Durability and Design Issues of Thermal/Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites under 1650°C Test Conditions

Dongming Zhu, Sung R. Choi, Louis J. Ghosn and Robert A. Miller

NASA Glenn Research Center at Lewis Field
Cleveland, Ohio 44135

ABSTRACT

Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hafnia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability SiC combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650°C (3000°F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.
Thermal and environmental barrier coatings; High-heat-flux testing; Thermal conductivity; Thermal cyclic response

Author information:

1. Dr. Dongming Zhu, Primary and presenting author
Materials Research Engineer
NASA Glenn Research Center
21000 Brookpark Road
Mail Stop 24-1
Cleveland, OH 44135
Phone (216) 433-5422; Fax: (216) 433-5544
E-mail: Dongming.Zhu@grc.nasa.gov

2. Dr. Sung R. Choi
Research Scientist
NASA Glenn Research Center
21000 Brookpark Road
Mail Stop 24-1
Cleveland, OH 44135
Phone: (216) 433-8366; Fax: (216) 433-8300
E-mail: Sung.R.Choi@grc.nasa.gov

3. Dr. Louis J. Ghosn
 Principle Engineer
NASA Glenn Research Center
21000 Brookpark Road
Mail Stop 49-7
Cleveland, OH 44135
(216) 433-3822; Fax: (216) 433-8300
Louis.J.Ghosn@grc.nasa.gov

4. Dr. Robert A. Miller
Materials Research Engineer
Durability and Design Issues of Thermal/Environmental Barrier Coatings on SiC-Based Ceramics under 1650°C Test Conditions

Dongming Zhu, Sung R. Choi, Louis J. Ghosn and Robert A. Miller

NASA John H. Glenn Research Center
Cleveland, OH 44135, USA

This work was supported by NASA Ultra-Efficient Engine Technology (UEET) Program

The 28th International Cocoa Beach Conference on Advanced Ceramics and Composites
January 29, 2004
Revolutionary Ceramic Coatings Greatly Impact Gas Turbine Engine Technology

- Advances in coatings technology will significantly increase gas turbine blade, vane and combustor temperature capabilities.
- Ceramic coatings are especially critical for protecting ceramic components.
- Low thermal conductivity and high temperature stability are among the most important issues for developing advanced coating systems.

NASA UEET Goals
- 70% NOx reduction
- 8-15% increase in efficiency
- 8-15% reduction in CO2
Durability Issues of Ceramic Thermal and Environmental Barrier Coating (TEBC) Systems

- Sintering and CTE mismatch induces surface wedge-shape crack propagation
- Surface cracking accelerates coating delamination under mixed mode loading (K_I and K_{II})
- Interfacial pore formation due to the chemical reactions further accelerated coating spallation under thermal gradient conditions
Sintering Induced Failure of Thermal and Environmental Barrier Coatings

- Models used to predict long-term sintering behavior from dilatometry
- Variable sintering rates observed
 - Initially very fast sintering
 - Reduced sintering rates with increasing time
- Sintering can induce surface cracking and delamination

Plasma-sprayed ZrO$_2$-8wt%Y$_2$O$_3$

ZrO$_2$-8wt%Y$_2$O$_3$/Mullite+BSAS/Si System
Mixed Mode Fracture Behavior of Plasma-Sprayed ZrO₂-8wt%Y₂O₃ Coatings

- $K_{IC} > K_{IIc} \rightarrow K_{IIc}/K_{IC} = 0.64 \& 0.66$ (at 25 & 1316°C)
- K_{IC} and K_{IIc} at 25°C > K_{IC} and K_{IIc} at 1316°C
- Elliptical relation between K_I and K_{II}
- Test spans independent

<table>
<thead>
<tr>
<th>Test Temp(°C)</th>
<th>No. of specimens used</th>
<th>K_{IC} (MPa√m)</th>
<th>K_{IIc} (MPa√m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>4 in K_{IC}</td>
<td>1.15(0.07)</td>
<td>0.73(0.10)</td>
</tr>
<tr>
<td>1316</td>
<td>4 each</td>
<td>0.98(0.13)</td>
<td>0.65(0.04)</td>
</tr>
</tbody>
</table>
Failure of Laser Heat Flux Tested Thermal and Environmental Ceramic Coating Systems

- Significant interfacial pore and eutectic phase formation due to water vapor attack and Si diffusion at the interface temperature of 1300°C under the thermal gradient cycling conditions.
Objectives

- Investigate coating delamination failure of a baseline thermal and environmental barrier coating system on SiC (or SiC/SiC) under thermal gradient cyclic test conditions
 - Effect of TBC/EBC thickness ratio on delamination
 - Water vapor effect
 - Comparison with some advanced coating systems
- Finite element analysis of the coating delamination driving forces
- Coatings design issues
Experimental

- Thermal gradient cyclic tests emphasized using a laser heat flux approach
- Thermal conductivity monitored for quantifying the coating delamination
- Coating materials:
 - Plasma-sprayed ZrO$_2$-8wt%Y$_2$O$_3$ (or advanced HfO$_2$)/mullite layer/Si coating system on the SiC/SiC CMC or SiC Hexaloy substrates
- Test specimen configuration:
 - Disk specimens (25.4 mm diameter, 2.2-3.2 mm thick) coated with TBC/EBC bond coat system
 - Constant Total coating thickness (TBC + EBC) 0.635 mm (25mil)
 - Thermal gradient cyclic tests at surface temperatures ranging from 1550 - 1650°C and interface temperatures ranging from 1150 - 1300°C
The Steady-State Laser Heat-Flux Approach for Ceramic Coating Thermal Conductivity and Durability Testing

