Abstract for 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit on Numerical Propulsion System Simulation (NPSS)

The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer’s Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer’s Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.
Numerical Propulsion System Simulation
Architecture

AIAA/ASME/SAE/ASEE
40th Joint Propulsion Conference

July 13, 2004
Cynthia G. Naiman

Background

Vision & Objective
- Vision: Create a “Numerical Test Cell” enabling complete aerospace propulsion simulations overnight on cost-effective platforms.
- Product Objective: Provide a common tool and extensible framework to enable rapid, high-confidence, cost efficient design of aerospace systems.

Partnerships
- Established Space Act Agreement (SAA 3-83) and NASA Industry Cooperative Effort (NICE) Agreement
- Cooperated with partners to develop and build a NASA Test Cell for present and future propulsion programs.
- NASA Glenn Research Center at Lewis Field
- Boeing
- Rolls-Royce Corporation
- Arnold Engineering Development Center
- General Electric Aircraft Engines
- Joint Strike Fighter Program
- DARPA/ONR HyFly Program
- DARPA/ONR New England Pitching Wing

NPSS V1.X is a framework for performing analysis of complex engineering systems developed using a programming paradigm designed for simulating systems.

NPSS V1 used to support wide range of power & propulsion systems
- Hypersonics (Aerojet’s Engine Performance Model for Advanced Rocket Concepts)
- Fuel Cells (Univ. of CA Irvine, Boeing, Florida Turbine Technology)
- Nuclear Power (JIMO model in NPSS proven, but not used yet)
- Facility Test Simulation (AEDC uses NPSS)
- The F 135 engine for Joint Strike Fighter Program (GE, Edwards AFB)
- The GP 7000 engine for the Airbus A380 (GE & P&W Joint Venture)
- Advanced Rocket Concepts (Williams-International; P&W has verified system against COBRA)
- Ground Based Power Systems (GE Power Systems)
- Ground Based Power Systems (GE Power Systems)
- Fuel Cells (Univ of CA Irvine, Boeing, Florida Turbine Technology)
- Nuclear Power (JIMO model in NPSS proven, but not used yet)
- Facility Test Simulation (AEDC uses NPSS)
- NPSS V1 used to support wide range of power & propulsion systems
- Multi-Fidelity Simulation of the GE90 Engine

What is NPSS V1.X?
- NPSS V1.X is a framework for performing analysis of complex systems.
- First major propulsion thermal/flow design and analysis system developed using a programming paradigm designed for simulating complex engineering systems (i.e. object-oriented programming).
- Extensible Framework
 - Expand models easily
 - Build new models on-line, interactively
 - Build larger models, including more subsystems, in less time
 - Flexibility to model wide variety of complex systems
 - Add individual customized or proprietary components, component libraries, and legacy codes
 - Four different mechanisms to add new components
 - Interpreted components
 - Internal components
 - External components
 - Dynamically Loadable Module (DLM) components
- Deploy locally/distributed/parallel using high-end computing and communications as required
- Uses Common Object Request Broker Architecture (CORBA)
 - Middleware communication
 - Permit mix of codes such as C, FORTRAN, and C++
 to be collected within any simulation

Technical Overview

2004 JPC

AIAA/ASME/SAE/ASEE
40th Joint Propulsion Conference

July 13, 2004
Cynthia G. Naiman

Background

Vision & Objective
- Vision: Create a “Numerical Test Cell” enabling complete aerospace propulsion simulations overnight on cost-effective platforms.
- Product Objective: Provide a common tool and extensible framework to enable rapid, high-confidence, cost efficient design of aerospace systems.

Partnerships
- Established Space Act Agreement (SAA 3-83) and NASA Industry Cooperative Effort (NICE) Agreement
- Cooperated with partners to develop and build a NASA Test Cell for present and future propulsion programs.
- NASA Glenn Research Center at Lewis Field
- Boeing
- Rolls-Royce Corporation
- Arnold Engineering Development Center
- General Electric Aircraft Engines
- Joint Strike Fighter Program
- DARPA/ONR HyFly Program
- DARPA/ONR New England Pitching Wing

NPSS V1.X is a framework for performing analysis of complex engineering systems developed using a programming paradigm designed for simulating systems.

