Advanced Optical Technologies in NASA’s Space Communication Program: Status, Challenges, and Future Plans

John Pouch
NASA Glenn Research Center, Cleveland, OH

A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise needs will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.
Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

presentation to the
Great Lakes Photonics Symposium

June 2004

Dr. John Pouch
NASA Glenn Research Center
A New Future for U.S. Civil Space Programs

- This Vision encompasses a broad range of human and robotic missions, including the Moon, Mars and destinations beyond.

- It establishes clear goals and objectives, but sets equally clear budgetary ‘boundaries’ by stating firm priorities and tough choices.

- It also establishes as policy the goals of pursuing commercial and international collaboration in realizing the new vision.
Key Elements of the Nation’s Vision

- **Objectives**
 - Implement a *sustained* and *affordable* human and robotic program
 - Extend human presence across the solar system and beyond
 - Develop supporting innovative technologies, knowledge, and infrastructures
 - Promote international and commercial participation in exploration

- **Major Milestones**
 - 2008: Initial flight test of CEV
 - 2008: Launch first lunar robotic orbiter
 - 2011: First Unmanned CEV flight
 - 2014: First crewed CEV flight
 - 2015: Jupiter Icy Moons Orbiter (JIMO)/Prometheus
 - 2015-2020: First human mission to the Moon
NASA’s Integrated Space Communication Architectures

- **Backbone Networks**
- **Access Networks**
- **Inter-Spacecraft Links**
- **Proximity Links**
Space Communications Project Overview

Goal
Enable broad, continuous presence and coverage for high rate data delivery from ground, air, and space-based assets directly to the users.

Approach
- Enterprise requirements obtained and analyzed
- Technology challenges identified / roadmaps developed
- Technology investment made to competitive selection

Partners
- NASA Centers (JPL, GSFC, JSC, ARC)
- Industry (Lockheed Martin, IBM, Boeing, Northrup Grumman, ITT, BBN, Spectrum Astro, CISCO)
- Academia (MIT, Stanford, Univ. of Illinois, CWRU, Kent State Univ. New Mexico Univ, USC, Rice)
- DoD, NRO

NASA Mission Customers:
- Jupiter Icy Moons Orbiter
- Mars ’05/07/09 missions
- Magnetospheric Multi-Scale
- MAXIM and Constellation X
- Terrestrial Planet Finder

NRC 2003 Review Comments
"World-Class Space Communication hardware"
"The SC project was exemplary in that it generally had clear objectives, measurable outcomes, and milestones."
"SC Project has a more coherent vision, better plans, and better project management"

Glenn Research Center
at Lewis Field
Enterprises Needs and Missions

Earth Science Missions:
- GPM Mission
- Leonardo Mission
- NPOESS Mission
- Earth Science Technology Office

Space Science Missions:
- Jupiter Icy Moons Orbiter
- Europa Orbiter
- Europa Lander
- Saturn Ring Observer
- Titan Organic Explorer
- Mars '05/07/09 missions
- Magnetospheric Multi-Scale
- MAXIM and Constellation X
- Inter-Magnetosphere Constellation
- Terrestrial Planet Finder
- Next Generation Space Telescope

Space Flight Missions:
- Shuttle mission
 - Wireless Sensor Network for Health Monitoring
- ISS Mission
- Space Communication and Data Services
- Human Exploration

Earth Science Needs:
- Increase data rates 10-100 Gbps rates for some observations by 2025.
- Increase data rate for Multi-spacecraft applications to 45 Mbps by 2010 and 155 Mbps by 2025 from the current SOA of 4 Mbps.
- Provide communication technology for far-out vantage points (e.g., Geostationary, Moon, and Lagrangian points)

Space Science Needs:
- Increase Data rates for Mars mission to 1 Mbps by 2010 and 10 Mbps by 2020 and 10 times for planetary missions
- Inter-satellite communications for distributed spacecraft mission for coordinated observations.
- High-rate Communications from Lagrange points L1 and L2

Space Flight Needs:
- Develop space communications technologies for 500- to 1,000-day class human missions
- Increase data rates from low Earth orbit (the current SOA 50 Mbps)
- Develop efficient wireless sensor networks for health monitoring

Biological and Physical Science Needs:
- Advanced communications for remote diagnostics and surgery
- Wireless Instrumentation and Communication
- Establish a distributed sensor networks
Optical Communications: Characteristics

- Higher gains and higher data rates
- Potential for low mass (low-weight payloads), small size (receivers/transmitters), and low power consumption
- High bandwidth
- Narrow beam transmission (communication security)
The Potential of Laser Communications

- Using Ka-band with a 70 m DSN antenna is roughly the same as an optical link with a 4 m receiver.
- Using a 10–15 m optical receiver, however, means 10–100 times more science data can be returned.
Technology development in progress.