- A uniform laser beam (wavelength 10.6 μm) power distribution by an integrating lens
- The ceramic surface and substrate temperatures measured by pyrometers
- Thermal conductivity measurements at 5 second intervals in real time are incorporated during thermal cycling
Laser Heat Flux Testing in Water Vapor Environments

- Newly developed laser heat flux high velocity water-vapor rig significantly facilitates the TEBC developments
 - Steam injected at up to 5m/sec
 - Testing temperature >1700°C
Typical Temperature Distributions in a Coating System

Through Thickness Temperature Distribution

Crack plane depth, mm

Thickness, mils
TBC EBC
15 10

Distance Z, mm

Temperature, °C

Coating/substrate interface

1600C/1100°C

1650C/900°C

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Thickness, mils
0.5080
0.5842

1.00 1.50 2.00 2.50 3.00

Distance Z, mm
Thermal Gradient Cyclic Behavior of TEBC Coatings under Laser Heat Flux Test Conditions for Delamination Evaluation

- Larger thermal gradients (high heat flux) significantly increased delamination.
- The coating thickness ratio and interlayer system also affected delamination.

![Graph showing thermal conductivity over time for different TEBC thicknesses and heat flux conditions.](image)
Thermal Gradient Cyclic Behavior of TEBC Coatings under Laser Heat Flux Test Conditions for Delamination Evaluation

- The coating thickness ratio and composition affected delamination
- Advanced sintering resistant HfO$_2$ coatings showed better cyclic durability

![Graph showing normalized thermal conductivity over time for different TEBC thicknesses and water vapor conditions.](image-url)
Comparisons of the Cyclic Delamination Rates of Various Coatings Systems

- Advanced sintering resistant HfO₂ system, the optimum coating thickness ratios, and interlayers showed lower delamination rates and better cyclic durability

![Graph showing delamination rates for various coatings systems](image)
Finite Element Analysis Approaches

EBC Crack
- Crack depth, \(a = 0.5842 \text{ mm} \)
- TBC thickness - 1 mil

TBC Crack
- Crack depth, \(a = 0.0254 \text{ mm or 1 mil} \)
- TBC thickness - 1 mil

TBC: ZrO\(_2\)-8wt\%Y\(_2\)O\(_3\)
EBC: Mullite

Quarter Point Singularity

\[
 J = \int_{A} \lambda(s) \cdot \hat{n} \cdot \left(W \cdot I - \sigma \cdot \frac{du}{dx} \right) \cdot \hat{q} \cdot dA
\]

- \(\lambda(s) = \text{virtual crack advance} \)
- \(dA = \text{surface element around crack tip} \)
- \(\hat{n} = \text{outward normal} \)
- \(\hat{q} = \text{direction crack extension} \)
- \(W = \text{Elastic Strain Energy} \)

\[
 J = \frac{1}{E} \left(K_I^2 + K_{II}^2 \right)
\]

\[
 \overline{E} = E \cdot \text{for plane stress}
\]

\[
 \overline{E} = \frac{E}{(1 - \nu^2)} \cdot \text{for plane strain}
\]
Calculated Stress Intensity Factors and Energy Release Rate as a Function of the TBC Thickness and Thermal Gradient (Heat Flux)

- A thermal gradient increases the coating delamination driving forces versus a uniform temperature (equivalent average temperature 1350°C)
- A larger thermal gradient increases K_i and J driving forces in the EBC but not K_{II} for a crack in the EBC layer
Effect of Coating Sintering on the Calculated Stress Intensity Factors and Energy Release Rate

Sintering increases the K_i and J delamination driving forces for a TBC crack but not K_{II} for a crack in the EBC layer.

Effect of Sintering on an EBC crack, $a=0.5842\text{mm}$, $2c=0.80\text{mm}$

$T_{\text{surface}}=1600^\circ\text{C}$/$T_{\text{back}}=1100^\circ\text{C}$

![Graph showing the effect of sintering on stress intensity factors and energy release rate versus TBC thickness.](image-url)
Comparison of the Delamination Driving Forces as a Function of TBC Thickness and Crack Location

- A crack in the TBC has almost equal magnitude of K_1 and K_{II}
- A crack in the EBC is almost Mode I

Crack Driving Force Comparison with Sintering Effects

$2c=0.8\text{mm}$

$T_{surface}=1600^\circ\text{C}/T_{back}=1100^\circ\text{C}$

<table>
<thead>
<tr>
<th>SIF, MPa m$^{1/2}$</th>
<th>TBC Thickness, mils</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>15</td>
</tr>
<tr>
<td>2.0</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>25</td>
</tr>
</tbody>
</table>

Ki (EBC) K_{II} (EBC) Ki (TBC) K_{II} (TBC) J (EBC) J (TBC)
Conclusions

- Laser heat flux tests demonstrated that an optimum TBC/EBC thickness ratio may exist.

- Advanced sintering resistant coatings and interlayer systems can improve the coating cyclic durability.

- Water vapor may enhance initial coating sintering and thus result in accelerating coating delamination.

- High thermal gradients/heat fluxes further increase the coating delamination driving forces and delamination rates.

- The coating design needs to consider the toughness values and the location dependent load mixity.
Acknowledgments

The authors are grateful to NASA colleagues for helpful discussions: Narottam P. Bansal, Jeff I. Eldridge, Kang N. Lee, Dennis S. Fox, and James L. Smialek.

The authors are grateful to G. W. Leissler for his assistance in preparing the plasma-sprayed ceramic coatings.