evaluation of Wire Insulation and Coatings – 15

ION EXCHANGING
- Organic Modification of a Layered Silicate by Loxon Exchange of an Alky Ammonium and a Mono-Protonated Dihydate – 4

LAMINATES
- Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack – 8

LIQUID ROCKET PROPULSANTS
- Liquid Propellant Tracing Impingement Injector – 5

LITHIUM COMPOUNDS
- Mechanically Resilient Polymeric Films Doped with a Lithium Compound – 17

MAGNETIC BEARINGS
- Software for System for Controlling a Magnetically Levitated Rotor – 21

MAGNETIC SENSORS
- Software for System for Controlling a Magnetically Levitated Rotor – 21

MANUFACTURING
- Design and Manufacturing Processes of Long-Life Hollow Cathode Assemblies – 14
- MEMS Direct Chip Attach Packaging Methodologies and Apparatuses for Harsh Environments – 19
- Methods for Anticipating Problems with Electrical Wiring – 8

MECHANICAL ENGINEERING
- Thermal Insulation Testing Method and Apparatus – 13

MEMBRANE STRUCTURES
- Membrane Tension Control – 18

METHYL COMPOUNDS
- High-Solids Polyimide Precursor Solutions – 4

MICROELECTROMECHANICAL SYSTEMS
- MEMS Direct Chip Attach Packaging Methodologies and Apparatuses for Harsh Environments – 19
- Microelectromechanical Systems Actuated by Base Reconfigurable Printed Antenna – 7

MULTIBEAM ANTENNAS
- Digitally Synthesized Phased Antenna for Multibeam Global Positioning – 6

MULTISENSOR FUSION
- Tract Analysis Monitoring System, Method and Apparatus for Conducting a Keystroke Search – 29

NITRIC OXIDE
- High Temperature Decomposition of Hydrogen Peroxide – 2

NITROGEN DIOXIDE
- High Temperature Decomposition of Hydrogen Peroxide – 2

NONDESTRUCTIVE TESTS
- Non-Destructive Evaluation of Wire Insulation and Coatings – 16

OPTICAL FIBERS
- Fabrication of Fiber Optic Grating Apparatus and Method – 24

OPTICAL PROPERTIES
- Optically Stimulated Electron Emission Contamination Monitor and Method – 23
- Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack – 8

OPTICAL SWITCHING
- Diffraction-Based Optical Switch – 24

OXIDATION
- High Temperature Decomposition of Hydrogen Peroxide – 2

PATCH ANTENNAS
- Microelectromechanical Systems Actuated by Base Reconfigurable Printed Antenna – 7