NPSS V1 used to support wide range of power & propulsion systems
- Hypersonics (Aerojet’s Engine Performance Model for Advanced Rocket Concepts)
- Fuel Cells (Univ. of CA Irvine, Boeing, Florida Turbine Technology)
- Nuclear Power (JIMO model in NPSS proven, but not used yet)
- Facility Test Simulation (AEDC uses NPSS)
- NPSS V1 used to support wide range of power & propulsion systems
- Multi-Fidelity Simulation of the GE90 Engine

What is NPSS V1.X?
- NPSS V1.X is a framework for performing analysis of complex systems.
- First major propulsion thermal/flow design and analysis system developed using a programming paradigm designed for simulating complex engineering systems (i.e. object-oriented programming).
- Extensible Framework
 - Expand models easily
 - Build new models on-line, interactively
 - Build larger models, including more subsystems, in less time
 - Flexibility to model wide variety of complex systems
 - Add individual customized or proprietary components, component libraries, and legacy codes
 - Four different mechanisms to add new components
 - Interpreted components
 - Internal components
 - External components
 - Dynamically Loadable Module (DLM) components
- Deploy locally/distributed/parallel using high-end computing and communications as required
- Uses Common Object Request Broker Architecture (CORBA)
 - Middleware communication
 - Permit mix of codes such as C, FORTRAN, and C++
 to be collected within any simulation

Technical Overview

2004 JPC
Building An Object-Oriented Model

- NPSS is an object-oriented framework for executing systems of components.
 - No matter what the user needs to simulate, the steps are the same.
- Divide system into discrete components (i.e. elements)
 - The user’s conceptual view of the physical components can be mapped directly onto the object class hierarchy.
 - An object may be one component or an assembly of components.
- Link components
- Setup solver and execution sequence

This same basic recipe is followed to build any NPSS model.

Building Blocks of A Model

- Elements
 - Primary building blocks connected together via Ports
 - Perform high level calculations
- Subelements
 - Interchangeable secondary building blocks that plug into Elements or other Subelements
 - Perform detailed calculations
- Flow Stations
 - Responsible for thermodynamic and continuity calculations
 - Access the thermodynamic packages (Janaf, GasTab, CEA, H2, O2, Combusted H2O2, Tabular Data)
- Ports
 - Used to connect Elements together
 - Five types (Mechanical, Fluid, Fuel, Thermal, Data)
 - Directional in nature (i.e., outputs connect to inputs)
- Tables
 - Organized set of numbers that relate n-dimensional inputs to one or more outputs
 - Support linear and second or third order Lagrange interpolation
 - Support fixed value end-points or extrapolation (linear/2nd/3rd order Lagrange)
 - May be used at any location a function is called and vice-versa

All simulations are created from a collection of 5 basic types (classes) of building blocks, which represent engine components, and describe how components are linked together.

Running A Model

- Batch
- Interactive
- Graphical

Zooming

- NPSS Zooming is the coupling of analyses at various levels of detail.
- Run one or more components at a specified fidelity while the rest of the system-level simulation runs at another fidelity.

Summary

- NPSS object-oriented architecture has been proven on a wide variety of applications
- Involving partners throughout the development process has been invaluable and the main reason for success
- Flexible architecture supporting multi-fidelity, multi-discipline components using high-end computing and communications provides excellent candidate to support broader market
- Focus on Technology Transfer will continue
Backup Slides

Incremental Release Process

Original Requirements Specification

Initial Requirements Analysis

Requirements Definition for Version 1

Requirements Definition for Version N

Develop Subset of Version N Requirements

Plan Subsets of Version 1 per Incremental Release

Assess & Incorporate Customer Feedback

Incremental Release

Customer Feedback

Edit & Acceptance Testing

Testing of Full Version N

NPSS V1.X Package Descriptions

NPSS Release Package

NPSS V1.6

Visual Based Syntax

Components

Thems

Documentation

Add-On Packages

CCDKBase

CCDKHiFi

CCDKRocketsITAR

Wrapper Tools

Add-On Packages

CCDK – CORBA Component developer’s kit

HiFi – high fidelity

DevKit – developer’s kit

DLL – dynamically loadable library

Mico tar

2004 JPC