Nuclear thermal to electric power conversion carries the promise of longer duration
missions and higher scienti_c data transmission rates back to Earth for a range of missions,
including both Mars rovers and deep space missions. A free-piston Stirling convertor is a
candidate technology that is considered an e_cient and reliable power conversion device for
such purposes. While already very e_cient, it is believed that better Stirling engines can

be developed if the losses inherent in current designs could be better understood. However,
they are di_cult to instrument and so e_orts are underway to simulate a complete Stirling
engine numerically. This has only recently been attempted and a review of the methods
leading up to and including such computational analysis is presented. And _nally it is
proposed that the quality and depth of Stirling loss understanding may be improved by
utilizing the higher _delity and e_ciency of recently developed numerical methods. One
such method, the Ultra HI-FI technique is presented in detail.
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Stirling Convertor CFD

System Overview
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Contours of Welccity Magnitude (m/s) {Time=0.0000e+00) Mar 22 2004
FLUIENT 6.1 (axl, dp, segregated, dynamesh, ske, unsteady)




Schematic with Springs and Dampers RC
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Effect of Heating & Cooling / Artificial Transient Heat Loss

Flow Losses (or Artificial CFD Losses)
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Martini Nomenclature (West)
(See also Organ and Urieli) (;I}ul\il‘\.‘“llx’l}‘?llhfl\kfll(ll\llR

1. First Order (ideal loss-free analysis, use correction factor)
— Schmidt or Cooke-Yarborough
2. Second Order (decoupled losses, use adiabatic analysis)
— Berchowitz, D.M. (includes dynamics)
e Subtract heat losses
— Appendix gap (shuttle and pumping)
— Regenerator imperfections
e Subtract power losses
— Pressure drop (non-uniform flow across regenerators)
— Transient heat transfer
3. Third Order (control volumes or nodes, direct solve 1D equations )
— Finkelstein (first), Urieli, Berchowitz (includes dynamics)
— Implicit Space and Time (GLIMPS, SAGE, finite difference, 1D)
— Linearized harmonic analysis (HFAST, finite volume, 1D)



Fourth Order? Full CFD Analysis (2D or 3D) 68
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Flow distortion (oscillating flow distorts velocity and temperature
profiles) in the regenerator has significant effects on performance
and must be modeled with at least two dimensions (Berchowitz).

* Manifest (2D, D. Gedeon)

— Beam and Warming

— Uses thermal non-equilibrium porous media model
¢ Fluent (2D and 3D)

— SIMPLER and PISO

— Uses thermal equilibrium porous media models
¢ Modified CAST (Tew, Ibrahim, Peric, et. al.)

— SIMPLE
e CFD-ACE (2D and 3D)

— SIMPLE & SIMPLER

— Uses thermal equilibirium porous media models
o Star-HPC, CFX

— SIMPLE & PISO



Whole Engine Simulation RC
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e Mahkamov, et. al, =
University of Durham

e |brahim, et. al., Cleveland
State University
e Wilson, et. al., NASA GRC

e Recent proprietary
commercial attempts
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Contours of Velochy Magnitudle {m/s) (T|ma=0A00009+00} Mar 22, 2004
FLUENT 8.1 (axl, dp, ssgregated, dynamesh, eke, unsteacly)

ALL USE 2" ORDER SIMPLE/PISO RANS APPROACH

TOO SLOW!



Too Much Numerical Error &8
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Turbulence Modeling for Oscillating Flows (GRC
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Incorrect Pressure Drop and Heat Transfer

Wavelet Analysis of Multiscales
DNS with Wall Layer Approximations
Detached Eddy Simulation (RANS/LES)

Cascade Technologies, V2F for low Reynolds number
heat transfer

e Ultra-wave Kolmogorov Scale Resolution Techniques

Full DNS Jet Simulations with
Re>100,000 are now possible



Parallel Solution RC

at Lewis Field

eAssume 20 micron wire diameter, 25mm by 5mm by 5mm
regenerator region to simulate

*Might have (at most) 312000 wires in 2D or 8 million in 3D
depending on porosity

*Regularized screen meshes may enable more detailed
analysis
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Curved Spectral Volumes (Z.J. Wang)
Entropy Production and Density Contour
M=0.3, Inviscid Flow

2nd Order Piecewise Linear 2nd Order “High Fidelity Grid” 3rd Order Piecewise Quadratic
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Curved Spectral Volumes (Z.J. Wang)
Same Grid Resources
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Higher Order Curvilinear Surfaces RC
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eta,
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Computing very high order derivatives of metrics is new



WHigher Order Derivatives Improves Spatial Resolution R
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Ultra High Fidelity Hermitian Integration, Flux, and
Interp0|atio n CLENN l_\ll:‘.“é[:;/\R('lH CENTER

at Lewis Field

¢ Resolves in the “ultra” wavelength range

— Ultra-short waves (less than two mesh spacings, CKW Tam, 2002) or
ultra wavelength scaling (10e3 thru 10e-9)
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Advancing in Time

eShorthand Notation for Derivatives

PV el 1C %)
‘abk T T ggaybik

All time accurate methods effectively do this:
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Time Derivatives as Space Derivatives—2"? Order ALV,

at Lewis Field
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High Accuracy at Surfaces 68

eInviscid Surface Boundary Conditions:

0%V -4)  8°Qs
= : >
v 7 Va: (a > 0)

¢ Normally, only =0 is used in CFD

But to achieve higher order in time at a
surface must use larger o (Goodrich, 1999)



Efficiency Chart RC
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Relative Time Cost of Wave Resolution by Error Regulrement
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RC
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Non-equilibrium Model (Gedeon)
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*Void-Average Velocity Assumption
may not be good in first 20 layers
due to density gradients

eCurvilinear formulation enables
better surface heat transfer




GRC
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Conclusions/Suggestions

e Need ultra short wave resolution

*Use high order parallelizable » Easily parallelizable

methods e Multiple Time-Stepping

sUse DES for oscillating e Use High order boundary conditions

transition modeling e High fidelity in space and time

*Use parallel technology . f(f‘ugoll_rtletry definition naturally has high
idelity

(Myrinet, Infiniband, Octa-
Opteron) e Look at Spectral element methods,

Discontinous Galerkin, etc.

sExtend SAGE/GLIMPS to 3D

] eNumerical Error
*Extend Manifest to parallel and/or use latest CFD (Dissipation/Dispersion)
*Validate Manifest model with DNS -Modeling Error- Sliding
*Use regularized regenerator geometry Interfaces,Faceted
o : Geometry, Turbulence
*Perform DNS in first 20 layers where non-uniform Transaition
and model the rest