PHASE MODULATION
- Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack – 8

PHOTONICS
- Strongly-Reflective One-Dimensional Photonic Crystal Prisms – 22
<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIEZOELECTRICITY</td>
<td>Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement</td>
</tr>
<tr>
<td>POLYMERS</td>
<td>High-Solids Polyimide Precursor Solutions</td>
</tr>
<tr>
<td>PRISMS</td>
<td>Strongly-Refractive One-Dimensional Photonic Crystal Prisms</td>
</tr>
<tr>
<td>RADIO FREQUENCIES</td>
<td>Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development</td>
</tr>
<tr>
<td>REAL TIME OPERATION</td>
<td>Real Time Calibration Method for Signal Conditioning Amplifiers</td>
</tr>
<tr>
<td>RECONFIGURABLE HARDWARE</td>
<td>Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna</td>
</tr>
<tr>
<td>REFRACTORY COATINGS</td>
<td>Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein</td>
</tr>
<tr>
<td>RESEARCH VEHICLES</td>
<td>Resonant Wingbeat Tuning Circuit using Strain-Rate Feedback for Ornithoptic Micro Aerial Vehicles</td>
</tr>
<tr>
<td>RESONANT FREQUENCIES</td>
<td>Resonant Wingbeat Tuning Circuit for Ornithoptic Micro Aerial Vehicles</td>
</tr>
<tr>
<td>ROCKET THRUST</td>
<td>Liquid Propellant Tracing Impingement Injector</td>
</tr>
<tr>
<td>RODS</td>
<td>Rod-Coil Block Polyimide Copolymers</td>
</tr>
<tr>
<td>ROTATING BODIES</td>
<td>Noncontacting Finger Seal</td>
</tr>
<tr>
<td>ROTATION</td>
<td>Self-Tuning Impact Damper for Rotating Blades</td>
</tr>
<tr>
<td>ROTOR BLADES (TURBOMACHINERY)</td>
<td>Self-Tuning Impact Damper for Rotating Blades</td>
</tr>
<tr>
<td>ROTORS</td>
<td>Software for System for Controlling a Magnetically Levitated Rotor</td>
</tr>
<tr>
<td>SCALE HEIGHT</td>
<td>Method for the Production of Nanometer Scale Step Height Reference Specimens</td>
</tr>
<tr>
<td>SCREWS</td>
<td>Electro-Mechanical Coaxial Valve</td>
</tr>
<tr>
<td>SEALS (STOPPERS)</td>
<td>Noncontacting Finger Seal</td>
</tr>
<tr>
<td>SEARCH PROFILES</td>
<td>System, Method and Apparatus for Conducting a Keyterm Search</td>
</tr>
<tr>
<td>SERVICE LIFE</td>
<td>Design and Manufacturing Processes of Long-Life Hollow Cathode Assemblies</td>
</tr>
<tr>
<td>SIGNAL PROCESSING</td>
<td>Real Time Calibration Method for Signal Conditioning Amplifiers</td>
</tr>
<tr>
<td>SILICATES</td>
<td>Organic Modification of a Layered Silicate by Co-Ion Exchange of an Alkyl Ammonium and a Mono-Protonated Diamine</td>
</tr>
<tr>
<td>SILICON CARBIDES</td>
<td>Method of Assembling a Silicon Carbide High Temperature Anemometer</td>
</tr>
<tr>
<td>SINGLE CRYSTALS</td>
<td>Method for the Production of Nanometer Scale Step Height Reference Specimens</td>
</tr>
<tr>
<td>SOLIDS</td>
<td>High-Solids Polyimide Precursor Solutions</td>
</tr>
<tr>
<td>STIMULATED EMISSION</td>
<td>Optically Stimulated Electron Emission Contamination Monitor and Method</td>
</tr>
<tr>
<td>STRAIN RATE</td>
<td>Resonant Wingbeat Tuning Circuit using Strain-Rate Feedback for Ornithoptic Micro Aerial Vehicles</td>
</tr>
<tr>
<td>SURFACE Emitting Lasers</td>
<td>Ultrastack Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity Surface Emitting Lasers (VCSELs)</td>
</tr>
<tr>
<td>SYSTEMS HEALTH MONITORING</td>
<td>Health Monitoring System for Car Seat</td>
</tr>
<tr>
<td>TEMPERATURE SENSORS</td>
<td>Wide Operational Range Thermal Sensor</td>
</tr>
<tr>
<td>TENSION</td>
<td>Membrane Tension Control</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY</td>
<td>Thermal Insulation Testing Method and Apparatus</td>
</tr>
<tr>
<td>THERMAL CONTROL COATINGS</td>
<td>Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys</td>
</tr>
<tr>
<td>THERMAL INSULATION</td>
<td>Thermal Insulation Testing Method and Apparatus</td>
</tr>
<tr>
<td>TRANSPORT VEHICLES</td>
<td>Health Monitoring System for Car Seat</td>
</tr>
<tr>
<td>TUNING</td>
<td>Resonant Wingbeat Tuning Circuit using Strain-Rate Feedback for Ornithoptic Micro Aerial Vehicles</td>
</tr>
<tr>
<td>VALVES</td>
<td>Electro-Mechanical Coaxial Valve</td>
</tr>
<tr>
<td>WAVE DISPERSION</td>
<td>Strongly-Refractive One-Dimensional Photonic Crystal Prisms</td>
</tr>
<tr>
<td>WIRE</td>
<td>Non-Destructive Evaluation of Wire Insulation and Coatings</td>
</tr>
<tr>
<td>WIRING</td>
<td>Methods for Anticipating Problems with Electrical Wiring</td>
</tr>
</tbody>
</table>
Personal Author Index

