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ABSTRACT

Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play
an increasingly important role in future gas turbine engines because of their ability to
effectively protect the engine components and further raise engine temperatures.
However, the coating durability remains a major concern with the ever-increasing
temperature requirements. Currently, advanced T/EBC systems, which typically include a
high temperature capable zirconia- (or hafnia-) based oxide top coat (thermal barrier) on
a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner
coat (environmental barrier), are being developed and tested for higher temperature
capability SiC combustor applications. In this paper, durability of several
thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites
was investigated under laser simulated engine thermal gradient cyclic, and 1650°C
(3000°F) test conditions. The coating cracking and delamination processes were
monitored and evaluated. The effects of temperature gradients and coating configurations
on the ceramic coating crack initiation and propagation were analyzed using finite
element analysis (FEA) models based on the observed failure mechanisms, in conjunction
with mechanical testing results. The environmental effects on the coating durability will

be discussed. The coating design approach will also be presented.



Thermal and environmental barrier coatings; High-heat-flux testing; Thermal
conductivity; Thermal cyclic response
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Revolutionary Ceramic Coatings Greatly Impact Gas
Turbine Engine Technology

- Advances in coatings technology will significantly increase gas turbine blade,
vane and combustor temperature capabilities.

« Ceramic coatings are especially critical for protecting ceramic components.

» Low thermal conductivity and high temperature stability are among the most
important issues for developing advanced coating systems.
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Sintering Induced Failure of Thermal and
Environmental Barrier Coatings
A —

— Models used to predict long-term sintering behavior from dilatometry

— Variable sintering rates observed
- Initially very fast sintering
- Reduced sintering rates with increasing time
— Sintering can induce surface cracking and delamination
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Mixed Mode Fracture Behavior of Plasma-Sprayed
ZrO,-8wt%Y,0, Coatings
s
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Failure of Laser Heat Flux Tested Thermal and
Environmental Ceramic Coating Systems
TR T ————,

— Significant interfacial pore and eutectic phase formation due to water
vapor attack and Si diffusion at the interface temperature of 1300°C under
the thermal gradient cycling conditions
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Objectives

 Investigate coating delamination failure of a baseline thermal
and environmental barrier coating system on SiC (or SiC/SiC)
under thermal gradient cyclic test conditions

— Effect of TBC/EBC thickness ratio on delamination
— Water vapor effect

— Comparison with some advanced coating systems

* Finite element analysis of the coating delamination driving
forces

« Coatings design issues



Experimental

|
e Thermal gradient cyclic tests emphasized using a laser heat flux

approach

e Thermal conductivity monitored for quantifying the coating
delamination

e Coating materials:

— Plasma-sprayed ZrO,-8wt%Y,0, (or advanced HfO,)/mullite layer/Si coating
system on the SiC/SiC CMC or SiC Hexaloy substrates

e Test specimen configuration:

— Disk specimens (25.4 mm diameter, 2.2-3.2 mm thick) coated with TBC/EBC bond
coat system

— Constant Total coating thickness (TBC + EBC) 0.635 mm (25mil)

— Thermal gradient cyclic tests at surface temperatures ranging from 1550 - 1650°C
and interface temperatures ranging from 1150 - 1300°C



The Steady-State Laser Heat-Flux Approach for Ceramic
Coating Thermal Conductivity and Durability Testing

A uniform laser beam (wavelength 10.6 um) power distribution by an integrating lens
The ceramic surface and substrate temperatures measured by pyrometers

Thermal conductivity measurements at 5 second intervals in real time are incorporated
during thermal cycling
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Laser Heat Flux Testing in Water Vapor Environments

— Newly developed laser heat flux high velocity water-vapor rig significantly
facilitates the TEBC developments 4 -
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Typical Temperature Distributions in a Coating System

Through Thickness Temperature Distribution
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Thermal Gradient Cyclic Behavior of TEBC Coatings under Laser
Heat Flux Test Conditions for Delamination Evaluation
T |

— Larger thermal gradients (high heat flux) significantly increased delamination
— The coating thickness ratio and interlayer system also affected delamination
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Thermal Gradient Cyclic Behavior of TEBC Coatings under
Laser Heat Flux Test Conditions for Delamination Evaluation

e
— The coating thickness ratio and composition affected delamination
— Advanced sintering resistant HfO, coatings showed better cyclic durability
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Comparisons of the Cyclic Delamination Rates of Various
Coatings Systems

— Advanced sintering resistant HfO, system, the optimum coating
thickness ratios, and interlayers showed lower delamination rates and

better cyclic durability
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Finite Element Analysis Approaches
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Calculated Stress Intensity Factors and Energy Release Rate as a
Function of the TBC Thickness and Thermal Gradient (Heat Flux)
R

— A thermal gradient increases the coating delamination driving forces
versus a uniform temperature (equivalent average temperature 1350°C)

— A larger thermal gradient increases K, and J driving forces in the EBC
but not K|, for a crack in the EBC layer
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Effect of Coating Sintering on the Calculated
Stress Intensity Factors and Energy Release Rate

.
— Sintering increases the K, and J delamination driving forces for a TBC

crack but not K, for a crack in the EBC layer

Effect of Sintering on an EBC crack,
a=0.5842mm, 2¢=0.80mm

—&—Kj (With) _ _
14 - == Kii (With) Tsurtace=1600°C/T,,,=1100°C o8
 ~ A" Ki (Without) T2
12 - = & Kii (Without) i
| =By (With) 1,0
10 1 - B J (Without) et { 4
N ! .
£ 8 z‘ 1.5 =
L v
P T
. 710 3
T 0.5
2 —
0 | + 0.0
0 5 10 15 20 25

TBC Thickness, mils



Comparison of the Delamination Driving Forces
as a Function of TBC Thickness and Crack Location
(|

— A crack in the TBC has almost equal magnitude of K, and K,
— A crack in the EBC is almost Mode |

Crack Driving Force Comparison with Sintering Effects
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Conclusions

e
« Laser heat flux tests demonstrated that an optimum TBC/EBC
thickness ratio may exist.

* Advanced sintering resistant coatings and interlayer systems can
improve the coating cyclic durability.

« Water vapor may enhance initial coating sintering and thus resulit
in accelerating coating delamination.

* High thermal gradients/heat fluxes further increase the coating
delamination driving forces and delamination rates.

* The coating design needs to consider the toughness values and
the location dependent load mixity.
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