ADVANCED OXIDE MATERIAL SYSTEMS FOR
1650°C THERMAL/ENVIRONMENTAL BARRIER
COATING APPLICATIONS

Dongming Zhu, Dennis S. Fox,
Narottam P. Bansal, and Robert A. Miller

NASA John H. Glenn Research Center
Cleveland, OH 44135, USA

This work was supported by NASA Ultra-Efficient Engine Technology (UEET) Program

Fifth International Conference on High Temperature Ceramic Matrix Composites
September 12–16, 2004, Seattle, Washington, USA
Abstract

Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650°C (3000°F) in oxidizing and water-vapor containing combustion environments. The 1650°C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems.

In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650°C coatings feasibility with long-term cyclic durability.
Objectives

- Thermal conductivity and sintering behavior of advanced oxide coating materials
 Zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials studied
 Hot-pressed specimens and plasma-sprayed coatings investigated

- Water vapor stability of the advanced oxides at temperatures of 1650°C (3000°F)

- HfO₂-Y₂O₃ coating system 1650°C (3000°F) cyclic durability
A Laser Heat-Flux Approach for Ceramic Coating
Thermal Conductivity Measurements

- A uniform laser (wavelength 10.6 \(\mu \text{m} \)) power distribution achieved using integrating lens combined with lens/specimen rotation
- The ceramic surface and substrate temperatures measured by pyrometers and/or by an embedded miniature thermocouple
- Thermal conductivity measured at 5 second intervals in real time
Thermal Conductivity Measurements of Hot-Pressed HfO\textsubscript{2}-Y\textsubscript{2}O\textsubscript{3} Coatings

Temperature dependence can be determined using the laser heat-flux test approach.

![Graph showing thermal conductivity and surface temperature over time.](image)
Thermal Conductivity of Hot-Pressed Pyrochlore Oxides

- Thermal conductivity can increase by more than 100% at high temperature due to the increased radiation heat-transfer under thermal gradient conditions.
- The multiple rare earth oxide co-doped pyrochlore oxides showed lower conductivity as compared to the undoped $\text{La}_2\text{Zr}_2\text{O}_7$
Plasma-sprayed coatings showed significantly lower radiation conductivity due to the increased scattering and reflectivity of micro-porosity.

Graphs:

1. **Hot-pressed dense zirconate material**
 - Thermal conductivity, W/m-K vs. Surface temperature, °C
 - Symbols: k measured
 - Lines: k fit due to lattice conduction
 - Arrows: radiation, lattice conduction

2. **ZrO$_2$-8wt%Y$_2$O$_3$ plasma-sprayed porous coating**
 - Thermal conductivity, W/m-K vs. Surface temperature, °C
 - Symbols: k measured
 - Lines: k fit due to lattice conduction-radiation
 - Arrows: radiation, sintering induced conductivity rise, lattice conduction
Thermal Conductivity of Magnetoplumbites

- Thermal conductivity of LaMgAl$_{11}$O$_{19}$, SmMgAl$_{11}$O$_{19}$ and GdMgAl$_{11}$O$_{19}$
- The Gd$_2$O$_3$ and Yb$_2$O$_3$ co-doped oxides showed the lowest conductivity
Thermal Conductivity of Advanced Oxide Coatings

Thermal conductivity of plasma-sprayed HfO$_2$-Y_2O$_3$, zirconate/hafnate and magnetoplumbite coatings tested at 1650°C
The Water Vapor Stability of Selected HfO$_2$- and Pyrochlore Oxides

The water vapor stability of selected HfO$_2$-based oxides and pyrochlore oxides, determined by the TGA tests in a 50-50% flowing water vapor-oxygen environment at 1650°C.
Advanced 3000°F (1649°C) Coatings Development for SiC/SiC Combustor Liner and Vane Applications

- Multi-component hafnia- and perovskite-oxide-based coating systems being developed and radiation barrier incorporated
- Low stress, advance strain tolerant interlayer and EBC concepts established and demonstrated
- The coating systems demonstrated up to 120 hot hour sintering and cyclic durability at 1650°C (3000°F)

![Graph showing normalized thermal conductivity](image-url)
Concluding Remarks

- Advanced HfO₂, pyrochloren and magnetoplumbite oxides are being developed for 3000°F thermal/environmental barrier coating applications.

- Rare earth doping and composition optimization have demonstrated an effective approach for reducing thermal conductivity, and improving thermal and water vapor stability.

- Multicomponent, co-doped oxide systems generally showed better performance.

- HfO₂ and certain pyrochloren oxides are promising candidate materials for the 1650°C (3000°F) coatings because of their low thermal conductivity and high temperature stability in oxidizing and water-vapor containing combustion environments.

- Further studies are needed to investigate magnetoplumbite materials for the high temperature coating applications.
Acknowledgments

This work was supported by the Ultra-Efficient Engine Technology (UEET) Program at NASA Glenn.

The authors are grateful to J. A. Setlock and G. W. Leissler for their assistance in preparing the hot-pressed specimens and plasma-sprayed ceramic coatings.