Abel, Phillip B.
Method for the Production of Nanometer Scale Step Height Reference Specimens – 24

Anastasi, Robert F.
Non-Destructive Evaluation of Wire Insulation and Coatings – 16

Augustynowicz, Stanislaw D.
Thermal Insulation Testing Method and Apparatus – 13

Bagley, Ronald L.
Self-Tuning Impact Damper for Rotating Blades – 14

Billeter, Leo
Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development – 22

Brown, Gerard V.
Self-Tuning Impact Damper for Rotating Blades – 14

Bryant, Robert G.
Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement – 9

Burnes, Timothy H.
Heat Treatment of Friction Stir Welded 7X50 Aluminum – 3

Campbell, Sandi G.
Organic Modification of a Layered Silicate by Co-Ion Exchange of an Alkyl Ammonium and a Mono-Protonated Diamine – 4

Chuang, Chun-Hua
High-Solids Polyimide Precursor Solutions – 4

Coffey, Neil C.
Tributary Analysis Monitoring System – 19

Connell, John W.
Space Environmentally Durable Polymides and Copolyimides – 4

Cramer, K. Elliott
Methods for Anticipating Problems with Electrical Wiring – 8

Dabney, Richard W.
Health Monitoring System for Car Seat – 20

Dunn, Charles E.
Digitally Synthesized Phased Antenna for Multibeam Global Positioning – 6

Eckhoff, Anthony
Real Time Calibration Method for Signal Conditioning Amplifiers – 5

Elrod, Susan Vinz
Health Monitoring System for Car Seat – 20

Fesmire, James E.
Thermal Insulation Testing Method and Apparatus – 13

Figert, John D.
Heat Treatment of Friction Stir Welded 7X50 Aluminum – 3

Fork, Richard L.
Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack – 8

Fralick, Gustave C.
Method of Assembling a Silicon Carbide High Temperature Anemometer – 10

Fuhr, Peter L.
Diffraction-Based Optical Switch – 24

Godfrey, Thomas J.
Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development – 22

Goebel, John H.
Wide Operational Range Thermal Sensor – 18

Goorjian, Peter M.
Ultrafast Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity, Surface-Emitting Lasers (VCSELS) – 12

Grant, Joseph
Fabrication of Fiber Optic Grating Apparatus and Method – 24

Grugel, Richard N.
Method of Fabricating Protective Coating for a Crucible with the Coating Having Channels Formed Therein – 15

Harrison, Joycelyn S.
Membrane Tension Control – 18

Hergerenrother, Paul M.
Space Environmentally Durable Polymides and Copolyimides – 4

Jobson, Daniel J.
Method of Improving a Digital Image as a Function of its Dynamic Range – 10

Keys, Andrew S.
Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack – 8

Kinder, James D.
Mechanically Resilient Polymeric Films Doped with a Lithium Compound – 17

Knobler, John C.
Combustion Ignition Method – 15

Kopec, Richard E.
Method of Assembling a Silicon Carbide High Temperature Anemometer – 10

Lloyd, Ronald H.
High Temperature Combustion Ignition Process – 15

Lucena, Angel
Real Time Calibration Method for Signal Conditioning Amplifiers – 5

McGreevy, Michael W.
System, Method and Apparatus for Conducting a Keyterm Search – 26

McMurray, Robert E., Jr.
Wide Operational Range Thermal Sensor – 18

Meador, Mary Ann B.
Mechanically Resilient Polymeric Films Doped with a Lithium Compound – 17

Mora, Daniel P.
Mechanically Resilient Polymeric Films Doped with a Lithium Compound – 17

Myers, W. Neil
Liquid Propellant Tracing Impingement Injector – 5

Neudeck, Philip G.
Method for the Production of Nanometer Scale Step Height Reference Specimens – 24

Ning, Cun-Zheng
Ultrafast Laser Beam Switching and Pulse Train Generation by Using Coupled Vertical-Cavity, Surface-Emitting Lasers (VCSELS) – 12