- 180W Traveling Wave Tube and Hybrid Power Combiner
- Factor of 20 increase over current state of the art
- Will deliver 10Mbps data return from Jupiter
- Ultra High Power Transmitter for 2012 JIMO Mission

R-code 1.
- Full transmitter being jointly developed by Code S, Code M, Code T.
- Increase over current state of the art
- Will increase the data return to 4.6Mbps from Mars, Factor of 3

Mission
- 100 Watt Traveling Wave Tube for 2009 Mars Teleset

Enabling High Data Rates in Space
Components of an Optical Communications Transmitter

- Tracking Detector
- Fast Steering Mirror
- Laser Transmitter
- Signal Processor
- TMS-C40 Control Processor
- Optics (exploded View)

Data Rate: up to 1 Gbps
Range: approx. 10,000 km
Mass: under 200 kg
Power: under 2 kW

Courtesy of JPL
Current Optical Communication Technologies

Goal: Provide laser communication technologies for Inter-Spacecraft links and long-haul communications to enable deep space lasercom rates up to 1 Mbps and low cost, light weight systems up to 155 Mbps for multi-spacecraft systems.

Liquid Crystal Optical Beam Steering
- Demonstrated a liquid crystal (LC) four-stage digital beam deflector with a laser scanning range of ±56 milliradian in 8 milliradian steps.
- Demonstrated feasibility of sub-microradian beam pointing.
- Validated wave-front distortion correction ability of low cost LC-on-silicon (LCOS) devices for use in large (8-inch and greater) optical systems

Efficient 20 W Deep-Space Laser
- 20W average output power
- At least a >2X data rate return over microwave
- Will enable a reduction in antenna aperture from ~5m (RF) to ~30cm (lasercom)

Precision In-Space Optical Pointing
- Demonstrated combining of low rate Reference Sources (e.g. star tracker) with High Bandwidth Inertial Sensors (e.g. accelerometers) to produce high bandwidth vibration compensation
RF Microphotonics

Goals:
Develop advanced communication receiver components with a 5x-10x reduction in volume and power consumption compared to current SOA while maintaining high rate data capability.

Objectives:
Demonstrate experimentally and theoretically a mm-wave receiver using microphotonics components. Show potential for increased scientific returns & low cost missions. Identify and analyze mm-wave, microphotonics receiver application (completed, TRL 2 [initial analysis]). Challenges: Design and integrate RF resonator with microphotonics components, demonstrate nW sensitivity, and incorporate stabilization feedback control.

Accomplishments:
- Completed design and fabrication of electro-optic microdisk modulator with optical Q in excess of 10^6
- Completed laboratory demonstration of data and video transmission over RF wireless link at X/Ku band.
- Completed demonstration of single frequency operation at 26.1 GHz and 29.6 GHz and demonstration of tunable RF and optical response.

NASA Enterprise Impact:
Space Science, Earth Science: ESE (remote sensing mission), SSE (Mars rover)

Exploration System: Lunar Mission, Robotics/Human Mission. Enable extremely low power, reduced mass and volume modular microwave receivers (from X through Ka Band) for use in lunar and planetary surface environments.

Participants: NASA GRC, University of Southern California

<table>
<thead>
<tr>
<th>Product Milestones</th>
<th>04</th>
<th>05</th>
<th>06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof-of-concept laboratory tests</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRL (achieved at year end)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Efficient Deep Space Laser Communications

Goals:
Provide laser communication technologies for inter-spacecraft links and long-haul communications to enable deep space lasercom rates up to 10 Mbps and low cost, light weight systems up to 155 Mbps for multi-spacecraft systems.

Objectives:
Optimize the design for high power with the highest possible efficiency. Obtain 20 W average output power. Design with space packaging and reliability in mind, even though product to be delivered is a breadboard at TRL 3.

Accomplishments:
• Reduced amplified spontaneous emission (ASE) in preamplifier stage allowing for increased power for signal amplification, with reduced optical loss
• Achieved average power level gain of 25 dB in a candidate material for preamplifier stage.
• Designed custom optical fiber for preserving phase conjugation

NASA Enterprise Impact:
Space Science, Earth Science: Mars Telesat, JIMO

Participants: NASA GRC; Monica Minden and D. Cris Jones, HRL Laboratories

<table>
<thead>
<tr>
<th>Product Milestones</th>
<th>04</th>
<th>05</th>
<th>06</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRL 3 breadboard master-oscillator power-amplifier (MOPA) laser source delivery to JPL</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>TRL (achieved at year end)</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Liquid Crystal Based Beam Steering

Goals:
Provide low-cost, low-weight, low-power laser communication technologies for inter-spacecraft links

Objectives:
Provide advanced understanding of optical phased array devices through modeling with purpose of designing devices that demonstrate sub-microradian pointing accuracy; design devices that will enable the optical beams to steer to angles greater than 1 milli-radian. Show potential for increased scientific returns and low-cost missions. Conduct research in liquid crystal materials and develop theoretical models (TRL 2). Demonstrate beam steering with first test device (TRL 3).

