In situ Analysis of Organic Compounds on Mars using Chemical Derivatization and Gas Chromatography Mass Spectrometry

D. P. Glavin
NASA Goddard Space Flight Center
Greenbelt, MD 20771
USA
daniel.p.glavin@nasa.gov

A. Buch
Ecole Centrale Paris, LGPM
95295 Chatenay Malabry
FRANCE

M. Cabane
Service d’Aéronomie, IPSL
Université Pierre et Marie Curie, Paris
FRANCE

P. Coll
Laboratoire Interuniversitaire des Systèmes Atmosphériques
UMR 7583 CNRS, Université Paris 7 and 12
94010 Créteil Cedex
FRANCE

R. Navarro-González
Laboratorio de Química de Plasmas y Estudios Planetarios
Universidad Nacional Autónoma de México
Mexico City, 04510
MEXICO

P. R. Mahaffy
NASA Goddard Space Flight Center
Greenbelt, MD 20771
USA

One of the core science objectives of NASA’s 2009 Mars Science Laboratory (MSL) mission is to determine the past or present habitability of Mars. The search for key organic compounds relevant to terrestrial life will be an important part of that assessment. We have developed a protocol for the analysis of amino acids and carboxylic acids in Mars analogue materials using gas chromatography mass spectrometry (GCMS). As illustrated in Figure 1, a variety of carboxylic acids were readily identified in soil collected from the Atacama Desert in Chile [1] at part-per-billion levels by GCMS after extraction and chemical derivatization using the reagent \(N,N\text{-} \text{tert.-Butyl (dimethylsilyl) trifluoroacetamide (MTBSTFA). Several derivatized amino acids including glycine and alanine were also detected by GCMS in the Atacama soil at lower concentrations (chromatogram not shown). Lacking derivatization capability, the Viking pyrolysis GCMS instruments could not have detected amino acids and carboxylic acids, since these
non-volatile compounds require chemical transformation into volatile species that are stable in a GC column [2].

We are currently optimizing the chemical extraction and derivatization technique for in situ GCMS analysis on Mars. Laboratory results of analyses of Atacama Desert samples and other Mars analogue materials using this protocol will be presented.

References:

Figure 1. GCMS analysis of carboxylic acids in a propanol extract of an Atacama Desert soil sample after chemical derivatization using MTBSTFA.