Okojie, Robert S.
Liquid Propellant Tracing Impingement Injector – 5

Perey, Daniel F.
Methods for Anticipating Problems with Electrical Wiring – 8

Patterson, Michael J.
Design and Manufacturing Processes of Long-Life Hollow Cathode Assemblies – 14

Patterson, Paul R.
Electro-Mechanical Coaxial Valve – 16

Perey, Daniel F.
Methods for Anticipating Problems with Electrical Wiring – 8

Perey, Daniel F.
Electro-Mechanical Coaxial Valve – 16

Perey, Daniel F.
Methods for Anticipating Problems with Electrical Wiring – 8

Perey, Daniel F.
Methods for Anticipating Problems with Electrical Wiring – 8
Optically Stimulated Electron Emission Contamination Monitor and Method – 23

Perotti, Jose
Real Time Calibration Method for Signal Conditioning Amplifiers – 5

Petter, George E.
Heat Treatment of Friction Stir Welded 7X50 Aluminum – 3

Powell, Anthony
Method for the Production of Nanometer Scale Step Height Reference Specimens – 25

Proctor, Margaret P.
Noncontacting Finger Seal – 15

Pufy, Kirsten P.
Self-Tuning Impact Damper for Rotating Blades – 14

Rahman, Zia-ur
Method of Improving a Digital Image as a Function of its Dynamic Range – 10

Rahman, Zia-Ur
Methods of Improving a Digital Image Having White Zones – 11

Raj, Sai V.
Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys – 4

Raney, David L.
Resonant Wingbeat Tuning Circuit using Strain-Rate Feedback for Ornithoptic Micro Aerial Vehicles – 1

Rybicki, Daniel J.
Heat Treatment of Friction Stir Welded 7X50 Aluminum – 3

Saad, George J.
Method of Assembling a Silicon Carbide High Temperature Anemometer – 19

Schipper, John F.
Diffraction-Based Optical Switch – 24

Sharma, Anup
Fabrication of Fiber Optic Grating Apparatus and Method – 24

Simons, Rainee N.
Microelectromechanical Systems Actuator-Based Reconfigurable Printed Antenna – 7

Sims, William Herbert, III
Radio-Frequency Driven Dielectric Heaters for Non-Nuclear Testing in Nuclear Core Development – 22

Smith, Joseph G., Jr.
Space Environmentally Durable Polyimides and Copolyimides – 4

Soulas, George C.
Design and Manufacturing Processes of Long-Life Hollow Cathode Assemblies – 14

Sperno, Stevan M.
Diffraction-Based Optical Switch – 24

Steinetz, Bruce M.
Noncontacting Finger Seal – 15

Su, Ji
Membrane Tension Control – 18

Taylor, Bryant D.
Tributary Analysis Monitoring System – 19

Thompson, Craig M.
Space Environmentally Durable Polyimides and Copolyimides – 4

Ting, David Z.
Strongly-Refractive One-Dimensional Photonic Crystal Prisms – 22

Trinh, Huu
Liquid Propellant Tracing Impingement Injector – 5

Verhey, Timothy R.
Design and Manufacturing Processes of Long-Life Hollow Cathode Assemblies – 14

Wang, Ying
Fabrication of Fiber Optic Grating Apparatus and Method – 24

Watson, Kent A.
Space Environmentally Durable Polyimides and Copolyimides – 4

Welch, Christopher S.
Optically Stimulated Electron Emission Contamination Monitor and Method – 23

Williams, Glenn L.
Mouse Cleaning Apparatus and Method – 17

Wodell, Glenn A.
Methods of Improving a Digital Image Having White Zones – 11

Woodard, Stanley, E.
Tributary Analysis Monitoring System – 19

Woodman, Keith L.
Tributary Analysis Monitoring System – 19

Working, Dennis C.
Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement – 9

Xenofos, George D.
Liquid Propellant Tracing Impingement Injector – 5

Yost, William T.
Methods for Anticipating Problems with Electrical Wiring – 8

Young, Lawrence E.
Digitally Synthesized Phased Antenna for Multibeam Global Positioning – 6
Public Availability of Copies of Patents

Copies of U.S. patents may be purchased directly from the U.S. Patent and Trademark Office, Washington, D.C. 20231 at $3.00 per copy. When ordering patents, the U.S. Patent Number should be used, and payment must be remitted in advance, preferably by money order or check payable to the Commissioner of Patents and Trademarks. Prepaid purchase coupons for ordering are also available from the Patent and Trademark Office.

