Abstract for 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit on Numerical Propulsion System Simulation (NPSS)

The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer’s Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer’s Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.
Numerical Propulsion System Simulation
Architecture

AIAA/ASME/SAE/ASEE
40th Joint Propulsion Conference

July 13, 2004
Cynthia G. Naiman

Background

Vision & Objective
- Vision: Create a “Numerical Test Cell” enabling complete aerospace propulsion simulations overnight on cost-effective platforms.
- Product Objective: Provide a common tool and extensible framework to enable rapid, high-confidence, cost-efficient design of aerospace systems.

Partnerships
- Established Space Act Agreement (SAA 3-83) and NASA Industry Cooperative Effort (NICE) Agreement
- NDA, NICE-1, Formal Requirements Definition
- Space Act Agreement 3-83
- Joint Strike Fighter Program
- DARPA/ONR HyFly Program Uses NPSS
- Heat Transfer (Williams-International)
- Aircraft Engine Performance Model For DARPA/ONR HyFly Program (Williams International)
- Massively Parallel Supercomputing Clusters

Background (continued)

Development History
1987 - 1995
Conception, Prototypes
1996
NDA, NICE-1, Formal Requirements Definition
June 1997
Space Act Agreement 3-83
July 1997
NCP Beta Release
August 1998
Initial NPSS Release (NCP Version 1)
March 2000
NPSS Version 1.0 - Full 0-D Functionality
March 2002
NPSS Version 1.5 - Initial Zooming, Code Coupling,
Visual Based Syntax (VBS, the GUI), Space Components
July 2003
Space Act Agreement for Commercialization of NPSS V1.X
September 2003
NPSS Version 1.6 – Enhanced Functionality (based on user feedback)
VBS 1.6 – Enhanced Capabilities (based on user feedback)
CCDK Version 1.0 – CORBA Component Developer’s Kit
(Multi-Fidelity, Multi-Structural Distributed Objects)

Technical Overview (What is NPSS V1.X?)
- NPSS V1.X is a framework for performing analysis of complex systems.
- First major propulsion thermal/fluid design and analysis system developed using a programming paradigm designed for simulating complex engineering systems (i.e., object-oriented programming)
- Extensible Framework
 - Expand models easily
 - Build new models on-line, interactively
 - Build larger models, including more subsystems, in less time
 - Flexibility to model wide variety of complex systems
 - Add individual customized or proprietary components, component libraries, and legacy codes
 - Four different mechanisms to add new components
 - Interpreted components
 - Internal components
 - External components
 - Dynamically Loadable Module (DLM) components
- Deploy locally/distributed/parallel using high-end computing and communications as required
- Uses Common Object Request Broker Architecture (CORBA)
 - MID-aware communication
 - Permits mixture of codes such as C, FORTRAN, and C++

Technical Overview (continued)

Architecture

PDM Compliant
Connectors
Connector objects for MD, linking & optimization
Component objects
Component objects of coupling objects
Visualization objects
Propulsion object API
CORBA wrappers to existing code

Dynamic High-Performance Computing
Massively Parallel Supercomputing
Clusters
Network piping

Background (continued)

Technology Transfer
- Numerical Propulsion System Simulation (NPSS) V1 is Nationally Recognized and Impacting the US Aviation Industry
 - The F 135 engine for Joint Strike Fighter Program (GE, P&W, Lockheed-Martin, Rolls-Royce Corp, WPAFB, Edwards AFB)
 - The GP 7000 engine for the Airbus A380 (GE & P&W Joint Venture)
 - Advanced Rocket Concepts (Williams-International; P&W has verified system against CORBA).
 - Hypersonics (Aerojet’s Engine Performance Model for DARPA/ONR HyFly Program Uses NPSS)
 - Ground Based Power Systems (GE Power Systems)
 - Fuel Cells (Univ of CA Irvine, Boeing, Florida Turbine Technology)
 - Nuclear Power (JIMO model in NPSS proven, but not used yet)
 - Facility Test Simulation (AEDC uses NPSS)
- NPSS V1 used to support wide range of power & propulsion systems
- Multi-Fidelity Simulation of the GE90 Engine
Technical Overview (continued)

Building An Object-Oriented Model

- NPSS is an object-oriented framework for executing systems of components.
 - No matter what the user needs to simulate, the steps are the same.
- Divide system into discrete components (i.e. elements)
 - The user’s conceptual view of the physical components can be mapped directly onto the object class hierarchy.
 - An object may be one component or an assembly of components.
- Link components
- Setup solver and execution sequence

This same basic recipe is followed to build any NPSS model.

Technical Overview (continued)

Building Blocks of A Model

- Elements
 - Primary building blocks connected together via Ports
 - Perform high level calculations
- Subelements
 - Interchangeable secondary building blocks that plug into Elements or other Subelements
 - Perform detailed calculations
- Flow Stations
 - Responsible for thermodynamic and continuity calculations
 - Access the thermodynamic packages (Janaf, GasTbl, CEA, H2, O2, Combusted H2O2, Tabular Data)
- Ports
 - Used to connect Elements together
 - Five types (Mechanical, Fluid, Fuel, Thermal, Data)
 - Directional in nature (i.e., outputs connect to inputs)
- Tables
 - Organized set of numbers that relate n-dimensional inputs to one or more outputs
 - Support linear and second or third order LaGrange interpolation
 - Support fixed value end-points or extrapolation (linear/2nd/3rd order LaGrange)
 - May be used at any location a function is called and vice-versa

All simulations are created from a collection of 5 basic types (classes) of building blocks, which represent engine components, and describe how components are linked together.

Technical Overview (continued)

Running A Model

- Batch
 - npss [-options][file] file2 ...
- Interactive
 - npss [-i][-trace][-options][file] file2 ...
- Graphical

Technical Overview (continued)

Zooming

- NPSS Zooming is the coupling of analyses at various levels of detail.
- Run one or more components at a specified fidelity while the rest of the system-level simulation runs at another fidelity.

Technical Overview (continued)

Component Libraries

NPSS System Model 3-D

NPSS V1 (2nd Q FY 00)– Baseline 0-D Model

Summary

- NPSS object-oriented architecture has been proven on a wide variety of applications
- Involving partners throughout the development process has been invaluable and the main reason for success
- Flexible architecture supporting multi-fidelity, multi-discipline components using high-end computing and communications provides excellent candidate to support broader market
- Focus on Technology Transfer will continue
Backup Slides

Incremental Release Process

Original Requirements Specification

Initial Requirements Analysis

Design & Implementation of Architecture (BETA)

Develop Initial for Version 1

Plan & Implement Version 1 for Incremental Release

Assess & Incorporate Customer Feedback

Delivery of Full Version N

Audits & Acceptance Review

Customer Feedback

Incremental Release

NPSS V1.X Package Descriptions

NPSS Release Package

Visual Based Syntax

Components

Thems

Customer Desk DevKit

DLLDevKit

Mico tar

Add-On Packages

CCDKBase

CCDKHiFi

CCDKRocketsITAR

Wrapper Tools

CSDK – CORBA Component developer’s kit

HiFi – high fidelity