Accomplishments:
Demonstrated improvement in Strehl ratio of a distorted wavefront by a factor of 100. Demonstrated fine steering (microradian) device.

NASA Enterprise Impact:
Space Science, Earth Science: Enable demand access links for satellite-to-satellite beam pointing/tracking.

Exploration System: Lunar Mission, Robotics/Human Mission. Will enable very low cost, low power non-mechanical beam steering systems for optical communications for long-range point-to-point links and shorter-range multi-point to multi-point applications (single- and multi-beam communication links). Technology will be demonstrated at TRL 3.

Participants: NASA GRC, Liquid Crystal Institute (LCI) at Kent State University (KSU)

<table>
<thead>
<tr>
<th>Product Milestones</th>
<th>04</th>
<th>05</th>
<th>06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build and Demo 1mrad steering device</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Pathway to wave-front corrector</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

• TRL (achieved at year end) • 3
Self-Powered Modulating Retroreflectors for InterSpacecraft
Optical Communication and Relative Navigation

Goals:
Develop an ultra low power two-way optical link using a single conventional laser transmitter and tracker rather than using two laser transmitters with associated gimbaled telescopes and pointing/tracking systems.

Objectives:
Develop a Modulating Retro Reflector (MRR) to reflect incoming laser communication signals directly back to source and modulate the returned signal with an electro-optic shutter using a semiconductor-based optical switch based on GaAs multiple quantum wells (MQW). A photovoltaic (PV) receiver will be integrated to utilize the incident sunlight and the incident laser light for self power generation. The MRR will have a very low mass (≈ 10g) and negligible power consumption (0-100mW) and a data rate of 10Mbps.

Accomplishments:
MRR devices with 6.3 mm diameter aperture developed and successfully operating at 1550 nm at -5V with data rates as high as 10 Mbs. Design of the power circuitry based on capacitive storage with a super-capacitor was completed.

NASA Enterprise Impact:

Space Science, Earth Science:	Low-power, miniature, all-optical network for formation flying satellite communications, targeting, and acquisition.
Exploration System:	Light weight, self-powered, optical data link can be used with a small payload for remote sensing in extreme environments. Mars Exploration Program is leveraging this technology into a remote sensing application for the Mars surface communications network.
Participants:	Dr. Robert Walters, NRL

<table>
<thead>
<tr>
<th>Product Milestones</th>
<th>04</th>
<th>05</th>
<th>06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study optical comm./rel. nav.</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Prototype</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TRL (achieved at year end)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total ($K)</td>
<td>654</td>
<td>615</td>
<td>293</td>
</tr>
</tbody>
</table>
Enabling Human and Robotic Missions through Communication Networks and Systems

- Long haul backbone to Earth
- Access connections to Mars orbit relays
- Wireless local area network (WLAN)
- Interpersonal communications
Backup
Enabling Planetary Communications Infrastructure

High Performance Optical Communication Technologies for Mars

End-to-End Space Communication Emulation

10-100 W, 26 GHz, 32 GHz

5-10 W, 26 GHz, 32 GHz

High Efficiency Traveling Wave Tubes and Power Module for Lunar and Mars Links

Networking Bus Modules for Internet Protocol Enabled Spacecraft

Miniaturized Cryocooled SiGe receivers for large arrays
Enabling Lunar and Mars Surface Networks

Optical Wireless Networks

Micro Sensor Communications Systems

Inter Spacecraft Communications Technologies

Miniaturized Transceivers with Routing Capabilities

End to end emulation capabilities to establish reliability, security, performance, and to understand operating with over 40 min delays

Mobile Wireless Wide Area Networks (WWAN)
Space Communications Project
Technology Roadmap

Technology Development:
- High Power, High Efficiency Transmitters
- Low Mass Power Efficient Phased Array Antennas
- Optical Communication Technologies
- Space Network Technologies and Efficient Internet Compliant Protocols
- Miniature Comm/Sensor Modules
- Ka-Band Amplifiers and Receivers
- 1st Generation Crosslink Technologies
- High Speed Digital Modems
- 10 Gbit-Rate Comm. Systems
- On-Board Processing
- Low Cost, Miniature, Low Power Integrated Components
- Ad-Hoc Networks for Multiple Spacecrafts
- Reconfigurable Antennas
- Multicasting Networks
- Ultra Low Loss MEMS Components for Receivers
- Seamless High Data Rate Information Delivery
- Intelligent, Ad-Hoc User-Centric Communication Networks
- Communication Technologies for Multiple Spacecraft Networks Connected to Deep Space Backbone
- Integrated Communications / Navigation Systems for Distributed Cluster / Formation Flying Constellations

Capabilities:
- Point-to-Point Communications
- Point-to-Multipoint Communications
- Autonomous, Ad-Hoc Multiple Comm.

Applications / Missions:
- Near Earth Mission
- High Rate Links for Mars and Jupiter
- JIMO Mission
- Mars Network
- Lunar Missions
- Human Exploration Network