Copies of U.S. patents may also be purchased on–line from the U.S. Patent and Trademark Office via its web site at http://www.uspto.gov. Additionally, patents may be viewed for free online at the U.S. Patent and Trademark Office web site.

Licenses for Commercial Use: Inquiries and Applications for License

NASA inventions abstracted in this bibliography are generally available for nonexclusive or exclusive licensing in accordance with the Department of Commerce Patent License Regulations (37 CFR Part 404). However, the availability for licensing of individual inventions may have changed since the publication of this bibliography. Applications for licensing NASA patents must be submitted in writing to the Patent Counsel of the NASA installation having cognizance of the specific invention. All NASA patent licenses shall be by express written instruments executed by the NASA General Counsel.

Inquiries concerning the NASA Patent Licensing Program or the availability of licenses for the commercial use of NASA–owned inventions covered by U.S. patents or pending applications for patent should be forwarded to the NASA Patent Counsel of the NASA installation having cognizance of the specific invention, or the Associate General Counsel for Intellectual Property, Commercial and International Law, National Aeronautics and Space Administration, Washington, D.C. 20546. Inquiries should refer to the NASA Case Number, the Title of the Invention, and the U.S. Patent Number assigned to the invention as shown in this bibliography. Patent applications available for licensing are periodically advertised in the Federal Register.

The NASA Patent Counsel having cognizance of the invention is determined by the first three letters or prefix of the NASA Case Number assigned to the invention. The addresses and contact numbers for NASA Patent Counsels are listed alongside the NASA Case Number prefix letters in the following table.
Center Patent Counsels

HQN-xxxx NASA Headquarters
Suite No. 9W39-C, 300 E Street SW
Washington, DC 20546-0001
202-358-2041 (Phone) 202-358-4341 (Fax)

ARC-xxxx Ames Research Center
Mail Code 202A-4
Moffett Field, CA 94035
650-604-0887 (Phone) 650-604-2767 (Fax)

DRC-xxxx Dryden Flight Research Center
PO Box 273, Mail Stop 4839
Edwards, CA 93523-0273
No assigned Patent Counsel - services provided by NASA Management Office -JPL

LEW-xxxx Glenn Research Center at Lewis Field
Mail Code 500-118
21000 Brookpark Rd, Cleveland, OH 44135-3191
216-433-5756 (Phone) 216-433-6790 (Fax)

GSC-xxxx Goddard Space Flight Center
Mail Code 503
Greenbelt, MD 20771-0001
301-286-2385 (Phone) 301-286-9502 (Fax)

MSC-xxxx Lyndon B. Johnson Space Center
Mail Code AL
2101 NASA Road 1, Houston, TX 77058-8452
281-483-1013 (Phone) 281-244-8452 (Fax)

KSC-xxxx John F. Kennedy Space Center
Mail Code CC-A
Kennedy Space Center, FL 32899-0001
321-867-3058 (Phone) 321-867-1817 (Fax)

LAR-xxxx Langley Research Center
Mail Code 141
Hampton, VA 23681-2199
757-864-3955 (Phone) 757-864-9190 (Fax)

MFS-xxxx George C. Marshall Space Flight Center
Mail Code LS01
Marshall Space Flight Center, AL 35812-0001
256-544-0018 (Phone) 256-544-0258 (Fax)

NPO-xxxx NASA Management Office-JPL
Mail Code 180-200
4800 Oak Grove Dr, Pasadena, CA 91109
818-354-7770 (Phone) 818-393-3160 (Fax)

SSC-xxxx John C. Stennis Space Center
Mail Code HA30
Stennis Space Center, MS 39529-6000
No assigned Patent Counsel - services provided by Kennedy Space Center
This report lists NASA patent abstracts recently announced in the NASA STI Database.